这是indexloc提供的服务,不要输入任何密码
Skip to main content

Incremental Sensitivity Analysis for Kernelized Models

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12458))

  • 1750 Accesses

Abstract

Despite their superior accuracy to simpler linear models, kernelized models can be prohibitively expensive in applications where the training set changes frequently, since training them is computationally intensive. We provide bounds for the changes in a kernelized model when its training set has changed, as well as bounds on the prediction of the new hypothetical model on new data. Our bounds support any kernelized model with \(L_2\) regularization and convex, differentiable loss. The bounds can be computed incrementally as the data changes, much faster than re-computing the model. We apply our bounds to three applications: active learning, leave-one-out cross-validation, and online learning in the presence of concept drifts. We demonstrate empirically that the bounds are tight, and that the proposed algorithms can reduce costly model re-computations by up to 10 times, without harming accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Given an objective function of the form \(a \sum _{i \in \mathcal {D}} \ell _i(\beta ) + b \Vert \beta \Vert ^2 \), choosing \(C = \frac{a}{2 b}\) will bring it to the standard form (1).

  2. 2.

    Our previous work [28] includes similar bounds for linear models, but only provides a sketc.h of the proof. Here we provide bounds and the full proof for both kernelized and linear models.

References

  1. Bottou, L., Lin, C.J.: Support vector machine solvers. In: Large Scale Kernel Machines, pp. 301–320 (2007)

    Google Scholar 

  2. Boyd, S., Vandenberghe, L.: Convex Optimization (2004)

    Google Scholar 

  3. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector machine learning. In: NIPS 2000, pp. 388–394 (2000)

    Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

    Article  Google Scholar 

  5. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. JMLR 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  7. Duarte, M.F., Hu, Y.H.: Vehicle classification in distributed sensor networks. J. Parallel Distrib. Comput. 64(7), 826–838 (2004)

    Article  Google Scholar 

  8. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22, 1517–1531 (2011)

    Article  Google Scholar 

  9. Fine, S., Scheinberg, K.: Incremental learning and selective sampling via parametric optimization framework for SVM. In: NIPS 2001, pp. 705–711 (2001)

    Google Scholar 

  10. Gabel, M., Keren, D., Schuster, A.: Monitoring least squares models of distributed streams. In: KDD 2015, pp. 319–328 (2015)

    Google Scholar 

  11. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  12. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algorithms. Mach. Learn. 90(3), 317–346 (2013). https://doi.org/10.1007/s10994-012-5320-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanada, H., Shibagaki, A., Sakuma, J., Takeuchi, I.: Efficiently monitoring small data modification effect for large-scale learning in changing environment. In: AAAI (2018)

    Google Scholar 

  14. Hofmann, T., Schölkopf, B., Smola, A.: Kernel methods in machine learning. Ann. Stat. 36, 1171–1220 (2007)

    Article  MathSciNet  Google Scholar 

  15. Jaakkola, T.S., Haussler, D.: Probabilistic kernel regression models. In: Proceedings of the 1999 Conference on AI and Statistics (1999)

    Google Scholar 

  16. Joachims, T.: Estimating the generalization performance of an SVM efficiently. In: ICML 2000, pp. 431–438 (2000)

    Google Scholar 

  17. Kamp, M., Bothe, S., Boley, M., Mock, M.: Communication-efficient distributed online learning with Kernels. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016, Part II. LNCS (LNAI), vol. 9852, pp. 805–819. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_50

    Chapter  Google Scholar 

  18. Karasuyama, M., Takeuchi, I.: Multiple incremental decremental learning of support vector machines. In: NIPS 2009, pp. 907–915 (2009)

    Google Scholar 

  19. Kivinen, J., Smola, A.J., Williamson, R.C.: Online learning with kernels. IEEE Trans. Signal Process. 52(8), 2165–2176 (2004)

    Article  MathSciNet  Google Scholar 

  20. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1994, pp. 3–12 (1994)

    Google Scholar 

  21. Liu, Y., Jiang, S., Liao, S.: Efficient approximation of cross-validation for Kernel methods using bouligand influence function. In: ICML 2014, pp. I-324–I-332 (2014)

    Google Scholar 

  22. Maalouf, M., Trafalis, T.B., Adrianto, I.: Kernel logistic regression using truncated Newton method. Comput. Manage. Sci. 8(4), 415–428 (2011)

    Article  MathSciNet  Google Scholar 

  23. Molinaro, A.M., Simon, R., Pfeiffer, R.M.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Article  Google Scholar 

  24. Okumura, S., Suzuki, Y., Takeuchi, I.: Quick sensitivity analysis for incremental data modification and its application to leave-one-out CV in linear classification problems. In: KDD 2015, pp. 885–894 (2015)

    Google Scholar 

  25. Orabona, F., Keshet, J., Caputo, B.: Bounded Kernel-based online learning. J. Mach. Learn. Res. 10, 2643–2666 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22(10), 1345–1359 (2010)

    Google Scholar 

  27. Schölkopf, B.: The Kernel trick for distances. In: NIPS 2000, pp. 283–289 (2000)

    Google Scholar 

  28. Sivan, H., Gabel, M., Schuster, A.: Online linear models for edge computing. In: ECML PKDD 2019 (2019)

    Google Scholar 

  29. Santosh, K.C., Hegadi, R.S. (eds.): RTIP2R 2018, Part II. CCIS, vol. 1036. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9184-2

    Book  Google Scholar 

  30. Tsai, C.H., Lin, C.Y., Lin, C.J.: Incremental and decremental training for linear classification. In: KDD 2014, pp. 343–352 (2014)

    Google Scholar 

  31. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res. 6, 363–392 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013)

    Article  Google Scholar 

  33. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural Comput. 12(9), 2013–2036 (2000)

    Article  Google Scholar 

  34. Wang, Z., Vucetic, S.: Online passive-aggressive algorithms on a budget. In: Proceedings of Machine Learning Research, vol. 9, pp. 908–915, 13–15 May 2010

    Google Scholar 

  35. Zhang, T.: Leave-one-out bounds for kernel methods. Neural Comput. 15(6), 1397–1437 (2003)

    Article  Google Scholar 

  36. Zhang, Y., Yang, Y.: Cross-validation for selecting a model selection procedure. J. Econom. 187(1), 95–112 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadar Sivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sivan, H., Gabel, M., Schuster, A. (2021). Incremental Sensitivity Analysis for Kernelized Models. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12458. Springer, Cham. https://doi.org/10.1007/978-3-030-67661-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67661-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67660-5

  • Online ISBN: 978-3-030-67661-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics