Java Platform, Standard Edition
Tools Reference

Release 9
E61612-05
October 2017

ORACLE"

Java Platform, Standard Edition Tools Reference, Release 9
E61612-05
Copyright © 1993, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Vi

Documentation Accessibility Vi

Related Documents Vi

Conventions Vi
1 Tools and Commands Reference

2 Main Tools to Create and Build Applications

javac 2-1
Annotation Processing 2-21
Searching for Types 2-22

javap 2-23

javah 2-26

javadoc 2-28

java 2-44
java Command-Line Argument Files 2-88
Enable Logging with the JVM Unified Logging Framework 2-91
Validate Java Virtual Machine Flag Arguments 2-100
Large Pages 2-100
Application Class Data Sharing 2-102
Performance Tuning Examples 2-105
Exit Status 2-106

appletviewer 2-106
AppletViewer Tags 2-107

jar 2-110

jlink 2-115

jmod 2-121

jdeps 2-126

jdeprscan 2-130

ORACLE" iii

3

Language Shell

jshell 3-1
Security Tools and Commands
keytool 4-1
jarsigner 4-26
policytool 4-42
Kinit 4-42
klist 4-44
ktab 4-46
Remote Method Invocation (RMI) Tools and Commands
rmic 5-1
rmiregistry 5-5
rmid 5-6
serialver 5-11
Java IDL and RMI-IIOP Tools and Commands
thameserv 6-1
idj 6-6
orbd 6-12
servertool 6-16
Java Deployment Tools and Commands
pack200 7-1
unpack200 7-5
javapackager 7-6
Java Web Start Tool
javaws 8-1
Monitoring Tools and Commands
jconsole 9-1
ips 9-2
jstat 9-5
iv

ORACLE"

jstatd 9-12

jmc 9-14
10 Web Services Tools and Commands

schemagen 10-1

wsgen 10-2

wsimport 10-4

xjc 10-7
11 Java Accessibility Utilities and Commands

jaccessinspector 11-1

jaccesswalker 11-5
12 Troubleshooting Tools and Commands

jcmd 12-1

jdb 12-14

jhsdb 12-17

jinfo 12-20

jmap 12-21

jstack 12-22
13 Script Commands

jis 13-1

jrunscript 13-3
ORACLE’ y

Preface

Preface

Audience

The Java Platform, Standard Edition (Java SE) Command Reference describes the
valid options and arguments for Java SE commands. In many cases, examples are
included to show correct usage.

This document is intended for Java SE developers who want to use the tools and
commands provided in JDK 9.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

For more information, see the documents in the Oracle JDK 9 Documentation

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=homepage

Tools and Commands Reference

ORACLE

The JDK tools and their commands enable developers to handle development tasks
such as compiling and running a program, packaging source files into a Java Archive
(JAR) file, applying security policies to a JAR file, and more.

The tools and commands reference topic lists and describes the Java Development Kit
(JDK) tools. They're grouped into the following sections based on the related functions
that they perform. Details about the tools and the commands that you use to run them
are contained in the corresponding sections of this guide.

Main Tools
The following foundation tools and commands let you create and build applications:

e javac: You can use the j avac tool and its options to read Java class and interface
definitions and compile them into bytecode and class files.

e javap: You use the javap command to disassemble one or more class files.

* javah: You use the j avah tool to generate C header and source files from a Java
class.

« javadoc: You use the j avadoc tool and its options to generate HTML pages of API
documentation from Java source files.

* java: You can use the j ava command to launch a Java application.

e appletviewer: You use the appl et vi ener command to launch the AppletViewer and
run applets outside of a web browser.

e jar: You can use the jar command to create an archive for classes and resources,
and to manipulate or restore individual classes or resources from an archive.

e jlink: You can use the j I i nk tool to assemble and optimize a set of modules and
their dependencies into a custom runtime image.

* jmod: You use the j nod tool to create JMOD files and list the content of existing
JMOD files.

e jdeps: You use the j deps command to launch the Java class dependency
analyzer.

» jdeprscan: You use the j deprscan tool as a static analysis tool that scans a jar file
(or some other aggregation of class files) for uses of deprecated API elements.

Language Shell

The following tool gives you an interactive environment for trying out the Java
language:

» jshell: You use the jshel | tool to interactively evaluate declarations, statements,
and expressions of the Java programming language in a read-eval-print loop
(REPL).

1-1

ORACLE

Chapter 1

Security Tools

The following security tools set security policies on your system and create
applications that can work within the scope of security policies set at remote sites:

» keytool: You use the keyt ool command and options to manage a keystore
(database) of cryptographic keys, X.509 certificate chains, and trusted certificates.

e jarsigner: You use the j arsi gner tool to sign and verify Java Archive (JAR) files.

» policytool: You use policytool to read and write a plain text policy file based on
user input through the utility GUI.

The following tools obtain, list, and manage Kerberos tickets on Windows:

» Kkinit: You use the ki ni t tool and its options to obtain and cache Kerberos ticket-
granting tickets.

» klist: You use the kli st tool to display the entries in the local credentials cache
and key table.

» ktab: You use the kt ab tool to manage the principal names and service keys
stored in a local key table.

Remote Method Invocation (RMI) Tools

The following tools enable creating applications that interact over the Web or other
network:

* rmic: You use the rmi ¢ compiler to generate stub and skeleton class files using the
Java Remote Method Protocol (JRMP) and stub and tie class files (IIOP protocol)
for remote objects.

* rmiregistry: You use the rniregi stry command to create and start a remote
object registry on the specified port on the current host.

* rmid: You use the rni d command to start the activation system daemon that
enables objects to be registered and activated in a Java Virtual Machine (JVM).

» serialver: You use the serial ver command to return the seri al Versi onU D for one
or more classes in a form suitable for copying into an evolving class.

Java IDL and RMI-IIOP Tools

The following tools enable creating applications that use OMG-standard IDL and
CORBA/IIOP:

* tnameserv: You use the tnaneserv command as a substitute for Object Request
Broker Daemon (ORBD).

* idlj: You use the i dlj command to generate Java bindings for a specified Interface
Definition Language (IDL) file.

» orbd: You use the orbd command for the client to transparently locate and call
persistent objects on servers in the CORBA environment.

» servertool: You use the servertool command-line tool to register, unregister, start
up, and shut down a persistent server.

Java Deployment Tools

The following utilities let you deploy Java applications and applets on the web:

1-2

ORACLE

Chapter 1

pack200: You use the pack200 command to transform a Java Archive (JAR) file
into a compressed pack200 file with the Java gzip compressor.

unpack200: You use the unpack200 command to transform a packed file into a JAR
file for web deployment.

javapackager: You use the j avapackager command to perform tasks related to
packaging Java and JavaFX applications.

Java Web Start

The following utility launches Java Web Start applications:

javaws: You use the j avaws tool command and its options to start Java Web Start.

Monitoring Tools

The following tools let you monitor performance statistics:

Note:

The following tools that are identified as experimental are unsupported and
should be used with that understanding. They may not be available in future
JDK versions.

jconsole: You use the j consol e command to start a graphical console to monitor
and manage Java applications.

ips: Experimental You use the j ps command to list the instrumented JVMs on the
target system.

jstat: Experimental You use the j stat command to monitor JVM statistics. This
command is experimental and unsupported.

jstatd: Experimental You use the j st at d command to monitor the creation and
termination of instrumented Java HotSpot VMs. This command is experimental
and unsupported.

jmc: You use the j rt command and its options to launch Java Mission Control.
Java Mission Control is a profiling, monitoring, and diagnostics tools suite.

Java Web Services Tools

The following tools let you create applications that provide web services:

schemagen: You can use the schemagen tool and commands to generate a
schema for every namespace that's referenced in your Java classes.

wsgen: You use the wsgen command to generate Java API for XML Web Services
(JAX-WS) portable artifacts used in JAX-WS web services.

wsimport: You use the wsi nport command to generate Java API for XML Web
Services (JAX-WS) portable artifacts.

xjc: You use the xj ¢ shell script to compile an XML schema file into fully annotated
Java classes.

1-3

ORACLE

Chapter 1

Java Accessibility Utilities

The following utilities let you check the accessibility of Java objects:

jaccessinspector: You use the j accessi nspect or accessibility evaluation tool for
the Java Accessibility Utilities API to examine accessible information about the
objects in the Java Virtual Machine.

jaccesswalker: You use the j accesswal ker to navigate through the component
trees in a particular Java Virtual Machine and presents the hierarchy in a tree
view.

Troubleshooting Tools

The following tools let you perform specific troubleshooting tasks:

Note:

The following tools that are identified as experimental are unsupported and
should be used with that understanding. They may not be available in future
JDK versions. Some of these tools aren’t currently available on Windows
platforms.

jemd: You use the j cnd utility to send diagnostic command requests to a running
Java Virtual Machine (JVM).

jdb: You use the j db command and it's options to find and fix bugs in Java
platform programs.

jhsdb: You use the j hsdb tool to attach to a Java process or to launch a
postmortem debugger to analyze the content of a core dump from a crashed Java
Virtual Machine (JVM).

jinfo: Experimental You use the ji nf o command to generate Java configuration
information for a specified Java process. This command is experimental and
unsupported.

jmap: Experimental You use the j map command to print details of a specified
process. This command is experimental and unsupported.

jstack: Experimental You use the j stack command to print Java stack traces of
Java threads for a specified Java process. This command is experimental and
unsupported.

Scripting Tools

The following tools let you run scripts that interact with the Java platform:

Note:

The following tools identified that are experimental are unsupported and
should be used with that understanding. They may not be available in future
JDK versions.

1-4

Chapter 1

* jjs: You use the jjs command-line tool to invoke the Nashorn engine.

e jrunscript: Experimental You use the jrunscri pt command to run a command-
line script shell that supports interactive and batch modes.

ORACLE 1-5

Main Tools to Create and Build
Applications

javac

ORACLE

You can use the foundation JDK tools and commands to create and build applications.

The following sections describe the tools and commands that you can use to create
and build applications:

e javac: You can use the j avac tool and its options to read Java class and interface
definitions and compile them into bytecode and class files.

e javap: You use the javap command to disassemble one or more class files.

* javah: You use the j avah tool to generate C header and source files from a Java
class.

» javadoc: You use the j avadoc tool and its options to generate HTML pages of API
documentation from Java source files.

e java: You can use the j ava command to launch a Java application.

e appletviewer: You use the appl et vi ewer command to launch the AppletViewer and
run applets outside of a web browser.

e jar: You can use the jar command to create an archive for classes and resources,
and to manipulate or restore individual classes or resources from an archive.

e jlink: You can use the j | i nk tool to assemble and optimize a set of modules and
their dependencies into a custom runtime image.

* jmod: You use the j nod tool to create IMOD files and list the content of existing
JMOD files.

e jdeps: You use the j deps command to launch the Java class dependency analyzer.

» jdeprscan: You use the j deprscan tool as a static analysis tool that scans a jar file
(or some other aggregation of class files) for uses of deprecated API elements.

You can use the j avac tool and its options to read Java class and interface definitions
and compile them into bytecode and class files.

Synopsis
javac [options] [sourcefiles]

options
Command-line options. See Overview of javac Options.

sourcefiles
One or more source files to be compiled (such as Wd ass. j ava) or processed for
annotations (such as MyPackage. M/ ass).

2-1

Chapter 2
javac

Description

The j avac command reads class and interface definitions, written in the Java
programming language, and compiles them into bytecode class files. The j avac
command can also process annotations in Java source files and classes.

In JDK 9, a new launcher environment variable, JDK_JAVAC CPTI ONS, has been
introduced that prepends its content to the command line to j avac . See Using
JDK_JAVAC_OPTIONS Environment Variable.

There are two ways to pass source code file names to j avac.

e For a small number of source files, you can list the file names on the command
line.

e For a large number of source files, you can use the @i | enane option on the j avac
command line to include a file that lists the source file names. See Standard
Options for javac for a description of the option and javac Command-Line
Argument Files for a description of j avac argument files.

Source code file names must have . j ava suffixes, class file names must have . cl ass
suffixes, and both source and class files must have root names that identify the class.
For example, a class called M/d ass would be written in a source file called

M/d ass. j ava and compiled into a bytecode class file called M/d ass. cl ass.

Inner class definitions produce additional class files. These class files have names that
combine the inner and outer class names, such as M0 ass$M/I nner O ass. cl ass.

You should arrange the source files in a directory tree that reflects their package tree.
For example:

* Oracle Solaris, Linux, and OS X: If all of your source files are in / wor kspace, then
put the source code for com nysoft. nypack. M\yCl ass in / wor kspace/ com nysof t/
nmypack/ W C ass. j ava.

* Windows: If all of your source files are in \ wor kspace, then put the source code for
com nysof t. nypack. MyCl ass in \ wor kspace\ com nysof t\ mypack\ My ass. j ava.

By default, the compiler puts each class file in the same directory as its source file.
You can specify a separate destination directory with the - d option described in
Standard Options for javac.

Programmatic Interface

The j avac command supports the new Java Compiler API defined by the classes and
interfaces in the j avax. t ool s package.

Implicitly Loaded Source Files

To compile a set of source files, the compiler might need to implicitly load additional
source files. See Searching for Types. Such files are currently not subject to
annotation processing. By default, the compiler gives a warning when annotation
processing occurs and any implicitly loaded source files are compiled. The -inplicit
option provides a way to suppress the warning.

ORACLE 2-2

ORACLE

Chapter 2
javac

Using JDK_JAVAC_OPTIONS Environment Variable

The content of the JDK_JAVAC_OPTI ONS environment variable, separated by white-spaces
() or white-space characters (\n, \t, \r, or\f) is prepended to the command line
arguments passed to j avac as a list of arguments.

The encoding requirement for the environment variable is the same as the j avac
command line on the system. JDK_JAVAC OPTI ONS environment variable content is
treated in the same manner as that specified in the command line.

Single (") or double (") quotes can be used to enclose arguments that contain
whitespace characters. All content between the open quote and the first matching
close quote are preserved by simply removing the pair of quotes. In case a matching
guote is not found, the launcher will abort with an error message. @i | es are supported
as they are specified in the command line. However, as in @i | es, use of a wildcard is
not supported.

Examples of quoting arguments containing white spaces:

export JDK_JAVAC OPTIONS=' @C: \white spaces\argfile”
export JDK_JAVAC OPTIONS='"@: \white spaces\argfile”

export JDK_JAVAC OPTIONS=' @:\"white spaces"\argfile

Overview of javac Options

The compiler has sets of standard options, and cross-compilation options that are
supported on the current development environment. The compiler also has a set of
nonstandard options that are specific to the current virtual machine and compiler
implementations but are subject to change in the future. The nonstandard options
begin with - X . The different sets of j avac options are described in the following
sections:

e Standard Options for javac
e Cross-Compilation Options for javac

» Extra Options for javac

Standard Options for javac

@filename

Reads options and file names from a file. To shorten or simplify the j avac command,
you can specify one or more files that contain arguments to the j avac command
(except - J options). This let’s you to create j avac commands of any length on any
operating system. See javac Command-Line Argument Files.

-Akey[=value]

Specifies options to pass to annotation processors. These options aren't interpreted
by j avac directly, but are made available for use by individual processors. The key
value should be one or more identifiers separated by a dot (.).

--add-modules module , module
Specifies root modules to resolve in addition to the initial modules, or all modules on
the module path if nodul e is ALL- MODULE- PATH.

2-3

ORACLE

Chapter 2
javac

--boot-class-path path or -bootclasspath path
Overrides the location of the bootstrap class files.

Note:

This option is not supported when using - -rel ease rel ease to compile for JDK
9. See the description of - -rel ease rel ease for details about compiling for
versions other than JDK 9.

--class-path path , -classpath path, or -cp path
Specifies where to find user class files and annotation processors. This class path
overrides the user class path in the CLASSPATH environment variable.

e If--class-path, -classpath, or -cp aren’t specified, then the user class path is the
current directory.

» If the - sourcepat h option isn’t specified, then the user class path is also searched
for source files.

» Ifthe - processor pat h option isn't specified, then the class path is also searched for
annotation processors.

-d directory

Sets the destination directory for class files. If a class is part of a package, then j avac
puts the class file in a subdirectory that reflects the package name and creates
directories as needed. For example:

* Oracle Solaris, Linux, and OS X: If you specify - d / home/ nycl asses and the class
is called com nypackage. Myd ass, then the class file is / hone/ nycl asses/ com
nmypackage/ MyC ass. cl ass.

e Windows: If you specify -d C:\ nycl asses and the class is called
com nypackage. My ass, then the class file is C:\ nycl asses\ com nypackage
\ MW/ ass. cl ass.

If the - d option isn’t specified, then j avac puts each class file in the same directory as
the source file from which it was generated.

Note:

The directory specified by the - d option isn’t automatically added to your user
class path.

-deprecation

Shows a description of each use or override of a deprecated member or class.
Without the - deprecat i on option, j avac shows a summary of the source files that use
or override deprecated members or classes. The - deprecati on option is shorthand for
-Xl'int:deprecation.

-encoding encoding

Specifies character encoding used by source files, such as EUC-JP and UTF-8. If the
-encodi ng option isn’t specified, then the platform default converter is used.

2-4

ORACLE

Chapter 2
javac

-endorseddirs directories
Overrides the location of the endorsed standards path.

Note:

This option is not supported when using - -rel ease rel ease to compile for JDK
9. See the description of - -rel ease rel ease for details about compiling for
versions other than JDK 9.

-extdirs directories

Overrides the location of the installed extensions. The directori es variable is a colon-
separated list of directories. Each JAR file in the specified directories is searched for
class files. All JAR files found become part of the class path.

If you are cross-compiling, then this option specifies the directories that contain the
extension classes. See Cross-Compilation Options for javac.

Note:

This option is not supported when using - -rel ease rel ease to compile for JIDK
9. See the description of - -rel ease rel ease for details about compiling for
versions other than JDK 9.

-9
Generates all debugging information, including local variables. By default, only line
number and source file information is generated.

-g:[lines, vars, source],[lines, vars, source],[lines, vars, source]
Generates only the kinds of debugging information specified by the comma-separated
list of keywords. Valid keywords are:

lines
Line number debugging information.

vars
Local variable debugging information.

source
Source file debugging information.

-g:none
Doesn’t generate any debugging information.

-h directory

Specifies where to place generated native header files.

When you specify this option, a native header file is generated for each class that
contains native methods or that has one or more constants annotated with the

j ava. |l ang. annot at i on. Nat i ve annotation. If the class is part of a package, then
the compiler puts the native header file in a subdirectory that reflects the package
name and creates directories as needed.

2-5

https://docs.oracle.com/javase/9/docs/api/java/lang/annotation/Native.html

ORACLE

Chapter 2
javac

--help or -help
Prints a synopsis of the standard options.

--help-extra or -X
Prints the help for extra options.

-implicit:{[none, class],[none, class]}
Specifies whether or not to generate class files for implicitly referenced files:

e -inplicit:class — Automatically generates class files.
e -inplicit:none — Suppresses class file generation.

If this option isn't specified, then the default automatically generates class files. In this
case, the compiler issues a warning if any class files are generated when also doing
annotation processing. The warning isn't issued when the -inplicit option is explicitly
set. See Searching for Types.

-Joption

Passes opti on to the runtime system, where opti on is one of the Java options
described on javacommand. For example, - J- Xns48msets the startup memory to 48
MB.

Note:

The CLASSPATH environment variable, - cl asspat h option, - boot cl asspat h option,
and - ext di rs option don’t specify the classes used to run j avac. Trying to
customize the compiler implementation with these options and variables is
risky and often doesn’t accomplish what you want. If you must customize the
complier implementation, then use the - J option to pass options through to
the underlying Java launcher.

—--limit-modules module , module*
Limits the universe of observable modules.

--module module-name or -m module-name
Compiles only the specified module and checks time stamps.

--module-path path or -p path
Specifies where to find application modules.

--module-source-path module-source-path
Specifies where to find input source files for multiple modules.

--module-version version
Specifies the version of modules that are being compiled.

-nowarn
Disables warning messages. This option operates the same as the - Xl i nt : none
option.

-parameters
Generates metadata for reflection on method parameters. Stores formal parameter
names of constructors and methods in the generated class file so that the method

2-6

ORACLE

Chapter 2
javac

java.lang.reflect.Execut abl e. get Par anet ers from the Reflection API can retrieve
them.

-proc: [none, only] , [none, only]

Controls whether annotation processing and compilation are done. - proc: none means
that compilation takes place without annotation processing. - proc: onl y means that
only annotation processing is done, without any subsequent compilation.

-processor classl [,class2,class3...]
Names of the annotation processors to run. This bypasses the default discovery
process.

--processor-module—path path or -p module-path
Specifies the module path used for finding annotation processors.

--processor—path path or -processorpath path
Specifies where to find annotation processors. If this option isn’t used, then the class
path is searched for processors.

-profile profile
Checks that the APl used is available in the specified profile.

Note:

Not supported when using - -rel ease rel ease to compile for JDK 9. See the
description of --rel ease rel ease for details about compiling for versions other
than JDK 9.

--release release
Compiles against the public, supported and documented API for a specific VM
version. Supported rel ease targets are 6, 7, 8, and 9.

Note:

When using - - rel ease for a version of the Java Platform that supports
modules, you can'’t use - - add- nodul es to access internal JDK modules, nor
can you use - - add- export s to access internal JDK APIs in the modules.

-s directory

Specifies the directory used to place the generated source files. If a class is part of a
package, then the compiler puts the source file in a subdirectory that reflects the
package name and creates directories as needed. For example:

e Oracle Solaris, Linux, and OS X:: If you specify -s /home/ nysrc and the class is
called com nypackage. M/d ass, then the source file is put in / hone/ nysr ¢/ conf
mypackage/ MyC ass. j ava.

* Windows: If you specify -s C \nysrc and the class is called
com nypackage. My ass, then the source file is put in C:\ nysrc\ com nypackage
\M/d ass. j ava.

2-7

ORACLE

Chapter 2
javac

-source release
Specifies the version of source code accepted. The following values for rel ease are
allowed:

Note:

As of JDK 9, the j avac doesn’t support - sour ce release settings less than or
equal to 5. If settings less than or equal to 5 are used, then the j avac
command behaves as if - source 6 were specified.

1.6

No language changes were introduced in Java SE 6. However, encoding errors in
source files are now reported as errors instead of warnings as was done in earlier
releases of Java Platform, Standard Edition.

6
Synonym for 1.6.

1.7
The compiler accepts code with features introduced in Java SE 7.

7
Synonym for 1.7.

1.8
The compiler accepts code with features introduced in Java SE 8.

8
Synonym for 1.8.

9
The default value. The compiler accepts code with features introduced in Java SE
9.

--source-path path or -sourcepath path

Specifies where to find input source files. This is the source code path used to search
for class or interface definitions. As with the user class path, source path entries are
separated by colons (:) on Oracle Solaris and semicolons(;) on Windows. They can be
directories, JAR archives, or ZIP archives. If packages are used, then the local path
name within the directory or archive must reflect the package name.

Note:
Classes found through the class path might be recompiled when their source
files are also found. See Searching for Types.
--system jdk | none

Overrides the location of system modules.

-target release
Generates class files for a specific VM version.

2-8

Chapter 2
javac

--upgrade-module—-path path
Overrides the location of upgradeable modules.

-verbose
Outputs messages about what the compiler is doing. Messages include information
about each class loaded and each source file compiled.

--version Or -version
Prints version information.

-Werror
Terminates compilation when warnings occur.

Cross-Compilation Options for javac

By default, for releases prior to JDK 9, classes were compiled against the bootstrap
classes of the platform that shipped with thej avac command. But j avac also supports
cross-compiling, in which classes are compiled against bootstrap classes of a different
Java platform implementation. It's important to use the - boot ¢l asspath and -extdirs
options when cross-compiling.

Note:

Not supported when using - -rel ease rel ease to compile for JDK 9. See the
description of - -rel ease rel ease for details about compiling for versions other
than JDK 9.

Extra Options for javac

--add-exports module/package=other-module(,other-module)*

Specifies a package to be considered as exported from its defining module to
additional modules or to all unnamed modules when the value of ot her - nodul e is ALL-
UNNAMED.

--add-reads module=other-module(,other-module)*
Specifies additional modules to be considered as required by a given module.

-Djava.endorsed.dirs=dirs
Overrides the location of the endorsed standards path.

Note:

Not supported when using - -rel ease rel ease to compile for JDK 9. See the
description of - -rel ease rel ease for details about compiling for versions other
than JDK 9.

-Djava.ext.dirs=dirs
Overrides the location of installed extensions.

ORACLE 2-9

ORACLE

Chapter 2

javac

Note:

This option is not supported when using - -rel ease rel ease to compile for JDK
9. See the description of - -rel ease rel ease for details about compiling for
versions other than JDK 9.

--doclint-format [html4]html5]
Specifies the format for documentation comments.

--patch-module module=Ffile(:file)*
Overrides or augments a module with classes and resources in JAR files or
directories.

-Xbootclasspath:path
Overrides the location of the bootstrap class files.

Note:

This option is not supported when using - -rel ease rel ease to compile for JDK
9. See the description of - -rel ease rel ease for details about compiling for
versions other than JDK 9.

-Xbootclasspath/a:path
Adds a suffix to the bootstrap class path.

Note:

This option is not supported when using - -rel ease rel ease to compile for JDK
9. See the description of - -rel ease rel ease for details about compiling for
versions other than JDK 9.

-Xbootclasspath/p:path
Adds a prefix to the bootstrap class path.

Note:

This option is not supported when using - -rel ease rel ease to compile for JDK
9. See the description of - - rel ease rel ease for details about compiling for
versions other than JDK 9.

-Xdiags: [compact, verbose]
Selects a diagnostic mode.

-Xdoclint
Enables recommended checks for problems in j avadoc comments

2-10

ORACLE

Chapter 2
javac

-Xdoclint: (all|none|[-]group) [/access]
Enables or disables specific groups of checks, where group is one of the following
values:

e accessibility
e htn

° mssing

* reference

° syntax

For more information about these groups of checks, see the - Xdocl i nt option of the
javadoc command. The - Xdocl i nt option is disabled by default in the j avac command.
The variable access specifies the minimum visibility level of classes and members that
the - Xdocl i nt option checks. It can have one of the following values (in order of most
to least visible:)

* public

e protected
° package

e private

The default access level is pri vat e.

For example, the following option checks classes and members (with all groups of
checks) that have the access level of protected and higher (which includes protected
and public):

-Xdoclint:all/protected

The following option enables all groups of checks for all access levels, except it won't
check for HTML errors for classes and members that have the access level of
package and higher (which includes package, protected and public :)

-Xdoclint:all,-htnl/package

Xdoclint/package: [-]packages(, [-]package)*

Enables or disables checks in specific packages. Each package is either the qualified
name of a package or a package name prefix followed by . *, which expands to all
sub-packages of the given package. Each package can be prefixed with - to disable
checks for a specified package or packages.

-Xlint
Enables all recommended warnings. In this release, enabling all available warnings is
recommended.

-Xlint:key(,key)*

Supplies warnings to enable or disable, separated by comma. Precede a key by a
hypen (-) to disable the specified warning.

Supported values for key are:

e all — Enables all warnings.

e auxiliarycl ass — Warns about an auxiliary class that’s hidden in a source file,
and is used from other files.

e cast — Warns about the use of unnecessary casts.

2-11

ORACLE

Chapter 2
javac

classfil e — Warns about the issues related to classfile contents.
deprecati on — Warns about the use of deprecated items.

dep- ann — Warns about the items marked as deprecated in j avadoc but without
the @epr ecat ed annotation.

di vzero — Warns about the division by the constant integer O.
enpty — Warns about an empty statement after i f.
exports — Warns about the issues regarding module exports.

fallthrough — Warns about the falling through from one case of a switch
statement to the next.

final |y — Warns about fi nal | y clauses that don’t terminate normally.

modul e — Warns about the module system-related issues.

opens — Warns about the issues related to module opens.

opti ons — Warns about the issues relating to use of command line options.
over| oads — Warns about the issues related to method overloads.

overri des — Warns about the issues related to method overrides.

path — Warns about the invalid path elements on the command | ine.
processi ng — Warns about the issues related to annotation processing.

rawt ypes — Warns about the use of raw types.

removal — Warns about the use of an API that has been marked for removal.

serial — Warns about the serializable classes that don’t provide a serial version
ID. Also warns about access to hon-public members from a serializable element.

stati c — Warns about the accessing a static member using an instance.

try — Warns about the issues relating to the use of try blocks (that is, try-with-
resources).

unchecked — Warns about the unchecked operations.
var args — Warns about the potentially unsafe var ar g methods.

none — Disables all warnings.

See Examples of Using -Xlint keys.

-Xmaxerrs number
Sets the maximum number of errors to print.

-Xmaxwarns number
Sets the maximum number of warnings to print.

-Xpkginfo:[always, legacy, nonempty]
Specifies when and how the j avac command generates package- i nf o. cl ass files from
package-i nf o. j ava files using one of the following options:

always

Generates a package-i nf o. cl ass file for every package- i nf o. j ava file. This option
may be useful if you use a build system such as Ant, which checks that

each .j ava file has a corresponding . cl ass file.

2-12

ORACLE

Chapter 2
javac

legacy

Generates a package-i nf o. cl ass file only if package-i nf 0. j ava contains
annotations. This option doesn't generate a package-i nfo. cl ass file if package-
i nf 0. j ava contains only comments.

Note:

A package-i nfo. cl ass file might be generated but be empty if all the
annotations in the package-i nf 0. j ava file have Ret enti onPol i cy. SOURCE.

nonempty
Generates a package-i nf o. cl ass file only if package-i nf 0. j ava contains annotations
with Ret ent i onPol i cy. CLASS or Ret enti onPol i cy. RUNTI ME.

-Xplugin:name args
Specifies the name and optional arguments for a plug-in to be run.

-Xprefer:[source or newer]
Specifies which file to read when both a source file and class file are found for an
implicitly compiled class using one of the following options. See Searching for Types.

e -Xprefer:newer — Reads the newer of the source or class files for a type (default).

e -Xprefer:source — Reads the source file. Use - Xpr ef er: sour ce when you want to
be sure that any annotation processors can access annotations declared with a
retention policy of SOURCE.

-Xprint
Prints a textual representation of specified types for debugging purposes. This doesn’t
perform annotation processing or compilation. The format of the output could change.

-XprintProcessorInfo
Prints information about which annotations a processor is asked to process.

-XprintRounds
Prints information about initial and subsequent annotation processing rounds.

-Xstdout filename
Sends compiler messages to the named file. By default, compiler messages go to
Systemerr.

javac Command-Line Argument Files

An argument file can include j avac options and source file names in any combination.
The arguments within a file can be separated by spaces or new line characters. If a file
name contains embedded spaces, then put the whole file name in double quotation
marks.

File names within an argument file are relative to the current directory, not to the
location of the argument file. Wildcards (*) aren't allowed in these lists (such as for
specifying *. j ava). Use of the at sign (@ to recursively interpret files isn’t supported.
The -J options aren’t supported because they’re passed to the launcher, which doesn’t
support argument files.

When executing the j avac command, pass in the path and name of each argument file
with the at sign (@) leading character. When the j avac command encounters an

2-13

ORACLE

Chapter 2
javac

argument beginning with the at sign (@, it expands the contents of that file into the
argument list.

Examples of Using javac @filename

Single Argument File
You could use a single argument file named ar gfi | e to hold all j avac arguments:

javac @rgfile
This argument file could contain the contents of both files shown in Example 2.

Two Argument Files

You can create two argument files: one for the j avac options and the other for the
source file names. Note that the following lists have no line-continuation characters.
Create a file named options that contains the following:

Oracle Solaris, Linux, and OS X::

-d cl asses

-g
-sourcepath /javal pubs/ws/ 1.3/ src/share/cl asses

Windows:
-d cl asses

-g
-sourcepath C:\java\pubs\ws\ 1. 3\src\share\classes

Create a file named classes that contains the following:

M/C assl.|ava
M/C ass2.j ava
M/C ass3.j ava

Then, run the j avac command as follows:

javac @ptions @l asses

Argument Files with Paths
The argument files can have paths, but any file names inside the files are relative to
the current working directory (not pat h1 or pat h2):

javac @athl/options @ath2/classes

Examples of Using -Xlint keys

cast
Warns about unnecessary and redundant casts, for example:

String s = (String) "Hello!"

classfile
Warns about issues related to class file contents.

deprecation
Warns about the use of deprecated items. For example:

java.util.Date nyDate = new java.util.Date();
int currentDay = nyDate. get Day();

2-14

Chapter 2
javac

The method j ava. util . Dat e. get Day has been deprecated since JDK 1.1.

dep-ann
Warns about items that are documented with the @epr ecat ed Javadoc comment, but
don’t have the @epr ecat ed annotation, for example:
/**
* @eprecated As of Java SE 7, replaced by {@ink #new\ethod()}
*|
public static void deprecatedMethod() { }
public static void newMethod() { }

divzero
Warns about division by the constant integer O, for example:

int divideByZero = 42 / 0;

empty
Warns about empty statements after i f statements, for example:

class E {

void m) {
if (true) ;
}

}

fallthrough

Checks the switch blocks for fall-through cases and provides a warning message for
any that are found. Fall-through cases are cases in a switch block, other than the last
case in the block, whose code doesn’t include a break statement, allowing code
execution to fall through from that case to the next case. For example, the code
following the case 1 label in this switch block doesn’t end with a break statement:

switch (x) {
case 1

Systemout. printin("1");

Il No break statenment here.
case 2:

Systemout. printin("2");

}

If the - Xl'int:fallthrough option was used when compiling this code, then the compiler
emits a warning about possible fall-through into case, with the line number of the case
in question.

finally
Warns about final | y clauses that can’t be completed normally, for example:

public static int m) {
try {
t hrow new Nul | Poi nt er Exception()
} catch (Null PointerException(); {
Systemerr. println("Caught NullPointerException.")
return 1

} finally {
return 0

ORACLE 2-15

ORACLE

Chapter 2
javac

The compiler generates a warning for the final | y block in this example. When the i nt
method is called, it returns a value of 0. A final | y block executes when the try block
exits. In this example, when control is transferred to the cat ch block, the i nt method
exits. However, the final I y block must execute, so it's executed, even though control
was transferred outside the method.

options
Warns about issues that related to the use of command-line options. See Cross-
Compilation Options for javac.

overrides
Warns about issues related to method overrides. For example, consider the following
two classes:

public class C assWthVarargshethod {
voi d varargsMethod(String... s) { }

}

public class CassWthOverridingMethod extends C assWthVarargsMet hod {

@verride
voi d varargsMethod(String[] s) { }

}

The compiler generates a warning similar to the following:.

warni ng: [override] varargsMethod(String[]) in OassWthQverridi nghet hod
overrides varargsMethod(String...) in CassWthVarargshethod; overriding
method is missing '...'

When the compiler encounters a var ar gs method, it translates the var ar gs formal
parameter into an array. In the method C assW t hVar ar gsMet hod. var ar gsMet hod, the
compiler translates the var ar gs formal parameter String... s to the formal parameter
String[] s, an array that matches the formal parameter of the method

Cl assW t hOverri di ngMet hod. var ar gshet hod. Consequently, this example compiles.

path

Warns about invalid path elements and nonexistent path directories on the command
line (with regard to the class path, the source path, and other paths). Such warnings
can’t be suppressed with the @uppr essWar ni ngs annotation. For example:

e Oracle Solaris, Linux, and OS X::javac -Xint:path -classpath /
nonexi st ent path Exanpl e.] ava

e Windows: javac -Xlint:path -classpath C:\nonexistentpath Exanple.|ava

processing

Warns about issues related to annotation processing. The compiler generates this
warning when you have a class that has an annotation, and you use an annotation
processor that can’'t handle that type of exception. For example, the following is a
simple annotation processor:

Source file AnnocProc.java:

import java.util.*;

i mport javax.annotation. processing. *;
inport javax.l|ang.nodel.*;

i mport.javaz.|ang. model . el enent. *;

@uppor t edAnnot at i onTypes(" Not Anno")

2-16

Chapter 2
javac

public class AnnoProc extends AbstractProcessor {
publ i c bool ean process(Set<? extends TypeEl ement > el ens, RoundEnvironnent renv){
return true;
1

publ i c SourceVersion get SupportedSourceVersion() {
return SourceVersion.latest();

}
}

Source file AnnosWithoutProcessors.java:

@nterface Anno { }

@nno
class AnnosW t hout Processors { }

The following commands compile the annotation processor AnnoPr oc, then run this
annotation processor against the source file AnnosW t hout Processors. j ava:

javac AnnoProc.java
javac -cp . -Xint:processing -processor AnnoProc -proc:only
AnnosW t hout Processors. j ava

When the compiler runs the annotation processor against the source file
AnnosW t hout Processors. j ava, it generates the following warning:

war ni ng: [processing] No processor clainmed any of these annotations: Anno

To resolve this issue, you can rename the annotation defined and used in the class
AnnosW t hout Processors from Anno to Not Anno.

rawtypes
Warns about unchecked operations on raw types. The following statement generates
araw ypes warning:

void countEl enents(List I) { ... }

The following example doesn’t generate a raw ypes warning:

voi d countEl ements(List<?>1) { ... }

Li st is a raw type. However, Li st <?> is an unbounded wildcard parameterized type.
Because Li st is a parameterized interface, always specify its type argument. In this
example, the Li st formal argument is specified with an unbounded wildcard (?) as its
formal type parameter, which means that the count El enent s method can accept any
instantiation of the Li st interface.

serial
Warns about missing seri al Ver si onUl D definitions on serializable classes, for
example:

public class PersistentTime inplenments Serializable

{

private Date tineg;

public PersistentTine() {
time = Cal endar.getlnstance().getTinme();

ORACLE 2-17

ORACLE

Chapter 2
javac

}

public Date getTime() {
return tineg;

}

}

The compiler generates the following warning:

warning: [serial] serializable class PersistentTime has no definition of
serial Versi onU D

If a serializable class doesn’t explicitly declare a field named seri al Versi onU D, then
the serialization runtime environment calculates a default seri al Ver si onUl D value for
that class based on various aspects of the class, as described in the Java Object
Serialization Specification. However, it's strongly recommended that all serializable
classes explicitly declare seri al Versi onUl D values because the default process of
computing seri al Ver si onUl D values is highly sensitive to class details that can vary
depending on compiler implementations. As a result, might cause an unexpected

I nval i dC assExcepti ons during deserialization. To guarantee a consistent

seri al Ver si onUl D value across different Java compiler implementations, a serializable
class must declare an explicit seri al Ver si onUl D value.

static
Warns about issues relating to the use of statics variables, for example:

class XLintStatic {
static void mi() { }
void nm2() { this.ml(); }
}

The compiler generates the following warning:

warning: [static] static method should be qualified by type nane,
XLintStatic, instead of by an expression

To resolve this issue, you can call the stati c method nt as follows:
XLintStatic.mi();

Alternately, you can remove the static keyword from the declaration of the method
mi.

try

Warns about issues relating to the use of try blocks, including try-with-resources
statements. For example, a warning is generated for the following statement because
the resource ac declared in the try block isn't used:

try (AutoCd oseable ac = getResource()) { /1 do not hi ng}

unchecked
Gives more detail for unchecked conversion warnings that are mandated by the Java
Language Specification, for example:

List | = new ArrayLi st <Nunber>();
List<String>ls = 1I; /1 unchecked war ni ng

During type erasure, the types ArrayLi st <Nunber > and Li st <Stri ng> become ArraylLi st
and Li st, respectively.

2-18

Chapter 2
javac

The | s command has the parameterized type Li st <Stri ng>. When the Li st referenced
by I is assigned to | s, the compiler generates an unchecked warning. At compile time,
the compiler and JVM can’t determine whether | refers to a Li st <Stri ng> type. In this
case, | doesn't refer to a Li st<String> type. As a result, heap pollution occurs.

A heap pollution situation occurs when the Li st object |, whose static type is

Li st <Nunber >, is assigned to another Li st object, | s, that has a different static type,

Li st <Stri ng>. However, the compiler still allows this assignment. It must allow this
assignment to preserve backward compatibility with releases of Java SE that don't
support generics. Because of type erasure, Li st <Nunber > and Li st <Stri ng> both
become Li st. Consequently, the compiler allows the assignment of the object I,
which has a raw type of Li st, to the object I s.

varargs
Warns about unsafe use of variable arguments (var ar gs) methods, in particular, those
that contain non-reifiable arguments, for example:

public class ArrayBuilder {
public static <T> void addTolList (List<T> listArg, T... elenents) {
for (T x : elenments) {
l'istArg.add(x);
}
}
}

A non-reifiable type is a type whose type information isn’t fully available at runtime.
The compiler generates the following warning for the definition of the method
ArrayBui | der. addToLi st :

warni ng: [varargs] Possible heap pollution fromparaneterized vararg type T

When the compiler encounters a varargs method, it translates the var ar gs formal
parameter into an array. However, the Java programming language doesn’t permit the
creation of arrays of parameterized types. In the method ArrayBui | der. addToLi st , the
compiler translates the var ar gs formal parameter T... elements to the formal
parameter T[] elements, an array. However, because of type erasure, the compiler
converts the varar gs formal parameter to Obj ect[] elements. Consequently, there's a
possibility of heap pollution.

Example of Compiling by Providing Command-Line Arguments
To compile as though providing command-line arguments, use the following syntax:

JavaConpi | er javac = Tool Provi der. get Syst emJavaConpi | er();

The example writes diagnostics to the standard output stream and returns the exit
code that j avac command would give when called from the command line.

You can use other methods in the j avax. t ool s. JavaConpi | er interface to handle
diagnostics, control where files are read from and written to, and more.

Old Interface

Note:

This API is retained for backward compatibility only. All new code should use
the Java Compiler API.

ORACLE 2-19

ORACLE

Chapter 2
javac

The com sun. tool s. j avac. Mai n class provides two static methods to call the compiler
from a program:

public static int conpile(String[] args);
public static int conpile(String[] args, PrintWiter out);

The args parameter represents any of the command-line arguments that would
typically be passed to the compiler.

The out parameter indicates where the compiler diagnostic output is directed.

The return value is equivalent to the exit value from j avac.

Note:

All other classes and methods found in a package with names that start with
com sun. tool s. j avac (subpackages of com sun. t ool s. j avac) are strictly internal
and subject to change at any time.

Example of Compiling Multiple Source Files

This example compiles the Al oha. j ava, Qut enTag. j ava, Hel | 0. j ava, and Hi . j ava source
files in the greeti ngs package.

Oracle Solaris, Linux, and OS X::

% javac greetings/*.java
%1s greetings

Al oha. cl ass QutenTag. cl ass Hel | 0. cl ass H .class
Al oha. j ava QutenTag. j ava Hello.java H.java
Windows:

C.\>javac greetings*.java

C\>dir greetings

Al oha. cl ass Gut enTag. cl ass Hel | o. cl ass Hi.class
Al oha.j ava GutenTag. j ava Hell o.java Hi.java

Example of Specifying a User Class Path

After changing one of the source files in the previous example, recompile it:
Oracle Solaris, Linux, and OS X::

pwd

[exanpl es
javac greetings/H.java

Windows:

C:\>cd
\ exanpl es
C.\>javac greetings\H .java

Because greetings. H refers to other classes in the greetings package, the compiler
needs to find these other classes. The previous example works because the default
user class path is the directory that contains the package directory. If you want to

2-20

Chapter 2
javac

recompile this file without concern for which directory you are in, then add the
examples directory to the user class path by setting CLASSPATH. This example uses the
-cl asspat h option.

Oracle Solaris, Linux, and OS X::

javac -classpath /exanpl es /exanpl es/greetings/H .java

Windows:

C.\>javac -classpath \exanpl es \exanpl es\greetings\H .java

If you change greetings. H to use a banner utility, then that utility also needs to be
accessible through the user class path.

Oracle Solaris, Linux, and OS X::

javac -classpath /exanples:/lib/Banners.jar \
[exanpl es/ greetings/H .java

Windows:

C.\>javac -classpath \exanpl es;\lib\Banners.jar *
\'exanpl es\ greetings\H .java

To execute a class in the greetings package, the program needs access to the
greetings package, and to the classes that the greeti ngs classes use.

Oracle Solaris, Linux, and OS X::

java -classpath /exanples:/lib/Banners.jar greetings.Hi

Windows:

C.\>java -classpath \exanpl es;\Iib\Banners.jar greetings.H

The -source 1.7 option specifies that release 1.7 (or 7) of the Java programming
language must be used to compile OldCode.java. The -target 1.7 option ensures that
the generated class files are compatible with JVM 1.7.

Annotation Processing

ORACLE

The j avac command provides direct support for annotation processing, superseding
the need for the separate annotation processing command, apt .

The API for annotation processors is defined in the j avax. annot at i on. processi ng and
j avax. | ang. nodel packages and subpackages.

How Annotation Processing Works

Unless annotation processing is disabled with the - proc: none option, the compiler
searches for any annotation processors that are available. The search path can be
specified with the - processor pat h option. If no path is specified, then the user class
path is used. Processors are located by means of service provider-configuration files
named META- | NF/ servi ces/ j avax. annot at i on. processi ng. Processor on the search path.
Such files should contain the names of any annotation processors to be used, listed
one per line. Alternatively, processors can be specified explicitly, using the - processor
option.

2-21

Chapter 2
javac

After scanning the source files and classes on the command line to determine what
annotations are present, the compiler queries the processors to determine what
annotations they process. When a match is found, the processor is called. A processor
can claim the annotations it processes, in which case no further attempt is made to
find any processors for those annotations. After all of the annotations are claimed, the
compiler does not search for additional processors.

If any processors generate new source files, then another round of annotation
processing occurs: Any newly generated source files are scanned, and the
annotations processed as before. Any processors called on previous rounds are also
called on all subsequent rounds. This continues until no new source files are
generated.

After a round occurs where no new source files are generated, the annotation
processors are called one last time, to give them a chance to complete any remaining
work. Finally, unless the - proc: onl y option is used, the compiler compiles the original
and all generated source files.

Searching for Types

ORACLE

To compile a source file, the compiler often needs information about a type, but the
type definition is not in the source files specified on the command line.

To compile a source file, the compiler often needs information about a type, but the
type definition is not in the source files specified on the command line. The compiler
needs type information for every class or interface used, extended, or implemented in
the source file. This includes classes and interfaces not explicitly mentioned in the
source file, but that provide information through inheritance.

For example, when you create a subclass of j ava. awt . W ndow, you are also using the
ancestor classes of W ndow: j ava. awt . Cont ai ner, j ava. awt . Conponent , and
java.lang. Qbj ect .

When the compiler needs type information, it searches for a source file or class file
that defines the type. The compiler searches for class files first in the bootstrap and
extension classes, then in the user class path (which by default is the current
directory). The user class path is defined by setting the CLASSPATH environment variable
or by using the - cl asspat h option.

If you set the - sour cepat h option, then the compiler searches the indicated path for
source files. Otherwise, the compiler searches the user class path for both class files
and source files.

You can specify different bootstrap or extension classes with the - boot cl asspat h and
the - ext di rs options. See Cross-Compilation Options for javac.

A successful type search may produce a class file, a source file, or both. If both are
found, then you can use the - Xpr ef er option to instruct the compiler which to use. If
never is specified, then the compiler uses the newer of the two files. If source is
specified, the compiler uses the source file. The default is never .

If a type search finds a source file for a required type, either by itself, or as a result of
the setting for the - Xpr ef er option, then the compiler reads the source file to get the
information it needs. By default the compiler also compiles the source file. You can
use the -inplicit option to specify the behavior. If none is specified, then no class files
are generated for the source file. If cl ass is specified, then class files are generated for
the source file.

2-22

javap

ORACLE

Chapter 2
javap

The compiler might not discover the need for some type information until after
annotation processing completes. When the type information is found in a source file
and no -inplicit option is specified, the compiler gives a warning that the file is being
compiled without being subject to annotation processing. To disable the warning,
either specify the file on the command line (so that it will be subject to annotation
processing) or use the -inplicit option to specify whether or not class files should be
generated for such source files.

You use the javap command to disassemble one or more class files.

Synopsis
javap [options] classes...

options
Specifies the command-line options. See Options for javap.

classes

Specifies one or more classes separated by spaces to be processed for annotations.
You can specify a class that can be found in the class path by its file name, URL, or
by its fully qualified class name.

Examples:

path/to/ Myd ass. cl ass
jar:file:///path/to/MJar.jar!/nypkg/ MyC ass. cl ass

java. | ang. Qbj ect

Description

The j avap command disassembles one or more class files. The output depends on the
options used. When no options are used, the j avap command prints the protected and
public fields, and methods of the classes passed to it.

The j avap command isn't multirelease JAR aware. Using the class path form of the
command results in viewing the base entry in all JAR files, multirelease or not. Using
the URL form, you can use the URL form of an argument to specify a specific version
of a class to be disassembled.

The j avap command prints its output to st dout .

Note:

In tools that support - - style options, the GNU-style options can use the equal
sign (=) instead of a white space to separate the name of an option from its
value.

2-23

ORACLE

Chapter 2
javap

Options for javap

-help, --help, or -?
Prints a help message for the j avap command.

-version
Prints release information.

-verbose or -v
Prints additional information about the selected class.

-1
Prints line and local variable tables.

-public
Shows only public classes and members.

-protected
Shows only protected and public classes and members.

-package
Shows package/protected/public classes and members (default).

-private or -p
Shows all classes and members.

-C
Prints disassembled code, for example, the instructions that comprise the Java
bytecodes, for each of the methods in the class.

-S
Prints internal type signatures.

-sysinfo
Shows system information (path, size, date, MD5 hash) of the class being processed.

-constants
Shows static final constants.

--module module or -m module
Specifies the module containing classes to be disassembled.

--module-path path
Specifies where to find application modules.

--system jdk
Specifies where to find system modules.

--class-path path, -classpath path, or -cp path
Specifies the path that the j avap command uses to find user class files. It overrides
the default or the CLASSPATH environment variable when it's set.

-bootclasspath path
Overrides the location of bootstrap class files.

2-24

Chapter 2
javap

-Joption
Passes the specified option to the JVM. For example:

javap -J-version
javap -J-Djava.security. nanager -J-Djava.security.policy=M/Policy MO assNane
See Overview of Java Options.

javap Example
Compile the following Hel | oWr | dFr ane class:

inport java.aw .G aphics;

i mport javax.sw ng. JFrane;
i mport javax.sw ng. JPanel;

public class Hel | oWorl dFrame extends JFrane {
String message = "Hello World!";

public HelloWrl dFranme(){
set Cont ent Pane(new JPanel () {
@verride
protected void paint Component (G aphics g) {
g. drawst ring(message , 15, 30);
}

13K
set Si ze(100, 100);

}

public static void main(String[] args) {
Hel | oWor | dFrame frame = new Hel | oVr | dFrane();
franme.setVisible(true);

}

The output from the javap Hel | oWr | dFrane. cl ass command yields the following:

Conpi l ed from "Hel | oWor| dFrane. j ava"

public class Hel | oWrl dFrame extends javax.sw ng. JFranme {
java.lang. String nessage;
public Hel | oWrl dFrane();
public static void main(java.lang.String[]);

}

The output from the javap -c Hel | oWr | dFrane. cl ass command yields the following:

Conpi | ed from "Hel | oWor| dFrane. java"
public class Hel | oWrl dFrame extends javax.sw ng. JFrame {
java.lang. String nessage;

public Hel | oWrl dFrane();

Code:
0: aload 0
1: invokespecial #1 /1 Method javax/sw ng/JFrane."<init>":()V
4: aload 0
5: ldc #2 Il String Hello Wrld!
7: putfield #3 Il Field message: Ljavallang/ String;
10: aload 0

ORACLE 2-25

Chapter 2

javah
11: new #4 Il class Hell oWrl dFrame$l
14: dup
15: aload_0
16: invokespecial #5 /1 Method Hel | oWorl dFrame$l. "<init>"
(LHel I oVor | dFrane;)V
19: invokevirtual #6 /1 Method set Cont ent Pane: (Lj ava/ awt / Cont ai ner;)V
22: aload_0
23: bi push 100
25: bi push 100
27: invokevirtual #7 /1 Method setSize:(I1)V
30: return

public static void main(java.lang.String[])

Code

0: new #8 Il class Hel | oWor | dFrane

dup
i nvokespeci al #9 Il Method "<init>":()V
astore_1
al oad_1
iconst_1
i nvokevirtual #10 /1 Method setVisible: (2)V
return

WO W w

=

javah

You use the j avah tool to generate C header and source files from a Java class.

Note:

The j avah tool is deprecated as of JDK 9 and might be removed in a future
JDK release. The tool has been superseded by the - h option added to j avac in
JDK 8.

Synopsis

javah [options] fully-qualified-class-nanme ..

options
Specifies the command-line options. See Options for javah.

fully-qualified-class-name

Specifies the fully qualified location of the classes to be converted to C header and
source files.

Each class must be specified by its fully qualified name, optionally prefixed by a
module name followed by the slash (/). For example:

java. |l ang. Cbj ect

java. base/java.io.File

Description

The j avah command generates C header and source files that are needed to
implement native methods. The generated header and source files are used by C
programs to reference an object's instance variables from native source code. The . h

ORACLE 2-26

ORACLE

Chapter 2
javah

file contains a st ruct definition with a layout that parallels the layout of the
corresponding class. The fields in the struct correspond to instance variables in the
class.

The name of the header file and the structure declared within it are derived from the
name of the class. When the class passed to the j avah command is inside a package,
the package name is added to the beginning of both the header file name and the
structure name. Underscores (_) are used as name delimiters.

By default, the j avah command creates a header file for each class listed on the
command line and puts the files in the current directory. Use the - st ubs option to
create source files. Use the - o option to concatenate the results for all listed classes
into a single file.

The Java Native Interface (JNI) doesn't require header information or stub files. The
j avah command can still be used to generate native method function prototypes
needed for JNI-style native methods. The j avah command produces JNI-style output
and places the result in the . h file.

Options for javah

" Note:

In tools that support - - style options, the GNU-style options can use the equal
sign (=) instead of a white space to separate the name of an option from its
value.

-0 outputfile
Concatenates the resulting header or source files for all the classes listed on the
command line into an output file. Only one of the options - o or -d can be used.

-d directory
Sets the directory where the j avah command saves the header files or the stub files.
Only one of the options -d or - o can be used.

-V Oor -verbose
Indicates verbose output and causes the j avah command to print a message to st dout
about the status of the generated files.

-h, -help, or -?
Prints a help message for j avah usage.

-version

Prints j avah command release information.

-jni

Causes the j avah command to create an output file containing JNI-style native method
function prototypes. This is the default output; use of -j ni is optional.

-force
Specifies that output files should always be written.

--module-path path
Specifies the path from which to load application modules.

2-27

javadoc

ORACLE

Chapter 2
javadoc

--system jdk
Specifies where to find system modules.

--class-path path , -classpath path, or -cp path

Specifies the path that the j avah command uses to look up classes. Overrides the
default or the CLASSPATH environment variable when it's set. Directories are separated
by colons on Oracle Solaris and semicolons on Windows. The general format for the
path is:

e Oracle Solaris, Linux, and OS X:

;your-path

Example: : / hone/ avh/ cl asses: /usr/ | ocal / j aval cl asses
* Windows:

; your-path

Example: ; C: \ users\dac\cl asses; C:\t ool s\j ava\ cl asses

As a special convenience, a class path element that contains a base name with an
asterisk (*) is considered equivalent to specifying a list of all the files in the directory
with the extension .jar or.JAR

For example, if directory nydi r contains a. jar and b. JAR, then the class path element
nydir/* is expanded to a. j ar: b. JAR, except that the order of JAR files is unspecified.
All JAR files in the specified directory, including hidden ones, are included in the list. A
class path entry that consists of an asterisk (*) expands to a list of all the JAR files in
the current directory. The CLASSPATH environment variable, where defined, is similarly
expanded. Any class path wildcard expansion occurs before the Java Virtual Machine
(JVM) is started. A Java program never sees unexpanded wild cards except by
guerying the environment, for example, by calling Syst em get env(" CLASSPATH") .

-bootclasspath path
Specifies the path from which to load bootstrap classes.

You use the j avadoc tool and its options to generate HTML pages of API
documentation from Java source files.

Synopsis
javadoc [options] [packagenames] [sourcefiles] [@iles]

options

Specifies command-line options, separated by spaces. See Options for javadoc,
Extended Options, Standard doclet Options, and Nonstandard Options Provided by
the Standard doclet.

packagenames

Specifies names of packages that you want to document, separated by spaces, for
example java.lang java.lang.reflect java.aw . If you want to also document the
subpackages, then use the - subpackages option to specify the packages.

By default, j avadoc looks for the specified packages in the current directory and
subdirectories. Use the - sour cepat h option to specify the list of directories where to
look for packages.

2-28

ORACLE

Chapter 2
javadoc

sourcefiles

Specifies names of Java source files that you want to document, separated by
spaces, for example d ass. java vj ect.java Button.java. By default, j avadoc looks for
the specified classes in the current directory. However, you can specify the full path to
the class file and use wildcard characters, for example / home/ src/ j ava/ awt /

G aphi cs*. j ava. You can also specify the path relative to the current directory.

@files
Specifies names of files that contain a list of j avadoc command options, package
names, and source file names in any order.

Description

The j avadoc command parses the declarations and documentation comments in a set
of Java source files and produces corresponding HTML pages that describe (by
default) the public and protected classes, nested classes (but not anonymous inner
classes), interfaces, constructors, methods, and fields. You can use the j avadoc
command to generate the APl documentation or the implementation documentation for
a set of source files.

You can run the j avadoc command on entire packages, individual source files, or both.
When documenting entire packages, you can use the - subpackages option either to
recursively traverse a directory and its subdirectories, or to pass in an explicit list of
package names. When you document individual source files, pass in a list of Java
source file names. See javadoc Overview in Java Platform, Standard Edition Javadoc
Guide for information about using the j avadoc tool.

Conformance

The standard doclet does not validate the content of documentation comments for
conformance, nor does it attempt to correct any errors in documentation comments.
Anyone running javadoc is advised to be aware of the problems that may arise when
generating non-conformant output or output containing executable content, such as
JavaScript. The standard doclet does provide the docl i nt feature to help developers
detect common problems in documentation comments; but, it is also recommended to
check the generated output with any appropriate conformance and other checking
tools.

For more details on the conformance requirements for HTML5 documents, see
Conformance requirements in the HTML5 Specification. For more details on security
issues related to web pages, see the Open Web Application Security Project
(OWASP) page.

Options for javadoc

The following options are the core Javadoc options.

Note:

In tools that support - - style options, the GNU-style options can use the equal
sign (=) instead of a white space to separate the name of an option from its
value.

2-29

https://www.w3.org/TR/html5/infrastructure.html#conformance-requirements
https://www.owasp.org
https://www.owasp.org

ORACLE

Chapter 2
javadoc

--add-modules module(,module)*
Specifies the root modules to resolve in addition to the initial modules, or all modules
on the module path if modul e is ALL- MODULE- PATH.

-bootclasspath classpathlist

Overrides the location of platform class files used for nonmodular releases. The

boot cl asspat h option is part of the search path that the j avadoc command uses to look
up source and class files.

Separate directories in the cl asspat hl i st parameters with one of the following
delimiters:

* Oracle Solaris, Linux, and OS X:: colon (:)

* Windows: semicolon (;)

-breakiterator

Computes the first sentence with Breakl t er at or . The first sentence is copied to the
package, class, or member summary and to the alphabetic index. The Breakl t er at or
class is used to determine the end of a sentence for all languages except for English.

» English default sentence-break algorithm — Stops at a period followed by a space
or an HTML block tag, such as <P>.

e Breakiterator sentence-break algorithm — Stops at a period, question mark, or
exclamation point followed by a space when the next word starts with a capital
letter. This is meant to handle most abbreviations (such as "The serial no. is
valid", but will not handle "Mr. Smith"). The - breaki t er at or option doesn'’t stop at
HTML tags or sentences that begin with numbers or symbols. The algorithm stops
at the last period in ../filename, even when embedded in an HTML tag.

--class-path path , -classpath path, or -cp path
Specifies the paths where the j avadoc command searches for referenced classes
These are the documented classes plus any classes referenced by those classes.

e Oracle Solaris, Linux, and OS X:: Separate multiple paths with a colon (%).
* Windows: Separate multiple paths with a semicolon (;).

The j avadoc command searches all subdirectories of the specified paths. Follow the
instructions in the class path documentation for specifying the cl asspat hl i st value.

If you omit - sour cepat h, then the j avadoc command uses - cl asspat h to find the source
files and class files (for backward compatibility). If you want to search for source and
class files in separate paths, then use both - sour cepat h and - cl asspat h.

e Oracle Solaris, Linux, and OS X:: For example, if you want to document
com nypackage, whose source files reside in the directory / home/ user/ src/ com
nypackage, and if this package relies on a library in / hone/ user/ i b, then you would
use the following command:

javadoc -sourcepath /hone/user/src -classpath /home/user/Iib com mypackage

e Windows: For example, if you want to document com nypackage, whose source
files reside in the directory \ user\ src\ com nypackage, and if this package relies on
a library in\user\lib, then you would use the following command:

javadoc -sourcepath \user\lib -classpath \user\src com nypackage

Similar to other tools, if you don't specify - cl asspat h, then the j avadoc command uses
the CLASSPATH environment variable when it is set. If both aren’t set, then the j avadoc
command searches for classes from the current directory.

2-30

ORACLE

Chapter 2
javadoc

A class path element that contains a base name of * is considered equivalent to
specifying a list of all the files in the directory with the extension .jar or . JAR

For example, if directory nydi r contains a. j ar and b. JAR, then the class path element
fool* is expanded to a A.j ar: b. JAR, except that the order of JAR files is unspecified.
All JAR files in the specified directory including hidden files are included in the list. A
class path entry that consists of * expands to a list of all the jar files in the current
directory. The CLASSPATH environment variable is similarly expanded. Any class path
wildcard expansion occurs before the Java Virtual Machine (JVM) starts. No Java
program ever sees unexpanded wild cards except by querying the environment, for
example, by calling System getenv (" CLASSPATH').

-doclet class

Generates output by using an alternate doclet. Use the fully qualified name. This
doclet defines the content and formats the output. If the - docl et option isn’t used, then
the j avadoc command uses the standard doclet for generating the default HTML
format. This class must contain the start (Root) method. The path to this starting class
is defined by the - docl et pat h option.

-docletpath path

Specifies where to find doclet class files (specified with the - docl et option) and any
JAR files it depends on. If the starting class file is in a JAR file, then this option
specifies the path to that JAR file. You can specify an absolute path or a path relative
to the current directory. If cl asspat hl i st contains multiple paths or JAR files, then they
should be separated with a colon (:) on Oracle Solaris and a semi-colon (;) on
Windows. This option isn't necessary when the docl et starting class is already in the
search path.

-encoding name
Specifies the encoding name of the source files, such as EUCJI S/ SJI S. If this option
isn’t specified, then the platform default converter is used.

-exclude pkglist

Unconditionally, excludes the specified packages and their subpackages from the list
formed by - subpackages. It excludes those packages even when they would otherwise
be included by some earlier or later - subpackages option.

The following example would include j ava.io, java. util, and java. math (among
others), but would exclude packages rooted at j ava. net and j ava. | ang. Notice that
these examples exclude j ava. | ang. ref , which is a subpackage of j ava. | ang.

e Oracle Solaris, Linux, and OS X::
j avadoc -sourcepath /hone/user/src -subpackages java -exclude java.net:java.lang
* Windows:

javadoc -sourcepath \user\src -subpackages java -exclude java.net:java.lang

--expand-requires value

Instructs the javadoc tool to expand the set of modules to be documented. By default,
only the modules given explicitly on the command line are documented. Supports the
following values:

e transitive: additionally includes all the required transitive dependencies of those
modules.

e all:includes all dependencies.

2-31

ORACLE

Chapter 2
javadoc

-extdirs dirlist

Specifies the directories where extension classes reside. These are any classes that
use the Java Extension mechanism. The ext di rs option is part of the search path the
j avadoc command uses to look up source and class files. See the - cl asspat h option
for more information. Separate directories in dirli st with semicolons (;) for Windows
and colons (;) for Oracle Solaris.

-help or --help
Displays the online help, which lists all of the j avadoc and docl et command-line
options.

-Jflag

Passes f1 ag directly to the Java Runtime Environment (JRE) that runs the j avadoc
command. For example, if you must ensure that the system sets aside 32 MB of
memory in which to process the generated documentation, then you would call the -
Xmx option as follows: j avadoc - J- Xnmx32m - J- Xms32m com nypackage. Be aware that - Xns
is optional because it only sets the size of initial memory, which is useful when you
know the minimum amount of memory required.

There is no space between the J and the fl ag.

Use the - versi on option to find out what version of the j avadoc command you are
using. The version number of the standard doclet appears in its output stream.

j avadoc -J-version

java version "1.7.0_09"

Java(TM SE Runtine Environnent (build 1.7.0_09-b05)

Java Hot Spot (TM 64-Bit Server VM (build 23.5-b02, mixed node)

--limit-modules module (,module)*
Limits the universe of observable modules.

-locale name

Specifies the locale that the j avadoc command uses when it generates
documentation. The argument is the name of the locale, as described in
java.util.Local e documentation, such as en_US (English, United States) or en_US_W N
(Windows variant).

Note:

The -1 ocal e option must be placed ahead (to the left) of any options provided
by the standard doclet or any other doclet. Otherwise, the navigation bars
appear in English. This is the only command-line option that depends on
order.

Specifying a locale causes the j avadoc command to choose the resource files of that
locale for messages such as strings in the navigation bar, headings for lists and
tables, help file contents, comments in the styl esheet . css file, and so on. It also
specifies the sorting order for lists sorted alphabetically, and the sentence separator
to determine the end of the first sentence. The -1 ocal e option doesn’t determine the
locale of the documentation comment text specified in the source files of the
documented classes.

--module module(,module)*
Documents the specified module.

2-32

Chapter 2
javadoc

--module-path path or -p path
Specifies where to find application modules.

--module-source-path path
Specifies where to find input source files for multiple modules.

-package
Shows only package, protected, and public classes and members.

-private
Shows all classes and members.

-protected
Shows only protected and public classes and members. This is the default.

-public
Shows only the public classes and members.

-quiet
Shuts off messages so that only the warnings and errors appear to make them easier
to view. It also suppresses the versi on string.

--release release
Provides source compatibility with specified release.

--show-members value
Specifies which members (fields or methods) are documented, where value can be
any of the following:

* protected: The default value is protected.
* public: Shows only public values.
* package: Shows public, protected, and package members.

e private: Shows all members.

--show-module-contents value
Specifies the documentation granularity of module declarations. Possible values are
api orall.

--show-packages value
Specifies which modules packages are documented. Possible values are exported or
al | packages.

--show-types value
Specifies which types (classes, interfaces, etc.) are documented, where value can be
any of the following:

e protected: The default value. Shows public and protected types.
* public: Shows only public values.
e package: Shows public, protected, and package types.

e private: Shows all types.

ORACLE 2-33

Chapter 2
javadoc

-source release

Specifies the release of source code accepted. The following values for the rel ease
parameter are allowed. Use the value of rel ease that corresponds to the value used
when you compile code with the j avac command.

 Release Value: 9. The j avadoc command accepts code containing language
features in JDK 9. The compiler defaults to the 9 behavior when the -sour ce
option isn't used.

* Release Value: 8. The j avadoc command accepts code containing generics and
other language features introduced in JDK 8.

* Release Value: 7. The j avadoc command accepts code containing assertions,
which were introduced in JDK 7.

* Release Value: 6. The j avadoc command doesn’t support assertions, generics, or
other language features introduced after JDK 6.

--source-path path or -sourcepath path
Specifies the search paths for finding source files when passing package names or
the - subpackages option into the j avadoc command.

e Oracle Solaris, Linux, and OS X:: Separate multiple paths with a colon (.).
* Windows: Separate multiple paths with a. semicolon (;).

The j avadoc command searches all subdirectories of the specified paths. Note that
this option isn’t only used to locate the source files being documented, but also to find
source files that aren’t being documented, but whose comments are inherited by the
source files being documented.

You can use the - sour cepat h option only when passing package names into the

j avadoc command. This will not locate source files passed into the j avadoc command.
To locate source files, change to that directory or include the path ahead of each file.
If you omit - sour cepat h, then the j avadoc command uses the class path to find the
source files (see - cl asspat h). The default - sour cepat h is the value of class path. If -

cl asspat h is omitted and you pass package names into the j avadoc command, then
the j avadoc command searches in the current directory and subdirectories for the
source files.

Set sour cepat hl i st to the root directory of the source tree for the package you are
documenting.

e Oracle Solaris, Linux, and OS X::

— For example, suppose you want to document a package called com nypackage,
whose source files are located at / hone/ user/ src/ conf nypackage/ *. j ava.
Specify sour cepat h as / home/ user/ sr ¢, the directory that contains com
\ nypackage, and then supply the package name, as follows:

j avadoc -sourcepath /home/user/src/ com mypackage

— Notice that if you concatenate the value of sour cepat h and the package name
together and change the dot to a slash (/), then you have the full path to the
package:

/ hone/ user/ src/ conf nypackage

— To point to two source paths:

ORACLE 2-34

ORACLE

Chapter 2
javadoc

javadoc -sourcepath /hone/userl/src:/home/ user2/src com mypackage
* Windows:

— For example, suppose you want to document a package called com nypackage,
whose source files are located at \ user\ src\ com nypackage\ *. j ava. Specify
sour cepat h as \user\ src, the directory that contains com nypackage, and then
supply the package name as follows:

javadoc -sourcepath C\user\src com nypackage

— Notice that if you concatenate the value of sourcepath and the package name
together and change the dot to a backslash (\), then you have the full path to
the package:

\user\'src\ com nypackage
— To point to two source paths:

j avadoc -sourcepath \userl\src;\user2\src com nypackage

-subpackages subpkglist

Generates documentation from source files in the specified packages and recursively
in their subpackages. This option is useful when adding new subpackages to the
source code because they are automatically included. Each package argument is any
top-level subpackage (such as j ava) or fully qualified package (such as j avax. swi ng)
that doesn’t need to contain source files. Arguments are separated by colons on all
operating systems. Wild cards aren't allowed. Use - sour cepat h to specify where to find
the packages. This option doesn’t process source files that are in the source tree but
don’t belong to the packages.

For example, the following commands generates documentation for packages named
java and j avax. swi ng and all of their subpackages.

e Oracle Solaris, Linux, and OS X::

javadoc -d docs -sourcepath /home/user/src -subpackages java:javax.sw ng
* Windows:

javadoc -d docs -sourcepath \user\src -subpackages java:javax.swing

--system jdk
Overrides location of system modules used for modular releases.

--upgrade-module-path path
Overrides location of upgradable options.

-verbose

Provides more detailed messages while the j avadoc command runs. Without the

ver bose option, messages appear for loading the source files, generating the
documentation (one message per source file), and sorting. The ver bose option causes
the printing of additional messages that specify the number of milliseconds to parse
each Java source file.

-X
Prints a synopsis of non-standard options and exit.

Extended Options

The following are extended options for j avadoc and are subject to change without
notice.

2-35

ORACLE

Chapter 2
javadoc

--add-exports module/package=other-module(,other-module)*

Specifies a package that is to be considered as exported from its defining module
from its defining module to additional modules, or to all unnamed modules if ot her -
nodul e is ALL- UNNAMED.

--add-reads module /package=other-module (,other-module)
Specifies additional modules to be considered as required by a given module. If
ot her - nodul e is ALL- UNNAMED, it requires the unamed module.

--patch-module module=pathlist

Replaces the contents of a module such as class files and resources with another
version. You can specify a list of JARs or directories containing the new module’s
contents in the pathlist.

Each element in the list is separated by a separator:

* Oracle Solaris, Linux, and OS X:: colon (:)

* Windows: semicolon (;)

-Xmaxerrs number
Sets the maximum number of errors to print.

-Xmaxwarns number
Sets the maximum number of warnings to print.

-Xmodule:module-name
Specifies a module to which the classes being compiled belong.

-Xold
Invokes the legacy javadoc tool.

Standard doclet Options

The following options are provided by the standard doclet.

-author
Includes the @ut hor text in the generated docs.

-bottom html-code

Specifies the text to be placed at the bottom of each output file. The text is placed at
the bottom of the page, underneath the lower navigation bar. The text can contain
HTML tags and white space, but when it does, the text must be enclosed in quotation
marks. Use escape characters for any internal quotation marks within text.

-charset name

Specifies the HTML character set for this document. The name should be a preferred
MIME name as specified in the IANA Registry, Character Sets.

For example, j avadoc -charset "iso-8859-1" nypackage inserts the following line in the
head of every generated page:

<META htt p-equi v="Cont ent - Type" content="text/htnl; charset=l SO 8859-1">

This META tag is described in the HTML standard (4197265 and 4137321), HTML
Document Representation.

-d directory
Specifies the destination directory where the j avadoc command saves the generated
HTML files. If you omit the - d option, then the files are saved to the current directory.

2-36

http://www.iana.org/assignments/character-sets
http://www.w3.org/TR/REC-html40/charset.html#h-5.2.2
http://www.w3.org/TR/REC-html40/charset.html#h-5.2.2

ORACLE

Chapter 2
javadoc

The direct ory value can be absolute or relative to the current working directory. The
destination directory is automatically created when the j avadoc command runs.

* Oracle Solaris, Linux, and OS X:: For example, the following command
generates the documentation for the package com nypackage and saves the results
in the / user/doc/ directory:

javadoc -d /user/doc/ com nypackage

* Windows: For example, the following command generates the documentation for
the package com nypackage and saves the results in the \ user\ doc\ directory:

javadoc -d \user\doc\ com nypackage

-docencoding name

Specifies the encoding of the generated HTML files. The name should be a preferred
MIME name as specified in the IANA Registry, Character Sets.

If you omit the - docencodi ng option but use the - encodi ng option, then the encoding of
the generated HTML files is determined by the - encodi ng option, for example: j avadoc
-docencodi ng "iso-8859-1" mypackage.

-docfilessubdirs
Recursively copies doc-file subdirectories

-doctitle html-code

Specifies the title to place near the top of the overview summary file. The text
specified inthe title tag is placed as a centered, level-one heading directly beneath
the top navigation bar. The titl e tag can contain HTML tags and white space, but
when it does, you must enclose the title in quotation marks. Internal quotation marks
within the ti t1 e tag must be escaped. For example, j avadoc -header "M Li brary</
b>
v1. 0" com nypackage.

-excludedocfilessubdir name

Excludes any doc files sub directories with the given name. Enables deep copying of
doc-files directories. Subdirectories and all contents are recursively copied to the
destination. For example, the directory doc- fi | es/ exanpl e/ i rages and all of its
contents are copied. There is also an option to exclude subdirectories.

-footer html-code

Specifies the footer text to be placed at the bottom of each output file. Theht m - code
value is placed to the right of the lower navigation bar. The ht nl - code value can
contain HTML tags and white space, but when it does, the ht n - code value must be
enclosed in quotation marks. Use escape characters for any internal quotation marks
within a footer.

--frames
Enables the use of frames in the generated output (default).

-group namepl:p2
Group the specified packages together in the Overview page.

-header html-code

Specifies the header text to be placed at the top of each output file. The header is
placed to the right of the upper navigation bar. The header can contain HTML tags and
white space, but when it does, the header must be enclosed in quotation marks. Use
escape characters for internal quotation marks within a header. For example, j avadoc
-header "M Library
v1.0" com nypackage.

2-37

http://www.iana.org/assignments/character-sets

ORACLE

Chapter 2
javadoc

-helpfile filename

Includes the file that links to the HELP link in the top and bottom navigation bars .
Without this option, the j avadoc command creates a help file help-doc.html that is
hard-coded in the j avadoc command. This option lets you override the default. The
filename can be any name and isn't restricted to hel p- doc. ht m . The j avadoc command
adjusts the links in the navigation bar accordingly. For example:

* Oracle Solaris, Linux, and OS X::
javadoc -helpfile /home/user/nyhel p.htm java. awt.
* Windows:

javadoc -helpfile C\user\nyhel p.htm java.awt.

-html4
Generates HTML 4.0.1 output. If the option is not used, - ht ni 4 is the default

-html5
Generates HTML 5 output. If the option is not used, - ht ni 4 is the default.

-keywords

Adds HTML keyword <META> tags to the generated file for each class. These tags can
help search engines that look for <META> tags find the pages. Most search engines that
search the entire Internet don't look at <META> tags, because pages can misuse them.
Search engines offered by companies that confine their searches to their own website
can benefit by looking at <META> tags. The <META> tags include the fully qualified name
of the class and the unqualified names of the fields and methods. Constructors aren’t
included because they are identical to the class name. For example, the class String
starts with these keywords:

<META NAME="keywor ds" CONTENT="java.lang.String class">
<META NAME="keywor ds" CONTENT="CASE_| NSENSI Tl VE_ORDER' >
<META NAME="keywor ds" CONTENT="|ength()">
<META NAME="keywor ds" CONTENT="char At ()">

-link url

Creates links to existing Javadoc-generated documentation of externally referenced
classes. Theur! argument is the absolute or relative URL of the directory that contains
the external Javadoc-generated documentation you want to link. You can specify
multiple -1 i nk options in a specified j avadoc command run to link to multiple
documents.

The package-list file must be found in this directory (otherwise, use the -1inkoffline
option). The j avadoc command reads the package names from the package-list file
and links to those packages at that URL. When the j avadoc command runs, the

ext docURL value is copied into the <A HREF> links that are created. Therefore, ext docURL
must be the URL to the directory, and not to a file. You can use an absolute link for
ur | to enable your documents to link to a document on any web site, or you can use a
relative link to link only to a relative location. If you use a relative link, then the value
you pass in should be the relative path from the destination directory (specified with
the - d option) to the directory containing the packages being linked to. When you
specify an absolute link, you usually use an HTTP link. However, if you want to link to
a file system that has no web server, then you can use a file link. Use a file link only
when everyone who wants to access the generated documentation shares the same
file system. In all cases, and on all operating systems, use a slash as the separator,
whether the URL is absolute or relative, and http: orfile: as specified in the URL
Memo: Uniform Resource Locators.

2-38

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1738.txt

ORACLE

Chapter 2
javadoc

-link http://<host>/<directory>/<directory>/.../<nane>
-link file://<host>/<directory> <directory>/.../<name>
-link <directory>/<directory>/.../<name>

-linkoffline urll url2

This option is a variation of the - 1i nk option. They both create links to Javadoc-
generated documentation for externally referenced classes. Use the -1inkof fline
option when linking to a document on the web when the j avadoc command can’t
access the document through a web connection. Use the -1i nkof f | i ne option when
package-list file of the external document isn’t accessible or doesn’t exist at the url
location, but does exist at a different location that can be specified by packageLi st Loc
(typically local). If url 1 is accessible only on the World Wide Web, then the -

l'i nkof f1i ne option removes the constraint that the j avadoc command must have a
web connection to generate documentation. Another use is as a work-around to
update documents: After you have run the j avadoc command on a full set of
packages, you can run the j avadoc command again on a smaller set of changed
packages, so that the updated files can be inserted back into the original set.
Examples follow. The -1i nkof f | i ne option takes two arguments. The first is for the
string to be embedded in the <a href > links, and the second tells the -1i nkof fl i ne
option where to find package-list:

The url 1 orurl 2 value is the absolute or relative URL of the directory that contains the
external Javadoc-generated documentation you want to link to. When relative, the
value should be the relative path from the destination directory (specified with the -d
option) to the root of the packages being linked to. See url in the -1i nk option. You
can specify multiple -1 i nkof f 1 i ne options in a specified j avadoc command run.

-linksource

Creates an HTML version of each source file (with line numbers) and adds links to
them from the standard HTML documentation. Links are created for classes,
interfaces, constructors, methods, and fields whose declarations are in a source file.
Otherwise, links aren’t created, such as for default constructors and generated
classes.

This option exposes all private implementation details in the included source files,
including private classes, private fields, and the bodies of private methods, regardless
of the - publ i c, - package, - prot ected, and - pri vat e options. Unless you also use the -
privat e option, not all private classes or interfaces are accessible through links.

Each link appears on the name of the identifier in its declaration. For example, the link
to the source code of the But t on class would be on the word But t on:

public class Button extends Conponent inplements Accessible

The link to the source code of the get Label method in the But t on class is on the word
get Label :

public String getLabel ()

-nocomment

Suppresses the entire comment body, including the main description and all tags, and
generate only declarations. This option lets you reuse source files that were originally
intended for a different purpose so that you can produce skeleton HTML
documentation during the early stages of a new project.

-nodeprecated
Prevents the generation of any deprecated API in the documentation. This does what
the - nodepr ecat edl i st option does, and it doesn’t generate any deprecated API

2-39

ORACLE

Chapter 2
javadoc

throughout the rest of the documentation. This is useful when writing code when you
don’t want to be distracted by the deprecated code.

-nodeprecatedlist

Prevents the generation of the file that contains the list of deprecated APls
(deprecated-1ist.htm) and the link in the navigation bar to that page. The j avadoc
command continues to generate the deprecated API throughout the rest of the
document. This is useful when your source code contains no deprecated APIs, and
you want to make the navigation bar cleaner.

--no-frames
Disables the use of frames in the generated output.

-nohelp
Omits the HELP link in the navigation bars at the top and bottom of each page of
output.

-noindex
Omits the index from the generated documents. The index is produced by default.

-nonavbar

Prevents the generation of the navigation bar, header, and footer, that are usually
found at the top and bottom of the generated pages. The - nonavbar option has no
affect on the - bot t omoption. The - nonavbar option is useful when you are interested
only in the content and have no need for navigation, such as when you are converting
the files to PostScript or PDF for printing only.

-noqualifier namel: name2...

Excludes the list of qualifiers from the output. The package name is removed from
places where class or interface names appear.

The following example omits all package qualifiers: - noqual i fier all.

The following example omits j ava. | ang and j ava. i o0 package qualifiers: - noqual i fi er
java.lang:java.io.

The following example omits package qualifiers starting with j ava and com sun
subpackages, but notj avax: -noqualifier java.*:com sun.*.

Where a package qualifier would appear due to the previous behavior, the name can
be suitably shortened. This rule is in effect whether or not the -noqual i fi er option is
used.

-nosince
Omits from the generated documents the Si nce sections associated with the @i nce
tags.

-notimestamp

Suppresses the time stamp, which is hidden in an HTML comment in the generated
HTML near the top of each page. The - not i mest anp option is useful when you want to
run the j avadoc command on two source bases and get the differences between di f f
them, because it prevents time stamps from causing a di ff (which would otherwise be
a diff on every page). The time stamp includes the j avadoc command release
number.

-notree

Omits the class and interface hierarchy pages from the generated documents. These
are the pages you reach using the Tree button in the navigation bar. The hierarchy is
produced by default.

2-40

ORACLE

Chapter 2
javadoc

-overview filename

Specifies that the j avadoc command should retrieve the text for the overview
documentation from the source file specified byfi | enane and place it on the Overview
page (overvi ew summary. htni). A relative path specified with the file name is relative to
the current working directory.

While you can use any hame you want for the fi | ename value and place it anywhere
you want for the path, it is typical to name it overvi ew. ht i and place it in the source
tree at the directory that contains the topmost package directories. In this location, no
path is needed when documenting packages, because the - sour cepat h option points
to this file.

* Oracle Solaris, Linux, and OS X:: For example, if the source tree for the
java.lang package is /src/cl asses/javal | ang/, then you could place the overview
fileat/ src/ cl asses/ overvi ew. htm .

* Windows: For example, if the source tree for the j ava. | ang package is \src
\cl asses\java\l ang\, then you could place the overview file at\src\cl asses
\overview htn

The overview page is created only when you pass two or more package names to the
j avadoc command. The title on the overview page is set by -doctitle.

-serialwarn

Generates compile-time warnings for missing @eri al tags. By default, Javadoc
generates no serial warnings. Use this option to display the serial warnings, which
helps to properly document default serializable fields and wri t eExt er nal methods.

-sourcetab tablength
Specifies the number of spaces each tab uses in the source.

-splitindex
Splits the index file into multiple files, alphabetically, one file per letter, plus a file for
any index entries that start with non-alphabetical symbols.

-stylesheetfile path

Specifies the path of an alternate HTML stylesheet file. Without this option, the

j avadoc command automatically creates a stylesheet file st yl esheet . css that is hard-
coded in the j avadoc command. This option lets you override the default. The file
name can be any name and isn't restricted to st yl esheet . css, for example:

e Oracle Solaris, Linux, and OS X::
javadoc -stylesheet file /hone/user/nystylesheet.css com nypackage
* Windows:

javadoc -stylesheet file C\user\nystylesheet.css com nypackage

-tag name:locations: header

Specifies single argument custom tags. For the j avadoc command to spell-check tag
names, it is important to include a -t ag option for every custom tag that is present in
the source code, disabling (with X) those that aren’t being output in the current run.
The colon (:) is always the separator. The -t ag option outputs the tag heading, header,
in bold, followed on the next line by the text from its single argument. Similar to any
block tag, the argument text can contain inline tags, which are also interpreted. The
output is similar to standard one-argument tags, such as the @et urn and @ut hor tags.
Omitting a header value causes the t agnane to be the heading.

2-41

ORACLE

Chapter 2
javadoc

-taglet class

Specifies the fully qualified name of the taglet used in generating the documentation
for that tag. Use the fully qualified name for the cl ass value. This taglet also defines
the number of text arguments that the custom tag has. The taglet accepts those
arguments, processes them, and generates the output.

Taglets are useful for block or inline tags. They can have any number of arguments
and implement custom behavior, such as making text bold, formatting bullets, writing
out the text to a file, or starting other processes. Taglets can only determine where a
tag should appear and in what form. All other decisions are made by the doclet. A
taglet can't do things such as remove a class name from the list of included classes.
However, it can execute side effects, such as printing the tag's text to a file or
triggering another process. Use the -t agl et pat h option to specify the path to the
taglet. The following example inserts the To Do taglet after Parameters and ahead of
Throws in the generated pages.

-tagl et comsun.tools.docl ets. ToDoTagl et
-tagl etpath /hone/taglets

-tag return

-tag param

-tag todo

-tag throws

-tag see

Alternately, you can use the -tagl et option in place of its - t ag option, but that might
be difficult to read.

-tagletpath tagletpathlist

Specifies the search paths for finding taglet class files. The tagl et pat hl i st can
contain multiple paths by separating them with a colon (:). The j avadoc command
searches all subdirectories of the specified paths.

-top html-code
Specifies the text to be placed at the top of each output file.

-use

Creates class and package usage pages. Includes one Use page for each
documented class and package. The page describes what packages, classes,
methods, constructors and fields use any API of the specified class or package. Given
class C, things that use class C would include subclasses of C, fields declared as C,
methods that return C, and methods and constructors with parameters of type C. For
example, you can look at the Use page for the String type. Because the get Name
method in the j ava. awt . Font class returns type String, the get Name method uses String
and so the get Name method appears on the Use page for String. This documents only
uses of the API, not the implementation. When a method uses String in its
implementation, but doesn’t take a string as an argument or return a string, that isn’t
considered a use of String.To access the generated Use page, go to the class or
package and click the Use link in the navigation bar.

-version
Includes the version text in the generated docs. This text is omitted by default. To find
out what version of the j avadoc command you are using, use the - J-ver si on option.

-windowtitle title

Specifies the title to be placed in the HTML <ti t| e> tag. The text specified inthe title
tag appears in the window title and in any browser bookmarks (favorite places) that
someone creates for this page. This title shouldn’t contain any HTML tags because

2-42

ORACLE

Chapter 2
javadoc

the browser doesn’t interpret them correctly. Use escape characters on any internal
guotation marks within the titl e tag. If the - wi ndowtit| e option is omitted, then the

j avadoc command uses the value of the - docti t| e option for the - wi ndowt i t| e option.
For example, javadoc -wi ndowtitle "M/ Library" com nypackage.

Nonstandard Options Provided by the Standard doclet

The following are non-standard options provided by the standard doclet and are
subject to change without notice.

-Xdoclint
Enables recommended checks for problems in Javadoc comments.

-Xdoclint: (all|none|[-]group)

Enable or disable specific checks for bad references, lack of accessibility, missing
Javadoc comments, and reports errors for invalid Javadoc syntax and missing HTML
tags.

This option enables the j avadoc command to check for all documentation comments
included in the generated output. You can select which items to include in the
generated output with the standard options - publ i c, - prot ect ed, - package and -
private.

When the - Xdocl i nt is enabled, it reports issues with messages similar to the j avac
command. The j avadoc command prints a message, a copy of the source line, and a
caret pointing at the exact position where the error was detected. Messages may be
either warnings or errors, depending on their severity and the likelihood to cause an
error if the generated documentation were run through a validator. For example, bad
references or missing Javadoc comments don’t cause the j avadoc command to
generate invalid HTML, so these issues are reported as warnings. Syntax errors or
missing HTML end tags cause the j avadoc command to generate invalid output, so
these issues are reported as errors.

- Xdocl i nt option validates input comments based upon the requested markup.

By default, the - Xdocl i nt option is enabled. Disable it with the option - Xdocl i nt : none.
The following options change what the - Xdocl i nt option reports:

° -Xdoclint none: Disables the - Xdocl i nt option

e -Xdoclint group : Enables group checks

e -Xdoclint all : Enables all groups of checks

° -Xdoclint all,-group: Enables all checks except group checks
The group variable has one of the following values:

e accessibility: Checks for the issues to be detected by an accessibility checker
(for example, no caption or summary attributes specified in a <t abl e> tag).

e htnl: Detects high-level HTML issues, such as putting block elements inside inline
elements, or not closing elements that require an end tag. The rules are derived
from the HTML 4 Specification or the HTML 5 Specification based on the standard
doclet ht M output generation selected. This type of check enables the j avadoc
command to detect HTML issues that some browsers might not interpret as
intended.

* nissing : Checks for missing Javadoc comments or tags (for example, a missing
comment or class, or a missing @ et ur n tag or similar tag on a method).

2-43

https://www.w3.org/TR/html4/
http://www.w3.org/TR/2014/REC-html5-20141028/

java

ORACLE

Chapter 2
java

» reference : Checks for issues relating to the references to Java API elements from
Javadoc tags (for example, item not found in @ee , or a bad name after @aranj.

» syntax : Checks for low level issues like unescaped angle brackets (< and >) and
ampersands (& and invalid Javadoc tags.

You can specify the - Xdocl i nt option multiple times to enable the option to check
errors and warnings in multiple categories. Alternatively, you can specify multiple error
and warning categories by using the preceding options. For example, use either of the
following commands to check for the HTML, syntax, and accessibility issues in the file
fil enane.

javadoc -Xdoclint:htnl -Xdoclint:syntax -Xdoclint:accessibility filename
javadoc - Xdoclint:htnl, syntax,accessibility filenane

Note:

The j avadoc command doesn’t guarantee the completeness of these checks.

In particular, it isn’'t a full HTML compliance checker. The goal of the -Xdocl i nt
option is to enable the j avadoc command to report majority of common errors.
The j avadoc command doesn’t attempt to fix invalid input, it just reports it.

-Xdoclint/package:([-]) packages

Enables or disables checks in specific packages. packages is a comma separated list
of package specifiers. A package specifier is either a qualified name of a package or a
package name prefix followed by *, which expands to all sub packages of the given
package. Prefix the package specifier with — to disable checks for the specified
packages.

-Xdocrootparent url
Replaces all @ocRoot items followed by/ .. in Javadoc comments with the url .

You can use the j ava command to launch a Java application.

Synopsis

To execute a class:

java [options] mainclass [args...]

To execute a JAR file:

java [options] -jar jarfile [args...]
To execute the main class in a module:

java [options] [--rmodul e-path modul epath] --modul e nodul e[/ mai ncl ass] [args...]

options
Specifies command-line options separated by spaces. See Overview of Java Options
for a description of available options.

2-44

ORACLE

Chapter 2
java

mainclass
Specifies the name of the class to be launched. Command-line entries following
cl assnane are the arguments for the main method.

jarfile
Specifies the name of the Java Archive (JAR) file to be called. Used only with the -j ar
option.

modulepath

Specifies the path to a semicolon-separated (;) list of directories in which each
directory is a directory of modules Used only with the - - modul e- pat h option. See
Standard Options for Java.

module[/mainclass]

Specifies the name of the initial modul e to resolve and, if it isn’t specified by the nodul e,
then specifies the name of the nai ncl ass to execute. Used only with the - mor - - nodul e
option. See Standard Options for Java.

args
Specifies the arguments passed to the mai n method separated by spaces.

Note:

Arguments following the main class, -jar jarfile,-mor --nodul e nodul e/
mai ncl ass are passed as the arguments to the main class.

Description

The j ava command starts a Java application. It does this by starting the Java Runtime
Environment (JRE), loading the specified class, and calling that class's mai n() method.
The method must be declared public and stati c, it must not return any value, and it
must accept a String array as a parameter. The method declaration has the following
form:

public static void main(String[] args)

In JDK 9, a new launcher environment variable, JDK_JAVA OPTI ONS, has been introduced
that prepends its content to the actual command line of the j ava launcher. See Using
the JDK_JAVA_OPTIONS Launcher Environment Variable.

The j ava command can be used to launch a JavaFX application by loading a class that
either has a mai n() method or that extends the j avaf x. appl i cati on. Appl i cation. In the
latter case, the launcher constructs an instance of the Appl i cati on class, calls its
init() method, and then calls the start (j avaf x. st age. St age) method.

By default, the first argument that isn’'t an option of the j ava command is the fully
qualified name of the class to be called. If the -j ar option is specified, then its
argument is the name of the JAR file containing class and resource files for the
application. The startup class must be indicated by the Mai n- d ass manifest header in
its manifest file.

Arguments after the class file name or the JAR file name are passed to the nai n()
method.

Windows: The j avaw command is identical to j ava, except that with j avaw there’s no
associated console window. Use j avaw when you don’t want a command prompt

2-45

ORACLE

Chapter 2
java

window to appear. The j avaw launcher will, however, display a dialog box with error
information if a launch fails.

Using the JDK_JAVA_OPTIONS Launcher Environment Variable

JDK_JAVA_OPTI ONS prepends its content to the options parsed from the command line.
The content of the JDK_JAVA_OPTI ONS environment variable is a list of arguments
separated by white-space characters (as determined by i sspace()). These are
prepended to the command line arguments passed to j ava launcher. The encoding
requirement for the environment variable is the same as the j ava command line on the
system. JDK_JAVA _OPTI ONS environment variable content is treated in the same manner
as that specified in the command line.

Single (") or double (") quotes can be used to enclose arguments that contain
whitespace characters. All content between the open quote and the first matching
close quote are preserved by simply removing the pair of quotes. In case a matching
guote is not found, the launcher will abort with an error message. @i | es are supported
as they are specified in the command line. However, as in @i | es, use of a wildcard is
not supported. In order to mitigate potential misuse of JDK_JAVA_OPTI ONS behavior,
options that specify the main class (such as -j ar) or cause the j ava launcher to exit
without executing the main class (such as - h) are disallowed in the environment
variable. If any of these options appear in the environment variable, the launcher will
abort with an error message. When JDK_JAVA_CPTI ONS is set, the launcher prints a
message to stderr as a reminder.

Example:

export JDK_JAVA OPTIONS='-g @ilel -Dprop=value @il e2 -Dws.prop="white spaces”"
$java -Xint @ile3

is equivalent to the command line:

java -g @ilel -Dprop=value @ile2 -Dws.prop="white spaces" -Xint @ile3

Overview of Java Options
The j ava command supports a wide range of options in the following categories:

» Standard Options for Java: Options guaranteed to be supported by all
implementations of the Java Virtual Machine (JVM). They’re used for common
actions, such as checking the version of the JRE, setting the class path, enabling
verbose output, and so on.

» Extra Options for Java: General purpose options that are specific to the Java
HotSpot Virtual Machine. They aren’t guaranteed to be supported by all JVM
implementations, and are subject to change. These options start with - X.

The advanced options aren’t recommended for casual use. These are developer
options used for tuning specific areas of the Java HotSpot Virtual Machine operation
that often have specific system requirements and may require privileged access to
system configuration parameters. Several examples of performance tuning are
provided in Performance Tuning Examples. These options aren’t guaranteed to be
supported by all JVM implementations and are subject to change. Advanced options
start with - XX.

* Advanced Runtime Options for Java: Control the runtime behavior of the Java
HotSpot VM.

2-46

ORACLE

Chapter 2
java

* Advanced JIT Compiler Options for java: Control the dynamic just-in-time (JIT)
compilation performed by the Java HotSpot VM.

* Advanced Serviceability Options for Java: Enable gathering system information
and performing extensive debugging.

* Advanced Garbage Collection Options for Java: Control how garbage collection
(GC) is performed by the Java HotSpot

Boolean options are used to either enable a feature that’s disabled by default or
disable a feature that's enabled by default. Such options don’t require a parameter.
Boolean - XX options are enabled using the plus sign (- XX: +Opt i onNane) and disabled
using the minus sign (- XX: - Opt i onNane).

For options that require an argument, the argument may be separated from the option
name by a space, a colon (:), or an equal sign (=), or the argument may directly follow
the option (the exact syntax differs for each option). If you're expected to specify the
size in bytes, then you can use no suffix, or use the suffix k or K for kilobytes (KB), mor
Mfor megabytes (MB), or g or Gfor gigabytes (GB). For example, to set the size to 8
GB, you can specify either 8g, 8192m 8388608k, or 8589934592 as the argument. If you
are expected to specify the percentage, then use a number from 0 to 1. For example,
specify 0. 25 for 25%.

The following sections describe the options that are obsolete, deprecated, and
removed in JDK 9:

* Obsolete Java Options: Accepted but ignored. A warning is issued when they're
used.

» Deprecated Java Options: Accepted and acted upon. A warning is issued when
they’re used.

* Removed Java Options: Removed in JDK 9. Using them results in an error.
Standard Options for Java

These are the most commonly used options supported by all implementations of the
JVM.

Note:

To specify an argument for a long option, you can use either - - nane=val ue or
--nane val ue.

-agentlib: libname[=options]
Loads the specified native agent library. After the library name, a comma-separated
list of options specific to the library can be used.

» Oracle Solaris, Linux, and OS X: If the option -agent | i b: f oo is specified, then
the JVM attempts to load the library named I i bf 0o. so in the location specified by
the LD LI BRARY_PATH system variable (on OS X this variable is DYLD LI BRARY_PATH).

* Windows: If the option - agent | i b: f oo is specified, then the JVM attempts to load
the library named f oo. dI | in the location specified by the PATH system variable.

2-47

ORACLE

Chapter 2
java

The following example shows how to load the Java Debug Wire Protocol (JDWP)
library and listen for the socket connection on port 8000, suspending the JVM
before the main class loads:

-agentlib:jdwp=transport=dt_socket, server=y, addr ess=8000

-agentpath:pathname[=options]
Loads the native agent library specified by the absolute path name. This option is
equivalent to - agent | i b but uses the full path and file name of the library.

--class-path classpath, -classpath classpath, or -cp classpath

A semicolon (;) separated list of directories, JAR archives, and ZIP archives to search
for class files.

Specifying cl asspat h overrides any setting of the CLASSPATH environment variable. If
the class path option isn’t used and cl asspat h isn’t set, then the user class path
consists of the current directory (.).

As a special convenience, a class path element that contains a base name of an
asterisk (*) is considered equivalent to specifying a list of all the files in the directory
with the extension .jar or.JAR. A Java program can't tell the difference between the
two invocations. For example, if the directory mydi r contains a.jar and b. JAR, then
the class path element nydi r/ * is expanded to A j ar: b. JAR, except that the order of
JAR files is unspecified. All . j ar files in the specified directory, even hidden ones, are
included in the list. A class path entry consisting of an asterisk (*) expands to a list of
all the jar files in the current directory. The CLASSPATH environment variable, where
defined, is similarly expanded. Any class path wildcard expansion that occurs before
the Java VM is started. Java programs never see wildcards that aren’t expanded
except by querying the environment, such as by calling Syst em get env(" CLASSPATH') .

--disable-@files
Can be used anywhere on the command line, including in an argument file, to prevent
further @i | ename expansion. This option stops expanding @ gf i | es after the option.

--module-path modulepath... or -p modulepath
Searches for directories from a semicolon-separated (;) list of directories. Each
directory is a directory of modules.

--upgrade-module-path modulepath. ..

Searches for directories from a semicolon-separated (;) list of directories. Each
directory is a directory of modules that replace upgradeable modules in the runtime
image.

--add-modules module[,module...]
Specifies the root modules to resolve in addition to the initial module. modul e also can
be ALL- DEFAULT, ALL- SYSTEM and ALL- MODULE- PATH.

--list-modules
Lists the observable modules and then exits.

-d module or --describe-module module
Describes a specified module and then exits.

--dry-run

Creates the VM but doesn’t execute the main method. This - - dry-run option might be
useful for validating the command-line options such as the module system
configuration.

2-48

ORACLE

Chapter 2
java

--validate-modules
Validates all modules and exit. This option is helpful for finding conflicts and other
errors with modules on the module path.

-Dproperty=value

Sets a system property value. The property variable is a string with no spaces that
represents the name of the property. The val ue variable is a string that represents the
value of the property. If val ue is a string with spaces, then enclose it in quotation
marks (for example - Df oo="f 00 bhar").

-disableassertions[: [packagename]. . .| :classname] or -da[:
[packagename]. . . | :classname]

Disables assertions. By default, assertions are disabled in all packages and classes.
With no arguments, - di sabl easserti ons (- da) disables assertions in all packages and
classes. With the packagenane argument ending in . . ., the switch disables assertions
in the specified package and any subpackages. If the argument is simply . .., then the
switch disables assertions in the unnamed package in the current working directory.
With the cl assnane argument, the switch disables assertions in the specified class.
The - di sabl easserti ons (-da) option applies to all class loaders and to system classes
(which don’'t have a class loader). There’s one exception to this rule: If the option is
provided with no arguments, then it doesn’t apply to system classes. This makes it
easy to disable assertions in all classes except for system classes. The -

di sabl esyst emassertions option enables you to disable assertions in all system
classes. To explicitly enable assertions in specific packages or classes, use the -
enabl eassertions (- ea) option. Both options can be used at the same time. For
example, to run the Myd ass application with assertions enabled in the package

com wonbat . frui tbat (and any subpackages) but disabled in the class

com wonbat . f rui t bat . Bri ckbat , use the following command:

java -ea:comwonbat.fruitbat... -da:comwonbat.fruitbat.Brickbat M/ ass

-disablesystemassertions or -dsa
Disables assertions in all system classes.

-enableassertions[:[packagename].. .| :classname] or -ea[:
[packagename]. . . | :classname]

Enables assertions. By default, assertions are disabled in all packages and classes.
With no arguments, - enabl eassertions (- ea) enables assertions in all packages and
classes. With the packagenane argument ending in . . ., the switch enables assertions
in the specified package and any subpackages. If the argument is simply . . ., then the
switch enables assertions in the unnamed package in the current working directory.
With the cl assname argument, the switch enables assertions in the specified class.
The - enabl easserti ons (- ea) option applies to all class loaders and to system classes
(which don't have a class loader). There's one exception to this rule: If the option is
provided with no arguments, then it doesn’t apply to system classes. This makes it
easy to enable assertions in all classes except for system classes. The -

enabl esyst emasserti ons option provides a separate switch to enable assertions in all
system classes. To explicitly disable assertions in specific packages or classes, use
the - di sabl eassertions (- da) option. If a single command contains multiple instances
of these switches, then they're processed in order, before loading any classes. For
example, to run the Wd ass application with assertions enabled only in the package
com wonbat . frui tbat (and any subpackages) but disabled in the class

com wonbat . f rui t bat . Bri ckbat , use the following command:

java -ea:comwonbat.fruitbhat... -da:comwonbat.fruitbat.Brickbat M/d ass

2-49

ORACLE

Chapter 2
java

-enablesystemassertions or -esa
Enables assertions in all system classes.

-help or -?
Prints the help message to the error stream.

--help
Prints the help message to the output stream.

-jar filename

Executes a program encapsulated in a JAR file. The fi | enane argument is the name
of a JAR file with a manifest that contains a line in the form Mai n- d ass: cl assnane that
defines the class with the public static void main(String[] args) method that serves
as your application's starting point. When you use the -j ar option, the specified JAR
file is the source of all user classes, and other class path settings are ignored. If
you're using JAR files, then see: jar

-javaagent: jarpath[=options]
Loads the specified Java programming language agent.

--show-version or -showversion

Displays version information and continues execution of the application. This option is
equivalent to the - ver si on option except that the latter instructs the JVM to exit after
displaying version information.

--show-module-resolution
Shows module resolution output during startup.

-splash: imgname

Shows the splash screen with the image specified by i ngnane. HiDPI scaled images
are automatically supported and used if available. The unscaled image file name,
such as i mage. ext, should always be passed as the argument to the - spl ash option.
The most appropriate scaled image provided is picked up automatically.

For example, to show the spl ash. gi f file from the i mages directory when starting your
application, use the following option:

-spl ash: i mages/ spl ash. gi f

-verbose:class
Displays information about each loaded class.

-verbose:gc
Displays information about each garbage collection (GC) event.

-verbose: jni
Displays information about the use of native methods and other Java Native Interface
(JINI) activity.

-verbose:module
Displays information about the modules in use.

--version or -version

Displays version information and then exits. This option is equivalent to the -
shower si on option except that the latter doesn’t instruct the JVM to exit after
displaying version information.

2-50

Chapter 2
java

-X
Prints the help on extra options to the error stream.

--help-extra
Prints the help on extra options to the output stream.

@argument files

Specifies one or more argument files prefixed by @used by the j ava command. It isn’t
uncommon for the j ava command line to be very long because of the . j ar files
needed in the classpath. The @rgunent files option overcomes command-line length
limitations by enabling the launcher to expand the contents of argument files after
shell expansion, but before argument processing. Contents in the argument files are
expanded because otherwise, they would be specified on the command line until the -
Xdi sabl e- @i | es option was encountered.

The argument files can also contain the main class name and all options. If an
argument file contains all of the options required by the j ava command, then the
command line could simply be:

java @rgument files

See java Command-Line Argument Files for a description and examples of using
@rgunent files.

Extra Options for Java

The following j ava options are general purpose options that are specific to the Java
HotSpot Virtual Machine.

-Xbatch

Disables background compilation. By default, the JVM compiles the method as a
background task, running the method in interpreter mode until the background
compilation is finished. The - Xbat ch flag disables background compilation so that
compilation of all methods proceeds as a foreground task until completed. This option
is equivalent to - XX: - Backgr oundConpi | ati on.

-Xbootclasspath/a:directories| zip]|JAR Files

Specifies a list of directories, JAR files, and ZIP archives to append to the end of the
default bootstrap class path.

Oracle Solaris, Linux, and OS X: Colons (:) separate entities in this list.
Windows: Semicolons (;) separate entities in this list.

-Xcheck:jni

Performs additional checks for Java Native Interface (JNI) functions. Specifically, it
validates the parameters passed to the JNI function and the runtime environment data
before processing the JNI request. It also checks for pending exceptions between JNI
calls. Any invalid data encountered indicates a problem in the native code, and the
JVM terminates with an irrecoverable error in such cases. Expect a performance
degradation when this option is used.

-Xcomp

Forces compilation of methods on first invocation. By default, the Client VM (-client)
performs 1,000 interpreted method invocations and the Server VM (- server) performs
10,000 interpreted method invocations to gather information for efficient compilation.
Specifying the - Xconp option disables interpreted method invocations to increase
compilation performance at the expense of efficiency. You can also change the
number of interpreted method invocations before compilation using the -

XX: Conpi | eThr eshol d option.

ORACLE 2-51

ORACLE

Chapter 2
java

-Xdebug
Does nothing. Provided for backward compatibility.

-Xdiag
Shows additional diagnostic messages.

-Xfuture

Enables strict class-file format checks that enforce close conformance to the class-file
format specification. Developers should use this flag when developing new code.
Stricter checks may become the default in future releases.

-Xint

Runs the application in interpreted-only mode. Compilation to native code is disabled,
and all bytecode is executed by the interpreter. The performance benefits offered by
the just-in-time (JIT) compiler aren’t present in this mode.

-Xinternalversion
Displays more detailed JVM version information than the - ver si on option, and then
exits.

-Xloggc:option
Enables the JVM unified logging framework. Logs GC status to a file with time
stamps.

-Xlog:option
Configure or enable logging with the Java Virtual Machine (JVM) unified logging
framework. See Enable Logging with the JVM Unified Logging Framework.

-Xmixed
Executes all bytecode by the interpreter except for hot methods, which are compiled
to native code.

-Xmn size

Sets the initial and maximum size (in bytes) of the heap for the young generation
(nursery). Append the letter k or K to indicate kilobytes, mor Mto indicate megabytes,
or g or Gto indicate gigabytes. The young generation region of the heap is used for
new objects. GC is performed in this region more often than in other regions. If the
size for the young generation is too small, then a lot of minor garbage collections are
performed. If the size is too large, then only full garbage collections are performed,
which can take a long time to complete. Oracle recommends that you keep the size
for the young generation greater than 25% and less than 50% of the overall heap
size. The following examples show how to set the initial and maximum size of young
generation to 256 MB using various units:

- Xm256m
- Xm262144k
- Xr268435456

Instead of the - Xm option to set both the initial and maximum size of the heap for the
young generation, you can use - XX: NewSi ze to set the initial size and - XX: MaxNewSi ze to
set the maximum size.

-Xms size
Sets the initial size (in bytes) of the heap. This value must be a multiple of 1024 and
greater than 1 MB. Append the letter k or K to indicate kilobytes, mor Mto indicate

2-52

ORACLE

Chapter 2
java

megabytes, g or Gto indicate gigabytes. The following examples show how to set the
size of allocated memory to 6 MB using various units:

- Xn86291456
- Xns6144k
- Xms6m

If you don't set this option, then the initial size is set as the sum of the sizes allocated
for the old generation and the young generation. The initial size of the heap for the
young generation can be set using the - Xm option or the - XX: NewSi ze option.

-Xmx size

Specifies the maximum size (in bytes) of the memory allocation pool in bytes. This
value must be a multiple of 1024 and greater than 2 MB. Append the letter k or K to
indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate gigabytes. The
default value is chosen at runtime based on system configuration. For server
deployments, - Xms and - Xnx are often set to the same value. The following examples
show how to set the maximum allowed size of allocated memory to 80 MB using
various units:

- Xnx83886080
- Xmx81920k
- Xmx80m

The - Xmx option is equivalent to - XX: MaxHeap$Si ze.

-Xnoclassgc

Disables garbage collection (GC) of classes. This can save some GC time, which
shortens interruptions during the application run. When you specify - Xnocl assgc at
startup, the class objects in the application are left untouched during GC and are
always be considered live. This can result in more memory being permanently
occupied which, if not used carefully, throws an out-of-memory exception.

-Xprof

Profiles the running program and sends profiling data to standard output. This option
is provided as a utility that’s useful in program development and isn’t intended to be
used in production systems.

-Xrs

Reduces the use of operating system signals by the JVM. Shutdown hooks enable the
orderly shutdown of a Java application by running user cleanup code (such as closing
database connections) at shutdown, even if the JVM terminates abruptly.

e Oracle Solaris, Linux, and OS X:

— The JVM catches signals to implement shutdown hooks for unexpected
termination. The JVM uses SI GHUP, Sl G NT, and S| GTERMto initiate the running
of shutdown hooks.

— The JVM catches signals to implement shutdown hooks for unexpected
termination. The JVM uses SI GHUP, Sl G NT, and S| GTERMto initiate the running
of shutdown hooks.

— Applications embedding the JVM frequently need to trap signals such as
SI @ NT or SI GTERM, which can lead to interference with the JVM signal

2-53

Chapter 2
java

handlers. The - Xrs option is available to address this issue. When - Xr s is
used, the signal masks for SI G NT, SI GTERM, Sl GHUP, and Sl GQUI T aren’t changed
by the JVM, and signal handlers for these signals aren’t installed.

* Windows:

— The JVM watches for console control events to implement shutdown hooks
for unexpected termination. Specifically, the JVM registers a console control
handler that begins shutdown-hook processing and returns TRUE for
CTRL_C_EVENT, CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENT.

— The JVM uses a similar mechanism to implement the feature of dumping
thread stacks for debugging purposes. The JVM uses CTRL_BREAK_EVENT to
perform thread dumps.

— Ifthe JVM is run as a service (for example, as a servlet engine for a web
server), then it can receive CTRL_LOGOFF_EVENT but shouldn't initiate shutdown
because the operating system doesn’t actually terminate the process. To
avoid possible interference such as this, the - Xrs option can be used. When
the - Xrs option is used, the JVM doesn't install a console control handler,
implying that it doesn’t watch for or process CTRL_C_EVENT, CTRL_CLOSE_EVENT,
CTRL_LOGOFF_EVENT, or CTRL_SHUTDOWN EVENT.

There are two consequences of specifying - Xrs:
* Oracle Solaris, Linux, and OS X: SI GQQUI T thread dumps aren’t available.
* Windows: Ctrl + Break thread dumps aren’t available.

User code is responsible for causing shutdown hooks to run, for example, by calling
the System exit () when the JVM is to be terminated.

-Xshare:mode
Sets the class data sharing (CDS) mode.
Possible node arguments for this option include the following:

auto
Uses CDS if possible. This is the default value for Java HotSpot 32-Bit Client VM.

on
Requires the use of CDS. This option prints an error message and exits if class
data sharing can’t be used.

off
Instructs not to use CDS.

-XshowSettings
Shows all settings and then continues.

-XshowSettings:category
Shows settings and continues. Possible cat egory arguments for this option include the
following:

all
Shows all categories of settings. This is the default value.

locale
Shows settings related to locale.

ORACLE 2-54

Chapter 2
java

properties
Shows settings related to system properties.

vim
Shows the settings of the JVM.

-Xss size
Sets the thread stack size (in bytes). Append the letter k or K to indicate KB, mor Mto
indicate MB, or g or Gto indicate GB. The default value depends on the platform:

e Linux/x64 (64-bit): 1024 KB

¢ OS X (64-hit): 1024 KB

* Oracle Solaris/x64 (64-bit): 1024 KB

* Windows: The default value depends on virtual memory

The following examples set the thread stack size to 1024 KB in different units:

-Xsslm
- Xss1024k
- Xs51048576

This option is similar to - XX: ThreadSt ackSi ze.

-Xverify:mode

Sets the mode of the bytecode verifier. Bytecode verification ensures that class files
are properly formed and satisfy the constraints listed in Verification of Class Files in
the The Java Virtual Machine Specification.

Don't turn off verification because this reduces the protection provided by Java and
could cause problems due to ill-formed class files.

Possible node arguments for this option include the following:

remote
Verifies those classes that aren’t loaded by the bootstrap class loader. This is the
default behavior if you don’t specify the - Xveri fy option.

all
Enables verification of all bytecodes.

none
Disables verification of all bytecodes. Use of - Xveri f y: none is unsupported.

--add-reads module=target-module(,target-module)*
Updates modul e to read the tar get - nodul e, regardless of the module declaration.
tar get - nodul e can be all unnamed to read all unnamed modules.

--add-exports module/package=target-module(,target-module)*
Updates nodul e to export package to t ar get - modul e, regardless of module declaration.
The t ar get - nodul e can be all unnamed to export to all unnamed modules.

--add-opens module/package=target-module(,target-module)*
Updates nmodul e to open package to t ar get - modul e, regardless of module declaration.

ORACLE 2-55

ORACLE

Chapter 2
java

--illegal-access=parameter

Note:
This option is a new option in JDK 9 and may not be available in future JDK
versions.
When present at run time, --i | | egal - access= takes a keyword par anet er to specify a

mode of operation:

Note:

lllegal-access operations to internal APIs from code on the class path are
allowed by default in JDK 9.

* pernit: This mode opens packages in JDK 9 that existed in JDK 8 to code on the
class path. This allows code on class path that relies on the use of setAccessible
to break into JDK internals, or to do other illegal access on members of classes in
these packages, to work as per previous releases. This enables both static
access (such as, by compiled bytecode) and deep reflective access. Deep
reflective access is accomplished through the platform's reflection APIs. The first
reflective-access operation to any such package causes a warning to be issued.
However, no warnings are issued after the first occurrence. This single warning
describes how to enable further warnings. This mode is the default for JDK 9 but
will change in a future release.

e warn: This mode is identical to pernit except that a warning message is issued for
each illegal reflective-access operation.

» debug: This mode is identical to war n except that both a warning message and a
stack trace are issued for each illegal reflective-access operation.

e deny: This mode disables all illegal-access operations except for those enabled by
other command-line options, such as- - add- opens. This mode will become the
default in a future release.

The default mode, --il | egal - access=perni t, is intended to make you aware of code on
the class path that reflectively accesses any JDK-internal APIs at least once. To learn
about all such accesses, you can use the warn or the debug modes. For each library or
framework on the class path that requires illegal access, you have two options:

e If the component's maintainers have already released a fixed version that no
longer uses JDK-internal APIs then you can consider upgrading to that version.

e If the component still needs to be fixed, then you can contact its maintainers and
ask them to replace their use of JDK-internal APIs with the proper exported APlIs.

If you must continue to use a component that requires illegal access, then you can
eliminate the warning messages by using one or more - - add- opens options to open
only those internal packages to which access is required.

To verify that your application is ready for a future version of the JDK, run it with - -

i Il egal -access=deny along with any necessary - - add- opens options. Any remaining
illegal-access errors will most likely be due to static references from compiled code to
JDK-internal APIs. You can identify those by running the jdeps tool with the - -j dk-

2-56

ORACLE

Chapter 2
java

i nternal s option. For performance reasons, JDK 9 does not issue warnings for illegal
static-access operations.

--limit-modules module[,module...]
Specifies the limit of the universe of observable modules.

--patch-module module=Ffile(;file)*
Overrides or augments a module with classes and resources in JAR files or
directories.

--disable-@files
Can be used anywhere on the command line, including in an argument file, to prevent
further @i | ename expansion. This option stops expanding @ gf i | es after the option.

Extra Options for Mac OS X

The following extra options are Mac OS X specific.

-XstartOnFirstThread
Runs the mai n() method on the first (AppKit) thread.

-Xdock:name=application name
Overrides the default application name displayed in dock.

-Xdock:icon=path to icon file
Overrides the default icon displayed in dock.

Advanced Runtime Options for Java

These j ava options control the runtime behavior of the Java HotSpot VM.

-XX:+CheckEndorsedAndExtDirs
Enables the option to prevent the j ava command from running a Java application if
any of these directories exists and isn't empty:

e |lib/endorsed
e liblext
e The systemwide platform-specific extension directory

The endorsed standards override mechanism and the extension mechanism are no
longer supported.

-XX:-CompactStrings

Disables the Compact Strings feature. By default, this option is enabled. When this
option is enabled, Java Strings containing only single-byte characters are internally
represented and stored as single-byte-per-character Strings using ISO-8859-1 /
Latin-1 encoding. This reduces, by 50%, the amount of space required for Strings
containing only single-byte characters. For Java Strings containing at least one
multibyte character: these are represented and stored as 2 bytes per character using
UTF-16 encoding. Disabling the Compact Strings feature forces the use of UTF-16
encoding as the internal representation for all Java Strings.

Cases where it may be beneficial to disable Compact Strings include the following:

* When it's known that an application overwhelmingly will be allocating multibyte
character Strings

2-57

ORACLE

Chapter 2
java

* Inthe unexpected event where a performance regression is observed in migrating
from Java SE 8 to Java SE 9 and an analysis shows that Compact Strings
introduces the regression

In both of these scenarios, disabling Compact Strings makes sense.

-XX:CompilerDirectivesFile=file
Adds directives from a file to the directives stack when a program starts. See
Compiler Directives and the Command Line.

-XX:CompilerDirectivesPrint
Prints the directives stack when the program starts or when a new directive is added..

-XX:ConcGCThreads=n
Sets the number of parallel marking threads. Sets n to approximately 1/4 of the
number of parallel garbage collection threads (ParallelGCThreads).

-XX:+DisableAttachMechanism

Disables the mechanism that lets tools attach to the JVM. By default, this option is
disabled, meaning that the attach mechanism is enabled and you can use diagnostics
and troubleshooting tools such as j cmd, j st ack, j map, and j i nfo.

Note:

The tools such as jemd, jinfo, jmap, and jstack shipped with the JDK aren’t
supported when using the tools from one JDK version to troubleshoot a
different JDK version.

-XX:ErrorFile=Ffilename

Specifies the path and file name to which error data is written when an irrecoverable
error occurs. By default, this file is created in the current working directory and named
hs_err_pid pid.log where pi d is the identifier of the process that caused the error.

The following example shows how to set the default log file (note that the identifier of
the process is specified as %):

-XX: ErrorFile=./hs_err_pid%.! og

e Oracle Solaris, Linux, and OS X: The following example shows how to set the
error log to /var/log/javaljava_error. | og:
-XX:ErrorFile=/var/log/javaljava_error.|og

* Windows: The following example shows how to set the error log file to C: /1 og/
javaljava_error.log:

-XX: ErrorFile=C./log/javaljava_error.log

If the file can ‘t be created in the specified directory (due to insufficient space,
permission problem, or another issue), then the file is created in the temporary
directory for the operating system:

* Oracle Solaris, Linux, and OS X: The temporary directory is / t np.

* Windows: The temporary directory is specified by the value of the TMP
environment variable; if that environment variable isn't defined, then the value of
the TEMP environment variable is used.

2-58

Chapter 2
java

-XX:+FailOverToOldVerifier

Enables automatic failover to the old verifier when the new type checker fails. By
default, this option is disabled and it's ignored (that is, treated as disabled) for classes
with a recent bytecode version. You can enable it for classes with older versions of
the bytecode.

-XX:+FlightRecorder

.Enables the use of the Java Flight Recorder (JFR) during the runtime of the
application. This is a commercial feature that requires that you also specify the - Xx:
+Unl ockCommer ci al Feat ur es option as follows:

java - XX: +Unl ockCommer ci al Feat ures - XX: +Fl i ght Recor der

Note:

The - XX: +FI i ght Recor der option is no longer required to use JFR. This was a
change made in JDK 8u40.

-XX:FlightRecorderOptions=parameter=value

Sets the parameters that control the behavior of JFR. This is a commercial feature
that works in conjunction with the - XX: +Unl ockCommer ci al Feat ur es option. The - XX:

+Fl i ght Recor der option is no longer required to use JFR. This was a change made in
JDK 8u40.

The following list contains all available JFR parameters:

globalbuffersize=size

Specifies the total amount of primary memory (in bytes) used for data retention.
Append k or K, to specify the size in KB, mor Mto specify the size in MB, or g or G
to specify the size in GB. By default, the size is set to 462848 bytes.

loglevel={quiet]error|warning] info|debug|trace}
Specify the amount of data written to the log file by JFR. By default, it's set to
i nfo.

maxchunksize=size

Specifies the maximum size (in bytes) of the data chunks in a recording. Append
k or K, to specify the size in KB, or mor Mto specify the size in MB, or g or Gto
specify the size in GB. By default, the maximum size of data chunks is set to 12
MB.

memorysize=size
Determines how much buffer memory should be used.

repository=path
Specifies the repository (a directory) for temporary disk storage. By default, the
system's temporary directory is used.

samplethreads={true|false}

Specifies whether thread sampling is enabled. Thread sampling occurs only if the
sampling event is enabled along with this parameter. By default, this parameter is
enabled.

ORACLE 2-59

ORACLE

Chapter 2
java

stackdepth=depth
Stack depth for stack traces by JFR. By default, the depth is set to 64 method
calls. The maximum is 2048, and the minimum is 1.

threadbuffersize=size

Specifies the per-thread local buffer size (in bytes). Append k or K, to specify the
size in KB, or mor Mto specify the size in MB, g or Gto specify the size in GB.
Higher values for this parameter allow more data gathering without contention to
flush it to the global storage. It can increase an application footprint in a thread-
rich environment. By default, the local buffer size is set to 5 KB.

transform={true|false}
Specifies if event classes should be retransformed using JVMTI. If false,
instrumentation will be added when event classes are loaded. By default it is true.

You can specify values for multiple parameters by separating them with a comma.

-XX: InitiatingHeapOccupancyPercent=45
Sets the Java heap occupancy threshold that triggers a marking cycle. The default
occupancy is 45 percent of the entire Java heap.

-XX:LargePageSizelnBytes=size

Oracle Solaris: Sets the maximum size (in bytes) for large pages used for the Java
heap. The si ze argument must be a power of 2 (2, 4, 8, 16, and so on). Append the
letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes. By default, the size is set to 0, meaning that the JVM chooses the size for
large pages automatically. See Large Pages.

The following example describes how to set the large page size to 4 megabytes (MB):

- XX: Lar gePageSi zel nByt es=4m

-XX:MaxDirectMemorySize=size

Sets the maximum total size (in bytes) of the j ava. ni o package, direct-buffer
allocations. Append the letter k or K to indicate kilobytes, mor Mto indicate megabytes,
or g or Gto indicate gigabytes. By default, the size is set to 0, meaning that the JVM
chooses the size for NIO direct-buffer allocations automatically.

The following examples illustrate how to set the NIO size to 1024 KB in different units:

- XX: MaxDi rect MenorySi ze=1m
- XX: MaxDi r ect MenorySi ze=1024k
- XX: MaxDi r ect MenorySi ze=1048576

-XX:-MaxFDLimit

Disables the attempt to set the soft limit for the number of open file descriptors to the
hard limit. By default, this option is enabled on all platforms, but is ignored on
Windows. The only time that you may need to disable this is on Mac OS, where its
use imposes a maximum of 10240, which is lower than the actual system maximum.

-XX:MaxGCPauseMi I lis=200
Sets a target value for the desired maximum pause time. The default value is 200
milliseconds. The specified value doesn’t adapt to your heap size.

-XX:NativeMemoryTracking=mode
Specifies the mode for tracking JVM native memory usage. Possible mode arguments
for this option include the following:

2-60

ORACLE

Chapter 2
java

off
Instructs not to track JVM native memory usage. This is the default behavior if you
don’t specify the - XX: Nat i veMenor yTr acki ng option.

summary
Tracks memory usage only by JVM subsystems, such as Java heap, class, code,
and thread.

detail
In addition to tracking memory usage by JVM subsystems, track memory usage
by individual Cal | Si t e, individual virtual memory region and its committed regions.

-XX:0bjectAlignmentinBytes=alignment

Sets the memory alignment of Java objects (in bytes). By default, the value is set to 8
bytes. The specified value should be a power of 2, and must be within the range of 8
and 256 (inclusive). This option makes it possible to use compressed pointers with
large Java heap sizes.

The heap size limit in bytes is calculated as:

4GB * (Obj ect Ali gnment | nByt es

Note:

As the alignment value increases, the unused space between objects also
increases. As a result, you may not realize any benefits from using
compressed pointers with large Java heap sizes.

-XX:OnError=string
Sets a custom command or a series of semicolon-separated commands to run when
an irrecoverable error occurs. If the string contains spaces, then it must be enclosed
in quotation marks.

e Oracle Solaris, Linux, and OS X: The following example shows how the -
XX: OnError option can be used to run the gcore command to create the core
image, and the debugger is started to attach to the process in case of an
irrecoverable error (the % designates the current process):

-XX: OnError="gcore %;dbx - %"

* Windows: The following example shows how the - XX: nError option can be used
to run the user dunp. exe utility to obtain a crash dump in case of an irrecoverable
error (the % designates the current process). This example assumes that the path
to the user dunp. exe utility is specified in the PATH environment variable:

- XX: OnError =" user dunp. exe %"

-XX:0nOutOfMemoryError=string

Sets a custom command or a series of semicolon-separated commands to run when
an Qut O Memor yError exception is first thrown. If the string contains spaces, then it
must be enclosed in quotation marks. For an example of a command string, see the
description of the - XX: OnError option.

-XX:ParallelGCThreads=n
Sets the value of the STW worker threads. Sets the value of n to the number of logical
processors. The value of n is the same as the number of logical processors up to a

2-61

ORACLE

Chapter 2
java

value of 8. If there are more than 8 logical processors, then this option sets the value
of n to approximately 5/8 of the logical processors. This works in most cases except
for larger SPARC systems where the value of n can be approximately 5/16 of the
logical processors.

-XX:+PerfDataSaveToFile

If enabled, saves jstat binary data when the Java application exits. This binary data is
saved in a file named hsper f dat a_pi d, where pi d is the process identifier of the Java
application that you ran. Use thej stat command to display the performance data
contained in this file as follows:

jstat -class file:///path/hsperfdata_pid
jstat -gc file:///path/hsperfdata_pid

-XX:+PrintCommandLineFlags

Enables printing of ergonomically selected JVM flags that appeared on the command
line. It can be useful to know the ergonomic values set by the JVM, such as the heap
space size and the selected garbage collector. By default, this option is disabled and
flags aren’t printed.

-XX:+PreserveFramePointer

Selects between using the RBP register as a general purpose register (- XX: -
PreserveFranePoi nter) and using the RBP register to hold the frame pointer of the
currently executing method (- XX: +Pr eser veFr anePoi nter) . If the frame pointer is
available, then external profiling tools (for example, Linux perf) can construct more
accurate stack traces.

-XX:+PrintNMTStatistics

Enables printing of collected native memory tracking data at JVM exit when native
memory tracking is enabled (see - XX: Nat i veMenor yTr acki ng). By default, this option is
disabled and native memory tracking data isn't printed.

-XX:+RelaxAccessControlCheck

Decreases the amount of access control checks in the verifier. By default, this option
is disabled, and it's ignored (that is, treated as disabled) for classes with a recent
bytecode version. You can enabile it for classes with older versions of the bytecode.

-XX:+ResourceManagement

Enables the use of Resource Management during the runtime of the application.
This is a commercial feature that requires you to also specify the - Xx:

+Unl ockCommer ci al Feat ur es option as follows:

java - XX: +Unl ockCommer ci al Feat ures - XX: +Resour ceManagenent

-XX:ResourceManagementSamplelnterval=value in milliseconds

Sets the parameter that controls the sampling interval for Resource Management
measurements, in milliseconds.

This option can be used only when Resource Management is enabled (that is, the -
XX: +Resour ceManagenent option is specified).

-XX:SharedArchiveFile=path
Specifies the path and name of the class data sharing (CDS) archive file
See Application Class Data Sharing.

-XX:SharedArchiveConfigFile=shared_config_file
Specifies additional shared data added to the archive file.

2-62

ORACLE

Chapter 2
java

-XX:SharedClassListFile=file_name

Specifies the text file that contains the names of the class files to store in the class
data sharing (CDS) archive. This file contains the full name of one class file per line,
except slashes (/) replace dots (.). For example, to specify the classes

java.lang. Obj ect and hel | 0. Mai n, create a text file that contains the following two
lines:

j aval/ | ang/ Qhj ect
hel | o/ Mai n

The class files that you specify in this text file should include the classes that are
commonly used by the application. They may include any classes from the
application, extension, or bootstrap class paths.

See Application Class Data Sharing.

-XX:+ShowMessageBoxOnError

Enables the display of a dialog box when the JVM experiences an irrecoverable error.
This prevents the JVM from exiting and keeps the process active so that you can
attach a debugger to it to investigate the cause of the error. By default, this option is
disabled.

-XX:StartFlightRecording=parameter=value

Starts a JFR recording for the Java application. This is a commercial feature that
works in conjunction with the - XX: +Unl ockConmer ci al Feat ur es option. This option is
equivalent to the JFR start diagnostic command that starts a recording during
runtime. You can set the following parameters when starting a JFR recording:

delay=time

Specifies the delay between the Java application launch time and the start of the
recording. Append s to specify the time in seconds, mfor minutes, h for hours, or d
for days (for example, specifying 10mmeans 10 minutes). By default, there’s no
delay, and this parameter is set to O.

duration=time

Specifies the duration of the recording. Append s to specify the time in seconds, m
for minutes, h for hours, or d for days (for example, specifying 5h means 5 hours).
By default, the duration isn’t limited, and this parameter is set to O.

filename=path
Specifies the path and name of the JFR recording log file.

name=identifier
Takes both the name and the identifier of a recording.

maxage=time

Specifies the maximum age of disk data to keep for the default recording. Append
s to specify the time in seconds, mfor minutes, h for hours, or d for days (for
example, specifying 30s means 30 seconds). By default, the maximum age is set
to 15 minutes (15m).

maxsize=size

Specifies the maximum size (in bytes) of disk data to keep for the default
recording. Append k or K, to specify the size in KB, mor Mto specify the size in MB,
or g or Gto specify the size in GB. By default, the maximum size of disk data isn’t
limited, and this parameter is set to 0.

2-63

ORACLE

Chapter 2
java

settings=path
Specifies the path and name of the event settings file (of type JFC). By default,
the defaul t.jfc file is used, which is located in JAVA HOVE/ jre/lib/jfr.

You can specify values for multiple parameters by separating them with a comma.

-XX:ThreadStackSize=size

Sets the Java thread stack size (in kilobytes). Use of a scaling suffix, such as k,
results in the scaling of the kilobytes value so that - XX: Thr eadSt ackSi ze=1k sets the
Java thread stack size to 1024*1024 bytes or 1 megabyte. The default value depends
on the platform:

e Linux/x64 (64-bit): 1024 KB

* OS X (64-bit): 1024 KB

* Oracle Solaris/x64 (64-bit): 1024 KB

* Windows: The default value depends on the virtual memory.

The following examples show how to set the thread stack size to 1 megabyte in
different units:

- XX: ThreadSt ackSi ze=1k
- XX: ThreadSt ackSi ze=1024

This option is similar to - Xss.

-XX:+UnlockCommercialFeatures

Enables the use of commercial features. Commercial features are included with
Oracle Java SE Advanced or Oracle Java SE Suite packages, as defined in theOracle
Java SE and Oracle Java Embedded Products page.

By default, this option is disabled and the JVM runs without the commercial features.
After they're enabled for a JVM process, it isn’t possible to disable their use for that
process.

-XX:+UseAppCDS

Enables application class data sharing (AppCDS). To use AppCDS, you must also
specify values for the options - XX: Shar edd assLi st Fi | e and - XX: Shar edAr chi veFi | e
during both CDS dump time (see the option - Xshar e: dunp) and application run time.
This is a commercial feature that requires you to also specify the - XX:

+Unl ockCommer ci al Feat ur es option. This is also an experimental feature; it may change
in future releases.

See Application Class Data Sharing.

-XX:-UseBiasedLocking

Disables the use of biased locking. Some applications with significant amounts of
uncontended synchronization may attain significant speedups with this flag enabled,
but applications with certain patterns of locking may see slowdowns. .

By default, this option is enabled.

-XX:-UseCompressedOops

Disables the use of compressed pointers. By default, this option is enabled, and
compressed pointers are used when Java heap sizes are less than 32 GB. When this
option is enabled, object references are represented as 32-bit offsets instead of 64-bit
pointers, which typically increases performance when running the application with
Java heap sizes of less than 32 GB. This option works only for 64-bit JVMs.

2-64

http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=javase_embedded_products
http://www.oracle.com/pls/topic/lookup?ctx=javase9&id=javase_embedded_products

ORACLE

Chapter 2
java

It's also possible to use compressed pointers when Java heap sizes are greater than
32 GB. See the - XX: Obj ect Al i gnnent | nByt es option.

XX:+UseGCLogRotation
Handles large log files. This option must be used with - Xl oggc: fi | enane.

-XX:NumberOfGClogFiles=number of files
Handles large log files. The nunber of files must be greater than or equal to 1. The
default is 1.

-XX:GCLogFi leSize=number
Handles large log files. The nunber can be in the form of nunber Mor nunber K. The
default is set to 512K.

-XX:+UseHugeTLBFS

Linux only: This option is the equivalent of specifying - XX: +UseLar gePages. This option
is disabled by default. This option pre-allocates all large pages up-front, when
memory is reserved; consequently the JVM can’t dynamically grow or shrink large
pages memory areas; see - XX: UseTr anspar ent HugePages if you want this behavior.

See Large Pages.

-XX:+UselLargePages

Enables the use of large page memory. By default, this option is disabled and large
page memory isn't used.

See Large Pages.

-XX:+UseMembar

Enables issuing of membars on thread-state transitions. This option is disabled by
default on all platforms except ARM servers, where it's enabled. (It's recommended
that you don’t disable this option on ARM servers.)

-XX:+UsePerfData

Enables the per f dat a feature. This option is enabled by default to allow JVM
monitoring and performance testing. Disabling it suppresses the creation of the
hsper f dat a_useri d directories. To disable the perf dat a feature, specify - XX: -
UsePer f Dat a.

-XX:+UseTransparentHugePages

Linux only: Enables the use of large pages that can dynamically grow or shrink. This
option is disabled by default. You may encounter performance problems with
transparent huge pages as the OS moves other pages around to create huge pages;
this option is made available for experimentation.

-XX:+AllowUserSignalHandlers
Enables installation of signal handlers by the application. By default, this option is
disabled and the application isn’'t allowed to install signal handlers.

-XX:VMOptionsFile=Ffilename
Allows user to specify VM options in a file, for example, j ava - XX: VMt i onsFi | e=/ var/
my_vmoptions Hel | oVrld.

Advanced JIT Compiler Options for java

These j ava options control the dynamic just-in-time (JIT) compilation performed by the
Java HotSpot VM.

2-65

ORACLE

Chapter 2
java

-XX:+AggressiveOpts
Enables the use of aggressive performance optimization features. By default, this
option is disabled and experimental performance features aren’t used.

-XX:AllocatelnstancePrefetchLines=lines
Sets the number of lines to prefetch ahead of the instance allocation pointer. By
default, the number of lines to prefetch is set to 1:

-XX: Al | ocat el nst ancePr ef et chLi nes=1
Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchDistance=size

Sets the size (in bytes) of the prefetch distance for object allocation. Memory about to
be written with the value of new objects is prefetched up to this distance starting from
the address of the last allocated object. Each Java thread has its own allocation point.
Negative values denote that prefetch distance is chosen based on the platform.
Positive values are bytes to prefetch. Append the letter k or K to indicate kilobytes, mor
Mto indicate megabytes, or g or Gto indicate gigabytes. The default value is set to -1.
The following example shows how to set the prefetch distance to 1024 bytes:

-XX: Al | ocat ePref et chDi st ance=1024
Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchInstr=instruction

Sets the prefetch instruction to prefetch ahead of the allocation pointer. Only the Java
HotSpot Server VM supports this option. Possible values are from 0 to 3. The actual
instructions behind the values depend on the platform. By default, the prefetch
instruction is set to 0:

-XX: Al l ocat ePrefetchlnstr=0
Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchLines=lines

Sets the number of cache lines to load after the last object allocation by using the
prefetch instructions generated in compiled code. The default value is 1 if the last
allocated object was an instance, and 3 if it was an array.

The following example shows how to set the number of loaded cache lines to 5:

- XX: Al | ocat ePref et chLi nes=5
Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchStepSize=size

Sets the step size (in bytes) for sequential prefetch instructions. Append the letter k or
K to indicate kilobytes, mor Mto indicate megabytes, g or Gto indicate gigabytes. By
default, the step size is set to 16 bytes:

-XX: Al | ocat ePref et chSt epSi ze=16
Only the Java HotSpot Server VM supports this option.

-XX:AllocatePrefetchStyle=style
Sets the generated code style for prefetch instructions. The styl e argument is an
integer from 0 to 3:

2-66

Chapter 2
java

0
Don't generate prefetch instructions.

1
Execute prefetch instructions after each allocation. This is the default parameter.

2
Use the thread-local allocation block (TLAB) watermark pointer to determine when
prefetch instructions are executed.

3
Use BIS instruction on SPARC for allocation prefetch.

Only the Java HotSpot Server VM supports this option.

-XX:+BackgroundCompi lation

Enables background compilation. This option is enabled by default. To disable
background compilation, specify - XX: - Backgr oundConpi | ati on (this is equivalent to
specifying - Xbat ch).

-XX:ClICompi lerCount=threads

Sets the number of compiler threads to use for compilation. By default, the number of
threads is set to 2 for the server JVM, to 1 for the client JVM, and it scales to the
number of cores if tiered compilation is used. The following example shows how to set
the number of threads to 2:

- XX: Cl Conpi | er Count =2

-XX:CompileCommand=command,method[,option]
Specifies a command to perform on a method. For example, to exclude the i ndexf ()
method of the String class from being compiled, use the following:

- XX: Conpi | eCommand=excl ude, j ava/ | ang/ String. i ndexCf

Note that the full class name is specified, including all packages and subpackages
separated by a slash (/). For easier cut-and-paste operations, it's also possible to use
the method name format produced by the - XX: +Pri nt Conpi | ati on and - XX:

+LogConpi | ati on options:

- XX: Conpi | eConmand=excl ude, j ava. | ang. String: : i ndexCf

If the method is specified without the signature, then the command isapplied to all
methods with the specified name. However, you can also specify the signature of the
method in the class file format. In this case, you should enclose the arguments in
guotation marks, because otherwise the shell treats the semicolon as a command
end. For example, if you want to exclude only the i ndexX (String) method of the
String class from being compiled, use the following:

- XX: Conpi | eCommand="excl ude, j ava/l ang/ String.indexCf, (Ljaval/lang/ String;)!"

You can also use the asterisk (*) as a wildcard for class and method names. For
example, to exclude all i ndexX () methods in all classes from being compiled, use the
following:

- XX: Conpi | eCommand=excl ude, *. i ndexf

ORACLE 2-67

ORACLE

Chapter 2
java

The commas and periods are aliases for spaces, making it easier to pass compiler
commands through a shell. You can pass arguments to - XX: Conpi | eCommand using
spaces as separators by enclosing the argument in quotation marks:

- XX: Conpi | eConmand="excl ude java/lang/ String indexCF"

Note that after parsing the commands passed on the command line using the -

XX: Conpi | eCommand options, the JIT compiler then reads commands from

the . hot spot _conpi | er file. You can add commands to this file or specify a different file
using the - XX: Conpi | eConmandFi | e option.

To add several commands, either specify the - XX: Conpi | eConmand option multiple
times, or separate each argument with the new line separator (\ n). The following
commands are available:

break
Sets a breakpoint when debugging the JVM to stop at the beginning of
compilation of the specified method.

compileonly

Excludes all methods from compilation except for the specified method. As an
alternative, you can use the - XX: Conpi | eOnl y option, which lets you specify several
methods.

dontinline
Prevents inlining of the specified method.

exclude
Excludes the specified method from compilation.

help
Prints a help message for the - XX: Conpi | eCommand option.

inline
Attempts to inline the specified method.

log

Excludes compilation logging (with the - XX: +LogConpi | at i on option) for all methods
except for the specified method. By default, logging is performed for all compiled
methods.

option

Passes a JIT compilation option to the specified method in place of the last
argument (opti on). The compilation option is set at the end, after the method
name. For example, to enable the Bl ockLayout ByFrequency option for the append()
method of the StringBuf f er class, use the following:

- XX: Conpi | eConmand=opt i on, j ava/ | ang/ Stri ngBuf f er. append, Bl ockLayout ByFr equency
You can specify multiple compilation options, separated by commas or spaces.

print
Prints generated assembler code after compilation of the specified method.

quiet

Instructs not to print the compile commands. By default, the commands that you
specify with the -XX: Conpi | eConmand option are printed; for example, if you exclude

2-68

ORACLE

Chapter 2
java

from compilation the i ndexX () method of the String class, then the following is
printed to standard output:

Conpi | erOracl e: exclude javal/lang/ String.indexCf

You can suppress this by specifying the - XX: Conpi | eCommand=qui et option before
other - XX: Conpi | eCommand options.

-XX:CompileCommandFile=Ffilename

Sets the file from which JIT compiler commands are read. By default,

the . hot spot _conpi | er file is used to store commands performed by the JIT compiler.
Each line in the command file represents a command, a class name, and a method
name for which the command is used. For example, this line prints assembly code for
the toString() method of the String class:

print javal/lang/String toString

If you're using commands for the JIT compiler to perform on methods, then see the -
XX: Conpi | eCommand option.

-XX:CompileOnly=methods

Sets the list of methods (separated by commas) to which compilation should be
restricted. Only the specified methods are compiled. Specify each method with the full
class name (including the packages and subpackages). For example, to compile only
the I engt h() method of the String class and the si ze() method of the Li st class, use
the following:

- XX: Conpi | eOnl y=j aval/ l ang/ String. | ength, java/util/List.size

Note that the full class name is specified, including all packages and subpackages
separated by a slash (/). For easier cut and paste operations, it's also possible to use
the method name format produced by the - XX: +Pri nt Conpi | ati on and - XX:

+LogConpi | ati on options:

- XX: Conpi | eOnl y=j ava. l ang. String::length,java.util.List::size

Although wildcards aren’t supported, you can specify only the class or package name
to compile all methods in that class or package, as well as specify just the method to
compile methods with this name in any class:

- XX: Conpi | eOnl y=j ava/l ang/ String
- XX: Conpi | eOnl y=j ava/ | ang
- XX: Conpi | eOnl y=. 1 ength

-XX:CompileThreshold=invocations

Sets the number of interpreted method invocations before compilation. By default, in
the server JVM, the JIT compiler performs 10,000 interpreted method invocations to
gather information for efficient compilation. For the client JVM, the default setting is
1,500 invocations. This option is ignored when tiered compilation is enabled; see the
option - XX: - Ti er edConpi | at i on. The following example shows how to set the number
of interpreted method invocations to 5,000:

- XX: Conpi | eThr eshol d=5000

You can completely disable interpretation of Java methods before compilation by
specifying the - Xconp option.

2-69

ORACLE

Chapter 2
java

-XX:CompileThresholdScaling=scale

Provides unified control of first compilation. This option controls when methods are
first compiled for both the tiered and the nontiered modes of operation. The

Conpi | eThr eshol dScal i ng option has an integer value between 0 and +Inf and scales
the thresholds corresponding to the current mode of operation (both tiered and
nontiered). Setting Conpi | eThr eshol dScal i ng to a value less than 1.0 results in earlier
compilation while values greater than 1.0 delay compilation. Setting

Conpi | eThr eshol dScal i ng to O is equivalent to disabling compilation.

-XX:+DoEscapeAnalysis

Enables the use of escape analysis. This option is enabled by default. To disable the
use of escape analysis, specify - XX: - DoEscapeAnal ysi s. Only the Java HotSpot Server
VM supports this option.

-XX:InitialCodeCacheSize=size

Sets the initial code cache size (in bytes). Append the letter k or K to indicate
kilobytes, mor Mto indicate megabytes, or g or Gto indicate gigabytes. The default
value is set to 500 KB. The initial code cache size shouldn't be less than the system's
minimal memory page size. The following example shows how to set the initial code
cache size to 32 KB:

-XX: I nitial CodeCacheSi ze=32k

-XX:+Inline
Enables method inlining. This option is enabled by default to increase performance.
To disable method inlining, specify - XX: - I nli ne.

-XX:InlineSmal ICode=size

Sets the maximum code size (in bytes) for compiled methods that should be inlined.
Append the letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto
indicate gigabytes. Only compiled methods with the size smaller than the specified
size is inlined. By default, the maximum code size is set to 1000 bytes:

-XX: I'nl'i neSmal | Code=1000

-XX:+LogCompilation

Enables logging of compilation activity to a file named hot spot . | og in the current
working directory. You can specify a different log file path and name using the -
XX: LogFi | e option.

By default, this option is disabled and compilation activity isn’t logged. The - XX:
+LogConpi | ati on option has to be used together with the -

XX: Unl ockDi agnost i cVMOpt i ons option that unlocks diagnostic JVM options.

You can enable verbose diagnostic output with a message printed to the console
every time a method is compiled by using the - XX: +Pr i nt Conpi | ati on option.

-XX:MaxInlineSize=size

Sets the maximum bytecode size (in bytes) of a method to be inlined. Append the
letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes. By default, the maximum bytecode size is set to 35 bytes:

- XX: Max!I nl i neSi ze=35

-XX:MaxNodeLimit=nodes
Sets the maximum number of nodes to be used during single method compilation. By
default, the maximum number of nodes is set to 65,000:

- XX: MaxNodeLi mi t =65000

2-70

ORACLE

Chapter 2
java

-XX:NonNMethodCodeHeapSize=size

Sets the size in bytes of the code segment containing nonmethod code.

A nonmethod code segment containing nonmethod code, such as compiler buffers
and the bytecode interpreter. This code type stays in the code cache forever. This flag
is used only if —XX: Segnent edCodeCache is enabled.

—XX:NonProfiledCodeHeapSize=size
Sets the size in bytes of the code segment containing nonprofiled methods. This flag
is used only if —XX: Segnent edCodeCache is enabled.

-XX:MaxTrivialSize=size

Sets the maximum bytecode size (in bytes) of a trivial method to be inlined. Append
the letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes. By default, the maximum bytecode size of a trivial method is set to 6 bytes:

- XX: MaxTri vi al Si ze=6

-XX:+OptimizeStringConcat

Enables the optimization of String concatenation operations. This option is enabled
by default. To disable the optimization of Stri ng concatenation operations, specify -
XX: - Opti ni zeSt ri ngConcat . Only the Java HotSpot Server VM supports this option.

-XX:+PrintAssembly

Enables printing of assembly code for bytecoded and native methods by using the
external hsdi s- <arch>.so or . dl | library. For 64-bit VM on Windows, it’s hsdi s-

ami64. di | . This let’s you to see the generated code, which may help you to diagnose
performance issues.

By default, this option is disabled and assembly code isn’t printed. The - XX:

+Pri nt Assenbl y option has to be used together with the - XX: Unl ockDi agnost i cVMOpt i ons
option that unlocks diagnostic JVM options.

-XX:ProfiledCodeHeapSize=size
Sets the size in bytes of the code segment containing profiled methods. This flag is
used only if —XX: Segment edCodeCache is enabled.

-XX:+PrintCompilation

Enables verbose diagnostic output from the JVM by printing a message to the console
every time a method is compiled. This let’s you to see which methods actually get
compiled. By default, this option is disabled and diagnostic output isn’t printed.

You can also log compilation activity to a file by using the - XX: +LogConpi | ati on option.

-XX:+PrintInlining

Enables printing of inlining decisions. This let’s you to see which methods are getting
inlined.

By default, this option is disabled and inlining information isn't printed. The - XX:
+Print I nlini ng option has to be used together with the - Xx:

+Unl ockDi agnost i cVMpt i ons option that unlocks diagnostic JVM options.

-XX:ReservedCodeCacheSize=size

Sets the maximum code cache size (in bytes) for JIT-compiled code. Append the
letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes. The default maximum code cache size is 240 MB; if you disable tiered
compilation with the option - XX: - Ti er edConpi | ati on, then the default size is 48 MB.
This option has a limit of 2 GB; otherwise, an error is generated. The maximum code
cache size shouldn't be less than the initial code cache size; see the option -

XX I'ni tial CodeCacheSi ze. This option is equivalent to - Xmax;j i t codesi ze.

2-71

ORACLE

Chapter 2
java

-XX:RTMAbortRatio=abort_ratio

Specifies the RTM abort ratio is specified as a percentage (%) of all executed RTM
transactions. If a number of aborted transactions becomes greater than this ratio, then
the compiled code is deoptimized. This ratio is used when the - XX: +UseRTMDeopt option
is enabled. The default value of this option is 50. This means that the compiled code
is deoptimized if 50% of all transactions are aborted.

-XX:+SegmentedCodeCache

Enables segmentation of the code cache. Without the —xX: +Segnent edCodeCache, the
code cache consists of one large segment. With —XX: +Segment edCodeCache, we have
separate segments for nonmethod, profiled method, and nonprofiled method code.
These segments aren'’t resized at runtime. The feature is enabled by default if tiered
compilation is enabled (- XX: +Ti er edConpi | ati on) and - XX: Reser vedCodeCacheSi ze >=
240 MB. The advantages are better control of the memory footprint, reduced code
fragmentation, and better iTLB/iCache behavior due to improved locality. iTLB/iCache
is a CPU-specific term meaning Instruction Translation Lookaside Buffer (ITLB).
ICache is an instruction cache in theCPU. The implementation of the code cache can
be found in the file: / shar e/ vni code/ codeCache. cpp.

-XX:StartAggressiveSweepingAt=percent
Forces stack scanning of active methods to aggressively remove unused code when
only the given percentage of the code cache is free. The default value is 10%.

-XX:RTMRetryCount=number_of_retries

Specifies the number of times that the RTM locking code is retried, when it is aborted
or busy, before falling back to the normal locking mechanism. The default value for
this option is 5. The - XX: UseRTM.ocki ng option must be enabled.

-XX:-TieredCompilation
Disables the use of tiered compilation. By default, this option is enabled. Only the
Java HotSpot Server VM supports this option.

-XX:+UseAES

Enables hardware-based AES intrinsics for Intel, AMD, and SPARC hardware. Intel
Westmere (2010 and newer), AMD Bulldozer (2011 and newer), and SPARC (T4 and
newer) are the supported hardware. The - XX: +UseAES is used in conjunction with
UseAESiIntrinsics. Flags that control intrinsics now require the option - XX:

+Unl ockDi agnosti cVMOpt i ons.

-XX:+UseAESIntrinsics

Enables - XX: +UseAES and - XX: +UseAESI nt ri nsi cs flags by default and are supported
only for the Java HotSpot Server VM. To disable hardware-based AES intrinsics,
specify - XX: - UseAES - XX: - UseAESI ntri nsi ¢cs. For example, to enable hardware AES,
use the following flags:

- XX: +UseAES - XX: +UseAESI ntri nsi cs

Flags that control intrinsics now require the option - XX: +Unl ockDi agnost i cVMOpti ons. To
support UseAES and UseAESIntrinsics flags, use the -server option to select the
Java HotSpot Server VM. These flags aren’t supported on Client VM.

-XX:+UseCMoveUnconditionally
Generates CMove (scalar and vector) instructions regardless of profitability analysis.

2-72

ORACLE

Chapter 2
java

-XX:+UseCodeCacheFlushing

Enables flushing of the code cache before shutting down the compiler. This option is
enabled by default. To disable flushing of the code cache before shutting down the
compiler, specify - XX: - UseCodeCacheF! ushi ng.

-XX:+UseCondCardMark

Enables checking if the card is already marked before updating the card table. This
option is disabled by default. It should be used only on machines with multiple
sockets, where it increases the performance of Java applications that rely on
concurrent operations. Only the Java HotSpot Server VM supports this option.

-XX:+UseCountedLoopSafepoints
Keeps safepoints in counted loops. Its default value is false.

-XX:+UseFMA

Enables hardware-based FMA intrinsics for hardware where FMA instructions are
available (such as, Intel, SPARC, and ARM64). FMA intrinsics are generated for the
java.lang. Math. fna(a, b, c¢) methods that calculate the value of (a * b + c)
expressions.

-XX:+UseRTMDeopt

Autotunes RTM locking depending on the abort ratio. This ratio is specified by the -
XX: RTMAbor t Rat i o option. If the number of aborted transactions exceeds the abort ratio,
then the method containing the lock is deoptimized and recompiled with all locks as
normal locks. This option is disabled by default. The - XX: +UseRTM_ocki ng option must
be enabled.

-XX:+UseRTMLocking

Generates Restricted Transactional Memory (RTM) locking code for all inflated locks,
with the normal locking mechanism as the fallback handler. This option is disabled by
default. Options related to RTM are available only for the Java HotSpot Server VM on
x86 CPUs that support Transactional Synchronization Extensions (TSX).

RTM is part of Intel's TSX, which is an x86 instruction set extension and facilitates the
creation of multithreaded applications. RTM introduces the new instructions XBEG N,
XABORT, XEND, and XTEST. The XBEG N and XEND instructions enclose a set of instructions
to run as a transaction. If no conflict is found when running the transaction, then the
memory and register modifications are committed together at the XEND instruction. The
XABORT instruction can be used to explicitly abort a transaction and the XEND instruction
checks if a set of instructions is being run in a transaction.

A lock on a transaction is inflated when another thread tries to access the same
transaction, thereby blocking the thread that didn’t originally request access to the
transaction. RTM requires that a fallback set of operations be specified in case a
transaction aborts or fails. An RTM lock is a lock that has been delegated to the TSX's
system.

RTM improves performance for highly contended locks with low conflict in a critical
region (which is code that must not be accessed by more than one thread
concurrently). RTM also improves the performance of coarse-grain locking, which
typically doesn’t perform well in multithreaded applications. (Coarse-grain locking is
the strategy of holding locks for long periods to minimize the overhead of taking and
releasing locks, while fine-grained locking is the strategy of trying to achieve
maximum parallelism by locking only when necessary and unlocking as soon as
possible.) Also, for lightly contended locks that are used by different threads, RTM
can reduce false cache line sharing, also known as cache line ping-pong. This occurs
when multiple threads from different processors are accessing different resources, but
the resources share the same cache line. As a result, the processors repeatedly

2-73

ORACLE

Chapter 2
java

invalidate the cache lines of other processors, which forces them to read from main
memory instead of their cache.

-XX:+UseSHA

Enables hardware-based intrinsics for SHA crypto hash functions for SPARC
hardware. The UseSHA option is used in conjunction with the UseSHALI nt ri nsi cs,
UseSHA2561 nt ri nsi cs, and UseSHA512 ntri nsi cs options.

The UseSHA and UseSHA* I ntri nsi cs flags are enabled by default, and are supported
only for Java HotSpot Server VM 64-bit on SPARC T4 and newer.

This feature is applicable only when using the sun. security. provi der. Sun provider for
SHA operations. Flags that control intrinsics now require the option - XX:

+Unl ockDi agnosti cVMMti ons.

To disable all hardware-based SHA intrinsics, specify the - XX: - UseSHA. To disable only
a particular SHA intrinsic, use the appropriate corresponding option. For example: -
XX: - UseSHA2561 nt ri nsi cs.

-XX:+UseSHAlIntrinsics
Enables intrinsics for SHA-1 crypto hash function. Flags that control intrinsics now
require the option- XX: +Unl ockDi agnost i cVMOpt i ons.

-XX:+UseSHA256 Intrinsics
Enables intrinsics for SHA-224 and SHA-256 crypto hash functions. Flags that control
intrinsics now require the option- XX: +Unl ockDi agnost i cVMOpt i ons.

-XX:+UseSHA512Intrinsics
Enables intrinsics for SHA-384 and SHA-512 crypto hash functions. Flags that control
intrinsics now require the option- XX: +Unl ockDi agnost i cVMOpt i ons.

-XX:+UseSuperWord

Enables the transformation of scalar operations into superword operations.
Superword is a vectorization optimization. This option is enabled by default. To
disable the transformation of scalar operations into superword operations, specify -
XX: - UseSuper Wr d. Only the Java HotSpot Server VM supports this option.

Advanced Serviceability Options for Java

These j ava options provide the ability to gather system information and perform
extensive debugging.

-XX:+ExtendedDTraceProbes

Oracle Solaris, Linux, and OS X: Enables additional dt r ace tool probes that affect
the performance. By default, this option is disabled and dtrace performs only standard
probes.

-XX:+HeapDumpOnOutOfMemoryError

Enables the dumping of the Java heap to a file in the current directory by using the
heap profiler (HPROF) when a j ava. | ang. Qut Of Meror yEr ror exception is thrown. You
can explicitly set the heap dump file path and name using the - XX: HeapDunpPat h option.
By default, this option is disabled and the heap isn’t dumped when an

Qut Of Menor yEr ror exception is thrown.

-XX:HeapDumpPath=path

Sets the path and file name for writing the heap dump provided by the heap profiler
(HPROF) when the - XX: +HeapDunpOnQut Of Menor yEr ror option is set. By default, the file
is created in the current working directory, and it's named j ava_pi dpi d. hpr of where

2-74

ORACLE

Chapter 2
java

pi d is the identifier of the process that caused the error. The following example shows
how to set the default file explicitly (% represents the current process identifier):

- XX: HeapDunpPat h=. / j ava_pi d%p. hpr of

* Oracle Solaris, Linux, and OS X: The following example shows how to set the
heap dump file to /var/ I og/j aval j ava_heapdunp. hpr of :
- XX: HeapDunpPat h=/ var /1 og/ j aval j ava_heapdunp. hpr of

e Windows: The following example shows how to set the heap dump file to C. /| og/
j aval j ava_heapdunp. | og:

- XX: HeapDunpPat h=C: / | og/ j ava/ j ava_heapdunp. | og
-XX:LogFile=path

Sets the path and file name to where log data is written. By default, the file is created
in the current working directory, and it's named hot spot . | og.

* Oracle Solaris, Linux, and OS X: The following example shows how to set the
log file to /var /1 og/ j aval hot spot . | og:

- XX: LogFi | e=/var /| og/j aval hot spot . | og

* Windows: The following example shows how to set the log file to C. /| og/ j ava/
hot spot . | og:

- XX: LogFi | e=C: /| og/ j ava/ hot spot . | og
-XX:+PrintClassHistogram
Enables printing of a class instance histogram after one of the following events:
e Oracle Solaris, Linux, and OS X: Cont rol +Br eak
* Windows: Control +C (S| GTERM)

By default, this option is disabled.
Setting this option is equivalent to running the j map - hi sto command, or the j cmd pi d
GC. cl ass_hi st ogramcommand, where pi d is the current Java process identifier.

-XX:+PrintConcurrentLocks
Enables printing of j ava. util. concurrent locks after one of the following events:

* Oracle Solaris, Linux, and OS X: Cont rol +Br eak
* Windows: Cont rol +C (S| GTERM

By default, this option is disabled.
Setting this option is equivalent to running the j stack -1 command or thej cnd pid
Thread. print -1 command, where pi d is the current Java process identifier.

-XX:+PrintFlagsRanges
Prints the range specified and allows automatic testing of the values. See Validate
Java Virtual Machine Flag Arguments.

-XX:+UnlockDiagnosticVMOptions
Unlocks the options intended for diagnosing the JVM. By default, this option is
disabled and diagnostic options aren’t available.

Advanced Garbage Collection Options for Java

These j ava options control how garbage collection (GC) is performed by the Java
HotSpot VM.

2-75

ORACLE

Chapter 2
java

-XX:+AggressiveHeap

Enables Java heap optimization. This sets various parameters to be optimal for long-
running jobs with intensive memory allocation, based on the configuration of the
computer (RAM and CPU). By default, the option is disabled and the heap isn’t
optimized.

-XX:+AlwaysPreTouch

Enables touching of every page on the Java heap during JVM initialization. This gets
all pages into memory before entering the mai n() method. The option can be used in

testing to simulate a long-running system with all virtual memory mapped to physical

memory. By default, this option is disabled and all pages are committed as JVM heap
space fills.

-XX:+CMSClassUnloadingEnabled

Enables class unloading when using the concurrent mark-sweep (CMS) garbage
collector. This option is enabled by default. To disable class unloading for the CMS
garbage collector, specify - XX: - CM5Cl assUnl oadi ngEnabl ed.

-XX:CMSExpAvgFactor=percent

Sets the percentage of time (0 to 100) used to weight the current sample when
computing exponential averages for the concurrent collection statistics. By default, the
exponential averages factor is set to 25%. The following example shows how to set
the factor to 15%:

- XX: CMSExpAvgFact or =15

-XX:CMSIncrementalDutyCycle=percent

Sets the percentage (0 to 100) of time between minor collections that the CMS
collector is allowed to run. If CVSI ncrenent al Paci ng is enabled, then this is just the
initial value. The default value is 10.

-XX:CMSIncrementalDutyCycleMin=percent
Sets the percentage (0 to 100) that’s the lower bound on the duty cycle when
CMBI ncr ement al Paci ng is enabled. The default value is 0.

-XX:CMSIncrementalDutySafetyFactor=percent
Sets the percentage (0 to 100) used to add conservatism when computing the duty
cycle. The default value is 10.

-XX:CMSIncremental Offset=percent
Sets the percentage (0 to 100) by which the incremental mode duty cycle is shifted to
the right within the period between minor collections. The default value is 0.

-XX:+CMSIncrementalPacing

Enables automatic pacing. The incremental mode duty cycle is automatically adjusted
based on statistics collected while the JVM is running. By default, this option is
disabled.

-XX:+CMSScavengeBeforeRemark
Enables scavenging attempts before the CMS remark step. By default, this option is
disabled.

-XX:CMSTriggerRatio=percent

Sets the percentage (0 to 100) of the value specified by the option -

XX: M nHeapFr eeRat i o that's allocated before a CMS collection cycle commences. The
default value is set to 80%.

2-76

ORACLE

Chapter 2
java

The following example shows how to set the occupancy fraction to 75%:

- XX: CMBTri gger Rat i 0=75

-XX:ConcGCThreads=threads

Sets the number of threads used for concurrent GC. Sets t hr eads to approximately
1/4 of the number of parallel garbage collection threads. The default value depends
on the number of CPUs available to the JVM.

For example, to set the number of threads for concurrent GC to 2, specify the
following option:

- XX: ConcCCThr eads=2

-XX:+DisableExplicitGC

Enables the option that disables processing of calls to the System gc() method. This
option is disabled by default, meaning that calls to System gc() are processed. If
processing of calls to System gc() is disabled, then the JVM still performs GC when
necessary.

-XX:+ExplicitGClInvokesConcurrent

Enables invoking of concurrent GC by using the System gc() request. This option is
disabled by default and can be enabled only together with the - Xx:

+UseConcMar kSweepGC and - XX: +UseGLGC options.

-XX:+ExplicitGClInvokesConcurrentAndUnloadsClasses

Enables invoking of concurrent GC by using the System gc() request and unloading of
classes during the concurrent GC cycle. This option is disabled by default and can be
enabled only together with the - XX: +UseConcMar kSweepGC option.

-XX:GlHeapRegionSize=size

Sets the size of the regions into which the Java heap is subdivided when using the
garbage-first (G1) collector. The value is a power of 2 and can range from 1 MB to 32
MB. The goal is to have around 2048 regions based on the minimum Java heap size.
The default region size is determined ergonomically based on the heap size.

The following example sets the size of the subdivisions to 16 MB:

- XX: GLHeapRegi onSi ze=16m

-XX:G1HeapWastePercent=percent

Sets the percentage of heap that you're willing to waste. The Java HotSpot VM
doesn't initiate the mixed garbage collection cycle when the reclaimable percentage is
less than the heap waste percentage. The default is 5 percent.

-XX:G1MaxNewSizePercent=percent

Sets the percentage of the heap size to use as the maximum for the young generation
size. The default value is 60 percent of your Java heap.

This is an experimental flag. This setting replaces the - XX: Def aul t MaxNewGenPer cent
setting.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:G1MixedGCCountTarget=number

Sets the target number of mixed garbage collections after a marking cycle to collect
old regions with at most GLM xedGCLI veThr eshol dPer cent live data. The default is 8
mixed garbage collections. The goal for mixed collections is to be within this target
number.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

2-77

ORACLE

Chapter 2
java

-XX:G1MixedGCLiveThresholdPercent=percent

Sets the occupancy threshold for an old region to be included in a mixed garbage
collection cycle. The default occupancy is 85 percent.

This is an experimental flag. This setting replaces the -

XX: GLA dCSet Regi onLi veThr eshol dPer cent setting.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:G1NewSizePercent=percent

Sets the percentage of the heap to use as the minimum for the young generation size.
The default value is 5 percent of your Java heap.

This is an experimental flag. This setting replaces the - XX: Def aul t M nNewGenPer cent
setting.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:G10ldCSetRegionThresholdPercent=percent

Sets an upper limit on the number of old regions to be collected during a mixed
garbage collection cycle. The default is 10 percent of the Java heap.

This setting isn’t available in Java HotSpot VM build 23 or earlier.

-XX:G1ReservePercent=percent

Sets the percentage of the heap (0 to 50) that's reserved as a false ceiling to reduce
the possibility of promotion failure for the G1 collector. When you increase or
decrease the percentage, ensure that you adjust the total Java heap by the same
amount. By default, this option is set to 10%.

The following example sets the reserved heap to 20%:

- XX: GLReser vePer cent =20

-XX: InitialHeapOccupancyPercent=percent
Sets the Java heap occupancy threshold that triggers a marking cycle. The default
occupancy is 45 percent of the entire Java heap.

-XX:InitialHeapSize=size

Sets the initial size (in bytes) of the memory allocation pool. This value must be either
0, or a multiple of 1024 and greater than 1 MB. Append the letter k or K to indicate
kilobytes, mor Mto indicate megabytes, or g or Gto indicate gigabytes. The default
value is selected at run time based on the system configuration.

The following examples show how to set the size of allocated memory to 6 MB using
various units:

-XX: I nitial HeapSi ze=6291456
-XX: Initial HeapSi ze=6144k
-XX: Initial HeapSi ze=6m

If you set this option to O, then the initial size is set as the sum of the sizes allocated
for the old generation and the young generation. The size of the heap for the young
generation can be set using the - XX: NewSi ze option.

-XX:InitialSurvivorRatio=ratio

Sets the initial survivor space ratio used by the throughput garbage collector (which is
enabled by the - XX: +UsePar al | el GC and/or -XX: +UsePar al | el O dGC options). Adaptive
sizing is enabled by default with the throughput garbage collector by using the - Xx:
+UseParal | el GC and - XX: +UsePar al | el O dGC options, and the survivor space is resized
according to the application behavior, starting with the initial value. If adaptive sizing is
disabled (using the - XX: - UseAdapt i veSi zePol i cy option), then the - XX: Sur vi vor Rati o

2-78

ORACLE

Chapter 2
java

option should be used to set the size of the survivor space for the entire execution of
the application.

The following formula can be used to calculate the initial size of survivor space (S)
based on the size of the young generation (Y), and the initial survivor space ratio (R):

S=Y/ (R+2)

The 2 in the equation denotes two survivor spaces. The larger the value specified as
the initial survivor space ratio, the smaller the initial survivor space size.

By default, the initial survivor space ratio is set to 8. If the default value for the young
generation space size is used (2 MB), then the initial size of the survivor space is 0.2
MB.

The following example shows how to set the initial survivor space ratio to 4:

-XX: I'nitialSurvivorRatio=4

-XX: InitiatingHeapOccupancyPercent=percent

Sets the percentage of the heap occupancy (0 to 100) at which to start a concurrent
GC cycle. It's used by garbage collectors that trigger a concurrent GC cycle based on
the occupancy of the entire heap, not just one of the generations (for example, the G1
garbage collector).

By default, the initiating value is set to 45%. A value of 0 implies nonstop GC cycles.
The following example shows how to set the initiating heap occupancy to 75%:

-XX: I nitiatingHeapCccupancyPer cent =75

-XX:MaxGCPauseMi Il is=time

Sets a target for the maximum GC pause time (in milliseconds). This is a soft goal,
and the JVM will make its best effort to achieve it. The specified value doesn't adapt
to your heap size. By default, there’s no maximum pause time value.

The following example shows how to set the maximum target pause time to 500 ms:

- XX: MaxGCPauseM | 1i s=500

-XX:MaxHeapSize=size

Sets the maximum size (in byes) of the memory allocation pool. This value must be a
multiple of 1024 and greater than 2 MB. Append the letter k or K to indicate kilobytes,
mor Mto indicate megabytes, or g or Gto indicate gigabytes. The default value is
selected at run time based on the system configuration. For server deployments, the
options - XX: I ni ti al HeapSi ze and - XX: MaxHeapSi ze are often set to the same value.
The following examples show how to set the maximum allowed size of allocated
memory to 80 MB using various units:

- XX: MaxHeapSi ze=83886080
- XX: MaxHeapSi ze=81920k
- XX: MaxHeapSi ze=80m

On Oracle Solaris 7 and Oracle Solaris 8 SPARC platforms, the upper limit for this
value is approximately 4,000 MB minus overhead amounts. On Oracle Solaris 2.6 and
x86 platforms, the upper limit is approximately 2,000 MB minus overhead amounts.
On Linux platforms, the upper limit is approximately 2,000 MB minus overhead
amounts.

The - XX: MaxHeapSi ze option is equivalent to - Xnx.

-XX:MaxHeapFreeRatio=percent

Sets the maximum allowed percentage of free heap space (0 to 100) after a GC
event. If free heap space expands above this value, then the heap is shrunk. By
default, this value is set to 70%.

2-79

ORACLE

Chapter 2
java

Minimize the Java heap size by lowering the values of the parameters

MaxHeapFr eeRat i o (default value is 70%) and M nHeapFr eeRat i o (default value is 40%)
with the command-line options - XX: MaxHeapFr eeRat i 0 and - XX: M nHeapFr eeRat i 0.
Lowering MaxHeapFr eeRat i o to as low as 10% and M nHeapFr eeRati o to 5% has
successfully reduced the heap size without too much performance regression;
however, results may vary greatly depending on your application. Try different values
for these parameters until they're as low as possible yet still retain acceptable
performance.

- XX: MaxHeapFr eeRat i 0=10 - XX: M nHeapFr eeRat i 0=5

Customers trying to keep the heap small should also add the option - XX: -

Shri nkHeapl nSt eps. See Performance Tuning Examples for a description of using this
option to keep the Java heap small by reducing the dynamic footprint for embedded
applications.

-XX:MaxMetaspaceSize=size

Sets the maximum amount of native memory that can be allocated for class metadata.
By default, the size isn't limited. The amount of metadata for an application depends
on the application itself, other running applications, and the amount of memory
available on the system.

The following example shows how to set the maximum class metadata size to 256
MB:

- XX: MaxMet aspaceSi ze=256m

-XX:MaxNewSize=size
Sets the maximum size (in bytes) of the heap for the young generation (nursery). The
default value is set ergonomically.

-XX:MaxTenuringThreshold=threshold

Sets the maximum tenuring threshold for use in adaptive GC sizing. The largest value
is 15. The default value is 15 for the parallel (throughput) collector, and 6 for the CMS
collector.

The following example shows how to set the maximum tenuring threshold to 10:

- XX: MaxTenur i ngThr eshol d=10

-XX:MetaspaceSize=size

Sets the size of the allocated class metadata space that triggers a garbage collection
the first time it's exceeded. This threshold for a garbage collection is increased or
decreased depending on the amount of metadata used. The default size depends on
the platform.

-XX:MinHeapFreeRatio=percent

Sets the minimum allowed percentage of free heap space (0 to 100) after a GC event.
If free heap space falls below this value, then the heap is expanded. By default, this
value is set to 40%.

Minimize Java heap size by lowering the values of the parameters MaxHeapFreeRati o
(default value is 70%) and M nHeapFr eeRat i o (default value is 40%) with the command-
line options - XX: MaxHeapFr eeRat i 0 and - XX: M nHeapFr eeRat i 0. Lowering

MaxHeapFr eeRat i o to as low as 10% and M nHeapFr eeRat i 0 to 5% has successfully
reduced the heap size without too much performance regression; however, results
may vary greatly depending on your application. Try different values for these
parameters until they’re as low as possible, yet still retain acceptable performance.

- XX: MaxHeapFr eeRati 0=10 - XX: M nHeapFr eeRat i 0=5

2-80

ORACLE

Chapter 2
java

Customers trying to keep the heap small should also add the option - XX: -

Shri nkHeapl nSt eps. See Performance Tuning Examples for a description of using this
option to keep the Java heap small by reducing the dynamic footprint for embedded
applications.

-XX:NewRatio=ratio
Sets the ratio between young and old generation sizes. By default, this option is set to
2. The following example shows how to set the young-to-old ratio to 1:

- XX: NewRat i 0=1

-XX:NewSize=size

Sets the initial size (in bytes) of the heap for the young generation (nursery). Append
the letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes.

The young generation region of the heap is used for new objects. GC is performed in
this region more often than in other regions. If the size for the young generation is too
low, then a large number of minor GCs are performed. If the size is too high, then only
full GCs are performed, which can take a long time to complete. Oracle recommends
that you keep the size for the young generation greater than 25% and less than 50%
of the overall heap size.

The following examples show how to set the initial size of the young generation to 256
MB using various units:

- XX: NewSi ze=256m
- XX: NewSi ze=262144k
- XX: NewSi ze=268435456

The - XX: NewSi ze option is equivalent to - Xmm.

-XX:ParallelGCThreads=threads

Sets the value of the stop-the-world (STW) worker threads. This option sets the value
of t hr eads to the number of logical processors. The value of t hreads is the same as
the number of logical processors up to a value of 8.

If there are more than 8 logical processors, then this option sets the value of t hr eads
to approximately 5/8 of the logical processors. This works in most cases except for
larger SPARC systems where the value of t hreads can be approximately 5/16 of the
logical processors.

The default value depends on the number of CPUs available to the JVM.

For example, to set the number of threads for parallel GC to 2, specify the following
option:

- XX: Paral | el GCThr eads=2

-XX:+Paral lelRefProcEnabled
Enables parallel reference processing. By default, this option is disabled.

-XX:+PrintAdaptiveSizePolicy
Enables printing of information about adaptive-generation sizing. By default, this
option is disabled.

-XX:+ScavengeBeforeFul IGC

Enables GC of the young generation before each full GC. This option is enabled by
default. Oracle recommends that you don'’t disable it, because scavenging the young
generation before a full GC can reduce the number of objects reachable from the old
generation space into the young generation space. To disable GC of the young
generation before each full GC, specify the option - XX: - ScavengeBef or eFul | GC.

2-81

ORACLE

Chapter 2
java

-XX:-ShrinkHeapInSteps

Incrementally reduces the Java heap to the target size, specified by the option —

XX: MaxHeapFr eeRat i 0. This option is enabled by default. If disabled, then it immediately
reduces the Java heap to the target size instead of requiring multiple garbage
collection cycles. Disable this option if you want to minimize the Java heap size. You
will likely encounter performance degradation when this option is disabled.

See Performance Tuning Examples for a description of using the MaxHeapFr eeRati o
option to keep the Java heap small by reducing the dynamic footprint for embedded
applications.

—XX:StringDeduplicationAgeThreshold=threshold

Identifies Stri ng objects reaching the specified age that are considered candidates for
deduplication. An object's age is a measure of how many times it has survived
garbage collection. This is sometimes referred to as tenuring. See the - XX:

+Print TenuringDi stri buti on option.

Note:

String objects that are promoted to an old heap region before this age has
been reached are always considered candidates for deduplication. The
default value for this option is 3. See the - XX: +UseSt ri ngDedupl i cat i on option.

-XX:SurvivorRatio=ratio

Sets the ratio between eden space size and survivor space size. By default, this
option is set to 8. The following example shows how to set the eden/survivor space
ratio to 4:

- XX: Survi vor Rati 0=4

-XX:TargetSurvivorRatio=percent

Sets the desired percentage of survivor space (0 to 100) used after young garbage
collection. By default, this option is set to 50%.

The following example shows how to set the target survivor space ratio to 30%:

- XX: Tar get Sur vi vor Rat i 0=30

-XX:TLABSize=size

Sets the initial size (in bytes) of a thread-local allocation buffer (TLAB). Append the
letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes. If this option is set to 0, then the JVM selects the initial size automatically.
The following example shows how to set the initial TLAB size to 512 KB:

- XX: TLABSI ze=512k

-XX:+UseAdaptiveSizePolicy

Enables the use of adaptive generation sizing. This option is enabled by default. To
disable adaptive generation sizing, specify - XX: - UseAdapt i veSi zePol i cy and set the
size of the memory allocation pool explicitly. See the - XX: Survi vor Rat i o option.

-XX:+UseCMSInitiatingOccupancyOnly

Enables the use of the occupancy value as the only criterion for initiating the CMS
collector. By default, this option is disabled and other criteria may be used.

2-82

ORACLE

Chapter 2
java

-XX:+UseG1GC

Enables the use of the garbage-first (G1) garbage collector. It's a server-style
garbage collector, targeted for multiprocessor machines with a large amount of RAM.
This option meets GC pause time goals with high probability, while maintaining good
throughput. The G1 collector is recommended for applications requiring large heaps
(sizes of around 6 GB or larger) with limited GC latency requirements (a stable and
predictable pause time below 0.5 seconds). By default, this option is enabled and G1
is used as the default garbage collector.

-XX:+UseGCOverheadLimit

Enables the use of a policy that limits the proportion of time spent by the JVM on GC
before an Qut O Menor yEr ror exception is thrown. This option is enabled, by default,
and the parallel GC will throw an Qut O Menor yError if more than 98% of the total time is
spent on garbage collection and less than 2% of the heap is recovered. When the
heap is small, this feature can be used to prevent applications from running for long
periods of time with little or no progress. To disable this option, specify the option -

XX: - UseGCOver headLimit.

-XX:+UseNUMA

Enables performance optimization of an application on a machine with nonuniform
memory architecture (NUMA) by increasing the application's use of lower latency
memory. By default, this option is disabled and no optimization for NUMA is made.
The option is available only when the parallel garbage collector is used (- XX:
+UsePar al | el GC).

-XX:+UseParallelGC

Enables the use of the parallel scavenge garbage collector (also known as the
throughput collector) to improve the performance of your application by leveraging
multiple processors.

By default, this option is disabled and the collector is chosen automatically based on
the configuration of the machine and type of the JVM. If it's enabled, then the - XX:
+UsePar al | el O dGC option is automatically enabled, unless you explicitly disable it.

-XX:+UseParallelOldGC
Enables the use of the parallel garbage collector for full GCs. By default, this option is
disabled. Enabling it automatically enables the - XX: +UsePar al | el GC option.

-XX:+UseSerialGC

Enables the use of the serial garbage collector. This is generally the best choice for
small and simple applications that don’t require any special functionality from garbage
collection. By default, this option is disabled and the collector is selected automatically
based on the configuration of the machine and type of the JVM.

-XX:+UseSHM
Linux only: Enables the JVM to use shared memory to set up large pages.
See Large Pages for setting up large pages.

-XX:+UseStringDeduplication

Enables string deduplication. By default, this option is disabled. To use this option,
you must enable the garbage-first (G1) garbage collector.

String deduplication reduces the memory footprint of Stri ng objects on the Java heap
by taking advantage of the fact that many Stri ng objects are identical. Instead of each
String object pointing to its own character array, identical Stri ng objects can point to
and share the same character array.

2-83

Chapter 2
java

-XX:+UseTLAB

Enables the use of thread-local allocation blocks (TLABS) in the young generation
space. This option is enabled by default. To disable the use of TLABSs, specify the
option - XX: - UseTLAB.

Obsolete Java Options

These j ava options are still accepted but ignored, and a warning is issued when
they’re used.

-Xusealtsigs / -XX:+UseAltSigs

Oracle Solaris only: Use alternative signals instead of SIGUSR1 and SIGUSR?2 for
JVM internal signals. Since Solaris 10, two dedicated signals have been made
available to the VM and so, since JDK 6, these flags have been documented as
having no effect. The flags have now been made obsolete, and their use generates a
warning. In a future release these flags will be removed completely.

Deprecated Java Options

These j ava options are deprecated and might be removed in a future JDK release.
They're still accepted and acted upon, but a warning is issued when they’re used.

-d32
This option is deprecated and will be removed in a future release.

-d64

This option is deprecated and will be removed in a future release.

Oracle Solaris, Linux, and OS X: Runs the application in a 64-bit environment. If a
64-bit environment isn’t installed or isn’t supported, then an error is reported.

Only the Java HotSpot Server VM supports 64-bit operation and the - server option is
implicit with the use of - d64. The -client option is ignored with the use of - d64.

-Xloggc:garbage-collection.log

Sets the file to which verbose GC events information should be redirected for logging.
The information written to this file is similar to the output of - ver bose: gc with the time
elapsed since the first GC event preceding each logged event. The - Xl oggc option
overrides -verbose: gc if both are given with the same java command.

Example:

- Xl 0g: gc: gar bage-col | ection. | og

-XX:CMSInitiatingOccupancyFraction=percent

Sets the percentage of the old generation occupancy (0 to 100) at which to start a
CMS collection cycle. The default value is set to -1. Any negative value (including the
default) implies that the option - XX: CMSTri gger Rat i o is used to define the value of the
initiating occupancy fraction.

The following example shows how to set the occupancy fraction to 20%:

- XX: OMBI ni ti ati ngQccupancyFracti on=20

-XX:CMSInitiatingPermOccupancyFraction=percent
Sets the percentage of the permanent generation occupancy (0 to 100) at which to
start a GC. This option was deprecated in JDK 8 with no replacement.

ORACLE 2-84

Chapter 2
java

-XX:+G1PrintHeapRegions

Enables the printing of information about which regions are allocated and which are
reclaimed by the G1 collector. By default, this option is disabled. See Enable Logging
with the JVM Unified Logging Framework.

-XX:MaxPermSize=size
Sets the maximum permanent generation space size (in bytes). This option was
deprecated in JDK 8 and superseded by the - XX: MaxMet aspaceSi ze option.

-XX:PermSize=size

Sets the space (in bytes) allocated to the permanent generation that triggers a
garbage collection if it's exceeded. This option was deprecated in JDK 8 and
superseded by the - XX: Met aspaceSi ze option.

-XX:+PrintGC

Enables printing of messages at every GC. By default, this option is disabled. If you're
using this flag, then see Enable Logging with the JVM Unified Logging Framework. In
JDK 9, this option is deprecated.

-XX:+PrintGCApplicationConcurrentTime
Enables printing of how much time elapsed since the last pause (for example, a GC
pause). By default, this option is deprecated.

-XX:+PrintGCApplicationStoppedTime
Enables printing of how much time the pause (for example, a GC pause) lasted. By
default, this option is deprecated

-XX:+PrintGCDateStamps
Enables printing of a date stamp at every GC. By default, this option is deprecated.

-XX:+PrintGCDetails
Enables printing of detailed messages at every GC. By default, this option is disabled.
See Enable Logging with the JVM Unified Logging Framework.

-XX:+PrintGCTaskTimeStamps

Enables printing of time stamps for every individual GC worker thread task. By
default, this option is disabled. See Enable Logging with the JVM Unified Logging
Framework.

-XX:+PrintGCTimeStamps
Enables printing of time stamps at every GC. By default, this option is disabled. See
Enable Logging with the JVM Unified Logging Framework.

-XX:+PrintStringDeduplicationStatistics
Prints detailed deduplication statistics. By default, this option is disabled. See the - XX:
+UseSt ri ngDedupl i cati on option.

-XX:+PrintTenuringDistribution
Enables printing of tenuring age information. The following is an example of the
output:

Desired survivor size 48286924 bytes, new threshold 10 (max 10)
- age 1. 28992024 bytes, 28992024 total
- age 2. 1366864 bytes, 30358888 total
- age 3. 1425912 bytes, 31784800 total

ORACLE 2-85

ORACLE

Chapter 2
java

Age 1 objects are the youngest survivors (they were created after the previous
scavenge, survived the latest scavenge, and moved from eden to survivor space).
Age 2 objects have survived two scavenges (during the second scavenge they were
copied from one survivor space to the next). This pattern is repeated for all objects in
the output.

In the preceding example, 28,992,024bytes survived one scavenge and were copied
from eden to survivor space, 1,366,864 bytes are occupied by age 2 objects, and so
on. The third value in each row is the cumulative size of objects of age n or less.

By default, this option is disabled.

-XX:SoftRefLRUPolicyMSPerMB=time

Sets the amount of time (in milliseconds) a softly reachable object is kept active on
the heap after the last time it was referenced. The default value is one second of
lifetime per free megabyte in the heap. The - XX: Sof t Ref LRUPol i cyMsPer MB option
accepts integer values representing milliseconds per one megabyte of the current
heap size (for Java HotSpot Client VM) or the maximum possible heap size (for Java
HotSpot Server VM). This difference means that the Client VM tends to flush soft
references rather than grow the heap, whereas the Server VM tends to grow the heap
rather than flush soft references. In the latter case, the value of the - Xnx option has a
significant effect on how quickly soft references are garbage collected.

The following example shows how to set the value to 2.5 seconds:

- XX: Sof t Ref LRUPol i cyMSPer MB=2500

-XX:+TraceClassLoading

Enables tracing of classes as they are loaded. By default, this option is disabled and
classes aren't traced.

The replacement Unified Logging syntax is - Xl og: cl ass+l oad=I evel . See Enable
Logging with the JVM Unified Logging Framework

Use | evel =i nf o for regular information, or | evel =debug for additional information. In
Unified Logging syntax, - ver bose: cl ass equals - Xl og: ¢l ass+l oad=i nf o, cl ass

+unl oad=i nf0..

-XX:+TraceClassLoadingPreorder

Enables tracing of all loaded classes in the order in which they’re referenced. By
default, this option is disabled and classes aren't traced.

The replacement Unified Logging syntax is - Xl og: cl ass+pr eor der =debug. See Enable
Logging with the JVM Unified Logging Framework.

-XX:+TraceClassResolution

Enables tracing of constant pool resolutions. By default, this option is disabled and
constant pool resolutions aren't traced.

The replacement Unified Logging syntax is - X og: cl ass+r esol ve=debug. See Enable
Logging with the JVM Unified Logging Framework.

-XX:+TraceClassUnloading

Enables tracing of classes as they're unloaded. By default, this option is disabled and
classes aren't traced.

The replacement Unified Logging syntax is - X og: cl ass+unl oad=l evel . See Enable
Logging with the JVM Unified Logging Framework.

Use | evel =i nf o for regular information, and | evel =t race for additional information. In
Unified Logging syntax, - ver bose: cl ass equals - Xl og: cl ass+unl oad=i nf o, cl ass

+unl oad=i nfo .

2-86

ORACLE

Chapter 2
java

-XX:+TraceLoaderConstraints

Enables tracing of the loader constraints recording. By default, this option is disabled
and loader constraints recording isn't traced.

The replacement Unified Logging syntax is - Xl og: cl ass+l oader +const rai nt s=i nf 0. See
Enable Logging with the JVM Unified Logging Framework.

-XX:+UseConcMarkSweepGC

Enables the use of the CMS garbage collector for the old generation. CMS is an
alternative to the default garbage collector (G1), which also focuses on meeting
application latency requirements. By default, this option is disabled and the collector is
selected automatically based on the configuration of the machine and type of the
JVM. In JDK 9, the CMS garbage collector is deprecated.

-XX:+UseParNewGC

Enables the use of parallel threads for collection in the young generation. By default,
this option is disabled. It's automatically enabled when you set the - XX:

+UseConcMar kSweepGC option. Using the - XX: +UsePar NewGC option without the - XX:
+UseConcMar kSweepGC option was deprecated in JDK 8. Starting with JDK 9, all uses of
the - XX: +UsePar NewGC option are deprecated. Using the option without - XX:
+UseConcMar kSweepGC isn't possible.

-XX:+UseSplitVerifier

Enables splitting the verification process. By default, this option was enabled in the
previous releases, and verification was split into two phases: type referencing
(performed by the compiler) and type checking (performed by the JVM runtime).
Verification is now split by default without a way to disable it.

Removed Java Options

These j ava options were removed in JDK 9 and using them results in an error of:

Unrecogni zed VM option option-nane

-d32
Oracle Solaris, Linux, and OS X: Ran the application in a 32-bit environment. 32-bit
JDKs/JREs are no longer supported.

Note:

The -d32 and - d64 options were added to allow multiple architectures (data
model) JDKs and JRESs to coexist on the same system. The user could invoke
the other data model by using these launcher options. Oracle Solaris was the
only platform supporting these options, and the 32-bit JDKs/JREs are no
longer supported.

-Xincgc
Enabled incremental garbage collection. This option and the GC mode are removed in
JDK 9.

-Xmaxj itcodesize=size

Specified the maximum code cache size (in bytes) for JIT-compiled code. Appended
the letter k or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate
gigabytes. The default maximum code cache size is 240 MB; if you disable tiered
compilation with the option - XX: - Ti er edConpi | at i on, then the default size is 48 MB:

2-87

Chapter 2
java

- Xmaxj i t codesi ze=240m
This option is equivalent to - XX: Reser vedCodeCacheSi ze.

-Xrunlibname
Loaded the specified debugging/profiling library. This option was superseded by the -
agent|ib option.

-XX:CMSIncrementalDutyCycle=percent
Set the percentage of time (0 to 100) between minor collections that the concurrent
collector was allowed to run.

-XX:CMSIncrementalDutyCycleMin=percent

Sets the percentage of time (0 to 100) between minor collections that was the lower
bound for the duty cycle when - XX: +CVSI ncr ement al Paci ng option was enabled. This
option was deprecated in JDK 8 with no replacement, following the deprecation of the
- XX: +CMBI ncr enent al Mbde option. The option was removed in JDK 9, because the entire
incremental mode was removed.

-XX:+CMSIncrementalMode

Enabled incremental mode. Note that the CMS collector must also be enabled (with -
XX: +UseConcMar kSweepGC) for this option to work. The option was removed in JDK 9,
because the entire incremental mode was removed.

-XX:CMSIncremental Offset=percent
Set the percentage of time (0 to 100) by which the incremental mode duty cycle was
shifted to the right within the period between minor collections.

-XX:+CMSIncrementalPacing

Enabled automatic adjustment of the incremental mode duty cycle based on statistics
collected while the JVM was running. This option was deprecated with no
replacement, following the deprecation of the - XX: +CVBI ncr enent al Mbde option. The
option was removed, because the entire incremental mode was removed.

-XX:CMSIncrementalSafetyFactor=percent

Set the percentage of time (0 to 100) used to add conservatism when computing the
duty cycle. This option was deprecated in JDK 8 with no replacement, following the
deprecation of the - XX: +CMSI ncr ement al Mode option. The option was removed, because
the entire incremental mode was removed.

-XX:CodeCacheMinimumFreeSpace=size

Set the minimum free space (in bytes) required for compilation. Appended the letter k
or K to indicate kilobytes, mor Mto indicate megabytes, or g or Gto indicate gigabytes.
When less than the minimum free space remained, compiling stopped. By default, this
option was set to 500 KB.

java Command-Line Argument Files

ORACLE

You can shorten or simplify the j ava command by using @r gunent files to specify a
text file that contains arguments, such as options and class names, passed to the j ava
command. This let’'s you to create j ava commands of any length on any operating
system.

In the command line, use the at sign (@ prefix to identify an argument file that contains
j ava options and class names. When the j ava command encounters a file beginning

2-88

ORACLE

Chapter 2
java

with the at sign (@ , it expands the contents of that file into an argument list just as
they would be specified on the command line.

The j ava launcher expands the argument file contents until it encounters the -
Xdi sabl e- @i | es option. You can use the - Xdi sabl e- @i | es option anywhere on the
command line, including in an argument file, to stop @ar gunent files} expansion.

The following items describe the syntax of j ava argument files:

The argument file must contain only ASCII characters or characters in system
default encoding that's ASCII friendly, such as UTF-8.

The argument file size must not exceed MAXINT (2,147,483,647) bytes.

The launcher doesn’t expand wildcards that are present within an argument file.
Use white space or new line characters to separate arguments included in the file.
White space includes a white space character, \t,\n,\r, and \f.

For example, it is possible to have a path with a space, such as c:\ Program Fi | es
that can be specified as either "c:\\ Program Fil es" or, to avoid an escape, c:
\Progranm "Files.

Any option that contains spaces, such as a path component, must be within
guotation marks using quotation (") characters in its entirety.

A string within quotation marks may contain the characters\n, \r,\t, and \f. They
are converted to their respective ASCII codes.

If a file name contains embedded spaces, then put the whole file name in double
guotation marks.

File names in an argument file are relative to the current directory, not to the
location of the argument file.

Use the number sign # in the argument file to identify comments. All characters
following the# are ignored until the end of line.

Additional at sign @prefixes to @prefixed options act as an escape, (the first @is
removed and the rest of the arguments are presented to the launcher literally).

Lines may be continued using the continuation character (\) at the end-of-line. The
two lines are concatenated with the leading white spaces trimmed. To prevent
trimming the leading white spaces, a continuation character (\) may be placed at
the first column.

Because backslash (\) is an escape character, a backslash character must be
escaped with another backslash character.

Partial quote is allowed and is closed by an end-of-file.

An open quote stops at end-of-line unless\ is the last character, which then joins
the next line by removing all leading white space characters.

Wildcards (*) aren’t allowed in these lists (such as specifying *. j ava).

Use of the at sign (@ to recursively interpret files isn’t supported.

Example of Open or Partial Quotes in an Argument File

In the argument file,

-cp "lib/
cool /

2-89

ORACLE

Chapter 2
java

app/
jars

this is interpreted as:

-cp lib/cool /app/jars

Example of a Backslash Character Escaped with Another Backslash Character
in an Argument File

To output the following:
-cp c:\Program Files (x86)\Java\jre\lib\ext;c:\ProgramFiles\Java\jre9\lib\ext
The backslash character must be specified in the argument file as:

-cp "c:\\Program Files (x86)\\Java\\jre\\lib\\ext;c:\\Program Files\\Java\\jre9\
\lib\\ext"

Example of an EOL Escape Used to Force Concatenation of Lines in an
Argument File

In the argument file,

-cp "/liblcool app/jars:\
[1iblanother app/jars"

This is interpreted as:

-cp /lib/cool app/jars:/lib/another app/jars

Example of Line Continuation with Leading Spaces in an Argument File
In the argument file,

-cp "/lib/cool
\app/jars”

This is interpreted as:

-cp /lib/cool app/jars

Examples of Using Single Argument File

You can use a single argument file, such as nyar gunentfil e in the following example,
to hold all required j ava arguments:

java @wargunentfile

Examples of Using Argument Files with Paths

You can include relative paths in argument files; however, they're relative to the
current working directory and not to the paths of the argument files themselves. In the
following example, pat h1/ options and pat h2/ opt i ons represent argument files with
different paths. Any relative paths that they contain are relative to the current working
directory and not to the argument files:

java @athl/options @ath2/classes

2-90

Chapter 2
java

Enable Logging with the JVM Unified Logging Framework

ORACLE

You use the - Xl og option to configure or enable logging with the Java Virtual Machine
(JVM) unified logging framework.

Synopsis
-Xlog[:[what][:[output][:[decorators][:output-options [,...]]]]]
what

Specifies a combination of tags and levels of the form t agl[+tag2...][*][=I evel][,...].
Unless the wildcard (*) is specified, only log messages tagged with exactly the tags
specified are matched. See -Xlog Tags and Levels.

output
Sets the type of output. Omitting the out put type defaults to st dout . See -Xlog Output.

decorators
Configures the output to use a custom set of decorators. Omitting decor at or s defaults
to uptine, | evel , and t ags. See Decorations.

output-options
Sets the - Xl og logging output options.

Description

The Java Virtual Machine (JVM) unified logging framework provides a common
logging system for all components of the JVM. GC logging for the JVM has been
changed to use the new logging framework. The mapping of old GC flags to the
corresponding new Xlog configuration is described in Convert GC Logging Flags to
Xlog. In addition, runtime logging has also been changed to use the JVM unified
logging framework. The mapping of legacy runtime logging flags to the corresponding
new Xlog configuration is described in Convert Runtime Logging Flags to Xlog.

The following provides quick reference to the - X og command and syntax for options:

-Xlog
Enables JVM logging on an i nf o level.

-Xlog:help
Prints - Xl og usage syntax and available tags, levels, and decorators along with
example command lines with explanations.

-Xlog:disable
Turns off all logging and clears all configuration of the logging framework including the
default configuration for warnings and errors.

-Xlog[:option]

Applies multiple arguments in the order that they appear on the command line.
Multiple - Xl og arguments for the same output override each other in their given order.
The option is set as:

[tag selection][:[output][:[decorators][:output-options]]]

Omitting the tag sel ecti on defaults to a tag-set of al | and a level of i nf 0.

2-91

ORACLE

Chapter 2
java

tag[+...] all

The al | tag is a meta tag consisting of all tag-sets available. The asterisk * in a tag
set definition denotes a wildcard tag match. Matching with a wildcard selects all tag
sets that contain at least the specified tags. Without the wildcard, only exact matches
of the specified tag sets are selected.

out put _options is

filecount=file count filesize=file size with optional K, Mor G suffix

Default Configuration

When the - Xl ogoption and nothing else is specified on the command line, the default
configuration is used. The default configuration logs all messages with a level that
matches either the warning or error regardless of what tags the message is associated
with. The default configuration is equivalent to entering the following on the command
line:

- Xl og: al | =war ni ng: st dout : upti ne, | evel , t ags

Controlling Logging at Runtime

Logging can also be controlled at run time through Diagnostic Commands (with the

j cmd utility). Everything that can be specified on the command line can also be
specified dynamically with the VM | og command. As the diagnostic commands are
automatically exposed as MBeans, you can use JMX to change logging configuration
at run time.

-Xlog Tags and Levels

Each log message has a level and a tag set associated with it. The level of the
message corresponds to its details, and the tag set corresponds to what the message
contains or which JVM component it involves (such as, GC, compiler, or threads).
Mapping GC flags to the Xlog configuration is described in Convert GC Logging Flags
to Xlog. Mapping legacy runtime logging flags to the corresponding Xlog configuration
is described in Convert Runtime Logging Flags to Xlog.

Available log levels:
e off

* trace

* debug

e info

°* warning
° error

Available log tags:
The following are the available log tags. Specifying al | instead of a tag combination
matches all tag combinations.

°* add
° age
e alloc

2-92

ORACLE

annot ati on
aot
argunents
attach

barrier

bi asedl ocki ng

bl ocks

bot

br eakpoi nt
byt ecode
census

cl ass

cl asshi sto
cl eanup
conpacti on
conpar at or
constraints
const ant poo
coops

cpu

cset

dat a

def aul t net hods

dunp

ergo

event
exceptions
exit
fingerprint
freelist
gc
hasht abl es
heap
hunmongous

i hop

Chapter 2
java

2-93

ORACLE

i kl ass
init

i tables
jfr

jni

jvnti
l'iveness
| oad

| oader

| oggi ng
mar k
mar Ki ng
met adat a
met aspace
met hod
mru

modul es
moni torinflation
moni t or mi smat ch
nmet hod
normal i ze
obj ecttaggi ng
obsol ete
oopmep

0s
pagesi ze
par ser
patch
path
phases

pl ab

pr eor der
pronotion

prot ecti ondomai n

pur ge

Chapter 2
java

2-94

ORACLE

redefine

r ef

refine
region
renset

resol ve

saf epoi nt
scavenge
scrub
setting
stacknap
stacktrace
st ackwal k
start
startuptime
state

stats
stringdedup
stringtable
subcl ass
survivor
sweep
system
task

thread

time

tiner

tlab

unl oad
updat e
verification
verify
vroper ati on
vt abl es

wor kgang

Chapter 2
java

2-95

Chapter 2
java

-Xlog Output
The - Xl og option supports the following types of outputs:

e stdout — Sends output to stdout
e stderr — Sends output to stderr
e file=fil ename — Sends output to text file(s).

When using fil e=fil enane, specifying % and/or % in the file name expands to the
JVM's PID and startup timestamp, respectively. You can also configure text files to
handle file rotation based on file size and a number of files to rotate. For example, to
rotate the log file every 10 MB and keep 5 files in rotation, specify the options
filesize=10M filecount=5. The target size of the files isn’t guaranteed to be exact, it's
just an approximate value. Files are rotated by default with up to 5 rotated files of
target size 20 MB, unless configured otherwise. Specifying fi | ecount =0 means that the
log file shouldn’t be rotated. There’s a possibility of the pre-existing log file getting
overwritten.

Decorations

Logging messages are decorated with information about the message. You can
configure each output to use a custom set of decorators. The order of the output is
always the same as listed in the table. You can configure the decorations to be used at
run time. Decorations are prepended to the log message. For example:

[6.567s][info][gc,old] Od collection conplete

Omitting decor at or s defaults to uptine, | evel , and t ags. The none decorator is special
and is used to turn off all decorations.

time (t), utctine (utc), uptime (u), tinmenillis (tm), uptinmenillis (un),timenanos (tn),
upt i nenanos (un), host nane (hn), pid (p), tid (ti), level (1), tags (tg) decorators can also
be specified as none for no decoration.

Decorations

Description

timort

Current time and date in ISO-8601 format.

utctimeorutc

Universal Time Coordinated or Coordinated Universal
Time.

uptimeoru

Time since the start of the JVM in seconds and
milliseconds. For example, 6.567s.

timemllisortm

The same value as generated by
SystemcurrentTineM I 1is().

uptinenillis orum Milliseconds since the JVM started.

ti menanos ortn

The same value generated by Syst em nanoTi me() .

upti menanos or un

Nanoseconds since the JVM started.

host nane or hn

The host name.

pidorp The process identifier.

tidorti The thread identifier.

I evel orl The level associated with the log message.

tagsortg The tag-set associated with the log message.
ORACLE 2-96

Convert GC Logging Flags to Xlog

Chapter 2
java

Table 2-1 Mapping Legacy Garbage Collection Logging Flags to the Xlog Configuration

Legacy Garbage Collection (GC)
Flag

Xlog Configuration

Comment

GLPri nt HeapRegi ons

- Xl og: gc+regi on=trace

Not Applicable

CCLogFi | eSi ze

No configuration available

Log rotation is handled by the
framework.

Nunmber Of GCLogFi | es

Not Applicable

Log rotation is handled by the
framework.

Print Adapt i veSi zePol i cy

- Xl og: ergo* =l evel

Use al evel of debug for most of the
information, or a | evel of trace for
all of what was logged for

Print AdaptiveSi zePol i cy.

Print GC

-X 0g: gc

Not Applicable

Pri nt GCAppl i cati onConcurrent Ti me

- Xl og: saf epoi nt

Note that

Pri nt GCAppl i cati onConcurrent Ti me
and

Pri nt GCAppl i cati onSt oppedTi me
are logged on the same tag and
aren’t separated in the new logging.

Pri nt GCAppl i cati onSt oppedTi ne i) . Note that
X og: saf epoint Pri nt GCAppl i cati onConcurrent Ti ne

and
Print GCAppl i cati onSt oppedTi me
are logged on the same tag and not
separated in the new logging.

Pri nt GCCause Not Applicable GC cause is now always logged.

Pri nt GCDat eSt anps Not Applicable Date stamps are logged by the
framework.

Print GCDet ai | s -Xl og: gc* Not Applicable

PrintGCI D Not Applicable GC ID is now always logged.

Pri nt GCTaskTi neSt anps - Xl og: t ask*=debug Not Applicable

Pri nt GCTi neSt anps Not Applicable Time stamps are logged by the
framework.

Pri nt HeapAt GC - Xl og: gc+heap=trace Not Applicable

Print Ref erenceGC - Xl og: r ef *=debug Note that in the old logging,

Pri nt Ref er enceGC had an effect only
if Print GCDet ai | s was also enabled.

PrintStringDeduplicationStatisti
cs

- Xl og: st ri ngdedup* =debug

Not Applicable

Pr

nt TenuringDi stribution

- Xl og: age* =l evel

Use al evel of debug for the most
relevant information, or a | evel of
trace for all of what was logged for
Print TenuringDi stribution.

UseGCLogFi | eRot ati on

Not Applicable

What was logged for
Print TenuringDi stribution.

ORACLE

2-97

Convert Runtime Logging Flags to Xlog

Chapter 2
java

Table 2-2 Mapping Runtime Logging Flags to the Xlog Configuration

Legacy Runtime Flag

Xlog Configuration

Comment

TraceExceptions

- Xl og: exceptions=i nfo

Not Applicable

Traced assLoadi ng

- Xl og: cl ass+l oad=l evel

Use | evel =i nf o for regular
information, or | evel =debug for
additional information. In Unified
Logging syntax, - ver bose: cl ass
equals - Xl og: cl ass

+l oad=i nf o, cl ass+unl oad=i nf 0.

Traced assLoadi ngPr eor der

- Xl og: cl ass+pr eor der =debug

Not Applicable

TraceC assUnl oadi ng

- Xl og: cl ass+unl oad=| evel

Use | evel =i nf o for regular
information, or | evel =t race for
additional information. In Unified
Logging syntax, - ver bose: cl ass
equals - Xl og: cl ass

+| oad=i nf o, cl ass+unl oad=i nf 0.

Ver boseVeri fication

-X og: verification=info

Not Applicable

Traced assPat hs

- Xl og: cl ass+pat h=i nfo

Not Applicable

Traced assResol ution

- Xl og: cl ass+resol ve=debug

Not Applicable

Traced asslnitialization

-X og: class+init=info

Not Applicable

TracelLoader Constraints

- Xl og: cl ass+l oader
+constraints=info

Not Applicable

Traced assLoader Dat a

- Xl og: cl ass+l oader +dat a=| evel

Use | evel =debug for regular
information or | evel =t race for
additional information.

TraceSaf epoi nt 0 eanupTi me

- Xl 0g: saf epoi nt +cl eanup=i nfo

Not Applicable

Tr aceSaf epoi nt

- Xl og: saf epoi nt =debug

Not Applicable

TraceMonitorlnflation

- Xl og: noni torinflati on=debug

Not Applicable

TraceBi asedLocki ng

- Xl 0g: bi ased| ocki ng=I evel

Use | evel =i nf o for regular
information, or | evel =t r ace for
additional information.

TraceRedef i ned asses

- Xl og: r edef i ne+cl ass* =l evel

| evel =i nf 0, =debug, and =t race
provide increasing amounts of
information.

-Xlog Usage Examples

The following are - Xl og examples.

-Xlog

Logs all messages by using the i nf olevel to st dout with uptine, | evel s, and t ags
decorations. This is equivalent to using:

-Xlog: al | =i nfo: stdout: uptine, |l evels,tags

ORACLE

2-98

Chapter 2
java

-Xlog:gc
Logs messages tagged with the gc tag using i nf o level to st dout . The default
configuration for all other messages at level war ni ng is in effect.

-Xlog:gc,safepoint

Logs messages tagged either with the gc or saf epoi nt tags, both using the i nf o level,
to st dout , with default decorations. Messages tagged with both gc and saf epoi nt won't
be logged.

-Xlog:gc+ref=debug
Logs messages tagged with both gc and ref tags, using the debug level to st dout , with
default decorations. Messages tagged only with one of the two tags won't be logged.

-Xlog:gc=debug:file=gc.txt:none

Logs messages tagged with the gc tag using the debug level to a file called gc. t xt with
no decorations. The default configuration for all other messages at level war ni ng is still
in effect.

-Xlog:gc=trace:file=gctrace.txt:uptimemillis,pids:filecount=5,filesize=1024

Logs messages tagged with the gc tag using the trace level to a rotating file set with 5
files with size 1 MB with the base name gctrace. t xt and uses decorations
uptimenm|lis and pid.

The default configuration for all other messages at levelwar ni ng is still in effect.

-Xlog:gc: -uptime, tid

Logs messages tagged with the gc tag using the default 'info' level to default the
outputst dout and uses decorations uptine and ti d. The default configuration for all
other messages at levelwar ni ng is still in effect.

-Xlog:gc*=info,safepoint*=off

Logs messages tagged with at least gc using the i nf o level, but turns off logging of
messages tagged with saf epoi nt . Messages tagged with both gc and saf epoi nt won't
be logged.

-Xlog:disable -Xlog:safepoint=trace:safepointtrace.txt

Turns off all logging, including warnings and errors, and then enables messages
tagged with saf epoi nt using t r acelevel to the file saf epoi nttrace. t xt. The default
configuration doesn’t apply, because the command line started with - Xl og: di sabl e.

Complex -Xlog Usage Examples

The following describes a few complex examples of using the - Xl og option.

-Xlog:gc+class*=debug
Logs messages tagged with at least gc and cl ass tags using the debug level to st dout .
The default configuration for all other messages at the level war ni ng is still in effect

-Xlog:gc+meta*=trace,class*=off:file=gcmetatrace.txt

Logs messages tagged with at least the gc and net a tags using thet race level to the
file met atrace. txt but turns off all messages tagged with cl ass. Messages tagged with
gc, net a, andcl ass aren't be logged ascl ass* is set to off. The default configuration for
all other messages at level war ni ng is in effect except for those that include cl ass.

ORACLE 2-99

Chapter 2
java

-Xlog:gc+meta=trace

Logs messages tagged with exactly the gc and net a tags using the trace level to

st dout . The default configuration for all other messages at level war ni ng is still be in
effect.

-Xlog:gc+class+heap*=debug,meta*=warning, threads*=off

Logs messages tagged with at least gc, cl ass, and heap tags using the trace level to
stdout but only log messages tagged with net a with level. The default configuration for
all other messages at the level war ni ng is in effect except for those that include

t hreads.

Validate Java Virtual Machine Flag Arguments

You use values provided to all Java Virtual Machine (JVM) command-line flags for
validation and, if the input value is invalid or out-of-range, then an appropriate error
message is displayed.

Whether they're set ergonomically, in a command line, by an input tool, or through the
APIs (for example, classes contained in the package j ava. | ang. managenent) the values
provided to all Java Virtual Machine (JVM) command-line flags are validated.
Ergonomics are described in Java Platform, Standard Edition HotSpot Virtual Machine
Garbage Collection Tuning Guide.

Range and constraints are validated either when all flags have their values set during
JVM initialization or a flag’s value is changed during runtime (for example using the

j cd tool). The JVM is terminated if a value violates either the range or constraint
check and an appropriate error message is printed on the error stream.

For example, if a flag violates a range or a constraint check, then the JVM exits with
an error:

java - XX: Al'l ocat ePrefetchStyl e=5 -version

intx AllocatePrefetchStyle=5 is outside the allowed range [0 ... 3]
I mproperly specified VM option "AllocatePrefetchStyl e=5'

Error: Could not create the Java Virtual Machine.

Error: A fatal exception has occurred. Programwill exit.

The flag - XX: +Pri nt Fl agsRanges prints the range of all the flags. This flag allows
automatic testing of the flags by the values provided by the ranges. For the flags that
have the ranges specified, the type, name, and the actual range is printed in the
output.

For example,

intx ThreadStackSize [0 ... 9007199254740987] {pd product}

For the flags that don’t have the range specified, the values aren’t displayed in the
print out. For example,:

size_t NewSize [...] {product}

This helps to identify the flags that need to be implemented. The automatic testing
framework can skip those flags that don’t have values and aren’t implemented.

Large Pages

You use large pages, also known as huge pages, as memory pages that are
significantly larger than the standard memory page size (which varies depending on

ORACLE 2-100

ORACLE

Chapter 2
java

the processor and operating system). Large pages optimize processor Translation-
Lookaside Buffers.

A Translation-Lookaside Buffer (TLB) is a page translation cache that holds the most-
recently used virtual-to-physical address translations. A TLB is a scarce system
resource. A TLB miss can be costly because the processor must then read from the
hierarchical page table, which may require multiple memory accesses. By using a
larger memory page size, a single TLB entry can represent a larger memory range.
This results in less pressure on a TLB, and memory-intensive applications may have
better performance.

However, large pages page memory can negatively affect system performance. For
example, when a large mount of memory is pinned by an application, it may create a
shortage of regular memory and cause excessive paging in other applications and
slow down the entire system. Also, a system that has been up for a long time could
produce excessive fragmentation, which could make it impossible to reserve enough
large page memory. When this happens, either the OS or JVM reverts to using regular
pages.

Large Pages Support

Oracle Solaris, Linux, and Windows Server 2003 support large pages.

Large Pages Support for Oracle Solaris

Oracle Solaris 9 and later include Multiple Page Size Support (MPSS). No additional
configuration is necessary. See Features and Benefits - Scalability.

Large Pages Support for Linux

The 2.6 kernel supports large pages. Some vendors have backported the code to their
2.4-based releases. To check if your system can support large page memory, try the
following:

cat /proc/memnfo | grep Huge
HugePages_Total: 0
HugePages_Free: 0

Hugepagesi ze: 2048 kB

If the output shows the three "Huge" variables, then your system can support large
page memory but it needs to be configured. If the command prints nothing, then your
system doesn’t support large pages. To configure the system to use large page
memory, login as root , and then follow these steps:

1. If you're using the option - XX: +UseSHM (instead of - XX: +UseHugeTLBFS), then increase
the SHWAX value. It must be larger than the Java heap size. On a system with 4 GB
of physical RAM (or less), the following makes all the memory sharable:

echo 4294967295 > /proc/ sys/ kernel / shmrax

2. If you're using the option - XX: +UseSHMor - XX: +UseHugeTLBFS, then specify the
number of large pages. In the following example, 3 GB of a 4 GB system are
reserved for large pages (assuming a large page size of 2048kB, then 3 GB =3 *
1024 MB = 3072 MB = 3072 * 1024 kB = 3145728 kB and 3145728 kB / 2048 kB =
1536):

echo 1536 > /proc/sys/vnl nr_hugepages

2-101

http://www.oracle.com/technetwork/server-storage/solaris10/overview/solaris9-features-scalability-135663.html

Chapter 2
java

Note:

* Note that the values contained in / proc resets after you reboot your
system, so may want to set them in an initialization script (for example,
rc.local orsysctl.conf).

» If you configure (or resize) the OS kernel parameters / proc/ sys/ ker nel /
shnmax or / proc/ sys/ vl nr_hugepages, Java processes may allocate large
pages for areas in addition to the Java heap. These steps can allocate
large pages for the following areas:

— Java heap
— Code cache
— The marking bitmap data structure for the parallel GC

Consequently, if you configure the nr _hugepages parameter to the size of
the Java heap, then the JVM can fail in allocating the code cache areas on
large pages because these areas are quite large in size.

Large Pages Support for Windows Server 2003

Only Windows Server 2003 supports large pages. To use this feature, the
administrator must first assign additional privileges to the user who's running the
application:

1. Select Control Panel, Administrative Tools, and then Local Security Policy.
2. Select Local Policies and then User Rights Assignment.

3. Double-click Lock pages in memory, then add users and/or groups.

4. Reboot your system.

Note that these steps are required even if it's the administrator who's running the
application, because administrators by default don’t have the privilege to lock pages in
memory.

Application Class Data Sharing

Application Class Data Sharing (AppCDS) extends class data sharing to enable
application classes to be placed in the shared archive.

In addition to the core library classes, AppCDS supports Class Data Sharing from the
following locations:

e Platform classes from the module image
* Application classes from the module image

e Application classes from -cp path

Note:

In JDK 9, application classes from module path is not supported by AppCDS.

ORACLE 2-102

ORACLE

Chapter 2
java

When running multiple JVM processes, AppCDS reduces the runtime footprint with
memory sharing for read-only metadata.

This is a commercial feature that requires you to specify - Xx:
+Unl ockCommer ci al Feat ures.

Creating a Shared Archive File and Using It to Run an Application

The following steps create a shared archive file that contains all the classes used by
the test. Hel | o application. The last step runs the application with the shared archive
file.

1. Create a list of all classes used by the test . Hel | o application. The following
command creates a file named hel | o. cl assl i st that contains a list of all classes
used by this application:

java -Xshare:of f -XX: +Unl ockConmerci al Features -
XX: DunpLoadedd assLi st =hel | 0. cl asslist - XX +UseAppCDS -cp hello.jar test.Hello

Note that the - cp parameter must contain only JAR files; the - XX: +UseAppCDS option
doesn’t support class paths that contain directory names.

2. Create a shared archive, named hel | 0. j sa, that contains all the classes in
hel lo.classlist:

java - XX: +Unl ockCommer ci al Feat ures - Xshare: dunp - XX: +UseAppCDS -
XX: Shar edAr chi veFi | e=hel | 0. j sa - XX: SharedC assLi st Fi | e=hel | 0. cl asslist -cp
hello.jar

Note that the - cp parameter used at archive creation time must be the same as (or
a prefix of) the - cp used at run time.
3. Run the application test . Hel | o with the shared archive hel | 0. j sa:

java - XX: +Unl ockCommer ci al Feat ures - Xshare: on - XX: +UseAppCDS -
XX: Shar edAr chi veFil e=hel lo.jsa -cp hello.jar test.Hello

Ensure that you have specified the option - Xshar e: on or - Xshar e: aut o. If the option
is not specified,- Xshar e: aut o is the default .

4. Optional: Verify that the test . Hel | 0 application is using the class contained in the
hel | 0. j sa shared archive:

java - XX: +Unl ockCommer ci al Features - Xshare: on - XX: +UseAppCDS -
XX: Shar edAr chi veFil e=hello0.jsa -cp hello.jar -verbose:class test.Hello

The output of this command should contain the following text:

Loaded test.Hello fromshared objects file by sun/m sc/Launcher $Appd assLoader

Sharing a Shared Archive Across Multiple Application Processes

You can share the same archive file across multiple applications processes. This
reduces memory usage because the archive is memory-mapped into the address
space of the processes. The operating system automatically shares the read-only
pages across these processes.

The following steps demonstrate how to create a common archive that can be shared
by different applications. Only the classes from common. j ar are archived in the
common. j sa (step 3). Classes from hel | o.jar and hi . jar are not archived in this

2-103

ORACLE

Chapter 2
java

particular example because they are not in the - cp path during the archiving step (step
3).

To include classes from hel | 0. jar and hi.jar, the .jar files must be added to the -cp
path.

1. Create a list of all classes used by the Hel | 0 application and another list for the Hi
application:

java - XX +Unl ockCommer ci al Feat ures - XX: DunpLoadedd assLi st=hel | 0. cl asslist - XX
+UseAppCDS -cp common.jar:hello.jar Hello

java - XX: +Unl ockCommer ci al Feat ures - XX: DunpLoadedd assLi st =hi . cl asslist -XX:
+UseAppCDS -cp common.jar:hi.jar H

2. Create a single list of classes used by all the applications that will share the
shared archive file.

Oracle Solaris, Linux, and OS X:: The following commands combine the files
hell o.classlist and hi.classlist into one file, coomon. ¢l assl i st :

cat hello.classlist hi.classlist > commn.classlist

Windows: The following commands combine the files hel | 0. ¢l assl i st and
hi.classlist into one file, comon. cl asslist:

type hello.classlist hi.classlist > comon.classlist

3. Create a shared archive, named common. j sa, that contains all the classes in
conmon. cl assl i st:

java - XX: +Unl ockCormmer ci al Features - Xshare: dunp -
XX: Shar edAr chi veFi | e=commmon. j sa - XX: +UseAppCDS -
XX: Shar edC assLi st Fi | e=common. cl asslist -cp common.jar:hello.jar:hi.jar

The value of the - cp parameter is the common class path prefix shared by the
Hel | o and H applications.

4. Runthe Hell o and H applications with the same shared archive:

java - XX: +Unl ockCommer ci al Feat ures - Xshare: on - XX: Shar edAr chi veFi | e=common. j sa -
XX: +UseAppCDS -cp comon.jar:hello.jar:hi.jar Hello

java - XX: +Unl ockCommer ci al Feat ures - Xshare: on - XX: Shar edAr chi veFi | e=common. j sa -
XX: +UseAppCDS -cp common.jar:hello.jar:hi.jar H

Specifying Additional Shared Data Added to an Archive File

- XX: Shar edAr chi veConf i gFi | e=shared_config_file

The option is used to specify additional shared data added to the archive file. In JDK 9,
it supports strings and symbols. The string data and symbol data should be generated
by the j cmd tool attaching to a running JVM process. See jcmd.

The following is an example of the string and symbol dumping command in j cnd:

jend pid VMstringtable -verbose
jend pid VM synbol tabl e -verbose

The following is an example of a configuration file:

VERSION: 1.0
@ECTION: String

2-104

Chapter 2
java

7: test123

1

8: segnents
@ECTI ON. Synbol
10 -1: linkMethod

In the configuration file example:

e The string entries under @ECTI O\: Stri ng use the following format:
length: string
e The @ECTION. Synbol entry uses the following format:

I ength refcount: synmbol

The ref count for a shared symbol is always - 1.

@BECTI ON specifies the type of the section that follows it. All data within the section must
be the same type that's specified by @ECTI ON. Different types of data can’t be mixed.
Multiple separated data sections for the same type specified by different @ECTI ON are
allowed within one shared_config_file .

Performance Tuning Examples

ORACLE

You can use the Java advanced runtime options to optimize the performance of your
applications.

Tuning for Higher Throughput

Use the following commands and advanced runtime options to achieve higher
throughput performance for your application:

java -d64 -server -XX: +UseParallel GC - XX: +Aggressi veOpts - XX: +UseLar gePages - Xm10g
- Xms26g - Xnmx26g

Tuning for Lower Response Time

Use the following commands and advanced runtime options to achieve lower response
times for your application:

java -d64 - XX: +UseGLGC - Xms26g Xnmx26g - XX: MaxGCPauseM | | i s=500 - XX: +Pri nt GCTi meSt anp

Keeping the Java Heap Small and Reducing the Dynamic Footprint of Embedded
Applications

Use the following advanced runtime options to keep the Java heap small and reduce
the dynamic footprint of embedded applications:

- XX: MaxHeapFr eeRati 0=10 - XX: M nHeapFr eeRat i 0=5

Note:

The defaults for these two options are 70% and 40% respectively. Because
performance sacrifices can occur when using these small settings, you should
optimize for a small footprint by reducing these settings as much as possible
without introducing unacceptable performance degradation.

2-105

Exit Status

Chapter 2
appletviewer

The following exit values are typically returned by the launcher when the launcher is
called with the wrong arguments, serious errors, or exceptions thrown by the JVM.
However, a Java application may choose to return any value by using the API call
Syst em exi t (exitVal ue). The values are:

e 0: Successful completion

e >0: An error occurred

appletviewer

ORACLE

Note: You use the appl et vi ewer command to launch the AppletViewer and run applets
outside of a web browser. Although available and supported in JDK 9, the Applet API
is marked as deprecated in preparation for removal in a future release. Instead of
applets, consider alternatives such as Java Web Start or self-contained applications.

Synopsis
appletviewer [options] url...
options

Specifies the command-line options separated by spaces. See Options for
appletviewer.

url
Specifies the location of the documents or resources to be displayed. You can specify
multiple URLs separated by spaces.

Description

The appl et vi ewer command connects to the documents or resources designated by
url and displays each applet referenced by the documents in its own AppletViewer
window. If the documents referred to by url don't reference any applets with the
OBJECT, EMBED, or APPLET tag, then the appl et vi ewer command does nothing. The OBJECT,
EMBED, and APPLETtags are described in AppletViewer Tags.

The appl et vi ener command requires encoded URLSs according to the escaping
mechanism defined in RFC2396. Only encoded URLs are supported. However, file
names must be unencoded, as specified in RFC2396.

Note:

The appl et vi ener command is intended for development purposes only.

Options for appletviewer

-encoding encoding-name
Specifies the input HTML file encoding name.

2-106

Chapter 2
appletviewer

-Jjavaoption

Passes the string j avaopt i on as a single argument to the Java interpreter, which runs
the AppletViewer. The argument shouldn’t contain spaces. Multiple argument words
must all begin with the prefix - J. This is useful for adjusting the compiler's execution
environment or memory usage. Seejava command documentation for more
information about JVM options.

AppletViewer Tags

ORACLE

The AppletViewer makes it possible to run a Java applet without using a browser.

The AppletViewer ignores any HTML that isn’t immediately relevant to launching an
applet. However, it recognizes a wide variety of applet-launching syntax. The HTML
code that the AppletViewer recognizes is described in this section. All other HTML
code is ignored.

object

The obj ect tag is the HTML 4.0 tag for embedding applets and multmedia objects into
an HTML page. It's also an Internet Explorer 4.n extension to HTML 3.2 which enables
IE to run a Java applet using the latest Java plug-in.

<obj ect
wi dt h="pi xel W dt h"
hei ght =" pi xel Hei ght "
>
<param name="code" val ue="your d ass. cl ass" >
<param name="obj ect" val ue="seri al i zed(oj ect Or JavaBean" >
<param name="codebase" val ue="cl assFi |l eDirectory">
...alternate-text
</ obj ect >

2-107

Chapter 2
appletviewer

Note:

* The AppletViewer ignores the cl assl D attribute, on the assumption that
it'spointing to the Java plug-in, with the value:

cl assi d="cl si d: BADIC840- 044E- 11D1- B3E9- 00805F499D93"

e The AppletViewer also ignores the codebase attribute that’'s usually
included as part of the obj ect tag, assuming that it points to a Java plug-in
in a network cab file with a value like:

codebase="http://java. sun.con products/plugin/1. 1/jinstall-11-
wi n32. cab#Version=1, 1,0, 0"

e The optional codebase parameter tag supplies a relative URL that specifies
the location of the applet class.

» Either code or object is specified, not both.

* The type parameter tag isn’'t used by AppletViewer, but should be present
so that browsers load the plug-in properly. For an applet, the value should
be similar to:

<param nane="t ype" val ue="application/x-j ava-appl et; versi on=1. 1" >

or

<param nane="type__1" val ue="application/x-java-appl et">

For a serialized object or JavaBean, the type parameter value should be
similar to:

<param nane="type__2" val ue="appl i cation/ x-j ava- bean; versi on=1.1">

or
<param name="type__3" val ue="appl i cation/ x-j ava- bean" >
e Other parameter tags are argument values supplied to the applet.

* The obj ect tag recognized by IE4.n and the embed tag recognized by
Netscape 4.n can be combined so that an applet can use the latest Java
plug-in, regardless of the browser that downloads the applet.

* The AppletViewer doesn’t recognize the j ava_code, j ava_codebase,
java_obj ect, orjava_type paramtags. These tags are needed only when
the applet defines parameters with the names code, codebase, obj ect, or
type, respectively. In that situation, the plug-in recognizes and uses the
java_ versionoption in preference to the version is be used by the applet.
If the applet requires a parameter with one of these four names, then it
might not run in the AppletViewer.

embed

The enbed tag is the Netscape extension to HTML 3.2 that allows embedding an applet
or a multimedia object in an HTML page. It allows a Netscape 4.n browser (which
supports HTML 3.2) to run a Java applet using the Java plug-in.

<enbed
code="your d ass. cl ass"

ORACLE 2-108

ORACLE

>

</ enbed>

applet

Chapter 2
appletviewer

obj ect ="seri al i zedbj ect Or JavaBean"
codebase="cl assFi |l eDirectory"

wi dt h="pi xel W dt h"

hei ght =" pi xel Hei ght"

Note:

The obj ect and enbed tags can be combined so that an applet can use the
latest Java plug-in, regardless of the browser that downloads the applet.

Unlike the obj ect tag, all values specified in an enbed tag are attributes
(part of the tag) rather than parameters (between the start tag and end
tag), specified with a par amtag.

To supply argument values for applet parameters, you add additional
attributes to the enbed tag.

The AppletViewer ignores the src attribute that's usually part of an enbed
tag.

Either code or object is specified, not both.

The optional codebase attribute supplies a relative URL that specifies the
location of the applet class.

The type attribute isn’t used by the AppletViewer, but should be present so
that browsers load the plug-in properly.

For an applet, the value should be similar to:

<type="appl i cation/ x-java-appl et;version=1.1">. ..

or
<type="application/x-java-applet">...

For a serialized object or JavaBean, the type parameter value should be
similar to:

<type="application/ x-java-bean; version=1.1">. ..

or
<type="application/x-java-bean">. ..

The pl ugi nspage attribute isn’t used by the AppletViewer, but should be
present so that browsers load the plug-in properly. It should point to a
Java plug-in in a network cab file with a value like:

pl ugi nspage="http://java. sun. conf products/plugin/1.1/jinstall-11-
w n32. cab#Versi on=1, 1, 0, 0"

The appl et tag is the original HTML 3.2 tag for embedding an applet in an HTML page.
Applets loaded using the applet tag are run by the browser, which may not be using
the latest version of the Java platform. To ensure that the applet runs with the latest

2-109

jar

ORACLE

Chapter 2
jar

version, use the obj ect tag to load the Java plug-in into the browser. The plug-in then
runs the applet.

<appl et
code="your d ass. cl ass"
obj ect ="seri al i zedbj ect Or JavaBean"
codebase="cl assFi |l eDirectory"
wi dt h="pi xel Wdt h"
hei ght =" pi xel Hei ght "
>
<param nanme="..
...alternate-text
</ appl et >

value="...">

Note:

» Either code or obj ect is specified, not both.

» The optional codebase attribute supplies a relative URL that specifies the
location of the applet class.

* The paramtags supply argument values for applet parameters.

app

The app tag was a short-lived abbreviation for applet that's no longer supported. The
AppletViewer translates the tag and prints an equivalent tag that’'s supported.

<app
class="cl assFi | eName" (without a .class suffix)
src="cl assFileDirectory"
wi dt h="pi xel Wdt h"
hei ght =" pi xel Hei ght "
>
<param name="..." value="...">

</ app>

You can use the jar command to create an archive for classes and resources, and to
manipulate or restore individual classes or resources from an archive.
Synopsis

jar [OPTION...] [[--release VERSION] [-Cdir] files] ...

Description

The jar command is a general-purpose archiving and compression tool, based on the
ZIP and ZLIB compression formats. Initially, the j ar command was designed to
package Java applets or applications; however, beginning with JDK 9, users can use
the jar command to create modular JARs. For transportation and deployment, it's
usually more convenient to package modules as modular JARs.

2-110

ORACLE

Chapter 2
jar

The syntax for the j ar command resembles the syntax for the t ar command. It has
several main operation modes, defined by one of the mandatory operation arguments.
Other arguments are either options that modify the behavior of the operation or are
required to perform the operation.

Note:

Although available and supported in JDK 9, the Applet API is marked as
deprecated in preparation for removal in a future release. Instead of applets,
consider alternatives such as Java Web Start or self-contained applications.

When modules or the components of an applet or application (files, images and
sounds) are combined into a single archive, they can be downloaded by a Java agent
(such as a browser) in a single HTTP transaction, rather than requiring a new
connection for each piece. This dramatically improves download times. The j ar
command also compresses files, which further improves download time. The j ar
command also enables individual entries in a file to be signed so that their origin can
be authenticated. A JAR file can be used as a class path entry, whether or not it's
compressed.

An archive becomes a modular JAR when you include a module descriptor, nodul e-

i nfo. cl ass, in the root of the given directories or in the root of the . j ar archive. The
following operations described in Operation Modifiers Valid Only in Create and Update
Modes are valid only when creating or updating a modular jar or updating an existing
non-modular jar:

e --nodul e-version

e --hash-nodul es

* --nodul e-path
Note:

All mandatory or optional arguments for long options are also mandatory or
optional for any corresponding short options.

Main Operation Modes

When using the j ar command, you must specify the operation for it to perform. You
specify the operation mode for the j ar command by including the appropriate
operation arguments described in this section. You can mix an operation argument
with other one-letter options. Generally the operation argument is the first argument
specified on the command line.

—C Or --create
Creates the archive.

—i=FILE or --generate-index=FILE
Generates index information for the specified JAR file.

2-111

ORACLE

Chapter 2
jar

—tor --list
Lists the table of contents for the archive.

—u Oor --update
Updates an existing JAR file.

—X OFr --extract
Extracts the named (or all) files from the archive.

-d or --print-module-descriptor
Prints the module descriptor.

Operation Modifiers Valid in Any Mode

You can use the following options to customize the actions of any operation mode
included in the j ar command.

-C DIR
Changes the specified directory and includes the files specified at the end of the
command line.

jar [OPTION...] [[--release VERSION] [-C dir] files]

-f=FILE or --file=FILE
Specifies the archive file name.

--release VERSION

Creates a multirelease JAR file. Places all files specified after the option into a
versioned directory of the JAR file named META- | NF/ ver si ons/ VERSI OV , where
VERSION must be must be a positive integer whose value is 9 or greater.

At run time, where more than one version of a class exists in the JAR, the JDK will
use the first one it finds, searching initially in the directory tree whose VERSION
number matches the JDK's major version number. It will then look in directories with
successively lower VERSION numbers, and finally look in the root of the JAR.

-V Oor --verbose
Sends or prints verbose output to standard output.

Operation Modifiers Valid Only in Create and Update Modes

You can use the following options to customize the actions of the create and the
update main operation modes:

—e=CLASSNAME or --main-class=CLASSNAME
Specifies the application entry point for standalone applications bundled into a
modular or executable modular JAR file.

-m=FILE or --manifest=FILE
Includes the manifest information from the given manifest file.

-M or --no-manifest
Doesn't create a manifest file for the entries.

--module-version=VERSION
Specifies the module version, when creating or updating a modular JAR file, or
updating a non-modular JAR file.

2-112

ORACLE

Chapter 2
jar

--hash-modules=PATTERN

Computes and records the hashes of modules matched by the given pattern and that
depend upon directly or indirectly on a modular JAR file being created or a non-
modular JAR file being updated.

-p or --module-path
Specifies the location of module dependence for generating the hash.

@files
Reads j ar options and file names from a text file.

Operation Modifiers Valid Only in Create, Update, and Generate-index Modes

You can use the following options to customize the actions of the create (- or - -
creat e) the update (—u or - - updat e) and the generate-index (— or - - gener at e-
i ndex=FI LE) main operation modes:

-0 or --no-compress
Stores without using ZIP compression.

Other Options

The following options are recognized by the jar command and not used with operation
modes:

-h or --help[:compat]
Displays the command-line help for the j ar command or optionally the compatibility
help.

--help-extra
Displays help on extra options.

--version
Prints the program version.

Examples of jar Command Syntax

Creates an archive, classes. jar, that contains two class files,Foo.class and
Bar.class.

jar --create --file classes.jar Foo.class Bar.class

Creates an archive, classes. jar, by using an existing manifest,mymanifest, that
contains all of the files in the directory foo/.

jar --create --file classes.jar --manifest nmymanifest -C fool

Creates a modular JAR archive,foo.jar , where the module descriptor is located
in classes/module-info.class.

jar --create --file foo.jar --min-class comfoo. Min --nmodul e-version 1.0 -C foo/
cl asses resources

Updates an existing non-modular JAR, foo.jar, to a modular JAR file.

jar --update --file foo.jar --min-class comfoo. Main --nodul e-version 1.0 -C foo/
modul e- i nfo. cl ass

2-113

ORACLE

Chapter 2
jar

Creates a versioned or multi-release JAR, foo.jar, that places the files in the
classes directory at the root of the JAR, and the files in the classes-9 directory in
the META-INF/versions/9 directory of the JAR.

In this example, the cl asses/ con f oo directory contains two classes, com f oo. Hel | o (the
entry point class) and com f oo. NamePr ovi der , both compiled for JDK 8. The

cl asses- 9/ conl f oo directory contains a different version of the com f 0o. NanePr ovi der
class, this one containing JDK 9 specific code and compiled for JDK 9.

Given this setup, create a multirelease JAR file f oo. j ar by running the following
command from the directory containing the directories cl asses and cl asses-9 .

jar --create --file foo.jar --main-class comfoo.Hello -C classes . --release 9 -C
cl asses-9 .

The JAR file f 0o. j ar now contains:

%jar -tf foo.jar

VETA- | NF/

VETA- | NF/ MANI FEST. MF

com

cont f oo/

conl foo/ Hel | 0. cl ass

cont f oo/ NanePr ovi der. cl ass

META- | NF/ ver si ons/ 9/ coml

META- | NF/ ver si ons/ 9/ com f oo/

META- | NF/ ver si ons/ 9/ coml f oo/ NanePr ovi der. cl ass

As well as other information, the file META- | NF/ MANI FEST. MF, will contain the following
lines to indicate that this is a multirelease JAR file with an entry point of com f 0o. Hel | 0.

Mai n-C ass: com foo. Hello
Mil ti - Rel ease: true

Assuming that the com f 0o. Hel | o class calls a method on the com f 0o. NamePr ovi der
class, running the program using JDK 9 will ensure that the com f 0o. NamePr ovi der
class is the one in META- | NF/ ver si ons/ 9/ cont f oo/ . Running the program using JDK 8
will ensure that the com f 0oo. NamePr ovi der class is the one at the root of the JAR, in
cont f 0o.

Creates an archive, my_jar, by reading options and lists of class files from the
file classes. list.

Note:

To shorten or simplify the j ar command, you can specify arguments in a
separate text file and pass it to the j ar command with the at sign (@ as a
prefix.

jar --create --file ny.jar @l asses.|ist

2-114

jlink

ORACLE

Chapter 2
jlink

You can use the j | i nk tool to assemble and optimize a set of modules and their
dependencies into a custom runtime image.

Synopsis
jlink [options] --nmodul e-path nmodul epath --add-modul es nodul e [, modul e. . .]

options
Command-line options separated by spaces. See jlink Options.

modulepath
The path where the j | i nk tool discovers observable modules. These modules can be
modular JAR files, IMOD files, or exploded modules.

module
The names of the modules to add to the runtime image. The j | i nk tool adds these
modules and their transitive dependencies.

Description

The j1ink tool links a set of modules, along with their transitive dependences, to create
a custom runtime image.

Note:
Developers are responsible for updating their custom runtime images.

Unlike custom runtime images, web-deployed Java applications automatically
download application updates from the web as soon as they’re available. The
Java Auto Update mechanism takes care of updating the JRE to the latest
secure version several times every year. Custom runtime images don’'t have
built-in support for automatic updates.

jlink Options

--add-modules mod [,mod...]
Adds the named modules, nod, to the default set of root modules. The default set of
root modules is empty.

--bind-services
Link service provider modules and their dependencies.

-c¢ ={0]1]2} or --compress={0]1]2}
Enable compression of resources:
e 0: No compression

e 1: Constant string sharing

o 2:ZIP

2-115

ORACLE

Chapter 2
jlink

--disable-plugin pluginname
Disables the specified plug-in. See jlink Plug-ins for the list of supported plug-ins.

--endian {little|big}
Specifies the byte order of the generated image. The default value is the format of
your system's architecture.

-h or --help
Prints the help message.

--ignore-signing-information

Suppresses a fatal error when signed modular JARs are linked in the runtime image.
The signature-related files of the signed modular JARs aren’t copied to the runtime
image.

--launcher command=module or --launcher command=module/main

Specifies the launcher command name for the module or the command name for the
module and main class (the module and the main class names are separated by a
slash (/)).

--limit-modules mod [,mod...]

Limits the universe of observable modules to those in the transitive closure of the
named modules, mod, plus the main module, if any, plus any further modules specified
in the - - add- modul es option.

--list-plugins
Lists available plug-ins, which you can access through command-line options; see
jlink Plug-ins.

-p or --module-path modulepath
Specifies the module path.

--no-header-files
Excludes header files.

--no-man-pages
Excludes man pages.

--output path
Specifies the location of the generated runtime image.

--save-opts filename
Saves j | ink options in the specified file.

--suggest-providers [name, ...]
Suggest providers that implement the given service types from the module path.

--version
Prints version information.

@filename

Reads options from the specified file.

An options file is a text file that contains the options and values that you would
typically enter in a command prompt. Options may appear on one line or on several
lines. You may not specify environment variables for path names. You may comment
out lines by prefixing a hash symbol (#) to the beginning of the line.

2-116

ORACLE

Chapter 2
jlink

The following is an example of an options file for the j I i nk command:

#Wed Dec 07 00:40:19 EST 2016

--modul e-path C:/Javal/jdk9/jnmods;mib
--add- modul es com greetings

--output greetingsapp

jlink Plug-ins

Note:

Plug-ins not listed in this section aren’t supported and are subject to change.

For plug-in options that require a pattern-1ist, the value is a comma-separated list of
elements, with each element using one the following forms:

e glob-pattern

e glob:glob-pattern

° regex:regex-pattern
e @ilenane

— filename is the name of a file that contains patterns to be used, one pattern per
line.

For a complete list of all available plug-ins, run the command jlink --1ist-pl ugins.

Table 2-3 List of Available jlink plugins

L __|
Plugin Name Option Description

cl ass-for-nane --class-for-nane Class optimization, converts
C ass. f or Narre calls to
constant loads.

conpr ess --conpress={0| 1| 2} Compresses all resources in

[:filter=pattern-list] the output image.
* Level 0: No compression
* Level 1: Constant string

sharing

* Level 2: ZIP
An optional pattern-1i st filter
can be specified to list the
pattern of files to include.

dedup- | egal - noti ces --dedup- 1 egal - De-duplicates all legal notices.
notices=[error-if-not- Iferror-if-not-sane-
sane- cont ent] cont ent is specified then it will

be an error if two files of the
same filename are different.

excl ude-files --exclude-fil es=pattern- Specifies files to exclude. such
I'ist as:

--excl ude-
files=**.java,glob:/
java. base/lib/client/**

2-117

Table 2-3 (Cont.) List of Available jlink plugins
|

Plugin Name

Option

Chapter 2
jlink

Description

excl ude-j nod- section

excl ude-resources

generate-jli-classes

i ncl ude-1 ocal es

order-resources

ORACLE

- - excl ude- j nod-
section=section-name

--excl ude-
resources=pattern-|ist

--generate-jli-
cl asses=@i | enane[: i gnore-
versi on=<true| fal se>]

--incl ude-
| ocal es=l angt ag[, | angt ag] *

--order-resources=pattern-
l'ist

Specifies a JIMOD section to
exclude where secti on- nane
is man or headers.

Specify resources to exclude.
such as:

--excl ude-
resources=**.jcov, gl ob: **/
MVETA- | NF/ **

Specify a file listing the

java.l ang. i nvoke classes to
pre-generate. By default, this
plugin may use a built-in list of
classes to pre-generate. If this
plugin runs on a different
runtime version than the
image being created, then
code generation will be
disabled by default to
guarantee correctness. Add

i gnor e-version=true to
override this behavior.

Includes the list of locales
where | angt ag is a BCP 47
language tag. This option
supports locale matching as
defined in RFC 4647. Ensure
that you add the module

j dk. | ocal edat a when
using this option.

Example:

- - add- nodul es
jdk.local edata --include-
| ocal es=en,ja,*-IN

Orders the specified paths in
priority order. If @i | enane is
specified, then each line in
pattern-list mustbe an
exact match for the paths to
be ordered.

Example:
--order-resources=**/
modul e-

info.class, @l asslist,/
j ava. base/javall ang/ **

2-118

ORACLE

Chapter 2
jlink

Table 2-3 (Cont.) List of Available jlink plugins
|

Plugin Name Option Description
rel ease-info --rel ease-info={file| Loads, adds, or deletes
add: keyl=val uel: key2=val ue release properties where:
2:...|del :key-list} « file:Loads release
properties from the
specified file.

e add: Adds specified
properties to the release
file. You can specify any
number of key=val ue
pairs.

* del : Deletes the list of
keys in the release file

key-1ist.
strip-debug --strip-debug Strips debug information from
the output image
strip-native-conmmands --strip-native-comands Excludes native commands
(such as javaljava. exe) from
the image
syst em nodul es --system Fast loads module descriptors
nmodul es=r et ai nMbdul eTar get (always enabled)
vm --vne{client]|server| Selects the HotSpot VM in the
mnimal |all} output image. Defaultis al | .

jlink Examples

The following command creates a runtime image in the directory gr eet i ngsapp. This
command links the module com gr eet i ngs, whose module definition is contained in
the directory m i b. The directory $JAVA_HOME/ j nods contains j ava. base. j nod
and the other standard and JDK modules.

jlink --nodul e-path $JAVA HOW j nods: nlib --add- nodul es com greetings --out put
greetingsapp

The following command lists the modules in the runtime image gr eet i ngsapp:

greetingsapp/bin/java --1ist-nodul es
com.greetings

java.base@®9

java.logging@9

org.astro@1.0

The following command creates a runtime image in the directory conpr essedrt
that's stripped of debug symbols, uses compression to reduce space, and includes
French language locale information:

jlink --modul e-path $JAVA HOWE | nods - - add- nodul es jdk. | ocal edata --strip-debug --
conpress=2 --include-local es=fr --output conpressedrt

The following example compares the size of the runtime image conpressedrt with
fr_rt, which isn’t stripped of debug symbols and doesn’t use compression:

jlink --nodul e-path $JAVA HOVE/ j nods --add- nodul es j dk.|ocal edata --incl ude-
| ocal es=fr --output fr_rt

2-119

ORACLE

Chapter 2
jlink

du -sh ./conpressedrt ./fr_rt
23M ./compressedrt
36M Jfrort

The following example lists the providers that implement
java.security. Provider:

jlink --nodul e-path $JAVA-HOVE/ j nods --suggest - provi ders java. security. Provider

Suggested providers:
jJava.naming provides java.security.Provider used by java.base
jJava.security._jgss provides java.security.Provider used by java.base
Java.security._sasl provides java.security.Provider used by java.base
Java.smartcardio provides java.security._Provider used by java.base
jJava.xml.crypto provides java.security.Provider used by java.base
jdk.crypto.cryptoki provides java.security.Provider used by java.base
jdk.crypto.ec provides java.security.Provider used by java.base
jdk.crypto.mscapi provides java.security.Provider used by java.base
jdk.deploy provides java.security.Provider used by java.base
jdk.security.jgss provides java.security.Provider used by java.base

The following example creates a custom runtime image named nybui | d that includes
only j ava. nam ng and j dk. crypt o. cr ypt oki and their dependencies but no
other providers. Note that these dependencies must exist in the module path:

jlink --nodul e-path $JAVA HOW j nods
out put nybuil d

--add- nodul es java. naning, j dk. crypto.cryptoki --

The following command is similar to the one that creates a runtime image named
greeti ngsapp, except that it will link the modules resolved from root modules with
service binding; see the Confi gur ati on. resol veAndBi nd method.

jlink --nodul e-path $JAVA HOWE jnods: nlib --add- nodul es com greetings
greetingsapp --bind-services

- - out put

The following command lists the modules in the runtime image gr eet i ngsapp
created by this command:

greetingsapp/bin/java --1ist-modul es
com.greetings
java.base@®9
java.compiler@®
java.datatransfer@®9
java.desktop@9
java.logging@9
java.management@9
java.management.rmi@9
java.naming@9
Java.prefs@9
Java.mi@9
jJava.scripting@9
jJava.security.jgss@9
jJava.security._sasl@9
Java.smartcardio@9
Java.xml@9

Java.xml .crypto@9
jdk.accessibility@9
jdk.charsets@9
jdk.compiler@9
jdk.crypto.cryptoki@9
jdk.crypto.ec@®

2-120

https://docs.oracle.com/javase/9/docs/api/java/lang/module/Configuration.html#resolveAndBind-java.lang.module.ModuleFinder-java.util.List-java.lang.module.ModuleFinder-java.util.Collection-

jmod

ORACLE

Chapter 2
jmod

jdk.crypto.mscapi@9
jdk.deploy@®9
Jjdk.dynalink@9
jdk.internal .opt@9
jdk. jartool@9

jdk. javadoc@9
jdk.jdeps@9
Jjdk.jlink@9
jdk.localedata@9
Jjdk.management@®9
Jjdk.naming.dns@9
Jdk.naming.rmi@9
jdk.scripting.nashorn@9
jdk.security.auth@9
jdk.security.jgss@9
Jjdk.unsupported@9
Jdk.zipfs@9
org.astro@1.0

You use the j nod tool to create IMOD files and list the content of existing JMOD files.
Synopsis

jmod (create|extract|list|describe|hash) [options] jmod-file

Includes the following:

Main operation modes

Create
Creates a new JMOD archive file.

extract
Extracts all the files from the JIMOD archive file.

list
Prints the names of all the entries.

describe
Prints the module details.

hash
Determines leaf modules and records the hashes of the dependencies that directly
and indirectly require them.

Options

options
See Options for jmod.

Required

jmod-file
Specifies the name of the JIMOD file to create or from which to retrieve information.

2-121

ORACLE

Chapter 2
jmod

Description

Note:

For most development tasks, including deploying modules on the module path
or publishing them to a Maven repository, continue to package modules in
modular JAR files. The j mod tool is intended for modules that have native
libraries or other configuration files or for modules that you intend to link, with
the j i nk tool, to a runtime image.

The JMOD file format let's you aggregate files other than . cl ass files, metadata, and
resources. This format is transportable but not executable, which means that you can
use it during compile time or link time but not at run time.

Many j nod options involve specifying a path whose contents are copied into the
resulting JMOD files. These options copy all the contents of the specified path,
including subdirectories and their contents, but exclude files whose names match the
pattern specified by the - - excl ude option.

With the - - hash- nodul es option or the j nod hash command, you can, in each module's
descriptor, record hashes of the content of the modules that are allowed to depend
upon it, thus "tying" together these modules. This let’s you to allow a package to be
exported to one or more specifically-named modules and to no others through
qualified exports. The runtime verifies if the recorded hash of a module matches the
one resolved at run time; if not, the runtime returns an error.

Options for jmod

--class-path path
Specifies the location of application JAR files or a directory containing classes to copy
into the resulting JIMOD file.

--cmds path
Specifies the location of native commands to copy into the resulting JMOD file.

--config path
Specifies the location of user-editable configuration files to copy into the resulting
JMOD file.

—-dir path
Specifies the location where j nod puts extracted files from the specified IMOD
archive.

--dry-run
Performs a dry run of hash mode. It identifies leaf modules and their required modules
without recording any hash values.

--exclude pattern-list
Excludes files matching the supplied comma-separated pattern list, each element
using one the following forms:

e glob-pattern

2-122

ORACLE

Chapter 2
jmod

e glob:glob-pattern
° regex:regex-pattern

See the Fi | eSyst em get Pat hMat cher method for the syntax of gl ob-pattern. See
the Pat t er n class for the syntax of regex- pat t er n, which represents a regular
expression.

--hash-modules regex-pattern

Determines the leaf modules and records the hashes of the dependencies directly
and indirectly requiring them, based on the module graph of the modules matching
the given regex- patt ern. The hashes are recorded in the JMOD archive file being
created, or a JMOD archive or modular JAR on the module path specified by the j nod
hash command.

--header-files path
Specifies the location of header files to copy into the resulting IMOD file.

--help or -h
Prints a usage message.

--help-extra
Prints help for extra options.

—legal-notices path
Specifies the location of legal notices to copy into the resulting JMOD file.

--libs path
Specifies location of native libraries to copy into the resulting JIMOD file.

--main-class class-name
Specifies main class to record in the nodul e-i nf o. cl ass file.

--man-pages path
Specifies the location of man pages to copy into the resulting JMOD file.

--module-version module-version
Specifies the module version to record in the nodul e- i nf 0. cl ass file.

--module-path path or -p path
Specifies the module path. This option is required if you also specify - - hash- modul es.

--target-platform platform
Specifies the target platform.

--version
Prints version information of the j nod tool.

@filename

Reads options from the specified file.

An options file is a text file that contains the options and values that you would
ordinarily enter in a command prompt. Options may appear on one line or on several
lines. You may not specify environment variables for path names. You may comment
out lines by prefixinga hash symbol (#) to the beginning of the line.

The following is an example of an options file for the j rod command:

2-123

https://docs.oracle.com/javase/9/docs/api/java/nio/file/FileSystem.html#getPathMatcher-java.lang.String-
https://docs.oracle.com/javase/9/docs/api/java/util/regex/Pattern.html

Chapter 2
jmod

#\W\ed Dec 07 00:40:19 EST 2016

create --class-path mods/com greetings --nodul e-path nib
--cnmds conmands --config configfiles --header-files src/h
--libs l'ib --main-class comgreetings. Main
--man- pages man --nodul e-version 1.0
--0s-arch "x86_x64" --os-nane "Mac COS X"
--0s-version "10.10.5" greetingsnod

Extra Options for jmod

In addition to the options described in Options for jmod , the following are extra options
that can be used with the command.

--do-not-resolve-by-default
Exclude from the default root set of modules

--warn-if-resolved
Hint for a tool to issue a warning if the module is resolved. One of deprecated,
deprecated-for-removal, or incubating.

jmod Create Example
The following is an example of creating a JMOD file:

jmod create --class-path nods/com greetings --cnis comands
--config configfiles --header-files src/h --libs lib
--main-cl ass com greetings. Main --man-pages man --nodul e-version 1.0
--0s-arch "x86_x64" --o0s-nane "Mac OS X"
--0s-version "10.10.5" greetingsnod

jmod Hash Example

The following example demonstrates what happens when you try to link a leaf module
(in this example, ma) with a required module (), and the hash value recorded in the
required module doesn't match that of the leaf module.

1. Create and compile the following . j ava files:
e jmodhashex/ src/ ma/ nodul e-i nfo.java

modul e ma {
requires nb;

}
e jrmodhashex/ src/ nb/ nmodul e-i nfo.java

modul e nb {
}

* jmodhashex?2/ src/ ma/ nodul e-i nfo.java

modul e ma {
requires mh;

}
* jnodhashex2/src/ mb/ nodul e-info.java

modul e nb {
}

2. Create a JMOD archive for each module. Create the directories j nrodhashex/
j mods and j nodhashex?2/ j nmods, and then run the following commands from the
j modhashex directory, then from the j nrodhashex2 directory:

ORACLE 2-124

ORACLE

Chapter 2
jmod

e jnod create --class-path mods/m jnods/ nma.j mod
° jnod create --class-path mods/ b jnods/ nb. j mod

Optionally preview the j mod hash command. Run the following command from the
j modhashex directory:

jmod hash --dry-run -nodul e-path jnods --hash-nodul es .*
The command prints the following:

Dry run:
m
hashes ma SHA- 256
07667d5032004b37b42ec2bb81b46df 380cf 29e66962a16481ace2e71e74073a

This indicates that the j nod hash command (without the - - dry-run option) will
record the hash value of the leaf module ma in the module nb.

Record hash values in the JMOD archive files contained in the j nodhashex
directory. Run the following command from the j nodhashex directory:

jmod hash --modul e-path jmods --hash-nodul es . *
The command prints the following:
Hashes are recorded in nmodul e nb

Print information about each JMOD archive contained in the
j modhashexdirectory. Run the highlighted commands from the j nodhashex
directory:

jmod describe jmods/ma.jmod

e
requires mandated java. base
requires mb

jmod describe jmods/mb.jmod

b
requires mandated java. base
hashes ma SHA- 256
07667d5032004b37h42ec2bh81b46df 380cf 29e66962a16481ace2e71e74073a

Attempt to create a runtime image that contains the module ma from the directory
j modhashex2 but the module nb from the directory j nodhashex. Run the following
command from the j nrodhashex2 directory:

* Oracle Solaris, Linux, and OS X:jlink --nodul e-path $JAVA HOVE/
j mods: j mods/ ma. j nod: . . /j nodhashex/j mods/ nb. j nod - - add- nodul es ma - - out put
ma- app

e Windows: link --nmodul e-path %AVA HOVEY j nods; j nods/ ma. j mod; . . /
j modhashex/ j mods/ nb. j nod - - add- nodul es nma - - out put nma-app

The command prints an error message similar to the following:

Error: Hash of ma

(a2d77889b0ch067df 02a3abc39b01ac1151966157a68dc4241562¢60499150d2) differs to
expect ed hash (07667d5032004b37b42ec2bb81b46df 380cf 29e66962a16481ace2e71e74073a)
recorded in nb

2-125

jdeps

ORACLE

Chapter 2
jdeps

You use the j deps command to launch the Java class dependency analyzer.

Synopsis

j deps [options] path ..

options

Command-line options. For detailed descriptions of the options that can be used, see
» Possible Options

* Module Dependence Analysis Options

» Options to Filter Dependences

* Options to Filter Classes to be Analyzed

path
A pathname to the . cl ass file, directory, or JAR file to analyze.

Description

The j deps command shows the package-level or class-level dependencies of Java
class files. The input class can be a path name to a . cl ass file, a directory, a JAR file,
or it can be a fully qualified class name to analyze all class files. The options
determine the output. By default, the j deps command writes the dependencies to the
system output. The command can generate the dependencies in DOT language (see
the - dot out put option).

Possible Options

-dotoutput dir or --dot-output dir

Specifies the destination directory for DOT file output. If this option is specified, then
the j deps command generates one . dot file for each analyzed archive named
archive-file-name. dot that lists the dependencies, and also a summary file named
summary. dot that lists the dependencies among the archive files.

-S OF -summary
Prints a dependency summary only.

-V or -verbose
Prints all class-level dependencies. This is equivalent to

-verbose: class -filter:none
-verbose:package

Prints package-level dependencies excluding, by default, dependences within the
same package.

-verbose:class
Prints class-level dependencies excluding, by default, dependencies within the same
archive.

2-126

ORACLE

Chapter 2
jdeps

-apionly or --api-only

Restricts the analysis to APIs, for example, dependences from the signature of public
and pr ot ect ed members of public classes including field type, method parameter
types, returned type, and checked exception types.

-jdkinternals or --jdk-internals

Finds class-level dependences in the JDK internal APIs. By default, this option
analyzes all classes specified in the - - cl asspat h option and input files unless you
specified the -i ncl ude option. You can't use this option with the -p, - e, and -s options.
Warning: The JDK internal APIs are inaccessible.

-cp path, -classpath path, or --classpath path
Specifies where to find class files.

--module-path module-path
Specifies the module path.

--upgrade-module-path module-path
Specifies the upgrade module path.

--system java-home
Specifies an alternate system module path.

--add-modules module-name [, module-name...]
Adds modules to the root set for analysis.

--multi-release version
Specifies the version when processing multi-release JAR files versi on should be an
integer >=9 or base.

—q or -quite
Doesn’t show missing dependencies from —gener at e- nodul e- i nf o output.

-version OF --version
Prints version information.

Module Dependence Analysis Options

—m module-name or --module module-name
Specifies the root module for analysis.

--generate-module-info dir

Generates modul e-i nf 0. j ava under the specified directory. The specified JAR files will
be analyzed. This option cannot be used with - - dot - out put or - - cl ass- pat h options.
Use the - - gener at e- open- modul e option for open modules.

--generate-open-module dir

Generates nodul e-i nf o. j ava for the specified JAR files under the specified directory
as open modules. This option cannot be used with the - - dot - out put or --cl ass- path
options.

--check module-name [, module-name...]

Analyzes the dependence of the specified modules. It prints the module descriptor,
the resulting module dependences after analysis and the graph after transition
reduction. It also identifies any unused qualified exports.

2-127

ORACLE

Chapter 2
jdeps

--list-deps
Lists the module dependences and also the package names of JDK internal APIs (if
referenced).

--list-reduced-deps

Same as -- i st - deps without listing the implied reads edges from the module graph. If
module M1 reads M2, and M2 requires transitive on M3, then M1 reading M3 is
implied and is not shown in the graph.

Options to Filter Dependences

-p pkg name, -package pkg name, Or --package pkg name

Finds dependences matching the specified package name. You can specify this
option multiple times for different packages. The - p and - e options are mutually
exclusive.

-e regex, -regex regex , Or --regex regex
Finds dependences matching the specified pattern. The - p and - e options are
mutually exclusive.

--require module-name
Finds dependences matching the given module name (may be given multiple times).
The - - package, --regex, and - - requi re options are mutually exclusive.

-T regex or -filterregex
Filters dependences matching the given pattern. If give multiple times, the last one will
be selected.

-filter:package
Filters dependences within the same package. This is the default.

-filter:archive
Filters dependences within the same archive.

-filter:module
Filters dependences within the same module.

-filter:none
No -filter:package and -filter: archive filtering. Filtering specified via the -filter
option still applies.

Options to Filter Classes to be Analyzed

-include regex

Restricts analysis to the classes matching pattern. This option filters the list of classes
to be analyzed. It can be used together with - p and - e, which apply the pattern to the
dependencies.

-P or -profile
Shows the profile containing a package.

-R or -recursive
Recursively traverses all run-time dependences. The - R option implies -fil ter: none. If
-p, -e, or -f options are specified, only the matching dependences are analyzed.

2-128

ORACLE

Chapter 2
jdeps

-1 or -inverse

Analyzes the dependences per other given options and then finds all artifacts that
directly and indirectly depend on the matching nodes. This is equivalent to the inverse
of the compile-time view analysis and the print dependency summary. This option
must be used with the - -require, - - package, or - - regex options.

--compile-time

Analyzes the compile-time view of transitive dependencies, such as the compile-time
view of the - R option. Analyzes the dependences per other specified options. If a
dependency is found from a directory, a JAR file or a module, all classes in that
containing archive are analyzed.

Example of Analyzing Dependencies

The following example demonstrates analyzing the dependencies of the Not epad. j ar
file.

Oracle Solaris, Linux, and OS X:

$ jdeps denvo/ | fc/ Not epad/ Not epad. j ar
Not epad.jar -> java. base
Not epad.jar -> java.desktop
Not epad.jar -> java.logging
<unnaned> (Notepad.jar)

-> java. am

-> java. awt . event

-> java. beans

-> java.io

-> java.lang

-> java. net

-> java. util

-> java.util.logging

-> javax. swing

-> javax. sw ng. bor der

-> javax. sw ng. event

-> javax. sw ng. text

-> javax.swing.tree

-> javax. swi ng. undo

Windows:

C:\Java\jdkl.9. 0> deps deno\j fc\ Not epad\ Not epad. j ar
Not epad.jar -> java. base
Not epad.jar -> java.desktop
Not epad. jar -> java.logging
<unnaned> (Notepad.jar)
-> java. am
-> java. awt . event
-> java. beans
->java.io
-> java.lang
-> java. net
-> java. util
-> java.util.logging
-> javax. swing
-> javax. swi ng. border
-> javax. swing. event
-> javax. swing. t ext
-> javax.swing.tree
-> javax. swi ng. undo

2-129

jdeprscan

ORACLE

Chapter 2
jdeprscan

Example Using the --inverse Option

$ jdeps --inverse --require java.xm . bind
Inverse transitive dependences on [java.xnl. bind]
java.xm .bind <- java.se.ee

java.xm . bind jdk. xm . ws

java.xm . bind java.xm .ws <- java.se.ee
java.xm . bind java.xm .ws <- jdk.xnl.ws

java. xnl . bind jdk.xnl.bind <- jdk.xnl.ws

N N NN
(A D A1

You use the j deprscan tool as a static analysis tool that scans a jar file (or some other
aggregation of class files) for uses of deprecated API elements.

Synopsis
jdeprscan [options]{dir]|jar]|class}

options
See Options for the jdeprscan Command

dir|jar|class
j depr scan command scans each argument for usages of deprecated APIs. The
arguments can be a:

e dir: Directory
e jar:JARfile
e class: Class name or class file

The class name should use a dot (.) as a separator. For example:

j ava.l ang. Thr ead

For nested classes, the dollar sign $ separator character should be used. For
example:

java.lang. Thread$Stat e

A class file can also be named. For example:

bui I d/ cl asses/javal | ang/ Thr ead$St at e. cl ass

Description

The j deprscan tool is a static analysis tool provided by the JDK that scans a JAR file or
some other aggregation of class files for uses of deprecated API elements. The
deprecated APIs identified by the j depr scan tool are only those that are defined by
Java SE. Deprecated APIs defined by third-party libraries aren’t reported.

To scan a JAR file or a set of class files, you must first ensure that all of the classes
that the scanned classes depend upon are present in the class path. Set the class
path using the - - cl ass- pat h option described in Options for the jdeprscan Command.

2-130

ORACLE

Chapter 2
jdeprscan

Typically, you would use the same class path as the one that you use when invoking
your application.

If the j deprscan can't find all the dependent classes, it will generate an error message
for each class that's missing. These error messages are typically of the form:

error: cannot find class ...

If these errors occur, then you must adjust the class path so that it includes all
dependent classes.

Options for the jdeprscan Command

The following options are available:

--class-path PATH

Provides a search path for resolution of dependent classes.

PATH can be a search path that consists of one or more directories separated by the
system-specific path separator. For example:

e Oracle Solaris, Linux, and OS X:

--class-path /some/directory:/another/different/dir

Note:

On Windows, use a semicolon (;) as the separator instead of a colon (:).

* Windows:
--class-path \some\directory;\another\different\dir
--for-removal

Limits scanning or listing to APIs that are deprecated for removal. Can’t be used with
a release value of 6, 7, or 8.

--full-version
Prints out the full version string of the tool.

--help or -h
Prints out a full help message.

--list or -1
Prints the set of deprecated APls. No scanning is done, so no directory, jar, or class
arguments should be provided.

--release 6]7]8]9
Specifies the Java SE release that provides the set of deprecated APIs for scanning.

--verbose or -v
Enables additional message output during processing.

--version
Prints out the abbreviated version string of the tool.

2-131

ORACLE

Chapter 2
jdeprscan

Example of jdeprscan Output

The JAR file for this library will be named something similar to conmons-
mat h3- 3. 6. 1. j ar. To scan this JAR file for the use of deprecated APIs, run the following
command:

j deprscan conmons-mat h3-3.6.1.jar

This command produces several lines of output. For example, one line of output might
be:

class org/ apache/ commons/ mat h3/ util/MthUils uses deprecated nethod java/lang/
Doubl e::<init>(D)V

Note:

The class name is specified using the slash-separated binary name as
described in JVMS 4.2.1. This is the form used internally in class files.

The deprecated API it uses is a method on the j ava. | ang. Doubl e class.

The name of the deprecated method is <i ni t >, which is a special name that means
that the method is actually a constructor. Another special name is <cl i ni t >, which
indicates a class static initializer.

Other methods are listed just by their method name. Following the method name is the
argument list and return type:

(DV
This indicates that it takes just one double value (a primitive) and returns void. The

argument and return types can become cryptic. For example, another line of output
might be:

class org/ apache/ commons/ mat h3/ util/Precision uses deprecated nethod java/ math/
Bi gDeci mal : : set Scal e(11)Lj ava/ mat h/ Bi gDeci nal ;

In this line of output, the deprecated method is on class j ava. mat h. Bi gDeci nal , and the
method is set Scal e() . In this case, the (11) means that it takes two i nt arguments .
The Lj ava/ mat h/ Bi gDeci mal ; after the parentheses means that it returns a reference to
j ava. mat h. Bi gDeci nal .

jdeprscan Analysis Can Be Version-Specific

You can use j deprscan relative to the previous three JDK releases. For example, if you
are running JDK 9, then you can check against JDK 8, 7, and 6.

As an example, look at this code snippet:

public class Deprecations {
SecurityManager sm = new RM SecurityManager(); /1l deprecated in 8
Bool ean b2 = new Bool ean(true); /1 deprecated in 9

}

The complete class compiles without warnings in JDK 7.

2-132

ORACLE

Chapter 2
jdeprscan

If you run j depr scan on a system with JDK 9, then you see:

$ jdeprscan --class-path classes --release 7 example.Deprecations
(no output)

Run j depr scan with a release value of 8:

$ jdeprscan --class-path classes --release 8 example.Deprecations
class exanpl e/ Deprecations uses type java/rni/RM SecurityManager deprecated
class exanpl e/ Deprecations uses nethod in type javal/rm/RM SecurityManager deprecated

Run j deprscan on JDK 9:

$ jdeprscan --class-path classes example.Deprecations

class exanpl e/ Deprecations uses type java/rn/RM SecurityManager deprecated

class exanpl e/ Deprecations uses nethod in type javal/rm/RM SecurityManager deprecated
class exanpl e/ Deprecations uses nethod javal/lang/Bool ean <init> (Z)V deprecated

2-133

Language Shell

jshell

ORACLE

You use the language shell to learn the Java language, explore new features and
APIs, and prototype new code.

The following topic describes the Java language shell:

* jshell: Interactively evaluates declarations, statements, and expressions of the
Java programming language in a read-eval-print loop (REPL).

You use the jshel | tool to interactively evaluate declarations, statements, and
expressions of the Java programming language in a read-eval-print loop (REPL).

Synopsis
jshell [options] [|oad-files]

options
Command-line options, separated by spaces. See Options for jshell.

load-files

One or more scripts to run when the tool is started. Scripts can contain any valid code
snippets or JShell commands.

The script can be a local file or one of following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, printin, and printf asjshel | methods for use within the tool.

For more than one script, use a space to separate the names. Scripts are run in the
order in which they’re entered on the command line. Command-line scripts are run
after startup scripts. To run a script after JShell is started, use the / open command.

Description

JShell provides a way to interactively evaluate declarations, statements, and
expressions of the Java programming language, making it easier to learn the
language, explore unfamiliar code and APls, and prototype complex code. Java
statements, variable definitions, method definitions, class definitions, import
statements, and expressions are accepted. The bits of code entered are called
snippets.

As snippets are entered, they're evaluated, and feedback is provided. Feedback varies
from the results and explanations of actions to nothing, depending on the snippet

3-1

ORACLE

Chapter 3
jshell

entered and the feedback mode chosen. Errors are described regardless of the
feedback mode. Start with the verbose mode to get the most feedback while learning
the tool.

Command-line options are available for configuring the initial environment when JShell
is started. Within JShell, commands are available for modifying the environment as
needed.

Existing snippets can be loaded from a file to initialize a JShell session, or at any time
within a session. Snippets can be modified within the session to try out different
variations and make corrections. To keep snippets for later use, save them to a file.

Options for jshell

--add-modules module[,module...]

Specifies the root modules to resolve in addition to the initial module. For Linux and
macOS, use a colon (:) to separate items in the list. For Windows, use a semicolon (;)
to separate items.

-Cflag
Provides a flag to pass to the compiler. To pass more than one flag, provide an
instance of this option for each flag or flag argument needed.

--class-path path

Specifies the directories and archives that are searched to locate class files. This
option overrides the path in the CLASSPATH environment variable. If the environment
variable isn’t set and this option isn’t used, then the current directory is searched. For
Linux and macOS, use a colon (:) to separate items in the list. For Windows, use a
semicolon (;) to separate items.

--feedback mode

Sets the initial level of feedback provided in response to what's entered. The initial
level can be overridden within a session by using the / set feedback mde command.
The default is nor nal .

The following values are valid for mode:

verbose

Provides detailed feedback for entries. Additional information about the action
performed is displayed after the result of the action. The next prompt is separated
from the feedback by a blank line.

normal
Provides an average amount of feedback. The next prompt is separated from the
feedback by a blank line.

concise
Provides minimal feedback. The next prompt immediately follows the code
shippet or feedback.

silent
Provides no feedback. The next prompt immediately follows the code snippet.

custom
Provides custom feedback based on how the mode is defined. Custom feedback
modes are created within JShell by using the / set mbde command.

3-2

ORACLE

Chapter 3
jshell

--help
Prints a summary of standard options and exits the tool.

--help-extra or -X
Prints a summary of nonstandard options and exits the tool. Nonstandard options are
subject to change without notice.

-Jflag
Provides a flag to pass to the runtime system. To pass more than one flag, provide an
instance of this option for each flag or flag argument needed.

--module-path modulepath
Specifies where to find application modules. For Linux and macQOS, use a colon (:) to
separate items in the list. For Windows, use a semicolon (;) to separate items.

--no-startup

Prevents startup scripts from running when JShell starts. Use this option to run only
the scripts entered on the command line when JShell is started, or to start JShell
without any preloaded information if no scripts are entered. This option can’t be used
if the - - startup option is used.

-q
Sets the feedback mode to conci se, which is the same as entering - - f eedback conci se.

-Rflag
Provides a flag to pass to the remote runtime system. To pass more than one flag,
provide an instance of this option for each flag or flag argument to pass.

-S
Sets the feedback mode to si | ent, which is the same as entering - - f eedback silent.

--show-version
Prints version information and enters the tool.

--startup file

Overrides the default startup script for this session. The script can contain any valid
code snippets or commands.

The script can be a local file or one of the following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, printin, and printf asjshell methods for use within the tool.

For more than one script, provide a separate instance of this option for each script.
Startup scripts are run when JShell is first started and when the session is restarted
with the /reset, / rel oad, or / env command. Startup scripts are run in the order in
which they’re entered on the command line.

This option can't be used if the - - no- st art up option is used.

-V
Sets the feedback mode to ver bose, which is the same as entering - - f eedback ver bose.

3-3

ORACLE

Chapter 3
jshell

--version
Prints version information and exits the tool.

jshell Commands

Within the j shel | tool, commands are used to modify the environment and manage
code snippets.

/drop [name[name...]lid[id...1]

Drops a snippet, making it inactive. Provide either the name or the ID of an import,
class, method, or variable. For more than one snippet, separate the names and IDs
with a space. Use the /i st command to see the IDs of code snippets.

/edit [option]

Opens an editor. If no option is entered, then the editor opens with the active
shippets.

The following options are valid:

name[name...]]id[id...]
Opens the editor with the snippets identified by name or i d. For more than one
snippet, separate the names and IDs with a space.

-all
Opens the editor with all snippets, including startup snippets and snippets that
failed, were overwritten, or were dropped.

-start
Opens the editor with startup snippets that were evaluated when JShell was
started.

To exit edit mode, close the editor window, or respond to the prompt provided if the -

wai t option was used when the editor was set.

Use the /set editor command to specify the editor to use. If no editor is set, then the
following environment variables are checked in order: JSHELLEDI TOR, VI SUAL, and

EDI TOR. If no editor is set in JShell and none of the editor environment variables is set,
then a simple default editor is used.

/env [options]

Displays the environment settings, or updates the environment settings and restarts
the session. If no option is entered, then the current environment settings are
displayed. If one or more options are entered, then the session is restarted as follows:

* Updates the environment settings with the provided options.
* Resets the execution state.
* Runs the startup scripts.

» Silently replays the history in the order entered. The history includes all valid
shippets or / drop commands entered at the j shel | prompt, in scripts entered on
the command line, or scripts entered with the / open command.

Environment settings entered on the command line or provided with a previous /
reset, /env, or / rel oad command are maintained unless an opti on is entered that
overwrites the setting.

The following options are valid:

3-4

Chapter 3
jshell

--add-modules module[,module...]

Specifies the root modules to resolve in addition to the initial module. For Linux
and macOS, use a colon (:) to separate items in the list. For Windows, use a
semicolon (;) to separate items.

--add-exports source-module/package=target-module[,target-module]*
Adds an export of package from sour ce- nodul e to t ar get - nodul e.

--class-path path

Specifies the directories and archives that are searched to locate class files. This
option overrides the path in the CLASSPATH environment variable. If the
environment variable isn’'t set and this option isn’t used, then the current directory
is searched. For Linux and macQOS, use a colon (:) to separate items in the list.
For Windows, use a semicolon (;) to separate items.

--module-path modulepath

Specifies where to find application modules. For Linux and macQOS, use a colon
(:) to separate items in the list. For Windows, use a semicolon (;) to separate
items.

/exit
Exits the tool.

/history
Displays what was entered in this session.

/help [command|subject]

Displays information about commands and subjects. If no options are entered, then a
summary of information for all commands and a list of available subjects are
displayed. If a valid command is provided, then expanded information for that
command is displayed. If a valid subject is entered, then information about that
subject is displayed.

The following values for subj ect are valid:

context
Describes the options that are available for configuring the environment.

intro
Provides an introduction to the tool.

shortcuts
Describes keystrokes for completing commands and snippets.

/imports
Displays the current active imports, including those from the startup scripts and scripts
that were entered on the command line when JShell was started.

/list [option]

Displays a list of snippets and their ID. If no option is entered, then all active snippets
are displayed, but startup snippets aren't.

The following options are valid:

name[name...]]id[id...]
Displays the snippets identified by nane or i d. For more than one snippet,
separate the names and IDs with a space.

ORACLE 3-5

ORACLE

Chapter 3
jshell

-all

Displays all snippets, including startup snippets and snippets that failed, were
overwritten, or were dropped. IDs that begin with s are startup snippets. IDs that
begin with e are snippets that failed.

-start
Displays startup snippets that were evaluated when JShell was started.

/methods [option]

Displays information about the methods that were entered. If no option is entered,
then the name, parameter types, and return type of all active methods are displayed.
The following options are valid:

name[name...]]id[id...]

Displays information for methods identified by nane or i d. For more than one
method, separate the names and IDs with a space. Use the /1ist command to
see the IDs of code snippets.

-all
Displays information for all methods, including those added when JShell was
started, and methods that failed, were overwritten, or were dropped.

-start
Displays information for startup methods that were added when JShell was
started.

/open file
Opens the script specified and reads the snippets into the tool. The script can be a
local file or one of the following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, printIn, and printf asjshel | methods for use within the tool.

/reload [options]
Restarts the session as follows:

Updates the environment settings with the provided options, if any.
Resets the execution state.
Runs the startup scripts.

Replays the history in the order entered. The history includes all valid snippets
or / drop commands entered at the j shel | prompt, in scripts entered on the
command line, or scripts entered with the / open command.

Environment settings entered on the command line or provided with a previous /
reset, /env, or / rel oad command are maintained unless an opti on is entered that
overwrites the setting.

The following options are valid:

3-6

ORACLE

Chapter 3
jshell

--add-modules module[,module...]

Specifies the root modules to resolve in addition to the initial module. For Linux
and macOS, use a colon (:) to separate items in the list. For Windows, use a
semicolon (;) to separate items.

--add-exports module/package=target-module[,target-module]*
Adds an export of package from sour ce- nodul e to t ar get - nodul e.

--class-path path

Specifies the directories and archives that are searched to locate class files. This
option overrides the path in the CLASSPATH environment variable. If the
environment variable isn’'t set and this option isn’t used, then the current directory
is searched. For Linux and macQOS, use a colon (:) to separate items in the list.
For Windows, use a semicolon (;) to separate items.

--module-path modulepath

Specifies where to find application modules. For Linux and macQOS, use a colon
(:) to separate items in the list. For Windows, use a semicolon (;) to separate
items.

-quiet
Replays the valid history without displaying it. Errors are displayed.

-restore

Resets the environment to the state at the start of the previous run of the tool or to
the last time a /reset , /rel oad, or / env command was executed in the previous
run. The valid history since that point is replayed. Use this option to restore a
previous JShell session.

/reset [options]
Discards all entered snippets and restarts the session as follows:

e Updates the environment settings with the provided options, if any.
* Resets the execution state.
* Runs the startup scripts.

History is not replayed. All code that was entered is lost.

Environment settings entered on the command line or provided with a previous /
reset, /env, or /rel oad command are maintained unless an opti on is entered that
overwrites the setting.

The following options are valid:

--add-modules module[,module...]

Specifies the root modules to resolve in addition to the initial module. For Linux
and macOS, use a colon (:) to separate items in the list. For Windows, use a
semicolon (;) to separate items.

--add-exports module/package=target-module[,target-module]*
Adds an export of package from sour ce- modul e to t ar get - nodul e.

--class-path path

Specifies the directories and archives that are searched to locate class files. This
option overrides the path in the CLASSPATH environment variable. If the
environment variable isn’'t set and this option isn’t used, then the current directory
is searched. For Linux and macOS, use a colon (:) to separate items in the list.
For Windows, use a semicolon (;) to separate items.

3-7

ORACLE

Chapter 3
jshell

--module-path modulepath

Specifies where to find application modules. For Linux and macQOS, use a colon
(:) to separate items in the list. For Windows, use a semicolon (;) to separate
items.

/save [options] file

Saves snippets and commands to the file specified. If no options are entered, then
active snippets are saved.

The following options are valid:

-all
Saves all snippets, including startup snippets and snippets that were overwritten
or failed.

-history
Saves the sequential history of all commands and snippets entered in the current
session.

-start
Saves the current startup settings. If no startup scripts were provided, then an
empty file is saved.

/set [setting]

Sets configuration information, including the external editor, startup settings, and
feedback mode. This command is also used to create a custom feedback mode with
customized prompt, format, and truncation values. If no setting is entered, then the
current setting for the editor, startup settings, and feedback mode are displayed.
The following values are valid for setting:

editor [options] [command]

Sets the command used to start an external editor when the / edit command is
entered. The command can include command arguments separated by spaces. If
no command or options are entered, then the current setting is displayed.

The following options are valid:

-default
Sets the editor to the default editor provided with JShell. Cannot be used if a
command for starting an editor is entered.

-delete

Sets the editor to the one in effect when the session started. If used with the -
retai n option, then the retained editor setting is deleted and the editor is set
to the first of the following environment variables found: JSHELLEDI TOR, VI SUAL,
or EDI TQR. If none of the editor environment variables are set, then this option
sets the editor to the default editor.

This option can't be used if a command for starting an editor is entered.

-retain
Saves the editor setting across sessions. If no other option or a command is
entered, then the current setting is saved.

-wait

Prompts the user to indicate when editing is complete. Otherwise control
returns to JShell when the editor exits. Use this option if the editor being used

3-8

ORACLE

Chapter 3
jshell

exits immediately, for example, when an edit window already exists. This
option is valid only when a command for starting an editor is entered.

feedback [mode]

Sets the feedback mode used to respond to input. If no mode is entered, then the
current mode is displayed.

The following modes are valid: conci se, normal , si | ent, ver bose, and any custom
mode created with the / set node command.

format mode field "format-string" selector

Sets the format of the feedback provided in response to input. If no mode is
entered, then the current formats for all fields for all feedback modes are
displayed. If only a mode is entered, then the current formats for that mode are
displayed. If only a mode and field are entered, then the current formats for that
field are displayed.

To define a format, the following arguments are required:

mode
Specifies a feedback mode to which the response format is applied. Only
custom modes created with the / set node command can be modified.

field

Specifies a context-specific field to which the response format is applied. The
fields are described in the online help, which is accessed from JShell using
the /help /set format command.

"format-string"”

Specifies the string to use as the response format for the specified field and
selector. The structure of the format string is described in the online help,
which is accessed from JShell using the / hel p /set format command.

selector

Specifies the context in which the response format is applied. The selectors
are described in the online help, which is accessed from JShell using the /
hel p /set format command.

mode [mode-name] [existing-mode] [options]

Creates a custom feedback mode with the mode name provided. If no mode
name is entered, then the settings for all modes are displayed, which includes the
mode, prompt, format, and truncation settings. If the name of an existing mode is
provided, then the settings from the existing mode are copied to the mode being
created.

The following options are valid:

-command|-quiet

Specifies the level of feedback displayed for commands when using the
mode. This option is required when creating a feedback mode. Use - command
to show information and verification feedback for commands. Use - qui et to
show only essential feedback for commands, such as error messages.

-delete

Deletes the named feedback mode for this session. The name of the mode to
delete is required. To permanently delete a retained mode, use the -retain
option with this option. Predefined modes can't be deleted.

3-9

ORACLE

Chapter 3
jshell

-retain
Saves the named feedback mode across sessions. The name of the mode to
retain is required.

Configure the new feedback mode using the /set pronpt,/set format, and /set
truncati on commands.
To start using the new mode, use the /set feedback command.

prompt mode "prompt-string"” "continuation-prompt-string"

Sets the prompts for input within JShell. If no mode is entered, then the current
prompts for all feedback modes are displayed. If only a mode is entered, then the
current prompts for that mode are displayed.

To define a prompt, the following arguments are required:

mode
Specifies the feedback mode to which the prompts are applied. Only custom
modes created with the / set mode command can be modified.

"prompt-string"”
Specifies the string to use as the prompt for the first line of input.

"continuation-prompt-string"
Specifies the string to use as the prompt for the additional input lines needed
to complete a snippet.

start [-retain] [file[file.._]]option]

Sets the names of the startup scripts used when the next /reset, /rel oad, or / env
command is entered. If more than one script is entered, then the scripts are run in
the order entered. If no scripts or options are entered, then the current startup
settings are displayed.

The scripts can be local files or one of the following predefined scripts:

DEFAULT
Loads the default entries, which are commonly used as imports.

JAVASE
Imports all Java SE packages.

PRINTING
Defines print, printin, and printf asjshell methods for use within the tool.

The following options are valid:

-default
Sets the startup settings to the default settings.

-none
Specifies that no startup settings are used.

Use the -ret ai n option to save the start setting across sessions.

truncation mode length selector

Sets the maximum length of a displayed value. If no mode is entered, then the
current truncation values for all feedback modes are displayed. If only a mode is
entered, then the current truncation values for that mode are displayed.

3-10

Chapter 3
jshell

To define truncation values, the following arguments are required:

mode
Specifies the feedback mode to which the truncation value is applied. Only
custom modes created with the / set node command can be modified.

length
Specifies the unsigned integer to use as the maximum length for the specified
selector.

selector

Specifies the context in which the truncation value is applied. The selectors
are described in the online help, which is accessed from JShell using the /
hel p /set truncati on command.

/types [option]

Displays classes, interfaces, and enums that were entered. If no option is entered,
then all current active classes, interfaces, and enums are displayed.

The following options are valid:

name[name...]|id[id...]

Displays information for classes, interfaces, and enums identified by nane or i d.
For more than one variable, separate the names and IDs with a space. Use the /
l'i st command to see the IDs of the code snippets.

-all

Displays information for all classes, interfaces, and enums, including those added
when JShell was started, and classes, interfaces, and enums that failed, were
overwritten, or were dropped.

-start
Displays information for startup classes, interfaces, and enums that were added
when JShell was started.

/vars [option]

Displays the name, type, and value of variables that were entered. If no option is
entered, then all current active variables are displayed.

The following options are valid:

name[name...]]id[id...]

Displays information for variables identified by nane or i d. For more than one
variable, separate the names and IDs with a space. Use the /i st command to
see the IDs of the code snippets.

-all
Displays information for all variables, including those added when JShell was
started, and variables that failed, were overwritten, or were dropped.

-start
Displays information for startup variables that were added when JShell was
started.

/?
Same as the / hel p command.

ORACLE 3-11

Chapter 3
jshell

/!
Reruns the last snippet.

/id
Reruns the snippet with the ID specified. Use the /1i st command to see the IDs of
the code snippets.

/-n
Reruns the -nth previous snippet. For example, if 15 code snippets were entered,
then /- 4 runs the 11th snippet. Commands aren’t included in the count.

Input Shortcuts

The following table describes shortcuts that are available for entering commands and
shippets in JShell.

Shortcut Usage

Tab completion When entering shippets, commands, subcommands, command
arguments, or command options, use the Tab key to automatically
complete the item. If the item can’t be determined from what was
entered, then possible options are provided.

When entering a method call, use the Tab key after the method call’'s
opening parenthesis to see the parameters for the method. If the
method has more than one signature, then all signatures are
displayed. Pressing the Tab key a second time displays the description
of the method and the parameters for the first signature. Continue
pressing the Tab key for a description of any additional signatures.

Command An abbreviations of a command is accepted if the abbreviation

abbreviations uniquely identifies a command. For example, /| is recognized as the /
| i st command. However, / s isn't a valid abbreviation because it can’t
be determined if the / set or/save command is meant. Use / se for
the / set command or / sa for the / save command.

Abbreviations are also accepted for subcommands, command
arguments, and command options. For example, use / m - a to display
all methods.

History navigation A history of what was entered is maintained across sessions. Use the
up and down arrows to scroll through commands and snippets from
the current and past sessions. Use the Ctrl key with the up and down
arrows to skip all but the first line of multiline snippets.

History search Use the Ctrl+R key combination to search the history for the string
entered. The prompt changes to show the string and the match. Ctrl+R
searches backwards from the current location in the history through
earlier entries. Ctrl+S searches forward from the current location in the
history though later entries.

Input Editing

The editing capabilities of JShell are similar to that of other common shells. Keyboard
keys and key combinations provide line editing shortcuts. The Ctrl key and Meta key

are used in key combinations. If your keyboard doesn’t have a Meta key, then the Alt
key is often mapped to provide Meta key functionality.

ORACLE 3-12

ORACLE

Chapter 3
jshell

Key or Key Action

Combination

Return Enter the current line.

Left arrow Move the cursor to the left one character.

Right arrow Move the cursor to the right one character.

Ctrl+A Move the cursor to the beginning of the line.

Ctrl+E Move the cursor to the end of the line.

Meta+B Move the cursor to the left one word.

Meta+F Move the cursor to the right one word.

Delete Delete the character under the cursor.

Backspace Delete the character before the cursor.

Ctrl+K Delete the text from the cursor to the end of the line.
Meta+D Delete the text from the cursor to the end of the word.
Ctri+W Delete the text from the cursor to the previous white space.
Ctrl+Y Paste the most recently deleted text into the line.

Meta+Y After Ctrl+Y, press to cycle through the previously deleted text.

Example of Starting and Stopping a JShell Session

JShell is provided with the JDK. To start a session, enter j shel | on the command line.
A welcome message is printed, and a prompt for entering commands and snippets is
provided.

% jshell
| Welcome to JShell -- Version 9
| For an introduction type: /help intro

jshel | >

To see which snippets were automatically loaded when JShell started, use the /1 ist -
start command. The default startup snippets are import statements for common
packages. The ID for each snippet begins with the letter s, which indicates it's a
startup snippet.

jshell> /list -start

sl : inport java.io.*;

s2 : inport java.math.*;

s3 : inport java.net.*;

s4 : inport java.nio.file.*;

s5 : inport java.util.*;

s6 : inport java.util.concurrent.*;
s7 : inport java.util.function.*;
s8 : inport java.util.prefs.*;

s9 : inport java.util.regex.*;

s10 : inport java.util.stream?*;

j shell>

To end the session, use the / exit command.

3-13

ORACLE

Chapter 3
jshell

jshell> /exit
| Goodhbye

%

Example of Entering Snippets

Snippets are Java statements, variable definitions, method definitions, class
definitions, import statements, and expressions. Terminating semicolons are
automatically added to the end of a completed snippet if they’re missing.

The following example shows two variables and a method being defined, and the
method being run. Note that a scratch variable is automatically created to hold the
result because no variable was provided.

jshell> int a=4
a==>4

jshell> int b=8
b ==>38

jshell > int square(int i1) {
...> return i1 * il;

...>}

| created nethod square(int)

j shel I > square(b)
$5 ==> 64

Example of Changing Snippets
Change the definition of a variable, method, or class by entering it again.
The following examples shows a method being defined and the method run:

j shel I > String grade(int testScore) {
L if (testScore >= 90) {
LD return "Pass";

o> }
> return "Fail";
>}

| created nethod grade(int)

j shel I > grade(88)
$3 ==> "Fail"

To change the method gr ade to allow more students to pass, enter the method
definition again and change the pass score to 80. Use the up arrow key to retrieve the
previous entries to avoid having to reenter them and make the change in the i f
statement. The following example shows the new definition and reruns the method to
show the new result:

jshell > String grade(int testScore) {
LD if (testScore >= 80) {
L return "Pass"';

- }
> return "Fail";
>}

| modified method grade(int)

3-14

ORACLE

Chapter 3
jshell

j shel I > grade(88)
$5 ==> "Pass"

For snippets that are more than a few lines long, or to make more than a few changes,
use the / edit command to open the snippet in an editor. After the changes are
complete, close the edit window to return control to the JShell session. The following
example shows the command and the feedback provided when the edit window is
closed. The /list command is used to show that the pass score was changed to 85.

jshel | > /edit grade
| nodified nethod grade(int)
jshell > /list grade

6 : String grade(int testScore) {
if (testScore >= 85) {
return "Pass"

}

return "Fail";

}

Example of Creating a Custom Feedback Mode

The feedback mode determines the prompt that's displayed, the feedback messages
that are provided as shippets are entered, and the maximum length of a displayed
value. Predefined feedback modes are provided. Commands for creating custom
feedback modes are also provided.

Use the / set node command to create a new feedback mode. In the following example,
the new mode nynode, is based on the predefined feedback mode, nor mal , and verifying
command feedback is displayed:

j shell > /set mode mymode normal -command
| Created new feedback node: mynode

Because the new mode is based on the normal mode, the prompts are the same. The
following example shows how to see what prompts are used and then changes the
prompts to custom strings. The first string represents the standard JShell prompt. The
second string represents the prompt for additional lines in multiline snippets.

jshell > /set prompt mymode
| /set pronpt nynode "\njshell>"" .. .>"

jshell > /set prompt mymode '"\nprompt$ " " continue$ "

The maximum length of a displayed value is controlled by the truncation setting.
Different types of values can have different lengths. The following example sets an
overall truncation value of 72, and a truncation value of 500 for variable value
expressions:

j shel | > /set truncation mymode 72
j shel | > /set truncation mymode 500 varvalue

The feedback displayed after snippets are entered is controlled by the format setting
and is based on the type of snippet entered and the action taken for that snippet. In
the predefined mode nor mal , the string creat ed is displayed when a method is created.
The following example shows how to change that string to defi ned:

jshell > /set format mymode action "defined" added-primary

3-15

Chapter 3
jshell

Use the /set feedback command to start using the feedback mode that was just
created. The following example shows the custom mode in use:

jshell > /set feedback mymode
| Feedback node: mynode

pronpt$ int square (int numl){
continue$ return numl*numi;

continue$ }
| defined nethod square(int)

pronpt $

ORACLE 3-16

Security Tools and Commands

keytool

ORACLE

You use specific JDK security tools and commands to set security policies on your
local system and create applications that can work within the scope of the security
policies set at remote sites.

The following sections describe the security tools and commands used to set security
policies and to create applications:

* keytool: You use the keyt ool command and options to manage a keystore
(database) of cryptographic keys, X.509 certificate chains, and trusted certificates.

* jarsigner: You use the j arsi gner tool to sign and verify Java Archive (JAR) files.

* policytool: You use pol i cytool to read and write a plain text policy file based on
user input through the utility GUI.

Note:

The poli cyt ool tool has been deprecated in JDK 9 and might be removed in
the next major JDK release.

The following sections describe the Kerberos security tools and commands for
Windows systems:

e kinit: You use the ki ni t tool and its options to obtain and cache Kerberos ticket-
granting tickets.

» Kklist: You use the kl i st tool to display the entries in the local credentials cache
and key table.

» ktab: You use the kt ab tool to manage the principal names and service keys stored
in a local key table.

You use the keyt ool command and options to manage a keystore (database) of
cryptographic keys, X.509 certificate chains, and trusted certificates.
Synopsis

keytool [commands]

commands
See Commands. These commands are categorized by task as follows:

e Create or Add Data to the Keystore: - gencert, - genkeypai r, - genseckey, -
i nportcert, -inportpass

e Import Contents From Another Keystore: -i nport keyst ore

4-1

ORACLE

Chapter 4
keytool

* Generate Certificate Request: -certreq

e Export Data: - exportcert

» Display Data: -1ist, -printcert,-printcertreq, -printcrl

e Manage the Keystore: - st or epasswd, - keypasswd, - del et e, - changeal i as

e GetHelp: -help

Description

The keyt ool command is a key and certificate management utility. It enables users to
administer their own public/private key pairs and associated certificates for use in self-
authentication (where the user authenticates himself or herself to other users and
services) or data integrity and authentication services, using digital signatures. The
keyt ool command also enables users to cache the public keys (in the form of
certificates) of their communicating peers.

A certificate is a digitally signed statement from one entity (person, company, and so
on.), that says that the public key (and some other information) of some other entity
has a particular value. When data is digitally signed, the signature can be verified to
check the data integrity and authenticity. Integrity means that the data hasn’t been
modified or tampered with, and authenticity means the data comes from whoever
claims to have created and signed it.

The keyt ool command also enables users to administer secret keys and passphrases
used in symmetric encryption and decryption (DES).

The keyt ool command stores the keys and certificates in a keystore.

Command and Option Notes
See Commands for a listing and description of the various commands.

« All command and option names are preceded by a hyphen sign (-).
* The options for each command can be provided in any order.
» Allitems not italicized or in braces or brackets are required to appear as is.

* Braces surrounding an option signify that a default value will be used when the
option isn’t specified on the command line. Braces are also used around the -v, -
rfc, and -J options, which only have meaning when they appear on the command
line. They don't have any default values other than not existing.

e Brackets surrounding an option signify that the user is prompted for the values
when the option isn’t specified on the command line. For the - keypass option, if you
don’t specify the option on the command line, then the keyt ool command first
attempts to use the keystore password to recover the private/secret key. If this
attempt fails, then the keyt ool command prompts you for the private/secret key
password.

* Items in italics (option values) represent the actual values that must be supplied.
For example, here is the format of the - printcert command:

keytool -printcert {-file cert_file} {-v}

When you specify a - printcert command, replace cert _fil e with the actual file
name, as follows: keytool -printcert -file VScert.cer

e Option values must be put in quotation marks when they contain a blank (space).

4-2

ORACLE

Chapter 4
keytool

e The - hel p option is the default. The keyt ool command is the same as keyt ool
hel p.

Commands

-gencert

{-rfc} {-infile infile} {-outfile outfile} {-alias alias} {-sigalg sigalg}
{-dnanme dnane} {-startdate startdate {-ext ext}* {-validity val Days}
[-keypass keypass] {-keystore keystore} [-storepass storepass]
{-storetype storetype} {-providernane provider_nane}

{-providerd ass provider_class_nane {-providerArg provider_arg}}

{-v} {-protected} {-Jjavaoption}

Generates a certificate as a response to a certificate request file (which can be
created by the keyt ool -certreq command). The command reads the request

fromi nfi | e (if omitted, from the standard input), signs it using alias's private key, and
outputs the X.509 certificate into outfile (if omitted, to the standard output). When-rfc
is specified, the output format is Base64-encoded PEM; otherwise, a binary DER is
created.

The si gal g value specifies the algorithm that should be used to sign the certificate.
The startdat e argument is the start time and date that the certificate is valid. The

val Days argument tells the number of days for which the certificate should be
considered valid.

When dnane is provided, it is used as the subject of the generated certificate.
Otherwise, the one from the certificate request is used.

The ext value shows what X.509 extensions will be embedded in the certificate. Read
Common Options for the grammar of - ext .

The - gencert option enables you to create certificate chains. The following example
creates a certificate, el, that contains three certificates in its certificate chain.

The following commands creates four key pairs named ca, cal, ca2, and el:

keytool -alias ca -dname CN=CA -genkeypair
keytool -alias cal -dname CN=CA -genkeypair
keytool -alias ca2 -dname CN=CA -genkeypair
keytool -alias el -dname CN=El -genkeypair

The following two commands create a chain of signed certificates; ca signs cal and
cal signs ca2, all of which are self-issued:

keytool -alias cal -certreq |
keytool -alias ca -gencert -ext san=dns:cal |
keytool -alias cal -inportcert

keytool -alias ca2 -certreq |
keytool -alias cal -gencert -ext san=dns:ca2 |
keytool -alias ca2 -inportcert

The following command creates the certificate el and stores it in the file el. cert,
which is signed by ca2. As a result, el should contain ca, cal, and ca2 in its certificate
chain:

4-3

ORACLE

Chapter 4
keytool

keytool -alias el -certreq | keytool -alias ca2 -gencert > el.cert

-genkeypair

{-alias alias} {-keyalg keyal g} {-keysize keysize} {-sigalg sigal g}
[-dname dnane] [-keypass keypass] {-startdate value} {-ext ext}*
{-validity val Days} {-storetype storetype} {-keystore keystore}
[-storepass storepass]

{-providerd ass provider_class_name {-providerArg provider_arg}}
{-v} {-protected} {-Jjavaoption}

Generates a key pair (a public key and associated private key). Wraps the public key
into an X.509 v3 self-signed certificate, which is stored as a single-element certificate
chain. This certificate chain and the private key are stored in a new keystore entry
identified by alias.

The keyal g value specifies the algorithm to be used to generate the key pair, and the
keysi ze value specifies the size of each key to be generated. The si gal g value
specifies the algorithm that should be used to sign the self-signed certificate. This
algorithm must be compatible with the keyal g value.

The dnanme value specifies the X.500 Distinguished Name to be associated with the
value of al i as, and is used as the issuer and subject fields in the self-signed
certificate. If no distinguished name is provided at the command line, then the user is
prompted for one.

The value of keypass is a password used to protect the private key of the generated
key pair. If no password is provided, then the user is prompted for it. If you press the
Return key at the prompt, then the key password is set to the same password as the
keystore password. The keypass value must be at least 6 characters.

The value of st art dat e specifies the issue time of the certificate, also known as the
"Not Before" value of the X.509 certificate's Validity field.

The option value can be set in one of these two forms:

([+-]nnn[ymdHVE]) +

[yyyy/ mm dd] [HH MM SS]

With the first form, the issue time is shifted by the specified value from the current
time. The value is a concatenation of a sequence of subvalues. Inside each subvalue,
the plus sign (+) means shift forward, and the minus sign (-) means shift backward.
The time to be shifted is nnn units of years, months, days, hours, minutes, or seconds
(denoted by a single character of y, m d, H, M or S respectively). The exact value of the
issue time is calculated using the j ava. util. G egori anCal endar. add(int field, int
amount) method on each subvalue, from left to right. For example, the issue time can
be specified by:

Cal endar ¢ = new GregorianCal endar();
c.add(Cal endar. YEAR -1);

c. add(Cal endar. MONTH, 1);

c. add(Cal endar. DATE, -1);

return c.getTine()

With the second form, the user sets the exact issue time in two parts, year/month/day
and hour:minute:second (using the local time zone). The user can provide only one
part, which means the other part is the same as the current date (or time). The user
must provide the exact number of digits as shown in the format definition (padding
with 0 when shorter). When both the date and time are provided, there is one (and

4-4

ORACLE

Chapter 4
keytool

only one) space character between the two parts. The hour should always be
provided in 24 hour format.

When the option isn’t provided, the start date is the current time. The option can be
provided at most once.

The value of val Days specifies the number of days (starting at the date specified by -
startdate, or the current date when -start dat e isn’t specified) for which the certificate
should be considered valid.

-genseckey

{-alias alias} {-keyalg keyal g} {-keysize keysize} [-keypass keypass]
{-storetype storetype} {-keystore keystore} [-storepass storepass]
{-providerC ass provider_class_nane {-providerArg provider_arg}} {-v}
{-protected} {-Jjavaoption}

Generates a secret key and stores it in a new KeySt or e. Secr et KeyEnt ry identified by
alias.

The value of keyal g specifies the algorithm to be used to generate the secret key, and
the value of keysi ze specifies the size of the key to be generated. The keypass value is
a password that protects the secret key. If no password is provided, then the user is
prompted for it. If you press the Return key at the prompt, then the key password is
set to the same password that is used for the keyst ore. The keypass value must be at
least 6 characters.

-importcert

{-alias alias} {-file cert_file} [-keypass keypass] {-nopronpt} {-trustcacerts}
{-storetype storetype} {-keystore keystore} {-cacerts cacerts}[-storepass storepass]
{-provi der Nane provi der_nane}

{-providerd ass provider_class_nane {-providerArg provider_arg}}

{-v} {-protected} {-Jjavaoption}

Reads the certificate or certificate chain (where the latter is supplied in a PKCS#7
formatted reply or a sequence of X.509 certificates) from the file cert _fil e, and stores
it in the keyst or e entry identified by al i as. If no file is specified, then the certificate or
certificate chain is read from st di n.

The keyt ool command can import X.509 v1, v2, and v3 certificates, and PKCS#7
formatted certificate chains consisting of certificates of that type. The data to be
imported must be provided either in binary encoding format or in printable encoding
format (also known as Base64 encoding) as defined by the Internet RFC 1421
standard. In the latter case, the encoding must be bounded at the beginning by a
string that starts with - - - - - BEG N, and bounded at the end by a string that starts with

You import a certificate for two reasons: To add it to the list of trusted certificates, and
to import a certificate reply received from a certificate authority (CA) as the result of
submitting a Certificate Signing Request to that CA (see -certreq option in
Commands).

Which type of import is intended is indicated by the value of the - al i as option. If the
alias doesn’t point to a key entry, then the keyt ool command assumes you are adding
a trusted certificate entry. In this case, the alias shouldn't already exist in the keystore.

4-5

Chapter 4
keytool

If the alias does already exist, then the keyt ool command outputs an error because
there is already a trusted certificate for that alias, and doesn’t import the certificate. If
the alias points to a key entry, then the keyt ool command assumes you are importing
a certificate reply.

-importpass

{-alias alias} [-keypass keypass] {-storetype storetype} {-keystore keystore}
[-storepass storepass]

{-providerd ass provider_class_nanme {-providerArg provider_arg}}

{-v} {-protected} {-Jjavaoption}

Imports a passphrase and stores it in a new KeySt or e. Secr et KeyEnt ry identified by

al i as. The passphrase may be supplied via the standard input stream; otherwise the
user is prompted for it. keypass is a password used to protect the imported
passphrase. If no password is provided, the user is prompted for it. If you press the
Return key at the prompt, the key password is set to the same password as that used
for the keyst ore. keypass must be at least 6 characters long.

-importkeystore

-srckeystore srckeystore {-destkeystore destkeystore}

Note:

This is the first line of all options.

{-srcstoretype srcstoretype} {-deststoretype deststoretype}

[-srcstorepass srcstorepass] [-deststorepass deststorepass] {-srcprotected}
{-dest protect ed}

{-srcalias srcalias {-destalias destalias} [-srckeypass srckeypass]}

[-dest keypass destkeypass] {-nopronpt}

{-srcProvi derName src_provider_nanme} {-destProviderName dest_provi der_nane}
{-providerd ass provider_class_nane {-providerArg provider_arg}} {-v}
{-protected} {-Jjavaoption}

Imports a single entry or all entries from a source keystore to a destination keystore.

Note:

When using the keytool -i nport keyst ore command, if - dest keyst or e is not
specified, the default keystore used is $HOVE/ . keyst or e.

ORACLE 4-6

ORACLE

Chapter 4
keytool

When the -srcal i as option is provided, the command imports the single entry
identified by the alias to the destination keystore. If a destination alias isn’t provided
with dest al i as, then srcal i as is used as the destination alias. If the source entry is
protected by a password, then srckeypass is used to recover the entry. If srckeypass
isn't provided, then the keyt ool command attempts to use srcst or epass to recover the
entry. If srcst orepass is either not provided or is incorrect, then the user is prompted
for a password. The destination entry is protected with dest keypass. If dest keypass isn’t
provided, then the destination entry is protected with the source entry password. For
example, most third-party tools require st orepass and keypass in a PKCS #12 keystore
to be the same. In order to create a PKCS#12 keystore for these tools, always specify
a - dest keypass to be the same as - dest st or epass.

If the - srcal i as option isn't provided, then all entries in the source keystore are
imported into the destination keystore. Each destination entry is stored under the alias
from the source entry. If the source entry is protected by a password, then

srcstor epass is used to recover the entry. If srcst orepass is either not provided or is
incorrect, then the user is prompted for a password. If a source keystore entry type
isn't supported in the destination keystore, or if an error occurs while storing an entry
into the destination keystore, then the user is prompted whether to skip the entry and
continue or to quit. The destination entry is protected with the source entry password.
If the destination alias already exists in the destination keystore, then the user is
prompted to either overwrite the entry or to create a new entry under a different alias
name.

If the - nopronpt option is provided, then the user isn't prompted for a new destination
alias. Existing entries are overwritten with the destination alias name. Entries that
can’t be imported are skipped and a warning is displayed.

-printcertreq

{-file file}

Prints the content of a PKCS #10 format certificate request, which can be generated
by the keyt ool -certreq command. The command reads the request from file. If there
is no file, then the request is read from the standard input.

-certreq

{-alias alias} {-dname dnane} {-sigalg sigalg} {-ext ext}* {-file certreq_file}
[-keypass keypass] {-storetype storetype} {-keystore keystore}

[-storepass storepass] {-providerNane provider_nane}

{-providerd ass provider_class_nanme {-providerArg provider_arg}}

{-v} {-protected} {-Jjavaoption}

Generates a Certificate Signing Request (CSR) using the PKCS #10 format.

A CSR is intended to be sent to a certificate authority (CA). The CA authenticates the
certificate requestor (usually off-line) and will return a certificate or certificate chain,
used to replace the existing certificate chain (which initially consists of a self-signed
certificate) in the keystore.

The private key associated with alias is used to create the PKCS #10 certificate
request. To access the private key, the correct password must be provided. If keypass
isn’t provided at the command line and is different from the password used to protect
the integrity of the keystore, then the user is prompted for it. If dnane is provided, then

4-7

ORACLE

Chapter 4
keytool

it is used as the subject in the CSR. Otherwise, the X.500 Distinguished Name
associated with alias is used.

The si gal g value specifies the algorithm that should be used to sign the CSR.

The CSR is stored in the file certreq_file. If no file is specified, then the CSR is output
to stdout .

Use the i mport cert command to import the response from the CA.

-exportcert

{-alias alias} {-file cert_file} {-storetype storetype} {-keystore keystore}{-
cacerts cacerts}

[-storepass storepass] {-providerNane provider_nane}
{-providerd ass provider_class_nane {-providerArg provider_arg}}
{-rfc} {-v} {-protected} {-Jjavaoption}

Reads from the keystore the certificate associated with alias and stores it in the
cert_file file. When no file is specified, the certificate is output to st dout .

The certificate is by default output in binary encoding. If the -r f ¢ option is specified,
then the output in the printable encoding format defined by the Internet RFC 1421
Certificate Encoding Standard.

If al i as refers to a trusted certificate, then that certificate is output. Otherwise, al i as
refers to a key entry with an associated certificate chain. In that case, the first
certificate in the chain is returned. This certificate authenticates the public key of the
entity addressed by al i as.

-list

{-alias alias} {-storetype storetype} {-keystore keystore} {-cacerts cacerts}[-
storepass storepass]

{-providerNane provider_nane}
{-providerd ass provider_class_nanme {-providerArg provider_arg}}
{-v | -rfc} {-protected} {-Jjavaoption}

Prints to st dout the contents of the keystore entry identified by al i as. If no al i as is
specified, then the contents of the entire keystore are printed.

This command by default prints the SHA-256 fingerprint of a certificate. If the -v
option is specified, then the certificate is printed in human-readable format, with
additional information such as the owner, issuer, serial number, and any extensions. If
the -rfc option is specified, then the certificate contents are printed using the printable
encoding format, as defined by the Internet RFC 1421 Certificate Encoding Standard.
You can't specify both -v and -rfc.

-printcert
{-file cert_file | -sslserver host[:port]} {-jarfile JARfile {-rfc} {-v}
{-Jj avaoption}

Reads the certificate from the file cert_file, the SSL server located at host:port, or the
signed JAR file JAR file (with the -jarfil e option and prints its contents in a human-
readable format. When no port is specified, the standard HTTPS port 443 is assumed.
Note that - ssl server and -file options can’t be provided at the same time. Otherwise,

4-8

ORACLE

Chapter 4
keytool

an error is reported. If neither option is specified, then the certificate is read from
stdin.

When-rfc is specified, the keyt ool command prints the certificate in PEM mode as
defined by the Internet RFC 1421 Certificate Encoding standard.

If the certificate is read from a file or st di n, then it might be either binary encoded or in
printable encoding format, as defined by the RFC 1421 Certificate Encoding standard.
If the SSL server is behind a firewall, then the - J- Dht t ps. pr oxyHost =pr oxyhost and - J-
Dht t ps. proxyPor t =pr oxyport options can be specified on the command line for proxy
tunneling.

Note: This option can be used independently of a keystore.

-printcrl

-file crl_ {-v}

Reads the Certificate Revocation List (CRL) from the file crl _. A CRL is a list of digital
certificates that were revoked by the CA that issued them. The CA generates the crl _
file.

Note: This option can be used independently of a keystore.

-storepasswd

[-new new storepass] {-storetype storetype} {-keystore keystore}{-cacerts cacerts}
[-storepass storepass] {-providerNane provider_nane}

{-providerd ass provider_class_nanme {-providerArg provider_arg}}

{-v} {-Jjavaoption}

Changes the password used to protect the integrity of the keystore contents. The new
password is new_st or epass, which must be at least 6 characters.

-keypasswd

{-alias alias} [-keypass ol d_keypass] [-new new _keypass] {-storetype storetype}
{-keystore keystore} [-storepass storepass] {-providerNanme provider_name}
{-providerd ass provider_class_nane {-providerArg provider_arg}} {-v}

{-Jj avaoption}

Changes the password under which the private/secret keys identified by al i as is
protected, from ol d_keypass to new keypass, which must be at least 6 characters.

If the - keypass option isn’t provided at the command line, and the key password is
different from the keystore password, then the user is prompted for it.

If the - new option isn’'t provided at the command line, then the user is prompted for it

-delete

[-alias alias] {-storetype storetype} {-keystore keystore} {-cacerts cacerts}[-
storepass storepass]

{-providerNane provider_nane}
{-providerd ass provider_class_name {-providerArg provider_arg}}

{-v} {-protected} {-Jjavaoption}

4-9

ORACLE

Chapter 4
keytool

Deletes from the keystore the entry identified by al i as. The user is prompted for the
alias, when no alias is provided at the command line.

-changealias

{-alias alias} [-destalias destalias] [-keypass keypass] {-storetype storetype}

{-keystore keystore}{-cacerts cacerts} [-storepass storepass] {-providerNane
provi der _nane}

{-providerd ass provider_class_nane {-providerArg provider_arg}} {-v}
{-protected} {-Jjavaoption}

Move an existing keystore entry from the specified al i as to a new alias, dest al i as. If
no destination alias is provided, then the command prompts for one. If the original
entry is protected with an entry password, then the password can be supplied with the
- keypass option. If no key password is provided, then the st or epass (if provided) is
attempted first. If the attempt fails, then the user is prompted for a password.

—help

Lists the basic commands and their options.

For more information about a specific command, enter the following, where
command_nane is the name of the command: keyt ool - conmand_nane - hel p.

Common Options

The -v option can appear for all commands except - hel p. When the - v option appears,
it signifies verbose mode, which means that more information is provided in the output.

There is also a - Jj avaopt i on argument that can appear for any command. When the -
Jj avaopt i on appears, the specified j avaopt i on string is passed directly to the Java
interpreter. This option doesn’t contain any spaces. It is useful for adjusting the
execution environment or memory usage. For a list of possible interpreter options, type
java -horjava -Xat the command line.

These options can appear for all commands operating on a keystore:

-storetype storetype
This qualifier specifies the type of keystore to be instantiated.

-keystore keystore

The keystore location.

If the JKS st oret ype is used and a keystore file doesn'’t yet exist, then certain keyt ool
commands can result in a new keystore file being created. For example, if keyt ool -
genkeypair is called and the - keyst or e option isn't specified, the default keystore file
named . keyst or e in the user's home directory is created when it doesn't already exist.
Similarly, if the -keystore ks_file option is specified but ks_file doesn't exist, then it is
created. For more information on the JKS st or et ype, see KeyStore Implementation
section in KeyStore aliases.

Note that the input stream from the - keyst or e option is passed to the KeySt ore. | oad
method. If NONE is specified as the URL, then a null stream is passed to the

KeySt or e. | oad method. NONE should be specified if the keystore isn't file-based. For
example, when it resides on a hardware token device.

4-10

ORACLE

Chapter 4
keytool

-cacerts cacerts

Operates on the cacert s keystore . This option is equivalent to " - keyst ore
path_to_cacerts -storetype type of cacerts". An error will be reported if the- keyst ore
or - st or et ype option is used with the - cacerts option.

-storepass [:env | :Ffile] argument

The password that is used to protect the integrity of the keystore.

If the modifier env or fil e isn't specified, then the password has the val ue argument,
which must be at least 6 characters long. Otherwise, the password is retrieved as
follows:

* env: Retrieve the password from the environment variable named ar gunent .
» file: Retrieve the password from the file named argument.

Note: All other options that require passwords, such as - keypass, - srckeypass, -

dest keypass, - srcst or epass, and - dest st or epass, accept the env and fi | e modifiers.
Remember to separate the password option and the modifier with a colon ().

The password must be provided to all commands that access the keystore contents.
For such commands, when the - st or epass option isn’t provided at the command line,
the user is prompted for it.

When retrieving information from the keystore, the password is optional. If no
password is specified, then the integrity of the retrieved information can't be verified
and a warning is displayed.

-providerName provider_name
Used to identify a cryptographic service provider's name when listed in the security
properties file.

-providerClass provider_class_name
Used to specify the name of a cryptographic service provider's master class file when
the service provider isn't listed in the security properties file.

-providerArg provider_arg
Used with the - provi der d ass option to represent an optional string input argument for
the constructor of provi der _cl ass_nane.

-protected=true|false

This value should be specified as true when a password must be specified by way of
a protected authentication path such as a dedicated PIN reader.Because there are
two keystores involved in the -i npor t keyst ore command, the following two options -
srcprotect ed and -dest prot ect ed are provided for the source keystore and the
destination keystore respectively.

-ext {name{:critical} {=value}}

Denotes an X.509 certificate extension. The option can be used in - genkeypai r and -
gencert to embed extensions into the certificate generated, or in - certreq to show
what extensions are requested in the certificate request. The option can appear
multiple times. The nane argument can be a supported extension name (see Named
Extensions below) or an arbitrary OID number. The val ue argument, when provided,
denotes the argument for the extension. When val ue is omitted, that means that the
default value of the extension or the extension requires no argument. The :cri ti cal
modifier, when provided, means the extension's i sCritical attribute istrue;
otherwise, itis fal se. You can use :c in place of :critical .

Examples of Option Values

The following examples show the defaults for various option values.

4-11

Chapter 4
keytool

-alias "nykey"

-keyal g
"DSA" (when using -genkeypair)
"DES" (when using -genseckey)

-keysi ze
2048 (when using -genkeypair and -keyalg is "RSA")
2048 (when using -genkeypair and -keyalg is "DSA")
256 (when using -genkeypair and -keyalg is "EC')
56 (when using -genseckey and -keyalg is "DES")
168 (when using -genseckey and -keyal g i s "DESede")

-validity 90
-keystore <the file nanmed .keystore in the user's hone directory>
-destkeystore <the file naned .keystore in the user's hone directory>
-storetype <the value of the "keystore.type" property in the
security properties file, which is returned by the static
get Defaul t Type nethod in java.security. KeyStore>
-file
stdin (if reading)
stdout (if witing)

-protected fal se

In generating a certificate or a certificate request, the default signature algorithm (-
si gal g option) is derived from the algorithm of the underlying private key to provide an
appropriate level of security strength as shown:

keyalg keysize default sigalg
DSA any size SHA256withDSA
RSA <=3072 SHA256withRSA
<= 7680 SHA384withRSA
> 7680 SHA512withRSA
EC <384 SHA256withECDSA
<512 SHA384withECDSA
=512 SHA512withECDSA
¢ Note:

ORACLE

In order to improve out of the box security, default key size and signature
algorithm names are periodically updated to stronger values with each release
of the JDK. If interoperability with older releases of the JDK is important,
please make sure the defaults are supported by those releases, or
alternatively use the - keysi ze or - si gal g options to override the default values
at your own risk.

4-12

ORACLE

Chapter 4
keytool

Supported Named Extensions

The keyt ool command supports these named extensions. The names aren’t case-
sensitive.

BC or BasicContraints
Values: The full form is: ca: {true| f al se}[, pathl en: | en] or len, which is short for
ca: true, pat hl en: | en. When Jenis omitted, you have ca: tr ue.

KU or KeyUsage

Values: usage(,usage)*, where usage can be one of di gi t al Si gnat ure, nonRepudi at i on
(cont ent Conmi t nent), keyEnci pher nent , dat aEnci pher nent , keyAgr eenent , keyCert Si gn,
cRLSi gn, enci pher Onl y, deci pher Onl y. The usage argument can be abbreviated with the
first few letters (di g for di gi t al Si gnat ur e) or in camel-case style (dS for

di gital Signature or cRLS for cRLSi gn), as long as no ambiguity is found. The usage
values are case-sensitive.

EKU or ExtendedKeyUsage

Values: usage(,usage)*, where usage can be one of anyExt endedKeyUsage, server Aut h,
client Aut h, codeSi gni ng, enai | Prot ecti on, ti neSt anpi ng, OCSPSi gni ng, or any OID string.
Theusage argument can be abbreviated with the first few letters or in camel-case style,
as long as no ambiguity is found. The usage values are case-sensitive.

SAN or SubjectAlternativeName
Values: t ype:val ue(,t ype: val ue)*, where type can be EMAI L, URI, DNS, | P, or O D. The
val ue argument is the string format value for the t ype.

IAN or IssuerAlternativeName
Values: Same as Subj ect Al t er nat i veNane.

SIA or SubjectiInfoAccess

Values: net hod:l ocati on-t ype:l ocati on-val ue (,net hod: | ocati on-type:l ocati on-val ue)*,
where met hod can be ti meSt anpi ng, caReposi tory or any OID. The | ocati on-type and

| ocati on-val ue arguments can be any t ype:val ue supported by the

Subj ect Al t er nat i veNane extension.

AIA or AuthoritylnfoAccess
Values: Same as Subj ect | nf oAccess. The net hod argument can be ocsp,cal ssuers, or
any OID.

When nane is OID, the value is the hexadecimal dumped DER encoding of the

ext nVal ue for the extension excluding the OCTET STRING type and length bytes. Any
extra character other than standard hexadecimal numbers (0-9, a-f, A-F) are ignored in
the HEX string. Therefore, both 01:02:03:04 and 01020304 are accepted as identical
values. When there is no value, the extension has an empty value field.

A special name honor ed, used in - gencert only, denotes how the extensions included in
the certificate request should be honored. The value for this name is a comma
separated list of al I (all requested extensions are honored), nane{: [cri tical | non-
critical]} (the named extension is honored, but using a different i sCritical attribute)
and - name (used with al |, denotes an exception). Requested extensions aren’t honored
by default.

If, besides the -ext honored option, another named or OID - ext option is provided, this
extension is added to those already honored. However, if this name (or OID) also
appears in the honored value, then its value and criticality overrides the one in the

4-13

ORACLE

Chapter 4
keytool

request. If extension of the same type is provided multiple times through either a name
or an OID, only the last one will be used.

The subj ect Keyl denti fi er extension is always created. For non-self-signed certificates,
the aut horityKeyl dentifier is created.

Note: Users should be aware that some combinations of extensions (and other
certificate fields) may not conform to the Internet standard. See Certificate
Conformance Warning..

Examples of Tasks Performed in Creating a keystore

The following examples describe the sequence actions in creating a keystore for
managing public/private key pair and certificates from trusted entities.

» Example of Generating the Key Pair

* Example of Requesting a Signed Certificate from a CA

» Example of Importing a Certificate for the CA

» Example of Importing the Certificate Reply from the CA

» Example of Exporting a Certificate That Authenticates the Public Key
» Example of Importing Keystore

» Example of Generating Certificates for an SSL Server

Example of Generating the Key Pair

First, create a keystore and generate the key pair. You can use a command such as
the following typed as a single line:

keytool -genkeypair -dnane "cn=nynanme, ou=mygroup, O=nyconpany, c=nycountry"
-alias business -keypass password
-keyst ore /working/ mykeyst ore
-storepass password -validity 180

The command creates the keystore named nykeyst or e in the working directory
(assuming it doesn’t already exist), and assigns it the password specified by <new
password for keystore>. It generates a public/private key pair for the entity whose
distinguished name has a common name of Mark Jones, organizational unit of Java,
organization of Oracle and two-letter country code of US. It uses the default DSA key
generation algorithm to create the keys; both are 2048 bits

The command uses the default SHA256withDSA signature algorithm to create a self-
signed certificate that includes the public key and the distinguished name information.
The certificate is valid for 180 days, and is associated with the private key in a
keystore entry referred to by the alias busi ness. The private key is assigned the
password specified by new password for private key.

The command is significantly shorter when the option defaults are accepted. In this

case, no options are required, and the defaults are used for unspecified options that
have default values. You are prompted for any required values. You could have the

following:

keyt ool -genkeypair

In this case, a keystore entry with the alias mykey is created, with a newly generated
key pair and a certificate that is valid for 90 days. This entry is placed in the keystore
named . keyst or e in your home directory. The keystore is created when it doesn't

4-14

ORACLE

Chapter 4
keytool

already exist. You are prompted for the distinguished name information, the keystore
password, and the private key password.

The rest of the examples assume you executed the - genkeypai r command without
options specified, and that you responded to the prompts with values equal to those
specified in the first - genkeypai r command. For example, a distinguished name of
cn=nynane, ou=nmygroup, o=nyconpany, c=nycountry).

Example of Requesting a Signed Certificate from a CA

Generating the key pair created a self-signed certificate. A certificate is more likely to
be trusted by others when it is signed by a Certification Authority (CA). To get a CA
signature, first generate a Certificate Signing Request (CSR), as follows:

keytool -certreq -file nyname.csr

This creates a CSR for the entity identified by the default alias nykey and puts the
request in the file named mynane. csr. Submit this file to a CA, such as VeriSign. The
CA authenticates you, the requestor (usually off-line), and returns a certificate, signed
by them, authenticating your public key. In some cases, the CA returns a chain of
certificates, each one authenticating the public key of the signer of the previous
certificate in the chain.

Example of Importing a Certificate for the CA

You now need to replace the self-signed certificate with a certificate chain, where each
certificate in the chain authenticates the public key of the signer of the previous
certificate in the chain, up to a root CA.

Before you import the certificate reply from a CA, you need one or more trusted
certificates in your keystore or in the cacerts keystore file. See -importcert in
Commands.

« If the certificate reply is a certificate chain, then you need the top certificate of the
chain. The root CA certificate that authenticates the public key of the CA.

e If the certificate reply is a single certificate, then you need a certificate for the
issuing CA (the one that signed it). If that certificate isn’t self-signed, then you
need a certificate for its signer, and so on, up to a self-signed root CA certificate.

The cacerts keystore file ships with several VeriSign root CA certificates, so you
probably will not need to import a VeriSign certificate as a trusted certificate in your
keystore. But if you request a signed certificate from a different CA, and a certificate
authenticating that CA's public key wasn't added to cacert s, then you must import a
certificate from the CA as a trusted certificate.

A certificate from a CA is usually either self-signed or signed by another CA, in which
case you need a certificate that authenticates that CA's public key. Suppose company
ABC, Inc., is a CA, and you obtain a file named ABCCA. cer that is supposed to be a
self-signed certificate from ABC, that authenticates that CA's public key. Be careful to
ensure the certificate is valid before you import it as a trusted certificate. View it first
with the keyt ool -printcert command or the keyt ool -inportcert command without
the - nopronpt option, and make sure that the displayed certificate fingerprints match
the expected ones. You can call the person who sent the certificate, and compare the
fingerprints that you see with the ones that they show or that a secure public key
repository shows. Only when the fingerprints are equal is it guaranteed that the
certificate wasn't replaced in transit with somebody else's (for example, an attacker's)

4-15

ORACLE

Chapter 4
keytool

certificate. If such an attack takes place, and you didn’t check the certificate before you
imported it, then you would be trusting anything the attacker has signed.

If you trust that the certificate is valid, then you can add it to your keystore with the
following command:

keytool -inportcert -alias abc -file ABCCA. cer

This command creates a trusted certificate entry in the keystore, with the data from the
file ABCCA.cer, and assigns the alias abc to the entry.

Example of Importing the Certificate Reply from the CA

After you import a certificate that authenticates the public key of the CA you submitted
your certificate signing request to (or there is already such a certificate in the cacerts
file), you can import the certificate reply and replace your self-signed certificate with a
certificate chain. This chain is the one returned by the CA in response to your request
(when the CA reply is a chain), or one constructed (when the CA reply is a single
certificate) using the certificate reply and trusted certificates that are already available
in the keystore where you import the reply or in the cacert s keystore file.

For example, if you sent your certificate signing request to VeriSign, then you can
import the reply with the following, which assumes the returned certificate is named
VSnyname. cer

keytool -inportcert -trustcacerts -file VSnynane. cer

Example of Exporting a Certificate That Authenticates the Public Key

If you used the j arsi gner command to sign a Java Archive (JAR) file, then clients that
want to use the file will want to authenticate your signature. One way the clients can
authenticate you is by first importing your public key certificate into their keystore as a
trusted entry.

You can export the certificate and supply it to your clients. As an example, you can
copy your certificate to a file named nynane. cer with the following command that
assumes the entry has an alias of nykey:

keytool -exportcert -alias nykey -file nyname. cer

With the certificate and the signed JAR file, a client can use the j ar si gner command to
authenticate your signature.

Example of Importing Keystore

The command i nport keyst or e is used to import an entire keystore into another
keystore, which means all entries from the source keystore, including keys and
certificates, are all imported to the destination keystore within a single command. You
can use this command to import entries from a different type of keystore. During the
import, all new entries in the destination keystore will have the same alias names and
protection passwords (for secret keys and private keys). If the keyt ool command can’t
recover the private keys or secret keys from the source keystore, then it prompts you
for a password. If it detects alias duplication, then it asks you for a new alias, and you
can specify a new alias or simply allow the keyt ool command to overwrite the existing
one.

For example, to import entries from a typical JKS type keystore key. j ks into a PKCS
#11 type hardware-based keystore, use the command:

4-16

ORACLE

Chapter 4
keytool

keytool -inportkeystore
-srckeystore key.jks -destkeystore NONE
-srcstoretype JKS -deststoretype PKCSL1
-srcstorepass password
- dest st orepass password

The i nport keyst ore command can also be used to import a single entry from a source
keystore to a destination keystore. In this case, besides the options you see in the
previous example, you need to specify the alias you want to import. With the -srcal i as
option specified, you can also specify the destination alias name in the command line,
as well as protection password for a secret or private key and the destination
protection password you want. The following command demonstrates this:

keytool -inportkeystore
-srckeystore key.jks -destkeystore NONE
-srcstoretype JKS -deststoretype PKCS11
-srcstorepass password
- dest st orepass password
-srcalias nyprivatekey -destalias nyol dprivatekey
-srckeypass password
- dest keypass password

- nopr onpt
Example of Generating Certificates for an SSL Server

The following are keyt ool commands to generate key pairs and certificates for three
entities: Root CA (root), Intermediate CA (ca), and SSL server (server). Ensure that
you store all the certificates in the same keystore. In these examples, RSA is the
recommended the key algorithm.

keyt ool -genkeypair -keystore root.jks -alias root -ext bc:c
keytool -genkeypair -keystore ca.jks -alias ca -ext bc:c
keytool -genkeypair -keystore server.jks -alias server

keytool -keystore root.jks -alias root -exportcert -rfc > root.pem

keytool -storepass password -keystore ca.jks -certreq -alias ca |
keytool -storepass password -keystore root.jks
-gencert -alias root -ext BC=0 -rfc > ca.pem

keytool -keystore ca.jks -inportcert -alias ca -file ca.pem

keytool -storepass password -keystore server.jks -certreq -alias server |
keytool -storepass password -keystore ca.jks -gencert -alias ca
-ext ku:c=dig,kE -rfc > server.pem

cat root.pem ca.pem server.pem |
keytool -keystore server.jks -inportcert -alias server

Terms

Keystore
A keystore is a storage facility for cryptographic keys and certificates.

Keystore entries

Keystores can have different types of entries. The two most applicable entry types for
the keyt ool command include the following:

Key entries: Each entry holds very sensitive cryptographic key information, which is
stored in a protected format to prevent unauthorized access. Typically, a key stored in
this type of entry is a secret key, or a private key accompanied by the certificate chain
for the corresponding public key. See Certificate Chains. The keyt ool command can

4-17

ORACLE

Chapter 4
keytool

handle both types of entries, while the j arsi gner tool only handles the latter type of
entry, that is private keys and their associated certificate chains.

Trusted certificate entries: Each entry contains a single public key certificate that
belongs to another party. The entry is called a trusted certificate because the keystore
owner trusts that the public key in the certificate belongs to the identity identified by
the subject (owner) of the certificate. The issuer of the certificate vouches for this, by
signing the certificate.

Keystore aliases

All keystore entries (key and trusted certificate entries) are accessed by way of unique
aliases.

An alias is specified when you add an entity to the keystore with the - genseckey
command to generate a secret key, the - genkeypai r command to generate a key pair
(public and private key), or the -i nportcert command to add a certificate or certificate
chain to the list of trusted certificates. Subsequent keyt ool commands must use this
same alias to refer to the entity.

For example, you can use the alias duke to generate a new public/private key pair and
wrap the public key into a self-signed certificate with the following command. See
Certificate Chains.

keyt ool -genkeypair -alias duke -keypass dukekeypasswd

This example specifies an initial password of dukekeypasswd required by subsequent
commands to access the private key associated with the alias duke. If you later want
to change Duke's private key password, use a command such as the following:

keytool -keypasswd -alias duke -keypass dukekeypasswd - new newpass

This changes the password from dukekeypasswd to newpass. A password shouldn’t be
specified on a command line or in a script unless it is for testing purposes, or you are
on a secure system. If you don’t specify a required password option on a command
line, then you are prompted for it.

Keystore implementation

The KeySt or e class provided in the j ava. security package supplies well-defined
interfaces to access and modify the information in a keystore. It is possible for there to
be multiple different concrete implementations, where each implementation is that for
a particular type of keystore.

Currently, two command-line tools (keyt ool and j arsi gner) and a GUI-based tool
named Policy Tool make use of keystore implementations. Because the KeySt ore
class is publ i ¢, users can write additional security applications that use it.

As of JDK 9, the default keystore implementation is PKCS12. This is a cross platform
keystore based on the RSA PKCS12 Personal Information Exchange Syntax
Standard. This standard is primarily meant for storing or transporting a user's private
keys, certificates, and miscellaneous secrets. There is another built-in
implementation, provided by Oracle. It implements the keystore as a file with a
proprietary keystore type (format) named JKS. It protects each private key with its
individual password, and also protects the integrity of the entire keystore with a
(possibly different) password.

Keystore implementations are provider-based. More specifically, the application
interfaces supplied by KeySt or e are implemented in terms of a Service Provider
Interface (SPI). That is, there is a corresponding abstract Keyst oreSpi class, also in
the j ava. security package, which defines the Service Provider Interface methods that
providers must implement. The term provider refers to a package or a set of packages
that supply a concrete implementation of a subset of services that can be accessed

4-18

ORACLE

Chapter 4
keytool

by the Java Security API. To provide a keystore implementation, clients must
implement a provider and supply a Keyst oreSpi subclass implementation, as
described in Steps to Implement and Integrate a Provider.

Applications can choose different types of keystore implementations from different
providers, using the get I nst ance factory method supplied in the KeySt ore class. A
keystore type defines the storage and data format of the keystore information, and the
algorithms used to protect private/secret keys in the keystore and the integrity of the
keystore. Keystore implementations of different types aren’t compatible.

The keyt ool command works on any file-based keystore implementation. It treats the
keystore location that is passed to it at the command line as a file name and converts
it to a Fi | el nput St ream from which it loads the keystore information.)The j ar si gner
and pol i cyt ool commands can read a keystore from any location that can be
specified with a URL.

For keyt ool and j ar si gner, you can specify a keystore type at the command line, with
the - st or et ype option. For Policy Tool, you can specify a keystore type with the
Keystore menu.

If you don't explicitly specify a keystore type, then the tools choose a keystore
implementation based on the value of the keyst ore. t ype property specified in the
security properties file. The security properties file is called j ava. security, and resides
in the security properties directory:

* Oracle Solaris, Linux, and OS X:: j ava. hone/ | i b/ security
e Windows: java. hone\lib\security

Each tool gets the keyst ore. t ype value and then examines all the currently installed
providers until it finds one that implements a keystores of that type. It then uses the
keystore implementation from that provider.The KeySt or e class defines a static method
named get Def aul t Type that lets applications and applets retrieve the value of the

keyst ore. t ype property. The following line of code creates an instance of the default
keystore type as specified in the keyst ore. t ype property:

KeyStore keyStore = KeyStore. getlnstance(KeyStore. get Defaul t Type());

The default keystore type is pkcs12, which is a cross-platform keystore based on the
RSA PKCS12 Personal Information Exchange Syntax Standard. This is specified by
the following line in the security properties file:

keyst ore. t ype=pkcs12

To have the tools utilize a keystore implementation other than the default, you can
change that line to specify a different keystore type. For example, if you want to use
the Oracle's j ks keystore implementation, then change the line to the following:

keystore. typesj ks

Note: Case doesn’t matter in keystore type designations. For example, JKS would be
considered the same as jks.

Certificate

A certificate (or public-key certificate) is a digitally signed statement from one entity
(the issuer), saying that the public key and some other information of another entity
(the subject) has some specific value. The following terms are related to certificates:
Public Keys: These are numbers associated with a particular entity, and are intended
to be known to everyone who needs to have trusted interactions with that entity.
Public keys are used to verify signatures.

4-19

ORACLE

Chapter 4
keytool

Digitally Signed: If some data is digitally signed, then it is stored with the identity of
an entity and a signature that proves that entity knows about the data. The data is
rendered unforgeable by signing with the entity's private key.

Identity: A known way of addressing an entity. In some systems, the identity is the
public key, and in others it can be anything from an Oracle Solaris UID to an email
address to an X.509 distinguished name.

Signature: A signature is computed over some data using the private key of an entity.
The signer, which in the case of a certificate is also known as the issuer.

Private Keys: These are numbers, each of which is supposed to be known only to the
particular entity whose private key it is (that is, it is supposed to be kept secret).
Private and public keys exist in pairs in all public key cryptography systems (also
referred to as public key crypto systems). In a typical public key crypto system, such
as DSA, a private key corresponds to exactly one public key. Private keys are used to
compute signatures.

Entity: An entity is a person, organization, program, computer, business, bank, or
something else you are trusting to some degree.

Public key cryptography requires access to users' public keys. In a large-scale
networked environment, it is impossible to guarantee that prior relationships between
communicating entities were established or that a trusted repository exists with all
used public keys. Certificates were invented as a solution to this public key
distribution problem. Now a Certification Authority (CA) can act as a trusted third
party. CAs are entities such as businesses that are trusted to sign (issue) certificates
for other entities. It is assumed that CAs only create valid and reliable certificates
because they are bound by legal agreements. There are many public Certification
Authorities, such as VeriSign, Thawte, Entrust, and so on.

You can also run your own Certification Authority using products such as Microsoft
Certificate Server or the Entrust CA product for your organization. With the keyt ool
command, it is possible to display, import, and export certificates. It is also possible to
generate self-signed certificates.

The keyt ool command currently handles X.509 certificates.

X.509 Certificates

The X.509 standard defines what information can go into a certificate and describes
how to write it down (the data format). All the data in a certificate is encoded with two
related standards called ASN.1/DER. Abstract Syntax Notation 1 describes data. The
Definite Encoding Rules describe a single way to store and transfer that data.

All X.509 certificates have the following data, in addition to the signature:

Version: This identifies which version of the X.509 standard applies to this certificate,
which affects what information can be specified in it. Thus far, three versions are
defined. The keyt ool command can import and export v1, v2, and v3 certificates. It
generates v3 certificates.

X.509 Version 1 has been available since 1988, is widely deployed, and is the most
generic.

X.509 Version 2 introduced the concept of subject and issuer unique identifiers to
handle the possibility of reuse of subject or issuer names over time. Most certificate
profile documents strongly recommend that names not be reused and that certificates
shouldn’t make use of unique identifiers. Version 2 certificates aren't widely used.
X.509 Version 3 is the most recent (1996) and supports the notion of extensions
where anyone can define an extension and include it in the certificate. Some common
extensions are: KeyUsage (limits the use of the keys to particular purposes such as

si gni ng-onl y) and AlternativeNames (allows other identities to also be associated with
this public key, for example. DNS names, email addresses, IP addresses). Extensions
can be marked critical to indicate that the extension should be checked and enforced
or used. For example, if a certificate has the KeyUsage extension marked critical and

4-20

ORACLE

Chapter 4
keytool

set to keyCert Si gn, then when this certificate is presented during SSL communication,
it should be rejected because the certificate extension indicates that the associated
private key should only be used for signing certificates and not for SSL use.

Serial number: The entity that created the certificate is responsible for assigning it a
serial number to distinguish it from other certificates it issues. This information is used
in numerous ways. For example, when a certificate is revoked its serial number is
placed in a Certificate Revocation List (CRL).

Signature algorithm identifier: This identifies the algorithm used by the CA to sign
the certificate.

Issuer name: The X.500 Distinguished Name of the entity that signed the certificate.
See X.500 Distinguished Names. This is typically a CA. Using this certificate implies
trusting the entity that signed this certificate. In some cases, such as root or top-level
CA certificates, the issuer signs its own certificate.

Validity period: Each certificate is valid only for a limited amount of time. This period
is described by a start date and time and an end date and time, and can be as short
as a few seconds or almost as long as a century. The validity period chosen depends
on a number of factors, such as the strength of the private key used to sign the
certificate, or the amount one is willing to pay for a certificate. This is the expected
period that entities can rely on the public value, when the associated private key has
not been compromised.

Subject name: The name of the entity whose public key the certificate identifies. This
name uses the X.500 standard, so it is intended to be unique across the Internet. This
is the X.500 Distinguished Name (DN) of the entity. For example,

CN=Java Duke, OU=Java Software Division, O=Oracle Corporation, C=US

These refer to the subject's common name (CN), organizational unit (OU),
organization (O), and country (C).

Subject public key information: This is the public key of the entity being named with
an algorithm identifier that specifies which public key crypto system this key belongs
to and any associated key parameters.

Certificate Chains

The keyt ool command can create and manage keystore key entries that each contain
a private key and an associated certificate chain. The first certificate in the chain
contains the public key that corresponds to the private key.

When keys are first generated, the chain starts off containing a single element, a self-
signed certificate. See -genkeypair in Commands. A self-signed certificate is one for
which the issuer (signer) is the same as the subject. The subject is the entity whose
public key is being authenticated by the certificate. Whenever the - genkeypai r
command is called to generate a new public/private key pair, it also wraps the public
key into a self-signed certificate.

Later, after a Certificate Signing Request (CSR) was generated with the -certreq
command and sent to a Certification Authority (CA), the response from the CA is
imported with -i nport cert, and the self-signed certificate is replaced by a chain of
certificates. See -certreq and -importcert options in Commands. At the bottom of the
chain is the certificate (reply) issued by the CA authenticating the subject's public key.
The next certificate in the chain is one that authenticates the CA's public key.

In many cases, this is a self-signed certificate, which is a certificate from the CA
authenticating its own public key, and the last certificate in the chain. In other cases,
the CA might return a chain of certificates. In this case, the bottom certificate in the
chain is the same (a certificate signed by the CA, authenticating the public key of the
key entry), but the second certificate in the chain is a certificate signed by a different
CA that authenticates the public key of the CA you sent the CSR to. The next
certificate in the chain is a certificate that authenticates the second CA's key, and so

4-21

ORACLE

Chapter 4
keytool

on, until a self-signed root certificate is reached. Each certificate in the chain (after the
first) authenticates the public key of the signer of the previous certificate in the chain.
Many CAs only return the issued certificate, with no supporting chain, especially when
there is a flat hierarchy (no intermediates CAs). In this case, the certificate chain must
be established from trusted certificate information already stored in the keystore.

A different reply format (defined by the PKCS #7 standard) includes the supporting
certificate chain in addition to the issued certificate. Both reply formats can be handled
by the keyt ool command.

The top-level (root) CA certificate is self-signed. However, the trust into the root's
public key doesn’t come from the root certificate itself, but from other sources such as
a newspaper. This is because anybody could generate a self-signed certificate with
the distinguished name of, for example, the VeriSign root CA. The root CA public key
is widely known. The only reason it is stored in a certificate is because this is the
format understood by most tools, so the certificate in this case is only used as a
vehicle to transport the root CA's public key. Before you add the root CA certificate to
your keystore, you should view it with the - printcert option and compare the
displayed fingerprint with the well-known fingerprint obtained from a newspaper, the
root CA's Web page, and so on.

The cacerts Certificates File
A certificates file named cacert s resides in the security properties directory:

e Oracle Solaris, Linux, and OS X:: JAVA HOVE /i b/ security
* Windows: java. hone\lib\security

j ava. hone is the runtime environment directory, which is the j r e directory in the JDK or
the top-level directory of the Java Runtime Environment (JRE).

The cacerts file represents a system-wide keystore with CA certificates. System
administrators can configure and manage that file with the keyt ool command by
specifying j ks as the keystore type. The cacert s keystore file ships with a default set
of root CA certificates. For Oracle Solaris, Linux, OS X, and Windows, you can list the
default certificates with the following command:

keytool -list -cacerts

The initial password of the cacerts keystore file is changei t . System administrators
should change that password and the default access permission of that file upon
installing the SDK.

Note: It is important to verify your cacerts file. Because you trust the CAs in the
cacerts file as entities for signing and issuing certificates to other entities, you must
manage the cacert s file carefully. The cacert s file should contain only certificates of
the CAs you trust. It is your responsibility to verify the trusted root CA certificates
bundled in the cacert s file and make your own trust decisions.

To remove an untrusted CA certificate from the cacerts file, use the del et e option of
the keyt ool command. You can find the cacerts file in the JRE installation directory.
Contact your system administrator if you don’t have permission to edit this file

Internet RFC 1421 Certificate Encoding Standard

Certificates are often stored using the printable encoding format defined by the
Internet RFC 1421 standard, instead of their binary encoding. This certificate format,
also known as Base64 encoding, makes it easy to export certificates to other
applications by email or through some other mechanism.

Certificates read by the -i nportcert and -printcert commands can be in either this
format or binary encoded. The - exportcert command by default outputs a certificate in

4-22

ORACLE

Chapter 4
keytool

binary encoding, but will instead output a certificate in the printable encoding format,
when the -rf ¢ option is specified.

The -1i st command by default prints the SHA-256 fingerprint of a certificate. If the -v
option is specified, then the certificate is printed in human-readable format. If the -rfc
option is specified, then the certificate is output in the printable encoding format.

In its printable encoding format, the encoded certificate is bounded at the beginning
and end by the following text:

encoded certificate goes here.
----- END CERTI FI CATE- - - - -

X.500 Distinguished Names

X.500 Distinguished Names are used to identify entities, such as those that are
named by the subj ect and i ssuer (signer) fields of X.509 certificates. The keyt ool
command supports the following subparts:

commonName: The common name of a person such as Susan Jones.
organizationUnit: The small organization (such as department or division) name. For
example, Purchasing.

localityName: The locality (city) name, for example, Palo Alto.

stateName: State or province name, for example, California.

country: Two-letter country code, for example, CH.

When you supply a distinguished name string as the value of a - dname option, such as
for the - genkeypai r command, the string must be in the following format:

CN=cNane, OU=orgUnit, O=org, L=city, S=state, C=countryCode

All the following items represent actual values and the previous keywords are
abbreviations for the following:

CN=commonNane

OU=or gani zat i onUni t
O=or gani zat i onName
L=l ocal i t yNane

S=st at eNane
C=country

A sample distinguished name string is:

CN=Mark Smth, OQU=Java, O=Oracle, L=Cupertino, S=California, C=US

A sample command using such a string is:

keytool -genkeypair -dnane "CN=Mark Smith, OU=Java, O=Cracle, L=Cupertino,
S=California, C=US" -alias mark

Case doesn’t matter for the keyword abbreviations. For example, CN, cn, and Cn are
all treated the same.

Order matters; each subcomponent must appear in the designated order. However, it
isn’t necessary to have all the subcomponents. You can use a subset, for example:

CN=Smith, OUJava, O=Oracle, C=US
If a distinguished name string value contains a comma, then the comma must be

escaped by a backslash (\) character when you specify the string on a command line,
asin:

4-23

ORACLE

Chapter 4
keytool

cn=Jack, ou=Java\, Product Devel opnent, o=Oracle, c=US

It is never necessary to specify a distinguished name string on a command line. When
the distinguished name is needed for a command, but not supplied on the command
line, the user is prompted for each of the subcomponents. In this case, a comma
doesn’t need to be escaped by a backslash (\).

Warnings

Importing Trusted Certificates Warning

Important: Be sure to check a certificate very carefully before importing it as a trusted
certificate.

Windows Example:

View the certificate first with the - printcert command or the -i nportcert command
without the - nopr onpt option. Ensure that the displayed certificate fingerprints match
the expected ones. For example, suppose someone sends or emails you a certificate
that you put it in a file named \ t np\ cert . Before you consider adding the certificate to
your list of trusted certificates, you can execute a - printcert command to view its
fingerprints, as follows:

keytool -printcert -file \tnp\cert
Omner: CN=lI, Qu=ll, O, L=l ST, CAl
Issuer: CNElI, OII, O=lI, L=, S=l, CHl
Serial Number: 59092b34
Valid from Thu Jun 24 18:01:13 PDT 2016 until: Wd Jun 23 17:01:13 PST 2016
Certificate Fingerprints:

SHA-1: 20:B6: 17: FA: EF: E5: 55: 8A: D0: 71: 1F: E8: D6: 9D: C0: 37: 13: OE:
5E: FE
SHA- 256: 90: 7B: 70: 0A: EA: DC: 16: 79: 92: 99: 41: FF: 8A: FE: EB: 90:
17:75: EO: 90: B2: 24: 4D: 3A: 2A: 16: A6: E4: 11: OF: 67: A4

Oracle Solaris Example:

View the certificate first with the - printcert command or the -i nportcert command
without the - nopr onpt option. Ensure that the displayed certificate fingerprints match
the expected ones. For example, suppose someone sends or emails you a certificate
that you put it in a file named / t np/ cert . Before you consider adding the certificate to
your list of trusted certificates, you can execute a - printcert command to view its
fingerprints, as follows:

keytool -printcert -file /tnp/cert
Omner: CN=ll, OQU=IL, Ol L=, ST, CoI
| ssuer: CN=lIl, OKIT, Ol L=ll, S=IT, CAl
Serial Nunber: 59092b34
Valid from Thu Jun 24 18:01:13 PDT 2016 until: Wed Jun 23 17:01:13 PST 2016
Certificate Fingerprints:

SHA-1: 20:B6: 17: FA: EF: E5: 55: 8A: D0: 71: 1F: E8: D6: 9D: C0: 37: 13: OE:
5E: FE
SHA- 256: 90: 7B: 70: OA: EA: DC: 16: 79: 92: 99: 41: FF: 8A: FE: EB: 90:
17:75: EO: 90: B2: 24: 4D: 3A: 2A: 16: A6: E4: 11: OF: 67: A4

Then call or otherwise contact the person who sent the certificate and compare the
fingerprints that you see with the ones that they show. Only when the fingerprints are
equal is it guaranteed that the certificate wasn't replaced in transit with somebody
else's certificate such as an attacker's certificate. If such an attack took place, and you

4-24

ORACLE

Chapter 4
keytool

didn’t check the certificate before you imported it, then you would be trusting anything
the attacker signed, for example, a JAR file with malicious class files inside.

Note: It isn’'t required that you execute a - print cert command before importing a
certificate. This is because before you add a certificate to the list of trusted certificates
in the keystore, the -i nport cert command prints out the certificate information and
prompts you to verify it. You can then stop the import operation. However, you can do
this only when you call the - i nport cert command without the - nopronpt option. If the -
nopronpt option is specified, then there is no interaction with the user.

Passwords Warning

Most commands that operate on a keystore require the store password. Some
commands require a private/secret key password. Passwords can be specified on the
command line in the - st or epass and - keypass options. However, a password shouldn’t
be specified on a command line or in a script unless it is for testing, or you are on a
secure system. When you don't specify a required password option on a command
line, you are prompted for it.

Certificate Conformance Warning

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile defined a profile on conforming X.509 certificates, which includes what
values and value combinations are valid for certificate fields and extensions.

The keyt ool command doesn’t enforce all of these rules so it can generate certificates
that don’t conform to the standard, such as self-signed certificates that would be used
for internal testing purposes. Certificates that don’t conform to the standard might be
rejected by JRE or other applications. Users should ensure that they provide the
correct options for - dnane, - ext, and so on.

Import a New Trusted Certificate

Before you add the certificate to the keystore, the keyt ool command verifies it by
attempting to construct a chain of trust from that certificate to a self-signed certificate
(belonging to a root CA), using trusted certificates that are already available in the
keystore.

If the -trust cacerts option was specified, then additional certificates are considered for
the chain of trust, namely the certificates in a file named cacerts.

If the keyt ool command fails to establish a trust path from the certificate to be imported
up to a self-signed certificate (either from the keystore or the cacerts file), then the
certificate information is printed, and the user is prompted to verify it by comparing the
displayed certificate fingerprints with the fingerprints obtained from some other
(trusted) source of information, which might be the certificate owner. Be very careful to
ensure the certificate is valid before importing it as a trusted certificate. The user then
has the option of stopping the import operation. If the - nopr ompt option is specified,
then there is no interaction with the user.

Import a Certificate Reply

When you import a certificate reply, the certificate reply is validated with trusted
certificates from the keystore, and optionally, the certificates configured in the cacerts
keystore file when the -trust cacerts option is specified. See The cacerts Certificates
File.

The methods of determining whether the certificate reply is trusted are as follows:

4-25

https://tools.ietf.org/rfc/rfc5280.txt
https://tools.ietf.org/rfc/rfc5280.txt

jarsigner

ORACLE

Chapter 4
jarsigner

« Ifthe reply is a single X.509 certificate, then the keyt ool command attempts to
establish a trust chain, starting at the certificate reply and ending at a self-signed
certificate (belonging to a root CA). The certificate reply and the hierarchy of
certificates is used to authenticate the certificate reply from the new certificate
chain of aliases. If a trust chain can't be established, then the certificate reply isn't
imported. In this case, the keyt ool command doesn’t print the certificate and
prompt the user to verify it, because it is very difficult for a user to determine the
authenticity of the certificate reply.

* If the reply is a PKCS #7 formatted certificate chain or a sequence of X.509
certificates, then the chain is ordered with the user certificate first followed by zero
or more CA certificates. If the chain ends with a self-signed root CA certificate and
the -trustcacerts option was specified, the keyt ool command attempts to match it
with any of the trusted certificates in the keystore or the cacerts keystore file. If the
chain doesn't end with a self-signed root CA certificate and the -trustcacerts
option was specified, the keyt ool command tries to find one from the trusted
certificates in the keystore or the cacerts keystore file and add it to the end of the
chain. If the certificate isn’'t found and the - nopronpt option isn’'t specified, the
information of the last certificate in the chain is printed, and the user is prompted to
verify it.

If the public key in the certificate reply matches the user's public key already stored
with al i as, then the old certificate chain is replaced with the new certificate chain in the
reply. The old chain can only be replaced with a valid keypass, and so the password
used to protect the private key of the entry is supplied. If no password is provided, and
the private key password is different from the keystore password, the user is prompted
for it.

This command was named -i nport in earlier releases. This old name is still supported
in this release. The new name, -inportcert, is preferred going forward.

You use the j arsi gner tool to sign and verify Java Archive (JAR) files.

Synopsis

jarsigner [options | jar-file alias jarsigner -verify [options] jar-file
[alias ...]

jarsigner -verify [options] jar-file [alias ...]

options
The command-line options. See Options for jarsigner.

-verify

The -veri fy option can take zero or more keystore alias nhames after the JAR file
name. When the -veri fy option is specified, the j arsi gner command checks that the
certificate used to verify each signed entry in the JAR file matches one of the keystore
aliases. The aliases are defined in the keystore specified by - keyst or e or the default
keystore.

If you also specify the -strict option, and the j arsi gner command detects severe
warnings, the message, "jar verified, with signer errors" is displayed.

jar-file
The JAR file to be signed.

4-26

Chapter 4
jarsigner

If you also specified the -strict option, and the j arsi gner command detected severe
warnings, the message, "jar signed, with signer errors" is displayed.

alias
The aliases are defined in the keystore specified by - keyst or e or the default keystore.

Description
The j arsi gner tool has two purposes:

e To sign Java Archive (JAR) files.
e To verify the signatures and integrity of signed JAR files.

The JAR feature enables the packaging of class files, images, sounds, and other
digital data in a single file for faster and easier distribution. A tool named j ar enables
developers to produce JAR files. (Technically, any ZIP file can also be considered a
JAR file, although when created by the j ar command or processed by the j ar si gner
command, JAR files also contain a META- | NF/ MANI FEST. MF file.)

A digital signature is a string of bits that is computed from some data (the data being
signed) and the private key of an entity (a person, company, and so on). Similar to a
handwritten signature, a digital signature has many useful characteristics:

» Its authenticity can be verified by a computation that uses the public key
corresponding to the private key used to generate the signature.

* It can't be forged, assuming the private key is kept secret.

* ltis a function of the data signed and thus can’t be claimed to be the signature for
other data as well.

e The signed data can't be changed. If the data is changed, then the signature can’t
be verified as authentic.

To generate an entity's signature for a file, the entity must first have a public/private
key pair associated with it and one or more certificates that authenticate its public key.
A certificate is a digitally signed statement from one entity that says that the public key
of another entity has a particular value.

The j arsi gner command uses key and certificate information from a keystore to
generate digital signatures for JAR files. A keystore is a database of private keys and
their associated X.509 certificate chains that authenticate the corresponding public
keys. The keyt ool command is used to create and administer keystores.

The j arsi gner command uses an entity's private key to generate a signature. The
signed JAR file contains, among other things, a copy of the certificate from the
keystore for the public key corresponding to the private key used to sign the file. The
j arsi gner command can verify the digital signature of the signed JAR file using the
certificate inside it (in its signature block file).

The j arsi gner command can generate signatures that include a time stamp that
enables a systems or deployer (including Java Plug-in) to check whether the JAR file
was signed while the signing certificate was still valid.

ORACLE 4-27

ORACLE

Chapter 4
jarsigner

Note:

Although available and supported in JDK 9, the Java Plug-in has been marked
as deprecated in preparation for removal in a future release. Alternatives for
applets and embedded JavaFX applications, which require the plug-in, include
Java Web Start and self-contained applications.

In addition, APIs allow applications to obtain the timestamp information.

At this time, the j ar si gner command can only sign JAR files created by the j ar
command or zip files. JAR files are the same as zip files, except they also have a META-
| NF/ MANI FEST. MF file. A META- | NF/ MANI FEST. M file is created when the j ar si gner
command signs a zip file.

The default j ar si gner command behavior is to sign a JAR or zip file. Use the -verify
option to verify a signed JAR file.

The j arsi gner command also attempts to validate the signer's certificate after signing
or verifying. If there is a validation error or any other problem, the command generates
warning messages. If you specify the -stri ct option, then the command treats severe
warnings as errors. See Errors and Warnings.

Keystore Aliases
All keystore entities are accessed with unique aliases.

When you use the j arsi gner command to sign a JAR file, you must specify the alias
for the keystore entry that contains the private key needed to generate the signature. If
no output file is specified, it overwrites the original JAR file with the signed JAR file.

Keystores are protected with a password, so the store password must be specified.
You are prompted for it when you don't specify it on the command line. Similarly,
private keys are protected in a keystore with a password, so the private key's
password must be specified, and you are prompted for the password when you don’t
specify it on the command line and it isn’t the same as the store password.

Keystore Location

The j arsi gner command has a - keyst or e option for specifying the URL of the keystore
to be used. The keystore is by default stored in a file named . keyst ore in the user's
home directory, as determined by the user. hone system property.

Oracle Solaris, Linux, and OS X:: user. hone defaults to the user's home directory.

The input stream from the - keyst or e option is passed to the KeySt or e. | oad method. If
NONE is specified as the URL, then a null stream is passed to the KeySt ore. | oad method.
NONE should be specified when the KeySt or e class isn't file based, for example, when it
resides on a hardware token device.

Keystore Implementation

The KeySt or e class provided in the j ava. security package supplies a number of well-
defined interfaces to access and modify the information in a keystore. You can have
multiple different concrete implementations, where each implementation is for a
particular type of keystore.

4-28

ORACLE

Chapter 4
jarsigner

Currently, there are two command-line tools that use keystore implementations

(keyt ool and j arsi gner). You can also use a GUI-based tool named policytool but it is
deprecated and might be removed in a future JDK release.. Because the KeyStore
class is publicly available, JDK users can write additional security applications that use
it.

The default keystore implementation is PKCS12. This is a cross platform keystore based
on the RSA PKCS12 Personal Information Exchange Syntax Standard. This standard
is primarily meant for storing or transporting a user's private keys, certificates, and
miscellaneous secrets. There is another built-in implementation, provided by Oracle. It
implements the keystore as a file with a proprietary keystore type (format) named JKS.
It protects each private key with its individual password, and also protects the integrity
of the entire keystore with a (possibly different) password.

Keystore implementations are provider-based, which means the application interfaces
supplied by the KeySt or e class are implemented in terms of a Service Provider
Interface (SPI). There is a corresponding abstract Keyst oreSpi class, also in the
java.security package, that defines the Service Provider Interface methods that
providers must implement. The term provider refers to a package or a set of packages
that supply a concrete implementation of a subset of services that can be accessed by
the Java Security API. To provide a keystore implementation, clients must implement a
provider and supply a Keyst oreSpi subclass implementation, as described in How to
Implement a Provider in the Java Cryptography Architecture.

Applications can choose different types of keystore implementations from different
providers, with the get I nst ance factory method in the KeySt or e class. A keystore type
defines the storage and data format of the keystore information and the algorithms
used to protect private keys in the keystore and the integrity of the keystore itself.
Keystore implementations of different types aren’t compatible.

The j arsi gner and pol i cyt ool commands can read file-based keystores from any
location that can be specified using a URL. In addition, these commands can read
non-file-based keystores such as those provided by MSCAPI on Windows and
PKCS11 on all platforms.

For the j arsi gner and keyt ool commands, you can specify a keystore type at the
command line with the - st or et ype option. For Policy Tool, you can specify a keystore
type with the Edit command in the KeyStore menu.

If you don't explicitly specify a keystore type, then the tools choose a keystore
implementation based on the value of the keyst ore. t ype property specified in the
security properties file. The security properties file is called j ava. security, and it
resides in the JDK security properties directory, j ava. home/ conf/ securi ty.

Each tool gets the keyst ore. t ype value and then examines all the installed providers
until it finds one that implements keystores of that type. It then uses the keystore
implementation from that provider.

The KeySt or e class defines a static method named get Def aul t Type that lets applications
and applets retrieve the value of the keyst ore. t ype property. The following line of code
creates an instance of the default keystore type as specified in the keyst ore. t ype

property:
KeyStore keyStore = KeyStore. getlnstance(KeyStore. get Defaul t Type());

The default keystore type is pkcs12, which is a cross platform keystore based on the
RSA PKCS12 Personal Information Exchange Syntax Standard. This is specified by
the following line in the security properties file:

4-29

Chapter 4
jarsigner

keystore.type=pkcs12

Case doesn’t matter in keystore type designations. For example, JKS is the same as
j ks.

To have the tools utilize a keystore implementation other than the default, you can
change that line to specify a different keystore type. For example, if you want to use
the Oracle's j ks keystore implementation, then change the line to the following:

keystore. typesj ks
Supported Algorithms

By default, the j ar si gner command signs a JAR file using one of the following
algorithms files depending on the type and size of the private key:

keyalg keysize default sigalg
DSA any size SHA256withDSA
RSA <= 3072 SHA256withRSA
<=7680 SHA384withRSA
> 7680 SHA512withRSA
EC <384 SHA256withECDSA
<512 SHA384withECDSA
=512 SHA512withECDSA
These default signature algorithms can be overridden by using the - si gal g option.
Signed JAR file algorithms are checked against the j dk. j ar. di sabl edAl gori t hns
security property during verification (- veri fy). If the JAR file was signed with any
algorithms that are disabled, it will be treated as an unsigned JAR file. For detailed
verification output, include - J- Dj ava. securi ty. debug=j ar . The default value for the
jdk.jar.disabl edAl gorithnms security property is defined in the j ava. securi ty file
(located in the JRE's $JAVA _HOVE/ conf / securi ty directory).
Note:
In order to improve out of the box security, default key size and signature
algorithm names are periodically updated to stronger values with each release
of the JDK. If interoperability with older releases of the JDK is important,
please make sure the defaults are supported by those releases, or
alternatively use the - si gal g option to override the default values at your own
risk.
The Signed JAR File
When the j ar si gner command is used to sign a JAR file, the output signed JAR file is
exactly the same as the input JAR file, except that it has two additional files placed in
the META-INF directory:
« A signature file with an . SF extension
* A signature block file with a . DSA, . RSA, or . EC extension
ORACLE 4-30

ORACLE

Chapter 4
jarsigner

The base file names for these two files come from the value of the - si gFi | e option. For
example, when the option is -si gFi | e MKSI G\, the files are named MKSI GN. SF and
VKSI GN. DSA

If no -si gfil e option appears on the command line, then the base file name for the . SF
and . DSA files is the first 8 characters of the alias name specified on the command line,
all converted to uppercase. If the alias name has fewer than 8 characters, then the full
alias name is used. If the alias hame contains any characters that aren’t allowed in a
signature file name, then each such character is converted to an underscore ()
character in forming the file name. Valid characters include letters, digits, underscores,
and hyphens.

Signature File

A signature file (. SF file) looks similar to the manifest file that is always included in a
JAR file when the j ar si gner command is used to sign the file. For each source file
included in the JAR file, the . SF file has three lines, such as in the manifest file, that list
the following:

* File name
* Name of the digest algorithm (SHA)
* SHA digest value

In the manifest file, the SHA digest value for each source file is the digest (hash) of the
binary data in the source file. In the . SF file, the digest value for a specified source file
is the hash of the three lines in the manifest file for the source file.

The signature file, by default, includes a header with a hash of the whole manifest file.
The header also contains a hash of the manifest header. The presence of the header
enables verification optimization. See JAR File Verification.

Signature Block File

The . SFfile is signed and the signature is placed in the signature block file. This file
also contains, encoded inside it, the certificate or certificate chain from the keystore
that authenticates the public key corresponding to the private key used for signing.
The file has the extension . DSA, . RSA, or . EC, depending on the digest algorithm used.

Signature Time Stamp

The j arsi gner command used with the following options generates and stores a
signature time stamp when signing a JAR file;

e -tsaurl

° -tsacert alias

e -tsapolicyid policyid

e -tsadigestalg algorithm

See Options for jarsigner.

JAR File Verification

A successful JAR file verification occurs when the signatures are valid, and none of
the files that were in the JAR file when the signatures were generated have changed
since then. JAR file verification involves the following steps:

1. Verify the signature of the . SFfile.

4-31

ORACLE

Chapter 4
jarsigner

The verification ensures that the signature stored in each signature block (. DSA) file
was generated using the private key corresponding to the public key whose
certificate (or certificate chain) also appears in the . DSAfile. It also ensures that the
signature is a valid signature of the corresponding signature (. SF) file, and thus

the . SF file wasn'’t tampered with.

2. Verify the digest listed in each entry in the . SF file with each corresponding section
in the manifest.

The . SF file by default includes a header that contains a hash of the entire manifest
file. When the header is present, the verification can check to see whether or not
the hash in the header matches the hash of the manifest file. If there is a match,
then verification proceeds to the next step.

If there is no match, then a less optimized verification is required to ensure that the
hash in each source file information section in the . SF file equals the hash of its
corresponding section in the manifest file. See Signature File.

One reason the hash of the manifest file that is stored in the . SF file header might
not equal the hash of the current manifest file is that one or more files were added
to the JAR file (with the j ar tool) after the signature and . SF file were generated.
When the j ar tool is used to add files, the manifest file is changed by adding
sections to it for the new files, but the . SF file isn’t changed. A verification is still
considered successful when none of the files that were in the JAR file when the
signature was generated have been changed since then. This happens when the
hashes in the non-header sections of the . SF file equal the hashes of the
corresponding sections in the manifest file.

3. Read each file in the JAR file that has an entry in the . SF file. While reading,
compute the file's digest and compare the result with the digest for this file in the
manifest section. The digests should be the same or verification fails.

If any serious verification failures occur during the verification process, then the
process is stopped and a security exception is thrown. The j ar si gner command
catches and displays the exception.

4. Check for disabled algorithm usage. See Supported Algorithms.

Note:

You should read any addition warnings (or errors if you specified the - stri ct
option), as well as the content of the certificate (by specifying the - ver bose and
-certs options) to determine if the signature can be trusted.

Multiple Signatures for a JAR File

A JAR file can be signed by multiple people by running the j arsi gner command on the
file multiple times and specifying the alias for a different person each time, as follows:

jarsigner nyBundle.jar susan
jarsigner nyBundle.jar kevin

When a JAR file is signed multiple times, there are multiple . SF and . DSA files in the
resulting JAR file, one pair for each signature. In the previous example, the output JAR
file includes files with the following names:

4-32

ORACLE

Chapter 4
jarsigner

SUSAN. SF
SUSAN. DSA
KEVI N. SF
KEVI N. DSA

Options for jarsigner

The following sections describe the options for the j ar si gner . Be aware of the following
standards:

* All option names are preceded by a hyphen sign (-).
* The options can be provided in any order.

* Items that are in italics or underlined (option values) represent the actual values
that must be supplied.

e The -storepass, - keypass, -sigfile, -sigal g, -di gestal g, - si gnedj ar, and TSA-
related options are only relevant when signing a JAR file; they aren'’t relevant
when verifying a signed JAR file. The - keyst or e option is relevant for signing and
verifying a JAR file. In addition, aliases are specified when signing and verifying a
JAR file.

-keystore url

Specifies the URL that tells the keystore location. This defaults to the file . keystore in
the user's home directory, as determined by the user. hone system property.

A keystore is required when signing. You must explicitly specify a keystore when the
default keystore doesn't exist or if you want to use one other than the default.

A keystore isn’'t required when verifying, but if one is specified or the default exists
and the - ver bose option was also specified, then additional information is output
regarding whether or not any of the certificates used to verify the JAR file are
contained in that keystore.

The - keyst ore argument can be a file name and path specification rather than a URL,
in which case it is treated the same as a file: URL, for example, the following are
equivalent:

-keystore fil ePat hAndNanme
-keystore file:filePathAndNane

If the Sun PKCS #11 provider was configured in the j ava. security security properties
file (located in the JRE's $JAVA_HOVE/ conf/ securi ty directory), then the keyt ool and
j arsi gner tools can operate on the PKCS #11 token by specifying these options:

-keystore NONE
-storetype PKCS11

For example, the following command lists the contents of the configured PKCS#11
token:

keytool -keystore NONE -storetype PKCS11 -1li st

-storepass[:env | :file] argument

Specifies the password that is required to access the keystore. This is only needed
when signing (not verifying) a JAR file. In that case, if a - st or epass option isn'’t
provided at the command line, then the user is prompted for the password.

If the modifier env or fil e isn't specified, then the password has the value ar gunent .
Otherwise, the password is retrieved as follows:

4-33

ORACLE

Chapter 4
jarsigner

» env: Retrieve the password from the environment variable named argument.

e file: Retrieve the password from the file named argument.

Note:

The password shouldn't be specified on the command line or in a script
unless it is for testing purposes, or you are on a secure system.

-storetype storetype

Specifies the type of keystore to be instantiated. The default keystore type is the one
that is specified as the value of the keyst ore. t ype property in the security properties
file, which is returned by the static get Def aul t Type method in j ava. security. KeySt ore.
The PIN for a PCKS #11 token can also be specified with the - st or epass option. If
none is specified, then the keyt ool and j arsi gner commands prompt for the token
PIN. If the token has a protected authentication path (such as a dedicated PIN-pad or
a biometric reader), then the - pr ot ect ed option must be specified and no password
options can be specified.

-keypass [:env | :file] argument -certchain file

Specifies the password used to protect the private key of the keystore entry
addressed by the alias specified on the command line. The password is required
when using j arsi gner to sign a JAR file. If no password is provided on the command
line, and the required password is different from the store password, then the user is
prompted for it.

If the modifier env or fil e isn't specified, then the password has the value ar gunent .
Otherwise, the password is retrieved as follows:

» env: Retrieve the password from the environment variable named ar gunent .

e file: Retrieve the password from the file named ar gunent .

Note:

The password shouldn’t be specified on the command line or in a script
unless it is for testing purposes, or you are on a secure system.

-certchain file

Specifies the certificate chain to be used when the certificate chain associated with
the private key of the keystore entry that is addressed by the alias specified on the
command line isn’t complete. This can happen when the keystore is located on a
hardware token where there isn’t enough capacity to hold a complete certificate chain.
The file can be a sequence of concatenated X.509 certificates, or a single PKCS#7
formatted data block, either in binary encoding format or in printable encoding format
(also known as Base64 encoding) as defined by InternetRFC 1421 Certificate
Encoding Standard.

-sigfile file

Specifies the base file name to be used for the generated . SF and . DSA files. For
example, if file is DUKESI G\, then the generated . SF and . DSA files are named

DUKESI GN. SF and DUKESI G\. DSA, and placed in the META- | NF directory of the signed JAR
file.

4-34

http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421

ORACLE

Chapter 4
jarsigner

The characters in the file must come from the set a- zA- 70-9_-. Only letters, numbers,
underscore, and hyphen characters are allowed. All lowercase characters are
converted to uppercase for the . SF and . DSA file names.

If no -si gfil e option appears on the command line, then the base file name for

the . SF and . DSA files is the first 8 characters of the alias name specified on the
command line, all converted to upper case. If the alias name has fewer than 8
characters, then the full alias name is used. If the alias name contains any characters
that aren’t valid in a signature file name, then each such character is converted to an
underscore (_) character to form the file name.

-signedjar file
Specifies the name of signed JAR file.

-digestalg algorithm

Specifies the name of the message digest algorithm to use when digesting the entries
of a JAR file.

For a list of standard message digest algorithm names, see "Appendix A: Standard
Names" in the Java Cryptography Architecture (JCA) Reference Guide.

If this option isn't specified, then SHA256 is used. There must either be a statically
installed provider supplying an implementation of the specified algorithm or the user
must specify one with the - provi der d ass option; otherwise, the command will not
succeed.

-sigalg algorithm

Specifies the name of the signature algorithm to use to sign the JAR file.

This algorithm must be compatible with the private key used to sign the JAR file. If this
option isn't specified, then use a default algorithm matching the private key as
described in the Supported Algorithms section. There must either be a statically
installed provider supplying an implementation of the specified algorithm or you must
specify one with the - provi der 0 ass option; otherwise, the command doesn’t succeed.
For a list of standard signature algorithm names, see "Appendix A: Standard Names"
in the Java Cryptography Architecture (JCA) Reference Guide.

-verify
Verifies a signed JAR file.

-verbose [:suboptions]

When the - ver bose option appears on the command line, it indicates that the j ar si gner
use the verbose mode when signing or verifying with the suboptions determining how
much information is shown.. This causes the , which causes j ar si gner to output extra
information about the progress of the JAR signing or verification. The subopti ons can
be al I, grouped, or sunmary.

If the - certs option is also specified, then the default mode (or suboption al |) displays
each entry as it is being processed, and after that, the certificate information for each
signer of the JAR file.

If the - certs and the - ver bose: gr ouped suboptions are specified, then entries with the
same signer info are grouped and displayed together with their certificate information.
If -certs and the - verbose: sunmary suboptions are specified, then entries with the
same signer information are grouped and displayed together with their certificate
information.

Details about each entry are summarized and displayed as one entry (and more). See
Example of Verifying a Signed JAR File and Example of Verification with Certificate
Information.

4-35

ORACLE

Chapter 4
jarsigner

-certs

If the - cert s option appears on the command line with the -verify and - ver bose
options, then the output includes certificate information for each signer of the JAR file.
This information includes the name of the type of certificate (stored in the . DSA file)
that certifies the signer's public key, and if the certificate is an X.509 certificate (an
instance of the java. security. cert.X509Certi ficate), then the distinguished name of
the signer.

The keystore is also examined. If no keystore value is specified on the command line,
then the default keystore file (if any) is checked. If the public key certificate for a
signer matches an entry in the keystore, then the alias name for the keystore entry for
that signer is displayed in parentheses.

-tsa url

If -tsa http://exanple.tsa. url appears on the command line when signing a JAR file
then a time stamp is generated for the signature. The URL, http://exanpl e. tsa. url,
identifies the location of the Time Stamping Authority (TSA) and overrides any URL
found with the -t sacert option. The -t sa option doesn’t require the TSA public key
certificate to be present in the keystore.

To generate the time stamp, j ar si gner communicates with the TSA with the Time-
Stamp Protocol (TSP) defined in RFC 3161. When successful, the time stamp token
returned by the TSA is stored with the signature in the signature block file.

-tsacert alias

When -tsacert alias appears on the command line when signing a JAR file, a time
stamp is generated for the signature. The alias identifies the TSA public key certificate
in the keystore that is in effect. The entry's certificate is examined for a Subject
Information Access extension that contains a URL identifying the location of the TSA.
The TSA public key certificate must be present in the keystore when using the -
tsacert option.

-tsapolicyid policyid

Specifies the object identifier (OID) that identifies the policy ID to be sent to the TSA
server. If this option isn’t specified, no policy ID is sent and the TSA server will choose
a default policy ID.

Object identifiers are defined by X.696, which is an ITU Telecommunication
Standardization Sector (ITU-T) standard. These identifiers are typically period-
separated sets of non-negative digits like 1. 2. 3. 4, for example.

—tsadigestalg algorithm

Specifies the message digest algorithm that is used to generate the message imprint
to be sent to the TSA server. If this option isn't specified, SHA-256 will be used.

See Supported Algorithms. For a list of standard message digest algorithm names,
see "Appendix A: Standard Names" in Java Cryptography Architecture (JCA)
Reference Guide.

-internalsf

In the past, the . DSA (signature block) file generated when a JAR file was signed
included a complete encoded copy of the . SF file (signature file) also generated. This
behavior has been changed. To reduce the overall size of the output JAR file, the . DSA
file by default doesn’t contain a copy of the . SF file anymore. If -i nt er nal sf appears on
the command line, then the old behavior is utilized. This option is useful for testing. In
practice, don’t use the -internal sf option because it incurs higher overhead.

4-36

ORACLE

Chapter 4
jarsigner

-sectionsonly

If the - secti onsonl y option appears on the command line, then the . SF file (signature
file) generated when a JAR file is signed doesn'’t include a header that contains a
hash of the whole manifest file. It contains only the information and hashes related to
each individual source file included in the JAR file. See Signature File.

By default, this header is added, as an optimization. When the header is present,
whenever the JAR file is verified, the verification can first check to see whether the
hash in the header matches the hash of the whole manifest file. When there is a
match, verification proceeds to the next step. When there is no match, it is necessary
to do a less optimized verification that the hash in each source file information section
in the . SF file equals the hash of its corresponding section in the manifest file. See
JAR File Verification.

The -secti onsonl y option is primarily used for testing. It shouldn’t be used other than
for testing because using it incurs higher overhead.

-protected
Values can be either true or f al se. Specify true when a password must be specified
through a protected authentication path such as a dedicated PIN reader.

-providerName providerName

If more than one provider was configured in the j ava. security security properties file,
then you can use the - provi der Nane option to target a specific provider instance. The
argument to this option is the name of the provider.

For the Oracle PKCS #11 provider, provi der Nane is of the form SunPKCS11- TokenNane,
where TokenNane is the name suffix that the provider instance has been configured
with, as detailed in the configuration attributes table. For example, the following
command lists the contents of the PKCS #11 keystore provider instance with name
suffix Smart Card:

jarsigner -keystore NONE -storetype PKCS11
- provi der Name SunPKCS11- Smart Card
-list

-addprovider name[-providerArg arg]
Adds a security provider by name (such as SunPKCS11) and an optional configure
argument for - addpr ovi der .

-providerClass provider-class-name[-providerArg arg]

Used to specify the name of cryptographic service provider's master class file when
the service provider isn't listed in the j ava. security security properties file. Adds a
security provider by fully-qualified class hame and an optional configure argument for
the - provi der d ass.

Used with the - provi der Arg Confi gFi | ePat h option, the keyt ool and j arsi gner tools
install the provider dynamically and use Confi gFi | ePat h for the path to the token
configuration file. The following example shows a command to list a PKCS #11 keystore
when the Oracle PKCS #11 provider wasn’'t configured in the security properties file.

jarsigner -keystore NONE -storetype PKCS11
-provi derC ass sun.security. pkesll. SunPKCS11
-providerArg /nydir1/ mydir2/token.config
-1ist

-Jjavaoption

Passes through the specified j avaopt i on string directly to the Java interpreter. The
jarsi gner command is a wrapper around the interpreter. This option shouldn’t contain

4-37

ORACLE

Chapter 4
jarsigner

any spaces. It is useful for adjusting the execution environment or memory usage. For
a list of possible interpreter options, type java -h orjava - X at the command line.

-strict

During the signing or verifying process, the command may issue warning messages.
If you specify this option, the exit code of the tool reflects the severe warning
messages that this command found. See Errors and Warnings.

-conf url
Specifies a pre-configured options file.

Deprecated Options

The following j ar si gner options are deprecated as of JDK 9 and might be removed in
a future JDK release.

-altsigner class

This option specifies an alternative signing mechanism. The fully qualified class hame
identifies a class file that extends the com sun. j arsi gner. Cont ent Si gner abstract class.
The path to this class file is defined by the - al t si gner pat h option. If the - al t si gner
option is used, then the j ar si gner command uses the signing mechanism provided by
the specified class. Otherwise, the j arsi gner command uses its default signing
mechanism.

For example, to use the signing mechanism provided by a class hamed

com sun. sun. j ar si gner. Aut hSi gner, use the jarsigner option - al t si gner

com sun. j ar si gner. Aut hSi gner

-altsignerpath classpathlist

Specifies the path to the class file and any JAR file it depends on. The class file name
is specified with the -al t si gner option. If the class file is in a JAR file, then this option
specifies the path to that JAR file.

An absolute path or a path relative to the current directory can be specified. If

cl asspat hl i st contains multiple paths or JAR files, then they should be separated with
a:

e Colon (:) on Oracle Solaris, Linux, and macOS
e Semicolon (;) on Windows

This option isn’t necessary when the class is already in the search path.
The following example shows how to specify the path to a JAR file that contains the
class file. The JAR file name is included.

-al tsignerpath /hone/user/liblauthsigner.jar

The following example shows how to specify the path to the JAR file that contains the
class file. The JAR file name is omitted.

-al tsignerpath /hone/ user/cl asses/ coni sun/t ool s/j arsi gner/

Errors and Warnings

During the signing or verifying process, the j ar si gner command may issue various
errors or warnings.

If there is a failure, the j arsi gner command exits with code 1. If there is no failure, but
there are one or more severe warnings, the j arsi gner command exits with code 0
when the -strict option is not specified, or exits with the OR-value of the warning

4-38

ORACLE

Chapter 4
jarsigner

codes when the -strict is specified. If there is only informational warnings or no
warning at all, the command always exits with code 0.

For example, if a certificate used to sign an entry is expired and has a KeyUsage
extension that doesn’t allow it to sign a file, the j arsi gner command exits with code 12
(=4+8) when the -strict option is specified.

Note: Exit codes are reused because only the values from 0 to 255 are legal on
Oracle Solaris, Linux, and OS X.

The following sections describes the names, codes, and descriptions of the errors and
warnings that the j arsi gner command can issue.

Failure

Reasons why the j arsi gner command fails include (but aren’t limited to) a command
line parsing error, the inability to find a keypair to sign the JAR file, or the verification of
a signed JAR falils.

failure
Code 1. The signing or verifying fails.

Severe Warnings

Note:

Severe warnings are reported as errors if you specify the -strict option.

Reasons why the j arsi gner command issues a severe warning include the certificate
used to sign the JAR file has an error or the signed JAR file has other problems.

hasExpiredCert
Code 4. This JAR contains entries whose signer certificate has expired.

notYetValidCert
Code 4. This JAR contains entries whose signer certificate isn't yet valid.

chainNotValidated
Code 4. This JAR contains entries whose certificate chain isn’t validated.

signerSelfSigned
Code 4. This JAR contains entries whose signer certificate is self signed.

weakAlg
Code 4. An algorithm specified on the command line is considered a security risk.

badKeyUsage
Code 8. This JAR contains entries whose signer certificate's KeyUsage extension
doesn't allow code signing.

badExtendedKeyUsage
Code 8. This JAR contains entries whose signer certificate's ExtendedKeyUsage
extension doesn’t allow code signing.

4-39

ORACLE

Chapter 4
jarsigner

badNetscapeCertType
Code 8. This JAR contains entries whose signer certificate's NetscapeCertType
extension doesn't allow code signing.

hasUnsignedEntry
Code 16. This JAR contains unsigned entries which haven't been integrity-checked.

notSignedByAlias
Code 32. This JAR contains signed entries which aren't signed by the specified
alias(es).

aliasNotinStore
Code 32. This JAR contains signed entries that aren’t signed by alias in this keystore.

Informational Warnings

Informational warnings include those that aren’t errors but regarded as bad practice.
They don’t have a code.

hasExpiringCert
This JAR contains entries whose signer certificate expires within six months.

noTimestamp

This JAR contains signatures that doesn’t include a timestamp. Without a timestamp,
users may not be able to validate this JAR file after the signer certificate's expiration
date (YYYY- M\t DD) or after any future revocation date.

Example of Signing a JAR File

Use the following command to sign bundl e. j ar with the private key of a user whose
keystore alias is j ane in a keystore named nyst or e in the wor ki ng directory and name
the signed JAR file sbundl e. j ar:

jarsigner -keystore /working/nystore
-storepass <keystore password>
-keypass <private key password>
-signedjar shundle.jar bundle.jar jane

There is no -si gf i | e specified in the previous command so the generated . SF and . DSA
files to be placed in the signed JAR file have default names based on the alias name.
They are named JANE. SF and JANE. DSA.

If you want to be prompted for the store password and the private key password, then
you could shorten the previous command to the following:

jarsigner -keystore /working/nystore
-signedj ar sbundle.jar bundle.jar jane

If the keyst or e is the default keyst ore (. keyst or e in your home directory), then you don’t
need to specify a keyst ore, as follows:

jarsigner -signedjar shundle.jar bundle.jar jane

If you want the signed JAR file to overwrite the input JAR file (bundl e. j ar), then you
don't need to specify a - si gnedj ar option, as follows:

jarsigner bundle.jar jane

4-40

Chapter 4
jarsigner

Example of Verifying a Signed JAR File

To verify a signed JAR file to ensure that the signature is valid and the JAR file wasn't
been tampered with, use a command such as the following:

jarsigner -verify sbundle.jar

When the verification is successful, jar verified is displayed. Otherwise, an error
message is displayed. You can get more information when you use the - ver bose
option. A sample use of j arsi gner with the -verbose option follows:

jarsigner -verify -verbose shundle.jar

198 Fri Sep 26 16:14:06 PDT 1997 META-1NF/ MANI FEST. MF
199 Fri Sep 26 16:22:10 PDT 1997 META-1NF/ JANE. SF
1013 Fri Sep 26 16:22:10 PDT 1997 META-1NF/ JANE. DSA
snk 2752 Fri Sep 26 16:12:30 PDT 1997 Acl Ex. cl ass
snk 849 Fri Sep 26 16:12:46 PDT 1997 test.class

s = signature was verified

m=entry is listed in manifest
k = at least one certificate was found in keystore
jar verified.

Example of Verification with Certificate Information

If you specify the - certs option with the -verify and - ver bose options, then the output
includes certificate information for each signer of the JAR file. The information includes
the certificate type, the signer distinguished name information (when it is an X.509
certificate), and in parentheses, the keystore alias for the signer when the public key
certificate in the JAR file matches the one in a keystore entry, for example:

jarsigner -keystore /working/nystore -verify -verbose -certs nmyTest.jar

198 Fri Sep 26 16:14:06 PDT 1997 META-| NF/ MANI FEST. MF

199 Fri Sep 26 16:22:10 PDT 1997 META-| NF/ JANE. SF

1013 Fri Sep 26 16:22:10 PDT 1997 META- I NF/ JANE. DSA

208 Fri Sep 26 16:23:30 PDT 1997 META- | NF/ JAVATEST. SF

1087 Fri Sep 26 16:23:30 PDT 1997 META- I NF/ JAVATEST. DSA
snk 2752 Fri Sep 26 16:12:30 PDT 1997 Tst.cl ass

X. 509, CN=Test Group, OkJava Software, O=Oracle, L=CUP, S=CA, C=US (javatest)
X. 509, CN=Jane Smith, OkJava Software, O=Oracle, L=cup, S=ca, C=us (jane)

s = signature was verified

m=entry is listed in manifest

k = at least one certificate was found in keystore
jar verified.

If the certificate for a signer isn’t an X.509 certificate, then there is no distinguished
name information. In that case, just the certificate type and the alias are shown. For
example, if the certificate is a PGP certificate, and the alias is bob, then you would get:
PGP, (bob).

ORACLE 4-41

policytool

kinit

ORACLE

Chapter 4
policytool

You use pol i cyt ool to read and write a plain text policy file based on user input
through the utility GUI.

Note:

The poli cyt ool tool has been deprecated in JDK 9 and might be removed in
the next major JDK release.

Synopsis
policytool [-file] [filename]

-file
Directs the pol i cyt ool command to load a policy file.

filename
The name of the file to be loaded.

Description

The poli cyt ool command calls an administrator's GUI that enables system
administrators to manage the contents of local policy files. A policy file is a plain-text
file with a . pol i cy extension, that maps remote requestors by domain, to permission
objects. For details, see Default Policy Implementation and Policy File Syntax.

Examples
To run the policy tool administrator utility, use the following command:

pol i cyt ool

To run the pol i cyt ool command and load the specified file, use the following command
line:

policytool -file mypolicyfile

You use the ki ni t tool and its options to obtain and cache Kerberos ticket-granting
tickets.

This tool is similar in functionality to the ki ni t tool that is commonly found in other
Kerberos implementations, such as SEAM and MIT Reference implementations. The
user must be registered as a principal with the Key Distribution Center (KDC) prior to
running ki nit.

Synopsis

Initial ticket request:

4-42

ORACLE

Chapter 4
kinit

kinit [-Al [-f] [-p] [-c cache_name] [-I lifetime] [-r renewable_tinme] [[-k [-t
keytab_file_nane]] [principal] [password]

Renew a ticket:

kinit -R [-c cachenanme] [principal]

Description
By default, on Windows, a cache file named USER_HOME\ kr b5cc_USER NAME is generated.

The identifier USER_HOME is obtained from the j ava. | ang. Syst emproperty user . hone.
USER_NAME is obtained from the j ava. | ang. Syst emproperty user . name. If USER HOME is null,
the cache file is stored in the current directory from which the program is running.
USER_NAME is the operating system's login user name. This user name could be different
than the user's principal name. For example, on Windows, the cache file could be C

\ W ndows\ User s\ duke\ kr b5cc_duke, in which duke is the USER_NAME and C:\ W ndows\ User s

\ duke is the USER_HOME.

By default, the keytab name is retrieved from the Kerberos configuration file. If the
keytab name isn’t specified in the Kerberos configuration file, the kinit tool assumes
that the name is USER_HOME\ kr b5. keyt ab

If you don't specify the password using the passwor d option on the command line, the
ki nit tool prompts you for the password.

Note:

The passwor d option is provided only for testing purposes. Don't specify your
password in a script or provide your password on the command line. Doing so
will compromise your password.

Commands

You can specify one of the following commands. After the command, specify the
options for it.

-A
Doesn’t include addresses.

-f
Issues a forwardable ticket.

-p
Issues a proxiable ticket.

-c cache_name
The cache name (for example, FI LE: D: \ t enp\ nykr b5cc).

-1 lifetime
Sets the lifetime of a ticket.

-r renewable_time
Sets the total lifetime that a ticket can be renewed.

4-43

klist

ORACLE

Chapter 4
klist

-R
Renews a ticket.

-k
Uses keytab

-t keytab_filename
The keytab name (for example, D: \ wi nnt\ prof i | es\ duke\ kr b5. keyt ab).

principal
The principal name (for example, duke@xanpl e. com).

password
Theprinci pal 's Kerberos password. Don’t specify this on the command line or in a
script.

-help
Displays instructions.

Examples

Requests credentials valid for authentication from the current client host, for the
default services, storing the credentials cache in the default location (C:\ W ndows\ User s
\ duke\ krb5cc_duke):

kinit duke@xanpl e.com

Requests proxiable credentials for a different principal and store these credentials in a
specified file cache:

kinit -p -c FILE C\Wndows\ User s\ duke\ credenti al s\ krb5cc_caf ebeef
caf ebeef @xanpl e. com

Requests proxiable and forwardable credentials for a different principal and stores
these credentials in a specified file cache:

kinit -f -p -c FILE C\Wndows\ User s\ duke\ credenti al s\ krb5cc_caf ebeef
caf ebeef @xanpl e. com

Displays the help menu for the ki nit tool:

kinit -help

You use the kli st tool to display the entries in the local credentials cache and key
table. The kt ab tool enables you to view entries in the local credentials cache and key
table.

Synopsis
kiist [[-c] [-f] [-e] [-a[-n]]] [-k [-t] [-K] [name] [-help]]
Description

The kli st tool displays the entries in the local credentials cache and key table. After
you modify the credentials cache with the ki ni t tool or modify the keytab with the kt ab

4-44

Chapter 4
klist

tool, the only way to verify the changes is to view the contents of the credentials cache
or keytab using the kli st tool. The kli st tool doesn’t change the Kerberos database.

Commands

-C
Specifies that the credential cache is to be listed.
The following are the options for credential cache entries:

-f
Show credential flags.

-e
Show the encryption type.

-a
Show addresses.

-n
If the - a option is specified, don't reverse resolve addresses.

-k
Specifies that key tab is to be listed.
List the keytab entries. The following are the options for keytab entries:

-t
Show keytab entry timestamps.

-K
Show keytab entry DES keys.

-e
Shows keytab entry key type.

name
Specifies the credential cache name or the keytab name. File-based cache or

keytab's prefix is FI LE: . If the name isn't specified, the kl i st tool uses default values
for the cache name and keytab. The ki nit documentation lists these default values.

-help
Displays instructions.

Examples
List entries in the keytable specified including keytab entry timestamps and DES keys:

klist -k -t -K FILE \tenp\nmykrb5cc

List entries in the credentials cache specified including credentials flag and address
list:

klist -c¢c -f FILE \tenp\nykrb5cc

ORACLE 4-45

ktab

ORACLE

Chapter 4
ktab

You use the kt ab tool to manage the principal names and service keys stored in a local
key table.

Synopsis

ktab commands options

commands options
Lists the keytab name and entries, adds new key entries to the keytab, deletes
existing key entries, and displays instructions. See Commands and Options.

Description

The kt ab enables the user to manage the principal names and service keys stored in a
local key table. Principal and key pairs listed in the keytab enable services running on
a host to authenticate themselves to the Key Distribution Center (KDC).

Before configuring a server to use Kerberos, you must set up a keytab on the host
running the server. Note that any updates made to the keytab using the kt ab tool don't
affect the Kerberos database.

A keytab is a host's copy of its own keylist, which is analogous to a user's password.
An application server that needs to authenticate itself to the Key Distribution Center
(KDC) must have a keytab which contains its own principal and key. If you change the
keys in the keytab, you must also make the corresponding changes to the Kerberos
database. The kt ab tool enables you to list, add, update or delete principal names and
key pairs in the key table. None of these operations affect the Kerberos database.

Security Alert

Don't specify your password on the command line. Doing so can be a security risk. For
example, an attacker could discover your password while running the UNIX ps
command.

Just as it is important for users to protect their passwords, it is equally important for
hosts to protect their keytabs. You should always store keytab files on the local disk
and make them readable only by root. You should never send a keytab file over a
network in the clear.

Commands and Options

-1 [-e] [-t]
Lists the keytab name and entries. When - e is specified, the encryption type for each
entry is displayed. When -t is specified, the timestamp for each entry is displayed.

-a principal_name [password] [-n kvno] [-append]

Adds new key entries to the keytab for the given principal name with an optional
passwor d. If a kvno is specified, new keys' Key Version Numbers equal to the value,
otherwise, automatically incrementing the Key Version Numbers. If - append is
specified, new keys are appended to the keytab, otherwise, old keys for the same
principal are removed.

4-46

ORACLE

Chapter 4
ktab

No changes are made to the Kerberos database. Don’t specify the password on
the command line or in a script. This tool will prompt for a password if it isn’t
specified.

-d principal_name [-f] [-e etype] [kvno | all] old]
Deletes key entries from the keytab for the specified principal. No changes are made
to the Kerberos database.

e Ifkvno is specified, the tool deletes keys whose Key Version Numbers match
kvno. If al | is specified, delete all keys.

« If ol d is specified, the tool deletes all keys except those with the highest kvno. The
default action is al | .

* Ifetype is specified, the tool only deletes keys of this encryption type. et ype should
be specified as the numberic value et ype defined in RFC 3961, section 8. A
prompt to confirm the deletion is displayed unless - f is specified.

When et ype is provided, only the entry matching this encryption type is deleted.
Otherwise, all entries are deleted.

-help
Displays instructions.

Common Options
This option can be used with the -1, -a or -d commands.

-k keytab name
Specifies the keytab name and path with the FI LE: prefix.

Examples

Lists all the entries in the default keytable
ktab -|

Adds a new principal to the key table (note that you will be prompted for your
password)

ktab -a duke@xanpl e. com

Deletes a principal from the key table

ktab -d duke@xanpl e.com

4-47

Remote Method Invocation (RMI) Tools
and Commands

rmic

ORACLE

You use the RMI tools and commands to create applications that interact over the web
or with another network.

The following sections describe the RMI tools and commands:

* rmic: You use the rni ¢ compiler to generate stub and skeleton class files using the
Java Remote Method Protocol (JRMP) and stub and tie class files (IIOP protocol)
for remote objects.

* rmiregistry: You use the rniregi stry command to create and start a remote object
registry on the specified port on the current host.

* rmid: You use the rni d command to start the activation system daemon that
enables objects to be registered and activated in a Java Virtual Machine (JVM).

e serialver: You use the serial ver command to return the seri al Ver si onU D for one
or more classes in a form suitable for copying into an evolving class.

You use the rni c compiler to generate stub and skeleton class files using the Java
Remote Method Protocol (JRMP) and stub and tie class files (IlOP protocol) for remote
objects. The rni ¢ compiler generates Object Management Group (OMG) Interface
Definition Language (IDL).

Synopsis
rmc [options | package-qualified-class-names

options
This represent the command-line opt i ons for ther i ¢ compiler. See Options for the
rmic Compiler.

package-qualified-class-names
Class names that include their packages, for example, j ava. awt . Col or.

Description

Deprecation Note: Support for static generation of Java Remote Method Protocol
(JRMP) stubs and skeletons has been deprecated. Oracle recommends that you use
dynamically generated JRMP stubs instead, eliminating the need to use this tool for
JRMP-based applications.

The rni ¢ compiler generates stub and skeleton class files using the JRMP and stub
and tie class files (IIOP protocol) for remote objects. These class files are generated
from compiled Java programming language classes that are remote object
implementation classes. A remote implementation class is a class that implements the
interface j ava. rni . Renot e. The class names in the rmi ¢ command must be for classes

5-1

ORACLE

Chapter 5
rmic

that were compiled successfully with the j avac command and must be fully package
qualified. For example, running the rni c command on the class file name Hel | ol npl as
shown here creates the Hel | ol npl _St ub. cl ass file in the hel | o subdirectory (named for
the class's package):

rmc hello.Hell ol npl

A skeleton for a remote object is a JRMP protocol server-side entity that has a method
that dispatches calls to the remote object implementation.

A tie for a remote object is a server-side entity similar to a skeleton, but communicates
with the client with the IIOP protocol.

A stub is a client-side proxy for a remote object that's responsible for communicating
method invocations on remote objects to the server where the actual remote object
implementation resides. A client's reference to a remote object, therefore, is actually a
reference to a local stub.

By default, the rni c command generates stub classes that use the 1.2 JRMP stub
protocol version only, as though the -v1. 2 option were specified. See Options for the
rmic Compiler.

A stub implements only the remote interfaces, and not local interfaces that the remote
object also implements. Because a JRMP stub implements the same set of remote
interfaces as the remote object, a client can use the Java programming language built-
in operators for casting and type checking. For IIOP, the Port abl eRenot eChj ect . narr ow
method must be used.

Options for the rmic Compiler

-bootclasspath path
Overrides the location of bootstrap class files.

-classpath path

Specifies the path the rmi ¢ command uses to look up classes. This option overrides
the default or the CLASSPATH environment variable when it is set. Directories are
separated by colons or semicolons, depending on your operating system. The
following is the general format for pat h:

e Oracle Solaris, Linux, and OS X: . : your _pat h, for example: . :/usr/l ocal /java/
cl asses

e Windows: . ; your_path, for example: .;/usr/local /javal cl asses

-d directory
Specifies the root destination directory for the generated class hierarchy. You can use
this option to specify a destination directory for the stub, skeleton, and tie files.

* Oracle Solaris, Linux, and OS X: For example, the following command places
the stub and skeleton classes derived from M/d ass into the directory /j ava/
cl asses/ exanpl ecl ass:

rmc -d /javalcl asses exanpl ecl ass. M/Cl ass

* Windows: For example, the following command places the stub and skeleton
classes derived from M/Q ass into the directory C:\j ava\ cl asses\ exanpl ecl ass:

rmc -d C\java\classes exanpl ecl ass. M/Cl ass

5-2

Chapter 5
rmic

If the - d option isn't specified, then the default behavior is as though - d was specified.
The package hierarchy of the target class is created in the current directory, and
stub/tie/skeleton files are placed within it.

-9
Enables the generation of all debugging information, including local variables. By
default, only line number information is generated.

-idl

Causes the rni c command to generate OMG IDL for the classes specified and any
classes referenced. IDL provides a purely declarative, programming language-
independent way to specify an API for an object. The IDL is used as a specification for
methods and data that can be written in and called from any language that provides
CORBA bindings. This includes Java and C++ among others.

When the -idl option is used, other options also include:

e The -al ways or - al waysgener at e options force regeneration even when existing
stubst/ties/IDL are newer than the input class.

e The -factory option uses the fact ory keyword in generated IDL.

e The -idl Mdul e from JavaPackage][. cl ass] tol DLMbdul e specifies | DLEnti ty package
mapping, for example: -i dl Modul e ny. nodul e ny: :real ::idl nod.

e -idlFilefromavaPackage[.class] tol DLFile specifies | DLEntity file mapping, for
example: -idlFile test.pkg. X TEST16.idl .

-iiop

Causes the rni c command to generate 1IOP stub and tie classes, rather than JRMP
stub and skeleton classes. A stub class is a local proxy for a remote object and is
used by clients to send calls to a server. Each remote interface requires a stub class,
which implements that remote interface. A client reference to a remote object is a
reference to a stub. Tie classes are used on the server side to process incoming calls,
and dispatch the calls to the proper implementation class. Each implementation class
requires a tie class.

If you call the rmi ¢ command with the -ii op, then it generates stubs and ties that
conform to this naming convention:

_inpl enent ati onNane_st ub. cl ass
_interfaceName_tie.class

When you use the -ii op option, other options also include:

e The -al ways or - al waysgener at e options force regeneration even when existing
stubs/ties/IDL are newer than the input class.

* The -nol ocal st ubs option means don't create stubs optimized for same-process
clients and servers.

e The -noval ueMet hods option must be used with the -i dl option. The -
noVal ueMet hods option prevents the addition of val uet ype methods and initializers
to emitted IDL. These methods and initializers are optional for value types, and
are generated unless the - noval ueMet hods option is specified with the -i dl option.

* The - poa option changes the inheritance from
org. ong. CORBA 2_3.portabl e. (bj ect | npl to org. ony. Portabl eServer. Servant. The
Port abl eServer module for the Portable Object Adapter (POA) defines the native

ORACLE 5-3

ORACLE

Chapter 5
rmic

Servant type. In the Java programming language, the Servant type is mapped to
the Java org. ong. Port abl eServer. Servant class. It serves as the base class for all
POA servant implementations and provides a number of methods that can be
called by the application programmer, and methods that are called by the POA
and that can be overridden by the user to control aspects of servant behavior.
This behavior is based on the OMG IDL to Java Language Mapping Specification,
CORBA V 2.3.1 ptc/00-01-08.pdf .

-Jargument
Used with any Java command, the -J option passes the ar gunent that follows it (no
spaces between the - J and the argument) to the Java interpreter.

-keep or -keepgenerated
Retains the generated . j ava source files for the stub, skeleton, and tie classes and
writes them to the same directory as the . cl ass files.

-nowarn
Turns off warnings. When the - nowar n options is used, the compiler doesn’t print
warnings.

-nowrite
Doesn't write compiled classes to the file system.

-vcompat (deprecated)

Generates stub and skeleton classes that are compatible with both the 1.1 and 1.2
JRMP stub protocol versions. This option was the default in releases before 5.0. The
generated stub classes use the 1.1 stub protocol version when loaded in a JDK 1.1
virtual machine and use the 1.2 stub protocol version when loaded into a 1.2 (or later)
virtual machine. The generated skeleton classes support both 1.1 and 1.2 stub
protocol versions. The generated classes are relatively large to support both modes of
operation. Note: This option has been deprecated. See Description.

-verbose
Causes the compiler and linker to print messages about what classes are being
compiled and what class files are being loaded.

-v1.1 (deprecated)

Generates stub and skeleton classes for the 1.1 JRMP stub protocol version only. The
-v1. 1 option is useful only for generating stub classes that are serialization-compatible
with existing, statically deployed stub classes generated by the rni c command from
JDK 1.1 that can’t be upgraded (and dynamic class loading isn’t being used). Note:
This option has been deprecated. See Description.

-v1.2 (deprecated)

(Default) Generates stub classes for the 1.2 JRMP stub protocol version only. No
skeleton classes are generated because skeleton classes aren’t used with the 1.2
stub protocol version. The generated stub classes don’t work when they’re loaded into
a JDK 1.1 virtual machine. Note: This option has been deprecated. See Description.

Environment Variables

CLASSPATH
Used to provide the system a path to user-defined classes.

5-4

http://www.omg.org/cgi-bin/doc?ptc/00-01-06GUID-2DB1A93C-FC30-44C1-A4D9-9486B52D86C1
http://www.omg.org/cgi-bin/doc?ptc/00-01-06GUID-2DB1A93C-FC30-44C1-A4D9-9486B52D86C1

Chapter 5
rmiregistry

* Oracle Solaris, Linux, OS X: Directories are separated by colons, for
example: .:/usr/local /javal cl asses.

* Windows: Directories are separated by colons, for example: .; C:\usr\local \java
\cl asses.

rmiregistry
You use the rniregi stry command to create and start a remote object registry on the
specified port on the current host.
Synopsis
rmregistry options port

options
This represents the option for the rni regi stry command. See Options

port
The number of a port on the current host at which to start the remote object registry.

Description

The rniregi stry command creates and starts a remote object registry on the specified
port on the current host. If the port is omitted, then the registry is started on port 1099.
The rniregi stry command produces no output and is typically run in the background,

for example:

rmregistry &
A remote object registry is a bootstrap naming service that's used by RMI servers on

the same host to bind remote objects to names. Clients on local and remote hosts can
then look up remote objects and make remote method invocations.

The registry is typically used to locate the first remote object on which an application
needs to call methods. That object then provides application-specific support for
finding other objects.

The methods of the java. rni.registry. Locat eRegi stry class are used to get a registry
operating on the local host or local host and port.

The URL-based methods of the j ava. rni . Nani ng class operate on a registry and can
be used to:

e Bind the specified name to a remote object
e Return an array of the names bound in the registry

e Return a reference, a stub, for the remote object associated with the specified
name

e Rebind the specified name to a new remote object

« Destroy the binding for the specified name that's associated with a remote object

ORACLE 5-5

rmid

ORACLE

Chapter 5
rmid

Options

-Joption
Used with any Java option to pass the opti on following the -J (no spaces between the
-J and the option) to the Java interpreter.

You use the rni d command to start the activation system daemon that enables objects
to be registered and activated in a Java Virtual Machine (JVM).

Synopsis
rmd [options]

options
This represent the command-line options for the rni d command. See Options for rmid.

Description

The rni d command starts the activation system daemon. The activation system
daemon must be started before objects that can be activated are either registered with
the activation system or activated in a JVM.

Start the daemon by executing the ri d command and specifying a security policy file,
as follows:

rmd -J-Dava. security. policy=rnid.policy

When you run Oracle's implementation of the rnmi d command, by default you must
specify a security policy file so that the rnmi d command can verify whether or not the
information in each Acti vati onG oupDesc is allowed to be used to start a JVM for an
activation group. Specifically, the command and options specified by the

CommandEnvi ronment and any properties passed to an Acti vati onG oupDesc constructor
must now be explicitly allowed in the security policy file for the rni d command. The
value of the sun. rmi . acti vati on. execPol i cy property dictates the policy that the rni d
command uses to determine whether or not the information in an Acti vati onG oupDesc
can be used to start a JVM for an activation group. For more information see the
description of the - J-Dsun. rmi . acti vati on. execPol i cy=pol i cy option.

Executing the rni d command starts the Activat or and an internal registry on the
default port 1098 and binds an Act i vat i onSyst emto the name
java.rni.activation. ActivationSystemin this internal registry.

To specify an alternate port for the registry, you must specify the - port option when
you execute the rni d command. For example, the following command starts the
activation system daemon and a registry on the registry's default port, 1099.

rmd -J-Djava. security.policy=rnmd.policy -port 1099
Start RMID on Demand (Oracle Solaris and Linux Only)

An alternative to starting rmi d from the command line is to configure i netd (Oracle
Solaris) or xi net d (Linux) to start rni d on demand.

When RMID starts, it attempts to obtain an inherited channel (inherited from i net d/
xi net d) by calling the System i nheri t edChannel method. If the inherited channel is null

5-6

ORACLE

Chapter 5
rmid

or not an instance of j ava. ni 0. channel s. Ser ver Socket Channel , then RMID assumes that
it wasn't started by i net d/xi net d, and it starts as previously described.

If the inherited channel is a Server Socket Channel instance, then RMID uses the

java. net. Server Socket obtained from the Server Socket Channel as the server socket that
accepts requests for the remote objects it exports: The registry in which the

java.rm . activation.ActivationSystemis bound and the java.rni.activation. Acti vat or
remote object. In this mode, RMID behaves the same as when it is started from the
command line, except in the following cases:

e Output printed to System err is redirected to a file. This file is located in the
directory specified by the j ava. i o. t npdi r system property (typically / var/tnp or/
t mp) with the prefix rni d-err and the suffix t np.

* The -port option isn't allowed. If this option is specified, then RMID exits with an
error message.

e The -10g option is required. If this option isn’t specified, then RMID exits with an
error message

Options for rmid

-C option

Specifies an option that's passed as a command-line argument to each child process
(activation group) of the rni d command when that process is created. For example,
you could pass a property to each virtual machine spawned by the activation system
daemon:

rmd - C Dsone. property=val ue

This ability to pass command-line arguments to child processes can be useful for
debugging. For example, the following command enables server-call logging in all
child JVMs.

rmd -CDjava.rm.server.logCal |l s=true

-J option

Specifies an option that's passed to the Java interpreter running RMID command. For
example, to specify that the rmi d command use a policy file named rni d. pol i cy, the -J
option can be used to define the j ava. security. pol i cy property on the rni d command
line, for example:

rmd -J-Djava. security.policy-rmid.policy

-J-Dsun.rmi.activation.execPolicy=policy

Specifies the policy that the RMID command employs to check commands and
command-line options used to start the JVM in which an activation group runs. This
option exists only in Oracle's implementation of the Java RMI activation daemon. If
this property isn't specified on the command line, then the result is the same as
though - J-Dsun. rmi . acti vati on. execPol i cy=def aul t were specified.

The possible values of pol i cy can be def aul t, pol i cyd assName, or none.

e default

The def aul t or unspecified value execPol i cy allows the rmi d command to execute
commands with specific command-line options only when the rni d command was
granted permission to execute those commands and options in the security policy

5-7

Chapter 5
rmid

file that the rmi d command uses. Only the default activation group implementation
can be used with the default execution policy.

The rni d command starts a JVM for an activation group with the information in the
group's registered activation group descriptor, Acti vati onG oupDesc. The group
descriptor specifies an optional Act i vati onG oupDesc. ConmandEnvi ronnent that
includes the command to execute to start the activation group and any command-
line options to be added to the command line. By default, the rni d command uses
the j ava command found in j ava. hone. The group descriptor also contains
properties overrides that are added to the command line as options defined as: -
Dpr oper t y=val ue. The com sun. rni . rmi d. ExecPer ni ssi on permission grants the rnid
command permission to execute a command that's specified in the group
descriptor's CommandEnvi ronment to start an activation group. The

com sun. rni . rnid. ExecOpti onPer ni ssi on permission enables the rni d command to
use command-line options, specified as properties overrides in the group
descriptor or as options in the CommandEnvi r onnent when starting the activation
group. When granting the rni d command permission to execute various
commands and options, the permissions ExecPer ni ssi on and ExecOpt i onPer ni ssi on
must be granted to all code sources.

ExecPer i ssi on class: Represents permission for the rni d command to execute a
specific command to start an activation group.

ExecPer ni ssi on syntax: The name of ExecPer ni ssi on is the path name of a
command to grant the rmi d command permission to execute.

A path name that ends in a slash (/) and an asterisk (*) indicates that all of the
files are contained in that directory where the slash is the file-separator character,
Fi | e. separat or Char .

A path name that ends in a slash (/) and a minus sign (-) indicates that all files
and subdirectories are contained in that directory (recursively).

A path name that consists of the special token <<ALL FI LES>> matches any file.

A path name that consists of an asterisk (*) indicates that all the files are in the
current directory.

A path name that consists of a minus sign (-) indicates that all the files are in the
current directory and (recursively) all files and subdirectories are contained in the
current directory.

ExecQpt i onPer ni ssi on class: Represents permission for the rni d command to use
a specific command-line option when starting an activation group. The name of
ExecOpt i onPer ni ssi on is the value of a command-line option.

ExecQpt i onPer ni ssi on syntax: Options support a limited wild card scheme. An
asterisk signifies a wild card match, and it can appear as the option name itself
(matches any option), or an asterisk (*) can appear at the end of the option name
only when the asterisk (*) follows a dot (.) or an equals sign (=).

For example: * or - Dnydi r. * or - Da. b. c=* is valid, but *nydi r or - Da*b or ab* isn’t
valid.

Policy file for rmid

When you grant the rmi d command permission to execute various commands and
options, the permissions ExecPer ni ssi on and ExecOpt i onPer ni ssi on must be

ORACLE 5-8

ORACLE

Chapter 5
rmid

granted to all code sources (universally). It is safe to grant these permissions
universally because only the rmi d command checks these permissions.

An example policy file that grants various execute permissions to the rni d
command is:

— Oracle Solaris:

grant {
permnission comsun. rm.rnid. ExecPerni ssion
"/files/apps/javaljdkl.7.0/solaris/bin/java";

permission comsun. rm.rnid. ExecPermi ssion
"/files/apps/rmdcnds/*";

perni ssion comsun.rm.rmd. ExecOptionPernission
"-Djava. security.policy=/files/policies/group.policy";

pernmi ssion comsun. rm.rmd. ExecOptionPernission
"-Djava. security. debug=*";

perni ssion comsun. rm.rmd. ExecOptionPernission
"-Dsun.rm.*";
|3
— Windows:

grant {
permnission comsun. rm.rnid. ExecPerni ssion
"c:\\files\\apps\\java\\jdkl. 7. 0\\wi n\\bin\\java";

permission comsun. rm.rnid. ExecPermi ssion
"c:\\files\\apps\\rmdcnds*";

permi ssion comsun. rm.rmd. ExecOptionPernission
"-Djava.security.policy=c:\\files\\policies\\group.policy";

perni ssion comsun.rm.rmd. ExecOptionPernission
"-Djava. security. debug=*";

pernission comsun. rm.rmd. ExecOptionPernission
"-Dsun.rm.*";
|3
The first permission granted allows the rni d command to execute the 1.7.0
release of the j ava command, specified by its explicit path name. By default, the
version of the j ava command found in j ava. hone is used (the same one that the
rmi d command uses), and doesn’t need to be specified in the policy file. The
second permission allows the rni d command to execute any command in either
the directory / fil es/ apps/ rmi dcnds (Oracle Solaris, Linux, and macOS) or the
directory c:\files\apps\rm dcnds\ (Windows).

The third permission granted, ExecQpt i onPer ni ssi on, allows the rni d command to
start an activation group that defines the security policy file to be either /fil es/
pol i ci es/ group. pol i cy (Oracle Solaris) or c:\fil es\policies\group.policy
(Windows). The next permission allows the j ava. securi ty. debug property to be
used by an activation group. The last permission allows any property in the
sun.rni property name hierarchy to be used by activation groups.

5-9

ORACLE

Chapter 5
rmid

To start the rmi d command with a policy file, the j ava. security. pol i cy property
needs to be specified on the rni d command line, for example:

rmd -J-Djava. security. policy=rmd.policy.
* policyd assNane

If the default behavior isn’t flexible enough, then an administrator can provide,
when starting the rni d command, the name of a class whose checkExecConmand
method is executed to check commands to be executed by the rmi d command.

The pol i cyd assNane specifies a public class with a public, no-argument
constructor and an implementation of the following checkExecCommand method:

public void checkExecConmand(ActivationG oupDesc desc, String[] command)
throws SecurityException;

Before starting an activation group, the rmi d command calls the policy's
checkExecCommand method and passes to it the activation group descriptor and an
array that contains the complete command to start the activation group. If the
checkExecCommand throws a Securi t yExcepti on, then the rni d command doesn’t
start the activation group and an Acti vati onExcepti on is thrown to the caller
attempting to activate the object.

° none

If the sun. rni.activation. execPol i cy property value is none, then the rni d
command doesn’t perform any validation of commands to start activation groups.

-log dir

Specifies the name of the directory that the activation system daemon uses to write its
database and associated information. The log directory defaults to creating a log, in
the directory in which the rni d command was executed.

-port port

Specifies the port that the registry uses. The activation system daemon binds
Acti vati onSyst em with the name java.rni. activation. Activati onSystem in this
registry. The Activati onSyst emon the local machine can be obtained using the
following Nani ng. | ookup method call:

inport java.rm.*;
inport java.rm.activation.*;

ActivationSystem system system = (ActivationSysten
Nami ng. | ookup("//:port/java.rni.activation.ActivationSystent);

-stop

Stops the current invocation of the rni d command for a port specified by the - port
option. If no port is specified, then this option stops the rni d invocation running on port
1098.

Environment Variables

CLASSPATH
Used to provide the system a path to user-defined classes. Directories are separated
by semicolons (;) (Windows) or by colons () (Oracle Solaris). For example:

e Oracle Solaris:

.:lusr/local/javalcl asses

5-10

Chapter 5
serialver

« Windows:

.;C\usr\local\java\cl asses

serialver

You use the seri al ver command to return the seri al Ver si onUl D for one or more
classes in a form suitable for copying into an evolving class.

Synopsis
serialver [options] [classnanes]

options
This represents the command-line options for the seri al ver command. See Options
for serialver.

classnames
The classes for which seri al Versi onUl Dis to be returned.

Description

The serial ver command returns the seri al Ver si onul D for one or more classes in a
form suitable for copying into an evolving class. When called with no arguments, the
seri al ver command prints a usage line.

Options for serialver

-classpath path-files
Sets the search path for application classes and resources. Separate classes and
resources with a colon (2).

-Joption

Passes the specified opt i on to the Java Virtual Machine, where opt i on is one of the
options described on the reference page for the Java application launcher. For
example, - J- Xms48msets the startup memory to 48 MB.

Notes

The seri al ver command loads and initializes the specified classes in its virtual
machine, and by default, it doesn’t set a security manager. If the seri al ver command
is to be run with untrusted classes, then a security manager can be set with the
following option:

-J-Dj ava. securi ty. manager

When necessary, a security policy can be specified with the following option:

-J-Djava. security.policy=policy file

ORACLE 5-11

Java IDL and RMI-IIOP Tools and
Commands

You use the Java Interface Definition Language (IDL) and Java Remote Method
Invocation interface over the Internet Inter-Orb Protocol (RMI-1IOP) tools and
commands to create applications that use OMG-standard IDL and CORBA/IIOP.

The following sections describe the Java IDL and RMI-IIOP tools and commands:

e tnameserv: You use the t naneserv command as a substitute for Object Request
Broker Daemon (ORBD). It starts the Java Interface Definition Language (IDL)
name server.

e idlj: You use the idlj command to generate Java bindings for a specified Interface
Definition Language (IDL) file.

e orbd: You use the orbd command for the client to transparently locate and call
persistent objects on servers in the CORBA environment.

* servertool: You use the servert ool command-line tool to register, unregister, start
up, and shut down a persistent server.

tnameserv

ORACLE

You use the t naneserv command as a substitute for Object Request Broker Daemon
(ORBD).

Synopsis
tnameserve -ORBInitial Port [nameserverport]

-ORBInitialPort nameserverport

The initial port where the naming service listens for the bootstrap protocol used to
implement the ORB resol ve_initial _references andlist_initial _references
methods.

Description

Java Interface Definition Language (IDL) includes the Object Request Broker Daemon
(ORBD). ORBD is a daemon process that contains a Bootstrap Service, a Transient
Naming Service, a Persistent Naming Service, and a Server Manager. The Java IDL
tutorials all use ORBD, but you can substitute the t naneserv.command for the or bd
command in any of the examples that use a Transient Naming Service.

The CORBA Common Object Services (COS) Naming Service provides a tree-
structure directory for object references similar to a file system that provides a
directory structure for files. The Transient Naming Service provided with Java IDL,
t nameserv, is a simple implementation of the COS Naming Service specification.

Object references are stored in the name space by name and each object reference-
name pair is called a name binding. Name bindings can be organized under haming

6-1

ORACLE

Chapter 6
tnameserv

contexts. Naming contexts are name bindings and serve the same organizational
function as a file system subdirectory. All bindings are stored under the initial naming
context. The initial naming context is the only persistent binding in the name space.
The rest of the name space is lost when the Java IDL naming service process stops
and restarts.

For an applet or application to use COS naming, its ORBD must know the port of a
host running a naming service or have access to an initial naming context string for
that naming service. The naming service can be either the Java IDL naming service or
another COS-compliant naming service.

Start the Naming Service

You must start the Java IDL naming service before an application or applet that uses
its naming service. Installation of the Java IDL product creates a script (Oracle Solaris,
Linux, and OS X: t naneser v) or executable file (Windows: t naneser v. exe) that starts the
Java IDL naming service. Start the naming service so that it runs in the background.

If you specify otherwise, then the Java IDL naming service listens on port 900 for the
bootstrap protocol used to implement the Object Request Broker (ORB)
resolve_initial _references and list_initial_references nethods, as follows:

tnameserv -ORBInitial Port nanmeserverporté&

If you don't specify the name server port, then port 900 is used by default. When
running Oracle Solaris software, you must become the root user to start a process on
a port below 1024. For this reason, it's recommended that you use a port number
greater than or equal to 1024. To specify a different port, for example, 1050, and to run
the naming service in the background, from an Oracle Solaris, Linux, or OS X
command shell, enter:

tnameserv -ORBInitial Port 1050&

From an MS-DOS system prompt (Windows), enter:

start tnameserv -ORBlnitial Port 1050

Clients of the name server must be made aware of the new port number. Do this by
setting the org. ong. CORBA. ORBI ni ti al Port property to the new port number when you
create the ORB object.

Run the Server and Client on Different Hosts

In most of the Java IDL and RMI-IIOP tutorials, the naming service, server, and client
are all running on the development machine. In real-world deployment, the client and
server probably run on different host machines from the Naming Service.

For the client and server to find the Naming Service, they must be made aware of the
port number and host on which the naming service is running. Do this by setting the
org. ong. CORBA. ORBI ni ti al Port and org. ong. CORBA. ORBI ni ti al Host properties in the client
and server files to the machine name and port number on which the Naming Service is
running.

You could also use the command-line options - ORBI ni ti al Port naneser ver port# and -
ORBI ni tial Host nameser ver host nane to tell the client and server where to find the
naming service.

6-2

ORACLE

Chapter 6
tnameserv

For example, suppose the Transient Naming Service, t naneser v is running on port
1050 on host naneser ver host . The client is running on host cl i ent host, and the server
is running on host ser ver host .

Start t nameser v on the host naneser ver host :

tnameserv -ORBInitial Port 1050

Start the server on the serverhost :

java Server -ORBlInitial Port 1050 - ORBInitial Host nameserver host

Start the client on the cl i ent host :

java Client -ORBInitial Port 1050 - ORBInitial Host nameserver host

Stop the Naming Service

To stop the Java IDL naming service, use the relevant operating system command,
such as ki |l for an Oracle Solaris, Linux, or OS X process or Ct r | +Cfor a Windows
process. The naming service continues to wait for invocations until it's explicitly shut
down. Note that names registered with the Java IDL naming service disappear when
the service is terminated.

Options

-Joption

Passes opti on to the JVM, where opti on is one of the options described on the
reference page for the Java application launcher. For example, - J- Xmrs48msets the
startup memory to 48 MB. See Overview of Java Options.

Example of Adding Objects to the Name Space
This example shows how to add names to the following simple tree:

Initial Namng Context
pl ans
Per sonal
cal endar
schedul e

In the tree, pl ans is an object reference and Per sonal is a naming context that contains
two object references: cal endar and schedul e.

The following sample program is a self-contained Transient Naming Service client that
creates the tree:

inport java.util.Properties;
i mport org. ongy. CORBA. *;
i mport org. ong. CosNami ng. *;
public class NaneCient {
public static void main(String args[]) {

try {

In Start the Naming Service, the naneserver was started on port 1050. The following
code example ensures that the client program is aware of this port number.

6-3

ORACLE

Chapter 6
tnameserv

Properties props = new Properties();
props. put ("org. ong. CORBA. ORBI nitial Port", "1050");
ORB orb = ORB.init(args, props);

The following code example obtains the initial naming context and assigns it to ct x.
The second line copies ctx into a dummy object reference obj ref that is attached to
various names and added into the name space.

Nam ngContext ctx =
Nanmi ngCont ext Hel per. narr ow(
orb.resolve_initial _references("NaneService"));
Nani ngCont ext objref = ctx;

The following code example creates a name pl ans of type text and binds it to the
dummy object reference. The pl ans is then added under the initial naming context
using the rebi nd method. The rebi nd method enables you to run this program over and
over again without getting the exceptions from using the bi nd method.

NameConponent ncl = new NaneConponent ("plans", "text");
NameCormponent [] namel = {ncl};

ctx.rebind(nanel, objref);

Systemout.printIn("plans rebind successful!");

The following code example creates a naming context called Per sonal of type
di rectory. The resulting object reference, ct x2, is bound to the name and added under
the initial naming context.

NameCormponent nc2 = new NanmeConponent ("Personal ", "directory");
NameConponent[] name2 = {nc2};

Nam ngCont ext ctx2 = ctx. bind_new _context (name2);

Systemout. println("new namng context added..");

The remainder of the code binds the dummy object reference using the names
schedul e and cal endar under the Personal naming context (ct x2).

NameCormponent nc3 = new NaneConponent ("schedul e", "text");
NameCormponent [] name3 = {nc3};

ctx2. rebi nd(nane3, objref);

System out. println("schedul e rebind successful!");

NameCormponent nc4 = new NaneConponent ("cal endar", "text");
NameConmponent [] name4 = {nc4};
ctx2. rebi nd(nane4, objref);
System out. println("cal endar rebind successful!");
} catch (Exception e) {
e.printStackTrace(Systemerr);
}

}

Example of Browsing the Name Space
The following sample program shows how to browse the name space:

inport java.util.Properties;

i mport org. ongy. CORBA. *;

i mport org. ong. CosNami ng. *;
public class NaneQientlList {

public static void main(String args[]) {

6-4

ORACLE

Chapter 6
tnameserv

try {

In Start the Naming Service, the nanmeserver was started on port 1050. The following
code example ensures that the client program is aware of this port number:

Properties props = new Properties();
props. put ("org. ong. CORBA. ORBI ni tial Port", "1050");
ORB orb = ORB.init(args, props);

The following code example obtains the initial naming context:

Nam ngContext nc =
Nam ngCont ext Hel per. narr ow(
orb.resolve_initial _references("NaneService"));

The |i st method lists the bindings in the naming context. In this case, up to 1000
bindings from the initial naming context will be returned in the Bi ndi ngLi st Hol der ; any
remaining bindings are returned in the Bi ndi ngl t er at or Hol der .

Bi ndi ngLi st Hol der bl = new Bi ndi ngLi st Hol der ();
Bi ndi ngl t erat or Hol der bl I1t= new Bi ndi nglteratorHol der();
nc.list(1000, bl, bllt);

The following code example gets the array of bindings out of the returned
Bi ndi ngLi st Hol der . If there are no bindings, then the program ends.

Bi ndi ng bindings[] = bl.val ue;
if (bindings.length == 0) return;

The remainder of the code loops through the bindings and prints the names.
for (int i=0; i < bindings.length; i++) {

/'l get the object reference for each binding

org. ong. CORBA. (hj ect obj = nc.resol ve(bindings[i].binding_nane);
String objStr = orb.object_to_string(obj);

int lastlx = bindings[i].binding_nane.length-1;

Il check to see if this is a nam ng context
if (bindings[i].binding_type == BindingType.ncontext) {
Systemout.printin("Context: " +
bi ndi ngs[i].binding_name[lastIx].id);
} else {
Systemout.printin("Chject: " +
bi ndi ngs[i].binding_name[lastIx].id);
}

} catch (Exception e) {
e.printStackTrace(Systemerr)
}

6-5

il

ORACLE

Chapter 6
idlj

You use theidlj command to generate Java bindings for a specified Interface
Definition Language (IDL) file.

Synopsis

idlj [options] idlfile

options
The command-line options. Options can appear in any order, but must precede the
idfile. See Options for idlj.

idlfile
The name of a file that contains the Interface Definition Language (IDL) definitions.
Theidlfile is required and must appear last.

Description

The IDL-to-Java compiler generates the Java bindings for a specified IDL file. Some
earlier releases of the IDL-to-Java compiler were named i dl t oj ava.

Emit Client and Server Bindings

The following i dl j command generates an IDL file named M. i dI with client-side
bindings:

idj M.idl
The previous syntax is equivalent to the following:

idlj -fclient My.idl

The following example generates the server-side bindings, and includes the client-side
bindings plus the skeleton, all of which are Portable Object Adapter (Inheritance
Model).

idlg -fserver M.idl

If you want to generate both client and server-side bindings, then use one of the
following (equivalent) commands:

idlj -fclient -fserver M.idl
idlj -fall M.idl

There are two possible server-side models:

« Portable Servant Inheritance Model
e Tie Model

Portable Servant Inheritance Model

The default server-side model is the Portable Servant Inheritance Model. Given an
interface My defined in My. i dI , the file MyPOA. j ava is generated. You must provide the
implementation for the My interface, and the M interface must inherit from the M/POA
class. M/POA. j ava is a stream-based skeleton that extends the class

org. ong. Port abl eServer. Servant.

6-6

ORACLE

Chapter 6
idlj

The M interface implements the cal | Handl er interface and the operations interface
associated with the IDL interface that the skeleton implements.

The Port abl eSer ver module for the Portable Object Adapter (POA) defines the native
Servant type.

In the Java programming language, the Servant type is mapped to the Java

org. ong. Port abl eServer. Servant class. It serves as the base class for all POA servant
implementations and provides a number of methods that can be called by the
application programmer, and methods that are called by the POA and that can be
overridden by the user to control aspects of servant behavior.

Another option for the Inheritance Model is to use the - ol di npl Base flag to generate
server-side bindings that are compatible with releases of the Java programming
language before Java SE 1.4. The -ol dI npl Base flag is nonstandard, and these APIs
are deprecated. You would use this flag only for compatibility with existing servers
written in Java SE 1.3. In that case, you would need to modify an existing make file to
add the - ol dI npl Base flag to the i dIj compiler. Otherwise, POA-based server-side
mappings are generated. To generate server-side bindings that are backward
compatible, do the following:

idlj -fclient -fserver -oldlnplBase M.idl
idlj -fall -oldlnplBase My.idl

Given an interface Wy defined in My. i dlI , the file _M/I npl Base. j ava is generated. You
must provide the implementation for the My interface, and the My interface must inherit
from the _MI npl Base class.

Tie Model

The other server-side model is called the Tie Model. This is a delegation model.
Because it isn’t possible to generate ties and skeletons at the same time, they must be
generated separately. The following commands generate the bindings for the Tie
Model:

idlj -fall M.idl
idj -fall TIE M.idl

For the My interface, the second command generates M/PQATi e. j ava. The constructor to
the MyPOATI e class takes a delegate. In this example, using the default POA model, the
constructor also needs a POA. You must provide the implementation for the delegate.

It doesn't have to inherit from any other class, only from the interface MyQper ati ons. To
use it with the ORB, you must wrap your implementation within the M/POATi e class, for

example:

ORB orb = ORB.init(args, SystemgetProperties());

/1 Get reference to rootpoa & activate the POAManager
POA rootpoa = (POA)orb.resolve_initial _references("Root POA");
root poa. t he_POAManager (). activate();

/] create servant and register it with the ORB
MyServant myDel egate = new MyServant ();
myDel egat e. set ORB(orb) ;

/1l create a tie, with servant being the del egate.
M/PQOATi e tie = new MyPOATi e(nyDel egate, rootpoa);

6-7

ORACLE

Chapter 6
idlj

/] obtain the objectRef for the tie
M ref =tie. _this(orb);

You might want to use the Tie model instead of the typical Inheritance model when
your implementation must inherit from some other implementation. Java allows any
number of interface inheritances, but there’s only one slot for class inheritance. If you
use the inheritance model, then that slot is used up. With the Tie Model, that slot is
freed up for your own use. The drawback is that it introduces a level of indirection: One
extra method call occurs when a method is called.

For server-side generation, the following Tie Model bindings are compatible with
versions of the IDL-to-Java language mapping in versions earlier than Java SE 1.4.

idlj -oldlnplBase -fall M.idl
idlj -oldlnplBase -fall TIE My.idl

For the My interface, this generates My_Ti e. j ava. The constructor to the My_Ti e class
takes an i mpl object. You must provide the implementation for i npl , but it doesn’t have
to inherit from any other class, only the interface Hel | oQper at i ons. However to use it
with the ORB, you must wrap your implementation within My_Ti e. For example:

ORB orb = ORB.init(args, SystemgetProperties());

/] create servant and register it with the ORB
MyServant myDel egate = new MyServant ();
myDel egat e. set ORB(orb) ;

/] create a tie, with servant being the del egate.
M/POATi e tie = new MyPOATi e(nyDel egate);

/] obtain the objectRef for the tie
M ref =tie. _this(orb);

Specify Alternate Locations for Emitted Files

If you want to direct the emitted files to a directory other than the current directory,
then call the compiler in the following way:

idj -td /altdir M.idl
For the M interface, the bindings are emitted to /al tdir/ M. j ava., instead of ./ M. j ava.

Specify Alternate Locations for Include Files

If the Wy.idl file includes another i dl file, MyQ her.idl, then the compiler assumes that
the My her . i dl file resides in the local directory. If it resides in /i ncl udes, for example,
then you call the compiler with the following command:

idlj -i /includes M.idl
If My.idl alsoincluded in the Anot her.idl that resided in / norel ncl udes, for example,
then you call the compiler with the following command:

idlj -i /includes -i /morelncludes M.idl

Because this form of the i ncl ude file can become long, another way to indicate to the

compiler where to search for included files is provided. This technique is similar to the
idea of an environment variable. Create a file named i dl . conf i g in a directory that
is listed in your CLASSPATH variable. Inside i dl . confi g, provide a line with the following

form:

6-8

ORACLE

Chapter 6
idlj

i ncl udes=/incl udes; / nor el ncl udes

The compiler will find this file and read in the includes list. Note that in this example,
the separator character between the two directories is a semicolon (;). This separator
character is platform-dependent. On the Windows platform, use a semicolon; on the
Oracle Solaris, Linux, and OS X platforms, use a colon.

Emit Bindings for Include Files

By default, only those interfaces, structures, and so on, that are defined in the i dl file
on the command line have Java bindings generated for them. The types defined in
included files aren’t generated. For example, assume the following two i dI files:

M.idl file:

#include <M Q her.idl>
interface My

{
b

MQher.idl file:

interface M/Qt her

{
b

There’s a caveat to the default rule. Any #i ncl ude statements that appear at the global
scope are treated as described. These #i ncl ude statements can be thought of as
import statements. The #i ncl ude statements that appear within an enclosed scope are
treated as true #i ncl ude statements, which means that the code within the included file
is treated as though it appeared in the original file and, therefore, Java bindings are
emitted for it. For example:

M.idl file:

#include <MyQ her.idl >
interface My

{
#i ncl ude <Embedded. idl >
b

MQher.idl file:

interface M/Qt her

{
b

Enbedded. i dl

enum E {one, two, three};

Runidlj MW.idl to generate the following list of Java files. Notice that MyCt her . j ava
isn't generated because it's defined in an import-like #i ncl ude. However, E. j ava was
generated because it was defined in a true #i ncl ude. Notice that because the
Enbedded. i dI file is included within the scope of the interface My, it appears within the
scope of My (in MyPackage). If the -enit Al flag had been used, then all types in all
included files would have been emitted.

./ MyHol der . j ava
./ MyHel per.java

6-9

ORACLE

Chapter 6
idlj

./ _MStub.java

. I MyPackage

. I MyPackage/ EHol der . j ava
.| MyPackage/ EHel per. j ava
. I MyPackage/ E. j ava

M. java

Insert Package Prefixes

Suppose that you work for a company named ABC that has constructed the following
IDL file:

Wdgets.idl file:

modul e W dget s

{
interface W {...};

interface V2 {...};
¥

If you run this file through the IDL-to-Java compiler, then the Java bindings for W1 and
W2 are placed within the W dget s package. There’s an industry convention that states
that a company's packages should reside within a package named com <company nane>.
To follow this convention, the package name should be com abc. W dget s. To place this
package prefix onto the Widgets module, execute the following:

idj -pkgPrefix Wdgets comabc Wdgets.idl

If you have an IDL file that includes W dget s. i dI , then the - pkgPref i x flag must appear
in that command also. If it doesn’t, then your IDL file will be looking for a W dget s
package rather than a com abc. W dget s package.

If you have a number of these packages that require prefixes, then it might be easier
to place them into the i dl . confi g file described previously. Each package prefix line

should be of the form: PkgPrefi x. <t ype>=<prefi x>. The line for the previous example

would be PkgPref i x. W dget s=com abc. This option doesn’t affect the Repository ID.

Define Symbols Before Compilation

You might need to define a symbol for compilation that isn’t defined within the IDL file,
perhaps to include debugging code in the bindings. The command idlj -d MYDEF
M. idl is equivalent to putting the line #define MYDEF inside My.idl .

Preserve Preexisting Bindings

If the Java binding files already exist, then the - keep flag keeps the compiler from
overwriting them. The default is to generate all files without considering that they
already exist. If you've customized those files (which you shouldn’t do unless you're
very comfortable with their contents), then the - keep option is very useful. The
commandidj -keep M.idl emits all client-side bindings that don't already exist.

View Compilation Progress

The IDL-to-Java compiler generates status messages as it progresses through its
phases of execution. Use the -v option to activate the verbose mode:idlj -v M.idl.

By default, the compiler doesn’t operate in verbose mode.

6-10

ORACLE

Chapter 6
idlj

Display Version Information

To display the build version of the IDL-to-Java compiler, specify the - ver si on option on
the command-line:idlj -version.

Version information also appears within the bindings generated by the compiler. Any
additional options appearing on the command-line are ignored.

Options for idlj

-d symbol
Equivalent to the following line in an IDL file:

#define synbol

-emitAll
Emit all types, including those found in #i ncl uded files.

-fside

Defines what bindings to emit. The si de parameter can be client, server, server TI E,
all,orall TIE. The -fserver TIEand -fal | TI E options cause delegate model skeletons
to be emitted. This defaults to - fcl i ent when the flag isn’t specified.

-1 include-path
By default, the current directory to be scanned for included files. This option adds
another directory.

-keep
If a file to be generated already exists, then do not overwrite it. By default it is
overwritten.

-noWarn
Suppress warning messages.

-oldImplBase

Generates skeletons compatible with pre-1.4 JDK ORBs. By default, the POA
Inheritance Model server-side bindings are generated. This option provides backward-
compatibility with earlier releases of the Java programming language by generating
server-side bindings that are | npl Base Inheritance Model classes.

-pkgPrefix type prefix

Wherever t ype is encountered at file scope, prefix the generated Java package name
with prefi x for all files generated for that type. The type is the simple name of either a
top-level module, or an IDL type defined outside of any module.

-pkgTranslate type package

Whenever the module name type is encountered in an identifier, replace it in the
identifier with package for all files in the generated Java package. Note that pkgPref i x
changes are made first. The type value is the simple name of either a top-level
module, or an IDL type defined outside of any module and must match the full
package name exactly.

If more than one translation matches an identifier, then the longest match is chosen
as shown in the following example:

Command:

pkgTransl ate type pkg -pkgTransl ate type2.baz pkg2.fizz

6-11

orbd

ORACLE

Chapter 6
orbd

Resulting Translation:

type => pkg

type.ext => pkg. ext

type. baz => pkg2.fizz

type2. baz. pkg => pkg2.fizz. pkg

The following package names or g, or g. ong, or any subpackages of or g. ong can’t be
translated. Any attempt to translate these packages results in uncompilable code, and
the use of these packages as the first argument after - pkgTransl at e is treated as an
error.

-skeletonName xxx%yyy

Use xxx%yy as the pattern for naming the skeleton. The defaults are: %A for the POA
base class (-fserver or -fal), and _% npl Base for the ol dlI npl Base class (- ol dl npl Base)
and (-fserver or-fall).

-td dir
Use di r for the output directory instead of the current directory.

-tieName xxx%yyy

Use xxx%yy according to the pattern. The defaults are: %A for the POA base class (-
fserverTie or-fallTie), and _i e for the ol dI npl Base tie class (- ol dI npl Base) and (-
fserverTie or-fallTie).

-v Or -verbose
Displays release information and terminates.

-version
Displays release information and terminates.

Restrictions

Escaped identifiers in the global scope can't have the same spelling as IDL primitive
types, Qoj ect or Val ueBase. This is because the symbol table is preloaded with these
identifiers. Allowing them to be redefined would overwrite their original definitions.
Possible permanent restriction.

The fixed IDL type isn’ t supported.

Known Problems

No import is generated for global identifiers. If you call an unexported local i npl object,
then you do get an exception, but it seems to be due to a Nul | Poi nt er Excepti on in the
Server Del egat e DSI code.

You use the orbd command for the client to transparently locate and call persistent
objects on servers in the CORBA environment.

Synopsis
orbd [options]

options
Command-line options. See orbd Options.

6-12

ORACLE

Chapter 6
orbd

Description

The orbd command enables clients to transparently locate and call persistent objects
on servers in the CORBA environment. The Server Manager included with the or bd
tool is used to enable clients to transparently locate and call persistent objects on
servers in the CORBA environment. The persistent servers, while publishing the
persistent object references in the naming service, include the port number of the or bd
in the object reference instead of the port number of the server. The inclusion of an

or bd port number in the object reference for persistent object references has the
following advantages:

e The object reference in the naming service remains independent of the server life
cycle. For example, the object reference could be published by the server in the
Naming Service when it is first installed, and then, independent of how many times
the server is started or shut down, the or bd returns the correct object reference to
the calling client.

e The client needs to look up the object reference in the naming service only once,
and can keep reusing this reference independent of the changes introduced due to
server life cycle.

To access the or bd Server Manager, the server must be started using servert ool ,
which is a command-line interface for application programmers to register, unregister,
start up, and shut down a persistent server. See Server Manager.

When or bd starts, it also starts a naming service. See Start and Stop the Naming
Service below.

orbd Options

-ORBInitialPort nameserverport

Required. Specifies the port on which the name server should be started. After it's
started, or bd listens for incoming requests on this port. On Oracle Solaris software,
you must become the root user to start a process on a port below 1024. For this
reason, Oracle recommends that you use a port number above or equal to 1024.

Nonrequired Options

-port port

Specifies the activation port where or bd should be started, and where or bd will be
accepting requests for persistent objects. The default value for this port is 1049. This
port number is added to the port field of the persistent Interoperable Object
References (IOR).

-defaultdb directory
Specifies the base where the or bd persistent storage directory, orb. db, is created. If
this option isn't specified, then the default value is . / or b. db.

-serverPollingTime milliseconds

Specifies how often ORBD checks for the health of persistent servers registered
through the servert ool . The default value is 1000 ms. The value specified for

mi | liseconds must be a valid positive integer.

-serverStartupDelay milliseconds
Specifies how long or bd waits before sending a location-forward exception after a
persistent server that's registered through the servert ool is restarted. The default

6-13

ORACLE

Chapter 6
orbd

value is 1000 ms. The value specified for i | I i seconds must be a valid positive
integer.

-J option

Passes opti on to the Java Virtual Machine, where opt i on is one of the options
described on the reference page for the Java application launcher. For example, - J-
Xms48msets the startup memory to 48 MB. See Java.

Start and Stop the Naming Service

A naming service is a CORBA service that allows CORBA objects to be named by
means of binding a hame to an object reference. The name binding can be stored in
the naming service, and a client can supply the name to obtain the desired object
reference.

Before running a client or a server, you'll start or bd. The orbd command includes a
persistent naming service and a transient naming service, both of which are an
implementation of the COS Naming Service.

The Persistent Naming Service provides persistence for naming contexts. This means
that this information is persistent across service shutdowns and startups, and is
recoverable in the event of a service failure. If ORBD is restarted, then the Persistent
Naming Service restores the naming context graph, so that the binding of all clients'
and servers' names remains intact (persistent).

For backward compatibility, t nameser v a Transient Naming Service that shipped with
earlier releases of the JDK, is also included in this release of Java SE. A transient
naming service retains naming contexts as long as it is running. If there is a service
interruption, then the naming context graph is lost.

The - ORBI ni ti al Port argument is a required command-line argument for or bd, and is
used to set the port number on which the naming service runs. The following
instructions assume that you can use port 1050 for the Java IDL Object Request
Broker Daemon. When using Oracle Solaris software, you must become a root user to
start a process on a port lower than 1024. For this reason, it's recommended that you
use a port number above or equal to 1024. You can substitute a different port when
necessary.

To start or bd from an Oracle Solaris, Linux, or OS X command shell, enter:

orbd -ORBInitial Port 1050&

From an MS-DOS system prompt (Windows), enter:

start orbd -ORBInitialPort 1050

Now that or bd is running, you can run your server and client applications. When
running the client and server applications, they must be made aware of the port
number (and machine name, when applicable) where the Naming Service is running.
One way to do this is to add the following code to your application:

Properties props = new Properties();

props. put ("org. ong. CORBA. ORBI ni tial Port", "1050");
props. put ("org. ong. CORBA. ORBI ni tial Host", "MHost");
ORB orb = ORB.init(args, props);

In this example, the naming service is running on port 1050 on host M/Host . Another
way is to specify the port number or machine name, or both, when running the server

6-14

ORACLE

Chapter 6
orbd

or client application from the command line. For example, you would start your
Hel | oAppl i cati on with the following command-line:

java Hel | oApplication -ORBInitial Port 1050 - ORBInitial Host M/Host

To stop the naming service, use the relevant operating system command, such as
pkill orbd on Oracle Solaris, or Ct r | +Cin the DOS window in which or bd is running.
Note that names registered with the naming service can disappear when the service is
terminated because of a transient naming service. The Java IDL naming service will
run until it's explicitly stopped.

Server Manager

To access the orbd Server Manager and run a persistent server, the server must be
started with servert ool , which is a command-line interface for application programmers
to register, unregister, start up, and shut down a persistent server. When a server is
started using servertool , it must be started on the same host and port on which or bd is
executing. If the server is run on a different port, then the information stored in the
database for local contexts will be invalid and the service will not work properly.

In this example, you run the i dl j compiler and j avac compiler as shown in the tutorial.
To run the or bd Server Manager, follow these steps for running the application:

1. Startorbd.

* Oracle Solaris, Linux, or OS X command shell, enter: orbd - ORBI ni ti al Port
1050.

¢ MS-DOS system prompt (Windows), enter: start orbd -ORBInitial Port 1050.

2. Port 1050 is the port on which you want the name server to run. The -
ORBI ni tial Port option is a required command-line argument. When using Oracle
Solaris software, you must become a root user to start a process on a port below
1024. For this reason, it is recommended that you use a port number above or
equal to 1024.

3. Startservertool : servertool -CORBInitialPort 1050.

4. Make sure the name server (or bd) port is the same as in the previous step, for
example, - ORBIni tial Port 1050. The servertool must be started on the same port
as the name server.

5. Inthe servertool command-line interface, start Hel | o server from the servert ool
prompt:

servertool > register -server HelloServer -classpath . -applicationNane
Hel | oSer ver ApNane

6. The servertool registers the server, assigns it the name Hel | oSer ver ApNane, and
displays its server ID with a listing of all registered servers. Run the client
application from another terminal window or prompt:

java HelloClient -ORBInitial Port 1050 - ORBInitial Host | ocal host

7. For this example, you can omit - ORBI ni ti al Host | ocal host because the name
server is running on the same host as the Hel | o client. If the name server is
running on a different host, then use the -ORBI ni ti al Host nameser ver host option to
specify the host on which the IDL name server is running. Specify the name server
(orbd) port as done in the previous step, for example, - ORBI ni ti al Port 1050. When
you finish experimenting with the or bd Server Manager, shut down or terminate the

6-15

servertool

ORACLE

Chapter 6
servertool

name server (or bd) and servert ool . To shut down or bd from an MS-DOS prompt,
select the window that’s running the server and enter Ct r | +Cto shut it down.

8. To shut down orbd from an Oracle Solaris shell, find the process, and terminate
with the ki || command. The server continues to wait for invocations until it's
explicitly stopped. To shut down the servertool , enter qui t and press the Ent er
key.

You use the servert ool command-line tool to register, unregister, start up, and shut
down a persistent server.

Synopsis
servertool -ORBInitialPort nameserverport [options] [commands]

options
The command-line options. See Options for servertool.

commands
The command-line commands. See Using servertool Commands.

If you didn’t enter a command when starting ser vert ool , then command-line tool
displays with a servertool > prompt. Enter commands at the servertool > prompt.

If you enter a command when starting servert ool , then Java IDL Server Tool starts,
runs the command, and exits.

The - ORBIni ti al Port nameserverport option is required. The value for nameser ver por t
must specify the port on which or bd is running and listening for incoming requests.

Note:

On Oracle Solaris, you must become a root user to start a process on a port
below 1024. Oracle recommends that you use a port number above or equal
to 1024 for the naneserver port value.

Description

The servertool command provides the command-line interface for developers to
register, unregister, start up, and shut down a persistent server. Command-line
commands let you obtain various statistical information about the server. See Using
servertool Commands.

Options for servertool

-ORBInitialHost nameserverhost

This option is required to secify the host machine on which the name server runs and
listens for incoming requests. The naneserver host value must specify the port on
which the orb is running and listening for requests. The value defaults to | ocal host
when this option isn’t specified. If or bd and servertool are running on different

6-16

ORACLE

Chapter 6
servertool

machines, then you must specify the name or IP address of the host on which orbd is
running.

" Note:

On Oracle Solaris, you must become a root user to start a process on a port
below 1024. Oracle recommends that you use a port number above or equal
to 1024 for the naneser verport value.

-Joption

Passes opti on to the Java Virtual Machine, where opt i on is one of the options
described on the reference page for the Java application launcher. For example, - J-
Xms48msets the startup memory to 48 MB. See Java.

Using servertool Commands
You can start the servert ool command with or without a command-line command.

* If you don't specify a command when you start servert ool , then the command-line
tool displays the servertool prompt where you can enter commands: servertool >.

* If you specify a command when you start servert ool , then the Java IDL Server
Tool starts, executes the command, and exits.

register -server server-class-name -classpath classpath-to-server [-
applicationName application-name -args args-to-server -vmargs flags-for-JUM]

Registers a new persistent server with the Object Request Broker Daemon (ORBD). If
the server isn't already registered, then it's registered and activated. This command
causes an installation method to be called in the mai n class of the server identified by
the -server option. The installation method must be public static void

i nstal | (org. ony. CORBA. ORB) . The install method is optional and lets developers provide
their own server installation behavior, such as creating a database schema.

unregister -serverid server-id | -applicationName application-name

Unregisters a server from the ORBD with either its server ID or its application name.
This command causes an uninstallation method to be called in the mai n class of the
server identified by the - server option. The uni nstal | method must be public static
voi d uninstal | (org. omg. CORBA. ORB) . The uni nstal | method is optional and lets
developers provide their own server uninstallation behavior, such as undoing the
behavior of the i nstal | method.

getserverid -applicationName application-name
Returns the server ID that corresponds to the appl i cati on- nane value.

list
Lists information about all persistent servers registered with the ORBD.

listappnames
Lists the application names for all servers currently registered with the ORBD.

listactive
Lists information about all persistent servers that were started by the ORBD and are
currently running.

6-17

ORACLE

Chapter 6
servertool

locate -serverid server-id | -applicationName application-name [-
endpointTypeendpointType]

Locates the endpoints (ports) of a specific type for all ORBs created by a registered
server. If a server isn't already running, then it's activated. If an endpoi nt Type value
isn’'t specified, then the plain/non-protected endpoint associated with each ORB in a
server is returned.

locateperorb -serverid server-id | -applicationName application-name [-orbidORB-
name]

Locates all the endpoints (ports) registered by a specific Object Request Broker
(ORB) of a registered server. If a server isn't already running, then it's activated. If an
or bi d isn't specified, then the default value of "" is assigned to the or bi d. If any ORBs
are created with an or bi d of an empty string, then all ports registered by it are
returned.

orblist -serverid server-id | -applicationName application-name
Lists the ORBI d of the ORBs defined on a server. An ORBI d is the string name for the
ORB created by the server. If the server isn’t already running, then it's activated.

shutdown -serverid server-id | -applicationName application-name

Shut down an active server that's registered with ORBD. During execution of this
command, the shut down method defined in the class specified by either the - serveri d
or - appl i cati onNane parameter is also called to shut down the server process.

startup -serverid server-id | -applicationName application-name

Starts up or activate a server that is registered with ORBD. If the server isn’t running,
then this command starts the server. If the server is already running, then an error
message is displayed.

help
Lists all the commands available to the server through the servert ool command.

quit
Exits the servert ool command.

6-18

Java Deployment Tools and Commands

pack200

ORACLE

You use Java deployment tools and commands to package Java and JavaFX
applications for deployment.

The following sections describe the deployment tools and commands:

pack200: You use the pack200 command to transform a Java Archive (JAR) file into
a compressed pack200 file with the Java gzip compressor.

unpack200: You use the unpack200 command to transform a packed file into a JAR
file for web deployment.

javapackager: You use the j avapackager command to perform tasks related to
packaging Java and JavaFX applications.

You use the pack200 command to transform a Java Archive (JAR) file into a
compressed pack200 file with the Java gzip compressor.

Synopsis
pack200 [-opt... | --option=value] x.pack[.gz] JAR-file
-opt... | --option=value

Options can be in any order. The last option on the command line or in a properties
file supersedes all previously specified options. See Options for the pack200
Command.

x.pack[-gz]
Name of the output file.

file._jar
Name of the input file.

Description

The pack200 command is a Java application that transforms a JAR file into a
compressed pack200 file with the Java gzip compressor. This command packages a
JAR file into a compressed pack200 file for web deployment. The pack200 files are
highly compressed files that can be directly deployed to save bandwidth and reduce
download time.

Typical usage is shown in the following example, where nyar chi ve. pack. gz is produced
with the default pack200 command settings:

pack200 myarchive. pack. gz nyarchive.jar

7-1

ORACLE

Chapter 7
pack200

Note:

This command shouldn’t be confused with pack. The pack and pack200
commands are separate products. The Java SE API Specification provided
with the JDK is the superseding authority, when there are discrepancies.

Exit Status

The following exit values are returned: 0 for successful completion and a number
greater than 0 when an error occurs.

Options for the pack200 Command

The pack200 command has several options to fine-tune and set the compression
engine. The typical usage is shown in the following example, where nyar chi ve. pack. gz
is produced with the default pack200 command settings:

pack200 myarchive. pack. gz nyarchive.jar

-r or --repack

Produces a JAR file by packing and unpacking a JAR file. The resulting file can be
used as an input to the j arsi gner tool. The following example packs and unpacks the
myar chi ve. j ar file:

pack200 --repack myarchive-packer.jar nyarchive.jar
pack200 --repack myarchive.jar

-g Or --no-gzip
Produces a pack200 file. With this option, a suitable compressor must be used, and the
target system must use a corresponding decompresser.

pack200 --no-gzip nyarchive. pack nyarchive.jar

--gzip
(Default) Post-compresses the pack output with gzi p.

-G or -—strip-debug

Strips debugging attributes from the output. These include Sour ceFil e,

Li neNurber Tabl e, Local Vari abl eTabl e and Local Vari abl eTypeTabl e. Removing these
attributes reduces the size of both downloads and installations, also reduces the
usefulness of debuggers.

--keep-file-order
Preserves the order of files in the input file. This is the default behavior.

-0 or --no-keep-file-order

Reorders and transmits all elements. The packer can also remove JAR directory
names to reduce the download size. However, certain JAR file optimizations, such as
indexing, might not work correctly.

-SN or --segment-limit=N

The value is the estimated target size N (in bytes) of each archive segment. If a single
input file requires more than Nbytes, then its own archive segment is provided. As a
special case, a value of - 1 produces a single large segment with all input files, while a
value of 0 produces one segment for each class. Larger archive segments result in

7-2

ORACLE

Chapter 7
pack200

less fragmentation and better compression, but processing them requires more
memory.

The size of each segment is estimated by counting the size of each input file to be
transmitted in the segment with the size of its name and other transmitted properties.
The default is -1, which means that the packer creates a single segment output file. In
cases where extremely large output files are generated, users are strongly
encouraged to use segmenting or break up the input file into smaller JAR file.

A 10 MB JAR packed without this limit typically packs about 10 percent smaller, but
the packer might require a larger Java heap (about 10 times the segment limit).

-Evalue or --effort=value

If the value is set to a single decimal digit, then the packer uses the indicated amount
of effort in compressing the archive. Level 1 might produce somewhat larger size and
faster compression speed, while level 9 takes much longer, but can produce better
compression. The special value 0 instructs the pack200 command to copy through the
original JAR file directly with no compression. The JSR 200 standard requires any
unpacker to understand this special case as a pass-through of the entire archive.
The default is 5, to invest a modest amount of time to produce reasonable
compression.

-Hvalue or --deflate-hint=value

Overrides the default, which preserves the input information, but can cause the
transmitted archive to be larger. The possible values are: true, fal se, or keep.

If the val ue is true or false, then the packer 200 command sets the deflation hint
accordingly in the output archive and doesn’t transmit the individual deflation hints of
archive elements.

The keep value preserves deflation hints observed in the input JAR. This is the default.

-mvalue or --modification-time=value

The possible values are | at est and keep.

If the value is | at est, then the packer attempts to determine the latest modification
time, among all the available entries in the original archive, or the latest modification
time of all the available entries in that segment. This single value is transmitted as
part of the segment and applied to all the entries in each segment. This can
marginally decrease the transmitted size of the archive at the expense of setting all
installed files to a single date.

If the value is keep, then modification times observed in the input JAR are preserved.
This is the default.

-Pfile or --pass-file=Ffile

Indicates that a file should be passed through bytewise with no compression. By
repeating the option, multiple files can be specified. There is no path name
transformation, except that the system file separator is replaced by the JAR file
separator forward slash (/). The resulting file names must match exactly as strings
with their occurrences in the JAR file. If fi | e is a directory name, then all files under
that directory are passed.

-U action or --unknown-attribute=action

Overrides the default behavior, which means that the class file that contains the
unknown attribute is passed through with the specified acti on. The possible values for
actions are error, strip, Or pass.

If the value is error, then the entire pack200 command operation fails with a suitable
explanation.

If the value is stri p, then the attribute is dropped. Removing the required Java Virtual
Machine (JVM) attributes can cause class loader failures.

7-3

ORACLE

Chapter 7
pack200

If the value is pass, then the entire class is transmitted as though it is a resource.

-C attribute-name=layout or --class-attribute=attribute-name=action
(user-defined attribute) See the description for —Bat tri but e- nane=I ayout .

-F attribute-name=layout or --field-attribute=attribute-name=action
(user-defined attribute) See the description for —bat t ri but e- nane=l ayout

-Mattribute-name=Ilayout or --method-attribute=attribute-name=action
(user-defined attribute) See the description for —bat t ri but e- nane=Il ayout

-D attribute-name=layout or --code-attribute=attribute-name=action

(user-defined attribute) The attribute layout can be specified for a class entity, such as
class-attribute, field-attribute, method-attribute, and code-attribute. The
attribut e- name is the name of the attribute for which the layout or action is being
defined. The possible values for acti on are sone- | ayout-string, error, strip, pass.
sone- | ayout - stri ng: The layout language is defined in the JSR 200 specification, for
example: --cl ass-attribut e=Sour ceFi | e=RUH.

If the value is error, then the pack200 operation fails with an explanation.

If the value is stri p, then the attribute is removed from the output. Removing JVM-
required attributes can cause class loader failures. For example, - - cl ass-

attribut e=Conpi | ati onl D=pass causes the class file that contains this attribute to be
passed through without further action by the packer.

If the value is pass, then the entire class is transmitted as though it's a resource.

-f pack.properties or --config-file=pack._properties
Indicates a configuration file, containing Java properties to initialize the packer, can be
specified on the command line.

pack200 -f pack. properties nyarchive. pack.gz nyarchive.jar
more pack. properties

Ceneric properties for the packer.

modi fication. tine=latest

deflate. hint=fal se

keep.file.order=fal se

This option will cause the files bearing new attributes to
be reported as an error rather than passed unconpressed.
unknown. att ri but e=error

Change the segment limit to be unlinited.

segment. limt=-1

-v Oor --verbose
Outputs minimal messages. Multiple specification of this option will create more
verbose messages.

-gq or --quiet
Specifies quiet operation with no messages.

-1 filenameor --log-file=filename
Specifies a log file to output messages.

-? ,-h, or--help
Prints help information about this command.

-V or --version
Prints version information about this command.

7-4

Chapter 7
unpack200

-Joption
Passes the specified option to the Java Virtual Machine. For example, - J- Xms48msets
the startup memory to 48 MB.

unpack200

ORACLE

You use the unpack200 command to transform a packed file into a JAR file for web
deployment.

Synopsis
unpack200 [options] input-file JARfile

options
The command-line options. See Options for the unpack200 Command.

input-file

Name of the input file, which can be a pack200 gzi p file or a pack200 file. The input can
also be a JAR file produced by pack200 with an effort of 0, in which case the contents
of the input file are copied to the output JAR file with the pack200 marker.

JAR-file
Name of the output JAR file.

Description

The unpack200 command is a native implementation that transforms a packed file
produced by the pack200 into a JAR file for web deployment. An example of typical
usage follows. In the following example, the nyar chi ve. j ar file is produced from
nyar chi ve. pack. gz with the default unpack200 command settings.

unpack200 nyar chi ve. pack. gz nyarchive.jar

Options for the unpack200 Command

-H or --deflate -hint=value

Sets the deflation to be true, fal se, or keep on all entries within a JAR file. The default
mode is keep. If the value is true or f al se, then the - - def | at e=hi nt option overrides the
default behavior and sets the deflation mode on all entries within the output JAR file.

-r or--remove-pack-file
Removes the input pack file.

-v or --verbhose
Displays minimal messages. Multiple specifications of this option displays more
verbose messages.

-g or --quiet
Specifies quiet operation with no messages.

-1 filename or --log-file=filename
Specifies a log file where output messages are logged.

-? or -h or --help
Prints help information about the unpack200 command.

7-5

Chapter 7
javapackager

-V or --version
Prints version information about the unpack200 command.

-Joption

Passes option to the Java Virtual Machine, where opti on is one of the options
described on the reference page for the Java application launcher. For example, - J-
Xms48msets the startup memory to 48 MB.

Notes

This command shouldn’t be confused with the unpack command. They’re distinctly
separate products.

The Java SE API Specification provided with the JDK is the superseding authority in
case of discrepancies.

Exit Status

The following exit values are returned: O for successful completion, and a value that is
greater than 0 when an error occurred.

javapackager

ORACLE

You use the j avapackager command to perform tasks related to packaging Java and
JavaFX applications.

Synopsis
Javapackager conmmand [options]

command
The task that you want to perform. See Commands for the javapackager Command.

options

One or more options for the command, separated by spaces. See Options for the
createbss Command, Options for the createjar Command, Options for the deploy
Command, Options for the makeall Command, and Options for the signjar Command.

Note:

The j avapackager command isn't available on Oracle Solaris.

Description

The Java Packager tool compiles, packages, and prepares Java and JavaFX
applications for distribution. The j avapackager command is the command-line version.
For available Ant tasks, see JavaFX Ant Tasks in Java Platform, Standard Edition
Deployment Guide.

For self-contained applications, the Java Packager for JDK 9 packages applications
with a JDK 9 runtime image generated by the j I i nk tool. To package a JDK 8 or JDK 7
JRE with your application, use the JDK 8 Java Packager.

7-6

Chapter 7
javapackager

Commands for the javapackager Command

You can run the following commands from the command line, followed by the options
for the command.

-createbss
Converts CSS files into binary form. See Options for the createbss Command for the
options used with this command.

-createjar
Produces a JAR according to other parameters. See Options for the createjar
Command for the options used with this command.

-deploy

Assembles the application package for distribution. Modular and nonmodular
applications are supported. By default, the deploy task generates the base application
package. It can also generate a self-contained application package, if requested. See
Options for the deploy Command for the options used with this command.

The bundle for a self-contained application includes a custom runtime created by
calling j i nk. The Java Packager for JDK 9 packages applications with a JDK 9
runtime image. To package a JDK 8 or JDK 7 JRE with your application, use the JDK
8 Java Packager.

-makeall

Note:

The - makeal I command for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release.

Performs compilation, creat ej ar, and depl oy steps as one call, with most arguments
predefined, and attempts to generate all applicable self-contained application
packages. The source files must be located in a folder called src, and the resulting
files (JAR, JNLP, HTML, and self-contained application packages) are put in a folder
called di st. This command can be configured only in a minimal way and is as
automated as possible. See Options for the makeall Command for the options used
with this command.

-signjar

Note:

The -si gnj ar command for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release. It also doesn’t work with
multirelease JAR file. Instead, use the jarsigner tool to sign the JAR file.

Signs JAR files with a provided certificate. See Options for the signjar Command for
the options used with this command.

ORACLE .

ORACLE

Chapter 7
javapackager

Options for the createbss Command

-outdir dir
Name of the directory that receives the generated output files.

-srcdir dir
Base directory of the files to pack.

-srcfiles files
List of files in srcdi r. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be used.

Options for the createjar Command

-appclass app-class
Qualified name of the application class to be executed.

-argument arg
An unnamed argument to be inserted into the JNLP file as an <f x: ar gunent > element.

-classpath files
List of dependent JAR file names.

-manifestAttrs manifest-attributes
List of names and values for additional manifest attributes. Syntax:

"namel=val uel, nane2=val ue2,..."

-nocss2bin
The packager doesn’t convert CSS files to binary form before copying to JAR file.

-noembedlauncher
If present, the packager will not add the JavaFX launcher classes to the jarfile.

-outdir dir
Name of the directory that receives the generated output files.

-outfile filename
Name (without the extension) of the file that's generated.

-paramfile file
Properties file with named parameters and their default values to pass to the
application.

-preloader preloader-class
Qualified name of the JavaFX preloader class to be executed. Use this option only for
JavaFX applications. Don’t use for Java applications, including headless applications.

-runtimeversion version
Specifies the version of the required JavaFX Runtime.

-srcdir dir
Base directory of the files to pack.

7-8

ORACLE

Chapter 7
javapackager

-srcfiles files
List of files in srcdi r. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be packed.

Options for the deploy Command

--add-modules modulename[,modulename...]
Specifies the root modules to resolve in addition to the initial module.

-allpermissions
If present, the application requires all security permissions in the JNLP file.

-appclass app-class
Qualified name of the application class to be executed.

-argument arg
An unnamed argument to be inserted into an <f x: ar gunent > element in the JNLP file.

-Bbundler-argument=value

Provides information to the bundler that's used to package a self-contained
application. See Arguments for Self-Contained Application Bundles for information
about the arguments for each bundler.

-callbacks callback-methods
Specifies one or more user callback methods in generated HTML. The format is the
following:

"namel: val uel, nane2: val ue2,..."

-description description
Description of the application.

-embedjnlp
If present, the JNLP file embedded in the HTML document.

-embedCertificates
If present, the certificates will be embedded in the jnlp file.

-height height
Height of the application.

-htmlparamfile file
Properties file with parameters for the resulting application when it is run in the
browser.

-isExtension
If present, the srcfil es as extensions.

--limit-modules modulename[,modulename...]
Limits the universe of observable modules.

-m modulename [/mainclass] or --module modulename [/mainclass]
Specifies the initial module to resolve, and the name of the main class to execute if
not specified by the module.

-p module path or --module-path module path
A : separated list of directories, each directory is a directory of modules.

7-9

ORACLE

Chapter 7
javapackager

-name name
Name of the application.

-native type

Generate the files needed for a Java Web Start application when type is set to j nl p.
Otherwise, generate self-contained application bundles, if possible. Use the - B option
to provide arguments to the bundlers being used. If t ype is specified, then only a
bundle of this type is created. If no type is specified, then al | is used.

The following values are valid for type:

* jnlp: Generatesthe.jnl pand. htm files for a Java Web Start application.

e all: Runs all of the installers for the platform on which it's running, and creates a
disk image for the application. This value is used if t ype isn’t specified.

e installer: Runs all of the installers for the platform on which it's running.
* imge: Creates a disk image for the application.
Linux and Windows: The image is the directory that gets installed.
macOS: The image is the . app file.
* exe: Generates a Windows . exe package.
* nsi: Generates a Windows Installer package.
e dny: Generates a DMG file for macOS.
* pkg: Generates a . pkg package for macOS.
* mac. appSt ore: Generates a package for the Mac App Store.
e rpm Generates an RPM package for Linux.
* deb: Generates a Debian package for Linux.
-nosign
Linux and macOS: If present, the bundle generated for self-contained applications
isn't signed by the bundler. The default for bundlers that support signing is to sign the

bundle if signing keys are properly configured. This attribute is ignored by bundlers
that don’t support signing.

-outdir dir
Name of the directory that receives the generated output files.

-outfile filename
Name (without the extension) of the file that is generated.

-paramfile file
Properties file with named parameters and their default values to pass to the
application.

-preloader preloader-class
Qualified name of the JavaFX preloader class to be executed. Use this option only for
JavaFX applications. Don’t use for Java applications, including headless applications.

-srcdir dir
Base directory of the files to pack.

7-10

ORACLE

Chapter 7
javapackager

-srcfiles files
List of files in srcdi r. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be used.

--strip-native-commands [true|false]

Remove command-line tools such as j ava. exe from the Java runtime that's generated
for packaging with self-contained applications. The default is true. To keep the tools
in the runtime, specify f al se.

-templateld
Application ID of the application for template processing.

-templatelnFilename
Name of the HTML template file. Placeholders are in the following form:

#XXXX. YYYY(APPI D) #

APPI D is the identifier of an application and XXXX is one of following:

e DI. SCRIPT. URL
Location of dt j ava. j s in the Deployment Toolkit. By default, the location is
http://java.comjs/dtjava.js.

e DI. SCRI PT. CODE
Script element to include dt j ava. j s of the Deployment Toolkit.

e DI. EMBED. CODE. DYNAM C

Code to embed the application into a given placeholder. It is expected that the
code is wrapped in the function() method.

e DT. EMBED. CODE. ONLOAD

All of the code needed to embed the application into a web page using the onl oad
hook (except inclusion of dt j ava. j s).

e DT. LAUNCH. CODE

Code needed to launch the application. It's expected that the code is wrapped in
the function() method.

-templateQutFilename
Name of the HTML file generated from the template.

-title title
Title of the application.

-updatemode update-mode
Sets the update mode for the JNLP file.

-vendor vendor
Vendor of the application.

-width width
Width of the application.

7-11

ORACLE

Chapter 7
javapackager

Options for the makeall Command

Note:

The - nmakeal | command for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release.

-appclass app-class
Qualified name of the application class to be executed.

-classpath files
List of dependent JAR file names.

-height height
Height of the application.

-name name
Name of the application.

-preloader preloader-class
Qualified name of the JavaFX preloader class to be executed. Use this option only for
JavaFX applications. Don’t use for Java applications, including headless applications.

-V
Enables verbose output.

-width width
Width of the application.

Options for the signjar Command

Note:

The -si gnj ar command for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release. It also doesn’t work with
multirelease JAR files. Use the jarsigner tool to sign the JAR file.

-alias key-alias
Alias for the key.

-keyPass password
Password for recovering the key.

-keyStore file
Keystore file name.

-outdir dir
Name of the directory that receives the generated output files.

-storePass password
Password to check the integrity of the keystore or unlock the keystore.

7-12

ORACLE

Chapter 7
javapackager

-storeType type
Keystore type. The default value is j ks.

-srcdir dir
Base directory of the files to pack.

-srcfiles files
List of files in srcdi r. If omitted, all files in srcdir (which is a mandatory argument in
this case) will be packed.

Arguments for Self-Contained Application Bundles

The - Bbundl er - ar gunent =val ue option for the - depl oy command is used when
generating self-contained applications. This option enables you to set an argument for
the bundler that's used to create self-contained applications. To set more than one
argument, pass an instance of this option for each argument. Each type of bundler has
its own set of arguments.

The following sections describe the valid arguments for the available bundlers:

e General Bundler Arguments

* macOS Application Bundler Arguments
macOS DMG (Disk Image) Bundler Arguments
e macOS PKG Bundler Arguments

e Mac App Store Bundler Arguments

e Linux Debian Bundler Arguments

e Linux RPM Bundler Arguments

e Windows EXE Bundler Arguments

e Windows MSI Bundler Arguments

General Bundler Arguments

General bundler arguments are valid for all bundlers.

appVersion=version
Version of the application package. Some bundlers restrict the format of the version
string.

arguments=option=value

Arguments to pass to the application when it is started. Enclose the argument list in
guotes. To pass multiple options, separate the option-value pairs with spaces, for
example:

-Bargunments="this.is.a.test=tru one.nore.arg=affirmative"

classPath=path

Class path relative to the assembled application directory. The path is typically
extracted from the JAR file manifest, and doesn’t need to be set if you're using the
other j avapackager commands.

dropinResourcesRoot=directory
Directory in which to look for bundler-specific drop-in resources. For example, on
macOS, to look in the current directory for the | nf 0. pl i st file, use the following:

7-13

ORACLE

Chapter 7
javapackager

- Bdr opi nResour cesRoot =.
The file is then found in the current directory: package/ macosx/ I nfo. pli st.

icon=path

Location of the default icon to be used for application launchers and other assists.
Linux: The format must be . png.

macOS: The format must be . i cns.

Windows: The format must be . i co.

identifier=value

Default value that is used for other platform-specific values such as

mac. CFBundl el dent i fi er. Reverse DNS order is recommended, for example,
com exanpl e. appl i cation. my-application.

JvmOptions=option

Option to be passed to the JVM when the application is run. Any option that is valid
for the j ava command can be used. To pass more than one option, use multiple
instances of the - B option, as shown in the following example:

- Bj vimOpt i ons=- Xmx128m - Bj vmOpt i ons=- Xms128m

JvmProperties=property=value

Java system property to be passed to the VM when the application is run. Any
property that’s valid for the - D option of the j ava command can be used. Specify both
the property name and the value for the property. To pass more than one property,
use multiple instances of the - B option, as shown in the following example:

- Bj vnProperti es=api User Name=exanpl e - Bj viPr operti es=api Key=ahcdef 1234567890

mainJar=Ffilename

Name of the JAR file that contains the main class for the application. The file name is
typically extracted from the JAR file manifest, and doesn’t need to be set if you're
using the other j avapackager commands.

preferencesID=node

Preferences node to examine to check for JVM options that the user can override.
The node specified is passed to the application at runtime as the option -

Dapp. pref erences. i d. This argument is used with the user JVMpt i ons argument.

runtime=path
Location of the JRE or JDK to use with a Java Web Start application, valid only when
the - nati ve option is set to j nl p.

userJvmOptions=option=value

JVM options that users can override. Any option that’s valid for the j ava command can
be used. Specify both the option name and the value for the option. To pass more
than one option, use multiple instances of the - B option, as shown in the following
example:

- Buser Jvnpt i ons=- Xmx=128m - Buser JvnOpt i ons=- Xns=128m

macOS Application Bundler Arguments

mac.category=category
Category for the application. The category must be in the list of categories found on
the Apple Developer website.

7-14

ORACLE

Chapter 7
javapackager

mac.CFBundleldentifier=value

Value stored in the info plist for CFBundl el dent i fi er. This value must be globally
unigue and contain only letters, numbers, dots, and dashes. Reverse DNS order is
recommended, for example, com exanpl e. appl i cati on. ny-appli cation.

mac .CFBundleName=name
Name of the application as it appears on the macOS menu bar. A name of fewer than
16 characters is recommended. The default is the nane attribute.

mac.CFBundleVersion=value

Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the appVer si on argument. If the
appVer si on argument is specified with a valid value and the mac. CFBundl eVer si on
argument isn’'t specified, then the appVer si on value is used. If neither argument is
specified, then 100 is used as the version number.

mac.signing-key-developer-id-app=key

Name of the signing key used for Developer ID or Gatekeeper signing. If you imported
a standard key from the Apple Developer Website, then that key is used by default. If
no key can be identified, then the application isn’t signed.

mac.bundle-id-signing-prefix=prefix
Prefix that is applied to the signed binary when binaries that lack plists or existing
signatures are found inside the bundles.

macOS DMG (Disk Image) Bundler Arguments

The macOS DMG installer shows the license file specified by | i censeFi | e, if provided,
before allowing the disk image to be mounted.

licenseFile=path

Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources, for example, -
Bl i censeFi | e=COPYI NG.

systemWide=boolean
Flag that indicates which drag-to-install target to use. Set to true to show the
Applications folder. Set to f al se to show the Desktop folder. The default is tr ue.

mac.CFBundleVersion=value

Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the appVer si on argument. If the
appVer si on argument is specified with a valid value and the mac. CFBundl eVer si on
argument isn’t specified, then the appVer si on value is used. If neither argument is
specified, then 100 is used as the version number.

mac.dmg.simple=boolean

Flag that indicates if DMG customization steps that depend on executing AppleScript
code are skipped. Set to true to skip the steps. When set to true, the disk window
doesn’t have a background image, and the icons aren’t moved into place. If the

syst emW de argument is also set to t rue, then a symbolic link to the root Applications
folder is added to the DMG file. If the syst emN de argument is set to f al se, then only
the application is added to the DMG file, no link to the desktop is added.

7-15

ORACLE

Chapter 7
javapackager

macOS PKG Bundler Arguments

The macOS PKG installer presents a wizard and shows the license file specified by
the |i censeFi | e argument as one of the pages in the wizard. The user must accept the
terms before installing the application.

licenseFile=path

Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources, for example, -
Bl i censeFi | e=COPYI NG.

mac.signing-key-developer-id-installer=key

Name of the signing key used for Developer ID or Gatekeeper signing. If you imported
a standard key from the Apple Developer Website, then that key is used by default. If
no key can be identified, then the application isn’t signed.

mac.CFBundleVersion=value

Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the appVer si on argument. If the
appVer si on argument is specified with a valid value and the mac. CFBundl eVer si on
argument isn’t specified, then the appVer si on value is used. If neither argument is
specified, 100 is used as the version number.

Mac App Store Bundler Arguments

mac.app-store-entitlements=path

Location of the file that contains the entitlements that the application operates under.
The file must be in the format specified by Apple. The path to the file can be specified
in absolute terms, or relative to the invocation of j avapackager . If no entitlements are
specified, then the application operates in a sandbox that’s stricter than the typical
applet sandbox, and access to network sockets and all files is prevented.

mac.signing-key-app=key

Name of the application signing key for the Mac App Store. If you imported a standard
key from the Apple Developer Website, then that key is used by default. If no key can
be identified, then the application isn’t signed.

mac.signing-key-pkg=key

Name of the installer signing key for the Mac App Store. If you imported a standard
key from the Apple Developer Website, then that key is used by default. If no key can
be identified, then the application isn’t signed.

mac.CFBundleVersion=value

Version number for the application, used internally. The value must be at least one
integer and no more than three integers separated by periods (.) for example, 1.3 or
2.0.1. The value can be different than the value for the appVer si on argument. If the
appVer si on argument is specified with a valid value and the mac. CFBundl eVer si on
argument isn’'t specified, then the appVer si on value is used. If neither argument is
specified, then 100 is used as the version number. If this version is an upgrade for an
existing application, then the value must be greater than previous version number.

Linux Debian Bundler Arguments

The license file specified by the I'i censeFi | e argument isn’t presented to the user in all
cases, but the file is included in the application metadata.

7-16

ORACLE

Chapter 7
javapackager

category=category
Category for the application. See Registered Categories in Desktop Menu
Specification for examples.

copyright=string
Copyright string for the application. This argument is used in the Debian metadata.

emai l=address
Email address used in the Debian Maintainer field.

licenseFile=path

Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources, for example, -
Bl i censeFi | e=COPYI NG.

licenseType=type
Short name of the license type, such as - Bl i censeType=Proprietary, or "-
Bl i censeType=GPL v2 + O asspath Exception".

vendor=value
Corporation, organization, or individual providing the application. This argument is
used in the Debian Maintainer field.

Linux RPM Bundler Arguments

category=category
Category for the application. See Registered Categories in Desktop Menu
Specification for examples.

licenseFile=path

Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources, for example, -
Bl i censeFi | e=COPYI NG.

licenseType=type
Short name of the license type, such as - Bl i censeType=Propri etary, or " -
Bl i censeType=GPL v2 + C asspath Exception".

vendor=value
Corporation, organization, or individual providing the application.

Windows EXE Bundler Arguments

copyright=string

Copyright string for the application. The string must be a single line no longer than
100 characters. This argument is used in various executable file and registry
metadata.

installdirChooser=boolean

Flag that indicates if the user can choose the directory in which the application is
installed. Set to true to show a dialog box for the user to choose the directory. Set to
fal se to install the application in the directory indicated by the syst em de argument.
The default is f al se.

7-17

http://standards.freedesktop.org/menu-spec/latest/apa.html
http://standards.freedesktop.org/menu-spec/latest/apa.html

ORACLE

Chapter 7
javapackager

licenseFile=path

Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources, for example, -
Bl i censeFi | e=COPYI NG.

menuHint=boolean
Flag that indicates if a shortcut is installed on the Start menu or Start screen. Set to
true to install the shortcut. The default is t r ue.

shortcutHint=boolean
Flag that indicates if a shortcut is placed on the desktop. Set to t rue to add a shortcut
to the desktop. The default is fal se.

systemWide=boolean

Flag that indicates if the application is installed in the Pr ogr am Fi | es directory or in
the standard location in the users home directory. Set to t r ue to install the application
in Program Fi | es. Setto fal se to install the application in the user's home
directory. The default is f al se.

win.menuGroup=group
Menu group in which to install the application when nenuHi nt is true. This argument is
ignored when nenuHi nt is f al se.

vendor=value
Corporation, organization, or individual providing the application. This argument is
used in various executable file and registry metadata.

Windows MSI Bundler Arguments

installdirChooser=boolean

Flag that indicates if the user can choose the directory in which the application is
installed. Set to t rue to show a dialog box for the user to choose the directory. Set to
f al se to install the application in the directory indicated by the syst emiW de argument.
The default is f al se.

licenseFile=path

Location of the End User License Agreement (EULA) to be presented or recorded by
the bundler. The path is relative to the packaged application resources, for example, -
Bl i censeFi | e=COPYI NG.

menuHint=boolean
Flag that indicates if a shortcut is installed on the Start menu or Start screen. Set to
true to install the shortcut. The default is tr ue.

shortcutHint=boolean
Flag that indicates if a shortcut is placed on the desktop. Set to true to add a shortcut
to the desktop. The default is f al se.

systemWide=boolean

Flag that indicates if the application is installed in the Program Files directory or in the
standard location in the users home directory. Set to true to install the application in
Program Files. Set to f al se to install the application in the user's home directory. The
default is true.

7-18

Chapter 7
javapackager

win.menuGroup=group
Menu group in which to install the application when nenuHi nt is true. This argument is
ignored when menuHi nt is f al se.

vendor=value
Corporation, organization, or individual providing the application. This argument is
used in various executable file and registry metadata.

Deprecated Options

The following options are no longer used by the packaging tool and are ignored if
present.

-embedCertificates
If present, the certificates will be embedded in the JNLP file. Deprecated -depl oy
option.

-noembedlauncher
If present, the packager will not add the JavaFX launcher classes to the JAR file.
Deprecated.

Notes

e A -v option can be used with any task command to enable verbose output.

* When the -srcdir option is allowed in a command, it can be used more than once.
If the -srcfil es option is specified, then the files named in the argument are
looked for in the location specified in the preceding - srcdi r option. If there is no -
srcdir preceding -srcfil es, then the directory from which the j avapackager
command is executed is used.

Examples

Example 1 Using the -createjar Command
javapackager -createjar -appclass package. O assNane
-srcdir classes -outdir out -outfile outjar -v

Packages the contents of the cl asses directory to outj ar.j ar, and sets the application
class to package. Cl assNane.
Example 2 Using the -deploy Command
javapackager -deploy -outdir outdir -outfile outfile -width 34 -height 43
-nane AppNane -appcl ass package. O assNane -v -srcdir conpiled

Generates outfil e.jnlp and the corresponding outfile. htn files in outdir for the
application AppNane, which is started by package. 0 assNane and has dimensions of 34
by 43 pixels.

ORACLE 7-19

ORACLE

Chapter 7
javapackager

Example 3 Using the -makeall Command

Note:
The - makeal | command for the Java Packager tool is deprecated in JDK 9 in

preparation for removal in a future release.

j avapackager -makeal | -appclass brickbreaker.Main -name BrickBreaker -w dth 600
-hei ght 600

Does all the packaging work including compilation, creat ej ar, and depl oy.

Example 4 Using the -signjar Command

Note:

The -signj ar command for the Java Packager tool is deprecated in JDK 9 in
preparation for removal in a future release. It also doesn’t work with
multirelease JAR files. Use the jarsigner tool to sign the JAR file.

j avapackager -signJar -outdir dist -keyStore sanpl eKeystore.jks -storePass ****
-alias duke -keypass **** -srcdir dist

Signs all of the JAR files in the di st directory, attaches a certificate with the specified
alias, keySt ore and st or ePass, and puts the signed JAR files back into the di st
directory.

Example 5 Using the -deploy Command with Bundler Arguments

Linux:

Generates the native Linux Debian package for running the Bri ckBr eaker application
as a self-contained application.

j avapackager -deploy -native deb -Bcategory=Education - BjvnOptions=- Xmx128m
- Bj vmOpt i ons=- Xnms128m -out di r packages -outfile BrickBreaker -srcdir dist
-srcfiles BrickBreaker.jar -appclass brickbreaker.Main -name BrickBreaker
-title "BrickBreaker denp"

Windows:
Generates the native Windows EXE package for running the Bri ckBr eaker application
as a self-contained application.

javapackager -deploy -native exe -BsystenmWde=true - BjvmOptions=- Xnmx128m
- Bj vnOpt i ons=- Xns128m - out di r packages -outfile BrickBreaker -srcdir dist
-srcfiles BrickBreaker.jar -appclass brickbreaker.Main -nane BrickBreaker
-title "BrickBreaker demp"

7-20

Java Web Start Tool

javaws

ORACLE

You use the Java Web Start command and options to start the reference
implementation that starts Java applications and applets hosted on a network.

The following section describes Java Web Start command and options:

e javaws: You use the j avaws tool command and its options to start Java Web Start.

You use the j avaws tool command and its options to start Java Web Start.

Synopsis

javaws [run-options] jnlp

javaws [control -options]

run-options
The run-options can be in any order. See Run-Options for the javaws Command.

jnlp
This represents either the path of or the URL of the Java Network Launching Protocol
(INLP) file.

control-options
The control -options can be in any order. See Control-Options for the javaws
Command.

Description

Note:

The j avans command isn’t available on Oracle Solaris.

The j avans command starts Java Web Start, which is the reference implementation of
the JNLP file. Java Web Start starts Java applications and applets hosted on a
network.

If a INLP file is specified, then the j avans command starts the Java application or
applet specified in the JNLP file.

The j avans command has a set of options that are supported in the current release.
However, the options may be removed in a future release.

See Java Platform, Standard Edition Deployment Guide for information about the user
and system cache and depl oynent . properti es files.

8-1

ORACLE

Chapter 8
javaws

Run-Options for the javaws Command

-verbose
Displays additional output.

-offline
Runs the application in offline mode.

-system
Runs the application from the system cache only.

-Xnosplash
Runs without displaying a splash screen.

-Joption

Passes the option to the Java Virtual Machine (JVM), where option is one of the
options described on the reference page for the Java application launcher. For
example, - J- Xms48msets the startup memory to 48 MB. See java.

-wait

Starts the j ava process and waits for its exit. The j avaws tool process does not exit
until the application exits. This option doesn’t function as described on Windows
platforms.

-open arguments
Replaces the arguments in the JNLP file with - open argunents .

—print arguments
Replaces the arguments in the JNLP file with - print argunents .

Control-Options for the javaws Command

-viewer
Shows the cache viewer in the Java Control Panel.

-userConfig property-name
Clears the specified deployment property.

-userConfig property-name property-value
Sets the specified deployment property to the specified value.

-clearcache
Removes all noninstalled applications from the cache.

-uninstall
Removes all applications from the cache.

-uninstall jnlp file
Removes the application from the cache.

-import import-options jnlp-file

Imports the application to the cache. See Import-Options for the javaws Command
for the list and description of available options.

8-2

ORACLE

Chapter 8
javaws

Import-Options for the javaws Command

-silent
Imports silently without the user interface.

-system
Imports the application to the system cache.

-codebase url
Retrieves resources from the specified codebase.

-shortcut
Installs shortcuts if the user allows a prompt. This option has no effect unless the -
si | ent option is also used.

-association
Installs associations if the user allows a prompt. This option has no effect unless the -
si | ent option is also used.

Note:

The command, j avaws -shortcut -uninstall, removes both the association as
well as the implementation.

8-3

Monitoring Tools and Commands

jconsole

ORACLE

You use Java Virtual Machine (JVM) monitoring tools and commands to monitor and
manage Java applications and the JVM.

Note:

Tools identified as Experimental are unsupported and might not be available
in future JDK releases.

The following sections describe the JDK tools and commands used to monitor and
manage Java applications and the JVM:

e jconsole: You use the j consol e command to start a graphical console to monitor
and manage Java applications.

* jps: Experimental You use the j ps command to list the instrumented JVMs on the
target system.

e jstat: Experimental You use the j stat command to monitor JVM statistics. This
command is experimental and unsupported.

» jstatd: Experimental You use the j statd command to monitor the creation and
termination of instrumented Java HotSpot VMs. This command is experimental
and unsupported.

e jmc: You use the j nc command and its options to launch Java Mission Control.
Java Mission Control is a profiling, monitoring, and diagnostics tools suite.

You use the j consol e command to start a graphical console to monitor and manage
Java applications.

Synopsis

jconsole [-interval=n] [-notile] [-plugin path] [-version] [connection ... | [-J
i nput argunent s

jconsole -help

-interval
Sets the update interval to n seconds (default is 4 seconds).

-notile
Doesn't tile the windows for two or more connections.

9-1

jps

ORACLE

Chapter 9
jps

-pluginpath path

Specifies the path that j consol e uses to look up plug-ins. The plug-in pat h should
contain a provider-configuration file named META- | NF/ ser vi ces/

com sun. tool s. j consol e. JConsol ePl ugi n that contains one line for each plug-in. The
line specifies the fully qualified class name of the class implementing the

com sun. t ool s. j consol e. JConsol ePl ugi n class.

-version
Prints the program version.
connection = pid | host:port | jmxURL

e The pid value is the process ID of a target process. The JVM must be running
with the same user ID as the user ID running the j consol e command.

e The host: port values are the name of the host system on which the JVM is
running, and the port number specified by the system property
com sun. managenent . j mxr enot e. port when the JVM was started.

e ThejmUl value is the address of the JMX agent to be connected to as described
in JIMXServiceURL.

-J input arguments
Passes i nput argunents to the JVM on which the j consol e command is run.

-help or --help
Displays the help message for the command.

Description

The j consol e command starts a graphical console tool that lets you monitor and
manage Java applications and virtual machines on a local or remote machine.

On Windows, the j consol e command doesn’t associate with a console window. It does,
however, display a dialog box with error information when the j consol e command fails.

You use the j ps command to list the instrumented JVMs on the target system. This
command is experimental and unsupported.

Synopsis

jps [-q] [-mvV][hostid]
ips [-help]

-q

Suppresses the output of the class name, JAR file name, and arguments passed to
the mai n method, producing a list of only local JVM identifiers.

-mivww

* -mdisplays the arguments passed to the mai n method. The output may be nul | for
embedded JVMs.

9-2

ORACLE

Chapter 9
jps

-1 displays the full package name for the application's nai n class or the full path
name to the application's JAR file.

e -v displays the arguments passed to the JVM.

e -Vsuppresses the output of the class name, JAR file name, and arguments
passed to the mai n method, producing a list of only local JVM identifiers.

hostid

The identifier of the host for which the process report should be generated. The host i d
can include optional components that indicate the communications protocol, port
number, and other implementation specific data. See Host Identifier.

-help
Displays the help message for the j ps command.

Description

The j ps command lists the instrumented Java HotSpot VMs on the target system. The
command is limited to reporting information on JVMs for which it has the access
permissions.

If the j ps command is run without specifying a host i d, then it searches for
instrumented JVMs on the local host. If started with a hosti d, then it searches for JVMs
on the indicated host, using the specified protocol and port. A j statd process is
assumed to be running on the target host.

The j ps command reports the local JVM identifier, or | vii d, for each instrumented JVM
found on the target system. The | vii d is typically, but not necessarily, the operating
system's process identifier for the JVM process. With no options, the j ps command
lists each Java application's | vni d followed by the short form of the application's class
name or jar file name. The short form of the class name or JAR file name omits the
class's package information or the JAR files path information.

The j ps command uses the Java launcher to find the class name and arguments
passed to the main method. If the target JVM is started with a custom launcher, then
the class or JAR file name, and the arguments to the mai n method aren't available. In
this case, the j ps command outputs the string Unknown for the class name, or JAR file
name, and for the arguments to the nmai n method.

The list of JVMs produced by the j ps command can be limited by the permissions
granted to the principal running the command. The command lists only the JVMs for
which the principal has access rights as determined by operating system-specific
access control mechanisms.

Host Identifier

The host identifier, or hosti d, is a string that indicates the target system. The syntax of
the hosti d string corresponds to the syntax of a URI:

[protocol :][[//]hostname] [: port][/servernane]

protocol

The communications protocol. If the prot ocol is omitted and a host nane isn’t specified,
then the default protocol is a platform-specific, optimized, local protocol. If the protocol
is omitted and a host name is specified, then the default protocol is rni .

9-3

ORACLE

Chapter 9
jps

hostname
A host name or IP address that indicates the target host. If you omit the host name
parameter, then the target host is the local host.

port

The default port for communicating with the remote server. If the host nane parameter
is omitted or the prot ocol parameter specifies an optimized, local protocol, then the
port parameter is ignored. Otherwise, treatment of the port parameter is
implementation-specific. For the default rmi protocol, the port parameter indicates the
port number for the rmiregi stry on the remote host. If the port parameter is omitted,
and the prot ocol parameter indicates rni, then the default r i regi stry port (1099) is
used.

servername

The treatment of this parameter depends on the implementation. For the optimized,
local protocol, this field is ignored. For the rni protocol, this parameter is a string that
represents the name of the RMI remote object on the remote host. See the
jstatdcommand - n option.

Output Format of the jps Command
The output of the j ps command has the following pattern:

Ivmd [[classname | JARfilenane | "Unknown"] [arg*] [jvmarg* |]

All output tokens are separated by white space. An ar g value that includes embedded
white space introduces ambiguity when attempting to map arguments to their actual
positional parameters.

Note:

It's recommended that you don’t write scripts to parse j ps output because the
format might change in future releases. If you write scripts that parse j ps
output, then expect to modify them for future releases of this tool.

Examples
This section provides examples of the j ps command.
List the instrumented JVMs on the local host:

ips

18027 Java2Deno. JAR
18032 j ps

18005 jstat

The following example lists the instrumented JVMs on a remote host. This example
assumes that the j stat server and either the its internal RMI registry or a separate
external rniregi stry process are running on the remote host on the default port (port
1099). It also assumes that the local host has appropriate permissions to access the
remote host. This example includes the -1 option to output the long form of the class
names or JAR file names.

jps -1 remote.domain
3002 /opt/jdkl.7.0/demo/|fc/Java2ly Java2Dermn. JAR
2857 sun.tools.jstatd.jstatd

9-4

jstat

ORACLE

Chapter 9
jstat

The following example lists the instrumented JVMs on a remote host with a hondefault
port for the RMI registry. This example assumes that the j st at d server, with an internal
RMI registry bound to port 2002, is running on the remote host. This example also uses
the - moption to include the arguments passed to the nai n method of each of the listed

Java applications.

jps -mrenote. donmai n: 2002
3002 /opt/jdkl. 7.0/ demo/|fc/Java2ly Java2Dermo. JAR
3102 sun.tools.jstatd.jstatd -p 2002

You use the j stat command to monitor JVM statistics. This command is experimental
and unsupported.

Synopsis
jstat general Options
jstat -outputOptions [-t] [-hlines] vmd [interval [count]]

generalOptions
A single general command-line option. See General Options.

outputOptions

An option reported by the - opti ons option. One or more output options that consist of
a single st at Opti on, plus any of the -t, -h, and - J options. See Output Options for the
jstat Command.

-t
Displays a time-stamp column as the first column of output. The time stamp is the
time since the start time of the target JVM.

-h'n

Displays a column header every n samples (output rows), where n is a positive
integer. The default value is 0, which displays the column header of the first row of
data.

vmid
A virtual machine identifier, which is a string that indicates the target JVM. See Virtual
Machine Identifier.

interval

The sampling interval in the specified units, seconds (s) or milliseconds (ms). Default
units are milliseconds. This must be a positive integer. When specified, the j st at
command produces its output at each interval.

count

The number of samples to display. The default value is infinity, which causes the
j stat command to display statistics until the target JVM terminates or the j st at
command is terminated. This value must be a positive integer.

Description

The j stat command displays performance statistics for an instrumented Java HotSpot
VM. The target JVM is identified by its virtual machine identifier, or vni d option.

9-5

ORACLE

Chapter 9
jstat

The j stat command supports two types of options, general options and output options.
General options cause the j stat command to display simple usage and version
information. Output options determine the content and format of the statistical output.

All options and their functionality are subject to change or removal in future releases.

General Options

If you specify one of the general options, then you can't specify any other option or
parameter.

-help
Displays a help message.

-options
Displays a list of static options. See Output Options for the jstat Command.

Output Options for the jstat Command

If you don't specify a general option, then you can specify output options. Output
options determine the content and format of the j stat command's output, and consist
of a single st at Opti on, plus any of the other output options (-h, -t, and -J). The

st at Qpti on must come first.

Output is formatted as a table, with columns that are separated by spaces. A header
row with titles describes the columns. Use the - h option to set the frequency at which
the header is displayed. Column header names are consistent among the different
options. In general, if two options provide a column with the same name, then the data
source for the two columns is the same.

Use the -t option to display a time-stamp column, labeled Timestamp as the first
column of output. The Timestamp column contains the elapsed time, in seconds, since
the target JVM started. The resolution of the time stamp is dependent on various
factors and is subject to variation due to delayed thread scheduling on heavily loaded
systems.

Use the interval and count parameters to determine how frequently and how many
times, respectively, the j stat command displays its output.

Note:

Don't write scripts to parse the j stat command's output because the format
might change in future releases. If you write scripts that parse the j st at
command output, then expect to modify them for future releases of this tool.

-statOption

Determines the statistics information that the j stat command displays. The following
lists the available options. Use the - opti ons general option to display the list of options
for a particular platform installation. See Stat Options and Output.

cl ass: Displays statistics about the behavior of the class loader.

conpi | er : Displays statistics about the behavior of the Java HotSpot VM Just-in-Time
compiler.

gc: Displays statistics about the behavior of the garbage collected heap.

9-6

ORACLE

Chapter 9
jstat

gccapaci ty: Displays statistics about the capacities of the generations and their
corresponding spaces.

gccause: Displays a summary about garbage collection statistics (same as -gcutil),
with the cause of the last and current (when applicable) garbage collection events.
gcnew: Displays statistics about the behavior of the new generation.

gcnewcapaci ty: Displays statistics about the sizes of the new generations and their
corresponding spaces.

gcol d: Displays statistics about the behavior of the old generation and metaspace
statistics.

gcol dcapaci ty: Displays statistics about the sizes of the old generation.

gcnet acapaci ty: Displays statistics about the sizes of the metaspace.

geutil : Displays a summary about garbage collection statistics.

printconpil ation: Displays Java HotSpot VM compilation method statistics.

-JjavaOption
Passes j avaQpt i on to the Java application launcher. For example, - J- Xns48msets the
startup memory to 48 MB. For a complete list of options, see java.

Stat Options and Output

The following information summarizes the columns that the j stat command outputs for
each stat Opti on.

-class option

Class loader statistics.

Loaded: Number of classes loaded.

Byt es: Number of KB loaded.

Unl oaded: Number of classes unloaded.

Byt es: Number of KB loaded.

Ti ne: Time spent performing class loading and unloading operations.

-compiler option

Java HotSpot VM Just-in-Time compiler statistics.

Conpi | ed: Number of compilation tasks performed.

Fai | ed: Number of compilations tasks failed.

I nval i d: Number of compilation tasks that were invalidated.

Ti me: Time spent performing compilation tasks.

Fai | edType: Compile type of the last failed compilation.

Fai | edMet hod: Class name and method of the last failed compilation.

-gc option

Garbage collected heap statistics.

S0C: Current survivor space 0 capacity (KB).
S1C: Current survivor space 1 capacity (KB).
SOU: Survivor space 0 utilization (KB).

S1U: Survivor space 1 utilization (KB).

EC:. Current eden space capacity (KB).

EU: Eden space utilization (KB).

QC: Current old space capacity (KB).

OU: Old space utilization (KB).

MC: Metaspace capacity (KB).

MJ: Metaspace utilization (KB).

CCSC: Compressed class space capacity (KB).
CCSU: Compressed class space used (KB).
YGC: Number of young generation garbage collection (GC) events.

9-7

ORACLE

Chapter 9
jstat

YGCT: Young generation garbage collection time.
FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gccapacity option

Memory pool generation and space capacities.

NGCWN: Minimum new generation capacity (KB).

NGCMX: Maximum new generation capacity (KB).

NGC: Current new generation capacity (KB).

S0C: Current survivor space 0 capacity (KB).

S1C: Current survivor space 1 capacity (KB).

EC:. Current eden space capacity (KB).

OGCMN: Minimum old generation capacity (KB).

OGCMX: Maximum old generation capacity (KB).

OGC: Current old generation capacity (KB).

OC: Current old space capacity (KB).

MCMN: Minimum metaspace capacity (KB).

MOMX: Maximum metaspace capacity (KB).

MC: Metaspace capacity (KB).

CCSMN: Compressed class space minimum capacity (KB).
CCSMX: Compressed class space maximum capacity (KB).
CCSC: Compressed class space capacity (KB).

YGC: Number of young generation GC events.

FGC: Number of full GC events.

-gccause option

This option displays the same summary of garbage collection statistics as the - gcuti |
option, but includes the causes of the last garbage collection event and (when
applicable), the current garbage collection event. In addition to the columns listed for -
geutil, this option adds the following columns:

L&CC: Cause of last garbage collection

GCC: Cause of current garbage collection

-gcnew option

New generation statistics.

S0C: Current survivor space 0 capacity (KB).
S1C: Current survivor space 1 capacity (KB).
S0U: Survivor space 0 utilization (KB).

S1U: Survivor space 1 utilization (KB).

TT: Tenuring threshold.

MIT: Maximum tenuring threshold.

DSS: Desired survivor size (KB).

EC: Current eden space capacity (KB).

EU: Eden space utilization (KB).

YGC: Number of young generation GC events.
YGCT: Young generation garbage collection time.

-gcnewcapacity option

New generation space size statistics.

NGCMN: Minimum new generation capacity (KB).
NGCMX: Maximum new generation capacity (KB).
NGC: Current new generation capacity (KB).
SOCMX: Maximum survivor space 0 capacity (KB).

9-8

ORACLE

S0C: Current survivor space 0 capacity (KB).
S1CMX: Maximum survivor space 1 capacity (KB).
S1C: Current survivor space 1 capacity (KB).
ECWX: Maximum eden space capacity (KB).

EC: Current eden space capacity (KB).

YGC: Number of young generation GC events.
FGC: Number of full GC events.

-gcold option

Old generation size statistics.

MC: Metaspace capacity (KB).

MJ: Metaspace utilization (KB).

CCSC: Compressed class space capacity (KB).
CCSU: Compressed class space used (KB).
QC: Current old space capacity (KB).

OU: Old space utilization (KB).

YGC: Number of young generation GC events.
FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gcoldcapacity option

Old generation statistics.

OGCMWN: Minimum old generation capacity (KB).
OcCWX: Maximum old generation capacity (KB).
QGC: Current old generation capacity (KB).

OC: Current old space capacity (KB).

YGC: Number of young generation GC events.

FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gcmetacapacity option

Metaspace size statistics.

MCWN: Minimum metaspace capacity (KB).

MCMX: Maximum metaspace capacity (KB).

MC: Metaspace capacity (KB).

CCSMN: Compressed class space minimum capacity (KB).
CCSMX: Compressed class space maximum capacity (KB).
YGC: Number of young generation GC events.

FGC: Number of full GC events.

FGCT: Full garbage collection time.

GCT: Total garbage collection time.

-gcutil option
Summary of garbage collection statistics.

S0: Survivor space 0 utilization as a percentage of the space's current capacity.
S1: Survivor space 1 utilization as a percentage of the space's current capacity.

E: Eden space utilization as a percentage of the space's current capacity.
O Old space utilization as a percentage of the space's current capacity.
M Metaspace utilization as a percentage of the space's current capacity.
CCS: Compressed class space utilization as a percentage.

YGC: Number of young generation GC events.

YGCT: Young generation garbage collection time.

Chapter 9
jstat

9-9

Chapter 9
jstat

FGC: Number of full GC events.
FGCT: Full garbage collection time.
GCT: Total garbage collection time.

-printcompilation option

Java HotSpot VM compiler method statistics.

Conpi | ed: Number of compilation tasks performed by the most recently compiled
method.

Si ze: Number of bytes of byte code of the most recently compiled method.

Type: Compilation type of the most recently compiled method.

Met hod: Class name and method name identifying the most recently compiled method.
Class name uses a slash (/) instead of a dot (.) as a name space separator. The
method name is the method within the specified class. The format for these two fields
is consistent with the HotSpot - XX: +Pri nt Conpi | at i on option.

Virtual Machine Identifier
The syntax of the vni d string corresponds to the syntax of a URI:

[protocol :1[//]!vm d[@ostname[: port]/servername]

The syntax of the vni d string corresponds to the syntax of a URI. The vni d string can
vary from a simple integer that represents a local JVM to a more complex construction
that specifies a communications protocol, port number, and other implementation-
specific values.

protocol

The communications protocol. If the prot ocol value is omitted and a host name isn'’t
specified, then the default protocol is a platform-specific optimized local protocol. If
the protocol value is omitted and a host name is specified, then the default protocol is
rm.

Ivmid

The local virtual machine identifier for the target JVM. The | vni d is a platform-specific
value that uniquely identifies a JVM on a system. The | vni d is the only required
component of a virtual machine identifier. The | vni d is typically, but not necessarily,
the operating system's process identifier for the target JVM process. You can use the
j ps command to determine the | vni d. Also, you can determine the | vii d on Oracle
Solaris, Linux, and OS X platforms with the ps command, and on Windows with the
Windows Task Manager.

hostname
A host name or IP address that indicates the target host. If the host name value is
omitted, then the target host is the local host.

port

The default port for communicating with the remote server. If the host nane value is
omitted or the protocol value specifies an optimized, local protocol, then the port
value is ignored. Otherwise, treatment of the port parameter is implementation-
specific. For the default rmi protocol, the port value indicates the port number for the
rmiregistry on the remote host. If the port value is omitted and the prot ocol value
indicates rni , then the default rmiregistry port (1099) is used.

ORACLE 9-10

ORACLE

Chapter 9
jstat

servername

The treatment of the server nane parameter depends on implementation. For the
optimized local protocol, this field is ignored. For the rni protocol, it represents the
name of the RMI remote object on the remote host.

Examples

This section presents some examples of monitoring a local JVM with an | vni d of
21891.

The gcutil Option

This example attaches to lvmid 21891 and takes 7 samples at 250 millisecond
intervals and displays the output as specified by the - gcuti| option.

The output of this example shows that a young generation collection occurred between
the third and fourth sample. The collection took 0.078 seconds and promoted objects
from the eden space (E) to the old space (O), resulting in an increase of old space
utilization from 66.80% to 68.19%. Before the collection, the survivor space was
97.02% utilized, but after this collection it's 91.03% utilized.

jstat -gcutil 21891 250 7

SO S1 E o M Ccs YCGC YGCT FGC FGCT GCT

0.00 97.02 70.31 66.80 95.52 89.14 7 0.300 0 0.000 0.300
0.00 97.02 86.23 66.80 95.52 89.14 7 0.300 0 0.000 0.300
0.00 97.02 96.53 66.80 95.52 89.14 7 0.300 0 0.000 0.300
91.03 0.00 1.98 68.19 95.89 91.24 8 0.378 0 0. 000 0.378
91.03 0.00 15.82 68.19 95.89 91.24 8 0.378 0 0. 000 0.378
91.03 0.00 17.80 68.19 95.89 91.24 8 0.378 0 0. 000 0.378
91.03 0.00 17.80 68.19 95.89 91.24 8 0.378 0 0. 000 0.378

Repeat the Column Header String

This example attaches to lvmid 21891 and takes samples at 250 millisecond intervals
and displays the output as specified by - gcnew option. In addition, it uses the - h3 option
to output the column header after every 3 lines of data.

In addition to showing the repeating header string, this example shows that between
the second and third samples, a young GC occurred. Its duration was 0.001 seconds.
The collection found enough active data that the survivor space 0 utilization (SOU)
would have exceeded the desired survivor size (DSS). As a result, objects were
promoted to the old generation (not visible in this output), and the tenuring threshold
(TT) was lowered from 31 to 2.

Another collection occurs between the fifth and sixth samples. This collection found
very few survivors and returned the tenuring threshold to 31.

jstat -gcnew -h3 21891 250

S0C S1C SO0U S1U TT MIT DSS EC EU YCC YCCT
64.0 64.0 0.0 31.731 31 320 512.0 178.6 249 0.203
64.0 64.0 0.0 31.731 31 320 512.0 355.5 249 0.203
64.0 64.0 354 0.0 2 31 32.0 512.0 21.9 250 0.204

S0C S1C SO0U S1U TT MIT DSS EC EU YCGC YCCT
64.0 64.0 354 0.0 2 31 32.0 512.0 245.9 250 0.204
64.0 64.0 354 0.0 2 31 32.0 512.0 421.1 250 0.204
64.0 64.0 0.0 19.031 31 320 512.0 84.4 251 0.204

S0C S1C SO0U S1U TT MIT DSS EC EU YCC YCCT
64.0 64.0 0.0 19.031 31 320 512.0 306. 7 251 0.204

9-11

Jstatd

ORACLE

Chapter 9
jstatd

Include a Time Stamp for Each Sample

This example attaches to | vni d 21891 and takes 3 samples at 250 millisecond
intervals. The -t option is used to generate a time stamp for each sample in the first
column.

The Timestamp column reports the elapsed time in seconds since the start of the
target JVM. In addition, the - gcol dcapaci t y output shows the old generation capacity
(OGC) and the old space capacity (OC) increasing as the heap expands to meet
allocation or promotion demands. The old generation capacity (OGC) has grown from
11,696 KB to 13,820 KB after the eighty-first full garbage collection (FGC). The
maximum capacity of the generation (and space) is 60,544 KB (OGCMX), so it still has
room to expand.

Ti mest anp OGCWN OGCOWX ocC (00 YGC FGC FGCT GCT
150.1 1408.0 60544.0 11696.0 11696.0 194 80 2.874 3.799
150.4 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863
150.7 1408.0 60544.0 13820.0 13820.0 194 81 2.938 3.863

Monitor Instrumentation for a Remote JVM

This example attaches to | vii d 40496 on the system named r enot e. donai n using the -
geuti |l option, with samples taken every second indefinitely.

The I vni d is combined with the name of the remote host to construct a vni d of

40496@ enot e. domai n. This vni d results in the use of the rni protocol to communicate to
the default j st at d server on the remote host. The j stat d server is located using the
rmiregi stry command on renot e. domai n that's bound to the default port of the
rmiregistry command (port 1099).

jstat -gcutil 40496@ enote. domai n 1000
. output omtted

You use the j statd command to monitor the creation and termination of instrumented
Java HotSpot VMs. This command is experimental and unsupported.

Synopsis
jstatd [options]
options

This represents the j stat d command-line options. See Options for the jstatd
Command.

Description

The j statd command is an RMI server application that monitors for the creation and
termination of instrumented Java HotSpot VMs and provides an interface to enable
remote monitoring tools to attach to JVMs that are running on the local host.

The j stat d server requires an RMI registry on the local host. The j statd server
attempts to attach to the RMI registry on the default port, or on the port you specify
with the - p port option. If an RMI registry is not found, then one is created within the
j stat d application that’s bound to the port that's indicated by the - p port option or to

9-12

ORACLE

Chapter 9
jstatd

the default RMI registry port when the - p port option is omitted. You can stop the
creation of an internal RMI registry by specifying the - nr option.

Options for the jstatd Command

-nr
This option does not attempt to create an internal RMI registry within the j st at d
process when an existing RMI registry isn’t found.

-p pOFt
This option sets the port number where the RMI registry is expected to be found, or
when not found, created if the - nr option isn’t specified.

-n rmename

This option sets the name to which the remote RMI object is bound in the RMI
registry. The default name is JSt at Renot eHost . If multiple j st at d servers are started on
the same host, then the name of the exported RMI object for each server can be
made unique by specifying this option. However, doing so requires that the unique
server name be included in the monitoring client's hosti d and vni d strings.

-Joption

This option passes a Java opt i on to the JVM, where the option is one of those
described on the reference page for the Java application launcher. For example, - J-
Xms48msets the startup memory to 48 MB. See java.

Security

The j st at d server can monitor only JVMs for which it has the appropriate native
access permissions. Therefore, the j st at d process must be running with the same
user credentials as the target JVMs. Some user credentials, such as the root user in
Oracle Solaris, Linux, and OS X operating systems, have permission to access the
instrumentation exported by any JVM on the system. A j st at d process running with
such credentials can monitor any JVM on the system, but introduces additional
security concerns.

The j st at d server doesn’t provide any authentication of remote clients. Therefore,
running a j st at d server process exposes the instrumentation export by all JVMs for
which the j st at d process has access permissions to any user on the network. This
exposure might be undesirable in your environment, and therefore, local security
policies should be considered before you start the j st at d process, particularly in
production environments or on networks that aren’t secure.

The j st at d server installs an instance of RM Securi t yPol i cy when no other security
manager is installed, and therefore, requires a security policy file to be specified. The
policy file must conform to Default Policy Implementation and Policy File Syntax.

If your security concerns can’t be addressed with a customized policy file, then the
safest action is to not run the j st at d server and use the j stat and j ps tools locally.

Remote Interface

The interface exported by the j st at d process is proprietary and guaranteed to change.
Users and developers are discouraged from writing to this interface.

Examples

The following are examples of the j statd command. The j st at d scripts automatically
start the server in the background.

9-13

jmc

ORACLE

Chapter 9
jmc

Internal RMI Registry

This example shows how to start a j st at d session with an internal RMI registry. This
example assumes that no other server is bound to the default RMI registry port (port
1099).

jstatd -J-Djava. security.policy=all.policy

External RMI Registry
This example starts a j st at d session with an external RMI registry.

rmregistry&
jstatd -J-Djava.security.policy=all.policy

This example starts a j st at d session with an external RMI registry server on port 2020.

jrmregistry 2020&
jstatd -J-Djava.security.policy=all.policy -p 2020

This example starts a j st at d session with an external RMI registry on port 2020 that's
bound to Al ter nat eJst at dSer ver Nane.

rmregistry 2020&

jstatd -J-Djava. security.policy=all.policy -p 2020
-n Al ternateJstatdServerNane

Stop the Creation of an In-Process RMI Registry

This example starts a j st at d session that doesn’t create an RMI registry when one
isn’'t found. This example assumes an RMI registry is already running. If an RMI
registry isn’t running, then an error message is displayed.

jstatd -J-Djava.security.policy=all.policy -nr

Enable RMI Logging

This example starts a j st at d session with RMI logging capabilities enabled. This
technique is useful as a troubleshooting aid or for monitoring server activities.

jstatd -J-Djava. security.policy=all.policy
-J-Djava.rm.server.logCal | s=true

You use the j .t command to launch Java Mission Control. Java Mission Control is a
profiling, monitoring, and diagnostics tools suite.

Synopsis
jm
Description

Java Mission Control is a tool for production time profiling and diagnostics for the Java
HotSpot JVM. The two main features of Java Mission Control are the Management
Console and Java Flight Recorder, but several more features are offered as plug-ins,
which can be downloaded from the tool. Java Mission Control is also available as a set
of plug-ins for the Eclipse IDE.

9-14

Chapter 9
jme

ORACLE" 9-15

Web Services Tools and Commands

You can use JDK web services tools and commands to create and manage web
service resources.

The following sections describe the JDK web services tools and commands:

* schemagen: You can use the schenmagen tool and commands to generate a schema
for every namespace that’s referenced in your Java classes.

* wsgen: You use the wsgen command to generate Java API for XML Web Services
(JAX-WS) portable artifacts used in JAX-WS web services.

* wsimport: You use the wsi nport command to generate Java API for XML Web
Services (JAX-WS) portable artifacts.

e Xjc: You use the xj ¢ shell script to compile an XML schema file into fully annotated
Java classes.

schemagen

ORACLE

You can use the schemagen tool and commands to generate a schema for every
namespace that's referenced in your Java classes.

Synopsis
schemagen [options] java-files

options
The command-line options. See Options for the schemagen Tool.

java-files
The Java class files to be processed.

Description

The schema generator creates a schema file for each name space referenced in your
Java classes. Currently, you can’t control the name of the generated schema files.

Start the schema generator with the appropriate schemagen shell script in the bin
directory for your platform. The current schema generator can process either Java
source files or class files.

schemagen. sh Foo.java Bar.java ...
Note: Witing schemal. xsd

If your Java files reference other classes, then those classes must be accessible on
your system CLASSPATH environment variable, or they need to be specified in the
schemagen command line with the class path options. If the referenced files aren’t
accessible or specified, then you get errors when you generate the schema.

10-1

wsgen

ORACLE

Chapter 10
wsgen

Options for the schemagen Tool

-d path
This option sets the location where the schemagen command places processor-
generated and j avac-generated class files.

-cp path or -classpath path
This option sets the location where the schemagen command places user-specified
files.

-encoding encoding
This option specifies the encoding to use for apt or j avac command invocations.

-episode file
This option generates an episode file for separate compilation.

-disableXmlSecurity
This option disables XML security features for usage on XML parsing APlIs.

-version
This option displays release information.

-fullversion
This option displays full version information.

-help
This option displays a help message.

You use the wsgen command to generate Java API for XML Web Services (JAX-WS)
portable artifacts used in JAX-WS web services.

Synopsis
wsgen [options] SE

options
This represents the wsgen command-line options. See Options for wsgen.

SEI
The web service endpoint implementation (SEI) class to be read.

Description

The wsgen command generates JAX-WS portable artifacts used in JAX-WS web
services. The tool reads a web service endpoint class and generates all the required
artifacts for web service deployment and invocation.

To start the wsgen tool, enter the following commands:

e Oracle Solaris, Linux, and OS X:

export JAXWS_HOVE=/ pat ht o/ j axws-r
$JAXWE_HOVE/ bi n/ wsgen. sh - hel p

Windows:

10-2

ORACLE

Chapter 10
wsgen

set JAXWS_HOMVE=c:\ pat ht o\ j axws-r
% AXWE_HOVE% bi n\wsgen. bat -hel p

Options for wsgen

-classpath path or -cp path
This option sets the location of the input class files.

-d directory
This option sets the location for where to place generated output files.

-encoding encoding
This option specifies the character encoding used by source files.

-extension
This option allows the use of vendor extensions. Use of extensions can result in
applications that aren’t portable or that don’t work with other implementations.

-help
This option displays a help message about the wsgen command.

-Joption

-keep
This option keeps the generated files.

-r directory
This option with the -wsdl option is used to specify where to place generated resource
files such as web Services Definition Language (WSDL) files.

-s directory
This option sets the location for where to place generated source files.

-verbose
This option displays compiler messages.

-version
This option prints release information.

-fullversion
This option prints full version information.

-wsdl[:protocol]

This is an optional command that generates a WSDL file to review before endpoint
deployment. The WSDL file contains a machine-readable description of how the
service can be called, what parameters it expects, and what data structures it returns.

Note:

You don’t have to generate WSDL at development time because the JAX-WS
run time environment generates a WSDL file for you when you deploy your
service.

10-3

wsimport

ORACLE

Chapter 10
wsimport

By default, the wsgen command doesn’t generate a WSDL file. The prot ocol value is
optional and is used to specify what protocol should be used for the WSDL binding
(wsdl : bi ndi ng). Valid protocols are soapl. 1 and Xsoapl. 2. The default is soapl. 1. The
Xsoapl. 2 protocol isn’'t standard and can be used only with the - ext ensi on option.

-inlineSchemas
This option produces inline schemas in the generated wsdl . This must be used in
conjunction with the -wsdl option.

-servicename hame

This option is used only with the -wsdl option to specify a particular WSDL service
(wsdl : servi ce) name to be generated in the WSDL file, for example: - ser vi cename
"{http://mynamespace/ } MyServi ce".

-portname name

This option is used only with the -wsdl option to specify a particular WSDL port

(wsdl : port) name to be generated in the WSDL file, for example: - port name "{http://
mynamespace/ } MyPort".

-x file
This option specifies the External Web Service Metadata XML descriptor.

Extensions of wsgen

-Xnocompile
This option doesn’t compile generated Java files.

Examples

The following example generates the wrapper classes for St ockSer vi ce with
@ebSer vi ce annotations inside the stock directory.

wsgen -d stock -cp myclasspath stock. StockService

The following example generates a Simple Object Access Protocol (SOAP) 1.1 WSDL
file and schema for the st ock. St ockSer vi ce class with @bSer vi ce annotations.

wsgen -wsdl -d stock -cp nycl asspath stock. StockService

The following example generates a SOAP 1.2 WSDL file.

wsgen -wsdl: Xsoapl.2 -d stock -cp nyclasspath stock. StockService

You use the wsi nport command to generate Java API for XML Web Services (JAX-
WS) portable artifacts.

Synopsis
wsinport [options] wsdl _URI
options

This represents the wsi nport command-line options. See Options for the wsimport
Command.

10-4

ORACLE

Chapter 10
wsimport

wsdl_URI
The file that contains the machine-readable description of how the web service can be
called, what parameters it expects, and what data structures it returns.

Description

The wsi nport command generates the following JAX-WS portable artifacts. These
artifacts can be packaged in a WAR file with the Web Services Description Language
(WSDL) file and schema documents and the endpoint implementation to be deployed.
The wsi nport command also provides a wsi nport Ant task.

» Service Endpoint Interface (SEI)

* Service

e Exception class is mapped from wsdl : faul t (if any)

* Async Response Bean is derived from response wsdl : nessage (if any)

e Java Architecture for XML Binding (JAXB) generated value types (mapped Java
classes from schema types)

To start the wsgen command, enter the following commands:
* Oracle Solaris/Linux:

/' bi n/wsi nport.sh -help
* Windows:

\'bi n\wsi nport.bat -help

Options for the wsimport Command

-b path

Specifies external JAX-WS or JAXB binding files. Multiple JAX-WS and Java
Architecture for XML Binding (JAXB) binding files can be specified with the - b option.
You can use these files to customize package names, bean names, and so on.

-B jaxbOption
Passes the j axbOpt i on option to the JAXB schema compiler.

-catalog file
Specifies a catalog file to resolve external entity references. The - cat al og option
supports the TR9401, XCatalog, and OASIS XML Catalog formats.

-classpath path or -cp path
Specifies where to find user class files and wsi mport extensions.

-d directory
Specifies where to place generated output files.

-encoding encoding
Specifies the character encoding used by the source files.

-extension
Allows vendor extensions. Use of extensions can result in applications that aren’t
portable or that don’t work with other implementations.

10-5

ORACLE

Chapter 10
wsimport

-help
Displays a help message for the wsi nport command.

-httpproxy:proxy
Specifies an HTTP proxy server. The format is:
[user[: password] @ proxyHost : proxyPort

-JjavacOption
Passes this option to j avac.

-keep
Keeps generated files.

-p name
Specifies a target package nanme to override the WSDL file and schema binding
customizations, and the default algorithm defined in the specification.

—Mm name
Generates nodul e-i nf 0. j ava with the given Java module name.

-quiet
Suppresses the wsi nport command output.

-s directory
Specifies where to place generated source files.

-target version
Generates code according to the specified JAX-WS specification version. Version 2.0
generates compliant code for the JAX-WS 2.0 specification.

-verbose
Displays compiler messages.

-version
Prints version information.

-fullversion
Prints full version information.

-wsdllocation location
Specifies the @¢bServi ceC i ent. wsdl Locat i on value.

-clientjar jarfile
Creates the j ar file of the generated artifacts along with the WSDL metadata required
for invoking the web service.

-generateJWS
Generates a stubbed Java Web Start (JWS) implementation file.

-implDestDir directory
Specifies where to generate the JWS implementation file.

-implServiceName name
Specifies the local portion of service name for generated JWS implementations.

-implPortName name
Specifies the local portion of the port name for generated JWS implementations.

10-6

X|C

ORACLE

Chapter 10
xjc

Multiple JAX- W5 and JAXB binding files can be specified using the - b option, and they
can be used to customize various things such as package names and bean names.

Extensions for the wsimport Command

-XadditionalHeaders
Maps headers not bound to a request or response message to Java method
parameters.

-Xauthfile file
Specifies the WSDL URI that identifies the file that contains authorization information.
This URI is in the following format:

http://user-nane: passwor d@ost - nane/ web- ser vi ce- nane>?wsdl

-Xdebug
Prints debugging information.

-Xno-addressing-databinding
Enables binding of W3C EndpointReferenceType to Java.

-Xnocompile
Doesn’'t compile the generated Java files.

-XdisableAuthenticator
Disables Authenticator used by the JAX-WS reference implementation. - Xaut hfile
option will be ignored if set.

-XdisableSSLHostnameVerification
Disables the SSL Hostname verification while fetching wsd! files.

Examples
The following are examples of using the wsi nport command:

wsinport stock.wsdl -b stock.xm -b stock.xjb

wsi nport -d generated http://exanple. org/stock?wsdl

You use the xj ¢ shell script to compile an XML schema file into fully annotated Java
classes.

Synopsis
Xjc [-options] schema file/URL/dir/jar ... [-b bindinfo] ...

options
This represents the xj c command-line options. See Options for the xjc Command.

schema file/URL/dir/jar

This represents the location of the XML schema file. If di r is specified, then all
schema files in it are compiled. If j ar is specified, then the / META- | NF/ sun-j axb. epi sode
binding file is compiled.

This specifies one or more schema files to compile. If you specify a directory, then the
xj ¢ command scans it for all schema files and compiles them.

10-7

Chapter 10
XjC

-b bindinfo
The location of the binding files.

Note:

If di r is specified, all schema files in it will be compiled. If j ar is specified, the /
META- | NF/ sun- j axb. epi sode binding file will be compiled.

Description

Start the binding compiler with the appropriate xj ¢ shell script in the bi n directory for
your platform. There’s also an Ant task to run the binding compiler.

Options for the xjc Command

-nv

This option disables strict schema validation. This doesn’t mean that the binding
compiler won't perform any validation, but means that it will perform a less strict
validation.

By default, the xj ¢ binding compiler performs strict validation of the source schema
before processing it.

-extension

This option allows vendor extensions to be used. By default, the xj ¢ binding compiler
strictly enforces the rules outlined in the Compatibility Rules chapter and Appendix E.
2 of the JAXB Specification. Appendix E.2 defines a set of W3C XML Schema
features that aren’t completely supported by JAXB v1.0. In some cases, you may be
allowed to use them in the - ext ensi on mode enabled by this switch. In the default
(strict) mode, you're also limited to using only the binding customization defined in the
specification. By using the - ext ensi on switch, you'll be allowed to use the JAXB
Vendor Extensions.

-b file/dir

This option specifies one or more external binding files to process. Each binding file
must have its own - b switch. The syntax of the external binding files is flexible. You
can have a single binding file that contains customization for multiple schemas or you
can break the customization into multiple bindings files. For example:

xj ¢ schemal. xsd schena2.xsd schenma3. xsd -b bindings123.xjb

xj ¢ schemal. xsd schema2.xsd schema3. xsd -b bindingsl.xjb -b bindings2.xjb -b

bi ndi ngs3. xj b.

In addition, the ordering of the schema files and binding files on the command line
doesn’t matter.

-d dir

This option specifies an alternate output directory instead of the default. The output
directory must already exist. Thexj ¢ binding compiler doesn’t create it for you.

By default, the xj ¢ binding compiler generates the Java content classes in the current
directory.

ORACLE 10-8

ORACLE

Chapter 10
xjc

-p pkg

When you specify a target package with this command-line option, it overrides any
binding customization for the package name and the default package name algorithm
defined in the specification.

-Mm name
This option generates nodul e-i nf 0. j ava using the specified Java module name.

-httpproxy proxy

This specifies the HTTP or HTTPS proxy in the format
[user[:password]@]proxyHost[:proxyPort]. The old - host and - port options are still
supported by the RI for backward compatibility, but they are deprecated. The
password specified with this option is an argument that's visible to other users who
use the top command. For greater security, use the - htt pproxyfil e option.

-httpproxyfile file
This option specifies the HTTP or HTTPS proxy with a file. This is same format as the
-ht t ppr oxy option, but the password specified in the file isn't visible to other users.

-classpath arg
This option specifies where to find client application class files used by the
j xb: j avaType and xj c: super C ass customization.

-catalog file
This option specifies catalog files to resolve external entity references. It supports the
TR9401, XCatalog, and OASIS XML Catalog formats.

-readOnly

This option forces the xj ¢ binding compiler to mark the generated Java sources as
read-only.

By default, the xj ¢ binding compiler doesn’t write-protect the Java source files that it
generates.

-npa
This option suppresses the generation of package-level annotations into **/ package-
i nfo. j ava. Using this switch causes the generated code to internalize those
annotations into the other generated classes.

-no-header

This option suppresses the generation of a file header comment that includes some
note and time stamp. Using this makes the generated code more compatible with the
di ff command.

-target [2.0]2.1]
This option generates code in accordance with the specified JAXWS specification
version. Defaults to 2.2. The accepted values are 2.0, 2. 1, and 2. 2.

-encoding encoding
This option specifies character encoding for generated source files.

-enablelntrospection
This option enables the correct generation of Boolean getters and setters to enable
Bean Introspection APIs.

-disableXmlSecurity
This option disables XML security features when parsing XML documents.

10-9

ORACLE

Chapter 10
XjC

-contentForWildcard
This option generates content property for types with multiple xs: any derived
elements.

-xmlschema

This option treats input schemas as W3C XML Schema (default). If you don't specify
this switch, then your input schemas are treated as though they’re W3C XML
Schemas.

-dtd
This option treats input schemas as XML DTD (experimental and unsupported).
Support for RELAX NG schemas is provided as a JAXB Vendor Extension.

-wsdl
This option treats input as WSDL and compiles schemas inside it (experimental and
unsupported).

-verbose
This option generates extra verbose output, such as printing informational messages
or displaying stack traces upon some errors.

-quiet
This option suppresses compiler output, such as progress information and warnings.

-help
This option displays a brief summary of the compiler switches.

-version
This option displays the compiler version information.

-fullversion
This option displays full version information.

Extensions for the xjc Command

-Xpropertyaccessors
This option uses X AccessType PROPERTY instead of FI ELD for generated classes.

-mark-generated
This option marks the generated code with the annotation
@ avax. annot at i on. Gener at ed.

-Xinject-code
This option injects the specified Java code fragments into the generated code.

-episode file
This option generates the specified episode file for separate compilation.

-XLocator
This option causes the generated code to expose Simple API for XML (SAX) Locator
information about the source XML in the Java bean instances after unmarshalling.

-Xsync-methods
This option causes all of the generated method signatures to include the synchroni zed
keyword.

10-10

Chapter 10
xjc

Deprecated and Removed Options for the xjc Command

-host and -port
These options are replaced with the - ht t ppr oxy option. For backward compatibility,
these options are supported, but won’t be documented and might be removed from
future releases.

-use-runtime

Because the JAXB 2.0 specification has defined a portable runtime environment, it's
no longer necessary for the JAXB reference implementation to generate **/i npl /
runti me packages. Therefore, this switch is obsolete and was removed.

-source

The - sour ce compatibility switch was introduced in the first JAXB 2.0 Early Access
release. This switch is removed from future releases of JAXB 2.0. If you need to
generate 1.0.n code, then use an installation of the 1.0.n codebase.

Compiler Restrictions for the xjc Command

In general, it's safest to compile all related schemas as a single unit with the same
binding compiler switches. Keep the following list of restrictions in mind when running
the xj c command. Most of these issues apply only when you compile multiple
schemas with multiple invocations of the xj c command.

To compile multiple schemas at the same time, remember the following precedence
rules for the target Java package name:

1. The -p option has the highest precedence.
2. If there are j axb: package customizations.

3. Iftarget Namespace is declared, then apply the t ar get Nanmespace to the Java package
name algorithm defined in the specification.

4. If notarget Namespace is declared, then use a hard coded package named
gener at ed.

You can’'t have more than one j axb: schemaBi ndi ngs per name space, so it's impossible
to have two schemas in the same target name space compiled into different Java
packages.

All schemas being compiled into the same Java package must be submitted to the
XJC binding compiler at the same time. They can’t be compiled independently and
work as expected.

Element substitution groups that are spread across multiple schema files must be
compiled at the same time.

ORACLE 10-11

Java Accessibility Utilities and Commands

Java Access Bridge 2.0.2 includes Java accessibility utilities for examining accessible
information about the objects in the Java Virtual Machine (JVM) and the component
trees in a particular Java Virtual Machine.

The following topics describe the Java accessibility utilities and their commands:

e jaccessinspector: You use the j accessi nspect or accessibility evaluation tool for the
Java Accessibility Utilities APl to examine accessible information about the objects
in the Java Virtual Machine.

» jaccesswalker: You use the jaccesswal ker to navigate through the component
trees in a particular Java Virtual Machine and presents the hierarchy in a tree
view.

jaccessinspector

ORACLE

You use the j accessi nspect or accessibility evaluation tool for the Java Accessibility
Utilities API to examine accessible information about the objects in the Java Virtual
Machine.

Description

The j accessi nspect or tool lets you select different methods for examining the object
accessibility information::

* When events occur such as a change of focus, mouse movement, property
change, menu selection, and the display of a popup menu

* When you press the F1 key when the mouse is over an object, or F2 when the
mouse is over a window

After an object has been selected for examination, the j accessi nspect or tool displays
the results of calling Java Accessibility APl methods on that object.

Running the jaccessinspector Tool

To use the j accessi nspect or tool, launch the j accessi nspect or Windows application
after launching a Java application. For example, to launch j accessi nspector , run one
of the following Windows applications:

¢ Note:
The no-suffix version is installed with 64 bit Java.

JAVA HOME is an environment variable and it should be set to the path of the
JDK or JRE, for example, c: \ Program Fi | es\ Java\ j dk- 9.

* 64-bit Windows:

11-1

ORACLE

Chapter 11
jaccessinspector

— 9% AVA HOVE% bi n\ j accessi nspect or. exe: Inspects a Java application
as if j accessi nspect or were a 64-bit assistive technology application

— 9% AVA HOVE% bi n\ j accessi nspect or - 32. exe: Inspects a Java
application as if j accessi nspect or were a 32-bit assistive technology
application

You now have two windows open: The Java application window and the
j accessi nspect or window. The j accessi nspect or window contains five menus:

e File Menu

* UpdateSettings Menu

* JavaEvents Menu

* AccessibilityEvents Menu

e Options Menu

The items in UpdateSettings, JavaEvents, and AccessibilityEvents menus let you
guery Java applications in a variety of ways.

File Menu

This section describes the File menu items.

AccessBridge DLL Loaded
Enables and disables AccessBridge DLL Loaded.

Exit
Exits from the tool.

UpdateSettings Menu

This section describes the UpdateSettings menu items.

Update from Mouse

Determines the x- and y-coordinates of the mouse (assuming the jaccessinspector
tool window is topmost) when the mouse has stopped moving, and then queries the
Java application for the accessible object underneath the mouse, dumping the output
into the j accessi nspect or window.

Update with F2 (Mouse HWND)

Determines the x- and y-coordinates of the mouse (assuming the jaccessinspector
tool window is topmost), and then queries the Java application for the accessible
object of the HWND underneath the mouse, dumping the output into the

j accessi nspect or window.

Update with F1 (Mouse Point)

Determines the x- and y-coordinates of the mouse (assuming the jaccessinspector
tool window is topmost), and then queries the Java application for the accessible
object underneath the cursor, dumping the output into the j accessi nspect or window.

JavaEvents Menu

This section describes the JavaEvents menu items.

11-2

Chapter 11
jaccessinspector

Track Mouse Events

Registers with the Java application all Java Mouse Entered events, and upon
receiving one, queries the object that was entered by the cursor and dumps the output
into the j accessi nspect or window.

Note:

If the mouse is moved quickly, then there may be some delay before the
displayed information is updated.

Track Focus Events

Registers with the Java application all Java Focus Gained events, and upon receiving
an event, queries the object that received the focus and dumps the output into the

j accessi nspect or window.

Track Caret Events

Register with the Java application all Java Caret Update events, and upon receiving
an event, queries the object in which the caret was updated, and dumps the output
into the j accessi nspect or window.

Note:

Because objects that contain carets are almost by definition objects that are
rich text objects, this won't seem as responsive as the other event tracking
options. In real use, one would make fewer accessibility calls in Caret Update
situations (for example, just get the new letter, word, sentence at the caret
location), which would be significantly faster.

Track Menu Selected | Deselected | Canceled Events

Registers with the Java application all Menu events, and upon receiving an event,
gueries the object in which the caret was updated, and dumps the output into the
j accessi nspect or window.

Track Popup Visible | Invisible | Cancelled Events

Registers with the Java application all Popup Menu events, and upon receiving an
event, queries the object in which the caret was updated, and dumps the output into
the j accessi nspect or window.

Track Shutdown Events
Registers with the Java application to receive a Property Changed event when a Java
application terminates.

AccessibilityEvents Menu

This section describes the AccessibilityEvents menu items.

Note:

The items listed in the AccessibilityEvents menu are the most important for
testing applications, especially for assistive technology applications.

ORACLE 11-3

ORACLE

Chapter 11
jaccessinspector

Track Name Property Events

Registers with the Java application all Java Property Changed events specifically on
accessible objects in which the Name property has changed, and upon receiving an
event, dumps the output into the scrolling window, along with information about the
property that changed.

Track Description Property Events

Register with the Java application for all Java Property Changed events specifically
on accessible objects in which the Description property has changed, and upon
receiving an event, dumps the output into the j accessi nspect or window, along with
information about the property that changed.

Track State Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the State property has changed, and upon receiving an
event, dumps the output into the j accessi nspect or window, along with information
about the property that changed.

Track Value Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the Value property has changed, and upon receiving an
event, dumps the output into the scrolling window, along with information about the
property that changed.

Track Selection Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the Selection property has changed, and upon receiving
an event, dumps the output into the j accessi nspect or window, along with information
about the property that changed.

Track Text Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the Text property has changed, and upon receiving one
event, dump the output into the j accessi nspect or window, along with information
about the property that changed.

Track Caret Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the Caret property has changed, and upon receiving an
event, dumps the output into the j accessi nspect or window, along with information
about the property that changed.

Track VisibleData Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the VisibleData property has changed, and upon receiving
an event, dumps the output into the j accessi nspect or window, along with information
about the property that changed.

Track Child Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the Child property has changed, and upon receiving an
event, dumps the output into the j accessi nspect or window, along with information
about the property that changed.

11-4

Chapter 11
jaccesswalker

Track Active Descendent Property Events

Register with the Java application all Java Property Changed events specifically on
accessible objects in which the Active Descendent property has changed, and upon
receiving an event, dumps the output into the j accessi nspect or window, along with
information about the property that changed.

Track Table Model Change Property Events

Register with the Java application all Property Changed events specifically on
accessible objects in which the Table Model Change property has changed, and upon
receiving an event, dumps the output into the j accessi nspect or window, along with
information about the property that changed.

Options Menu

This section describes the Options menu items.

Monitor the same events as JAWS
Enables monitoring of only the events also monitored by JAWS.

Monitor All Events
Enables monitoring of all events in the j accessi nspect or window.

Reset All Events
Resets the selected Options to the default settings.

Go To Message
Opens the Go To Message dialog that lets you display a logged message by entering
its message number.

Clear Message History
Clears the history of logged messages from the j accessi nspect or window.

jaccesswalker

You use the j accesswal ker to navigate through the component trees in a particular
Java Virtual Machine and presents the hierarchy in a tree view.

Description

You select a node in the tree, and from the Panels menu, you select Accessibility
API Panel. The j accesswal ker tool shows you the accessibility information for the
object in the window.

Running the jaccesswalker Tool

To use j accesswal ker, launch the j accesswal ker Windows application after launching a
Java application. For example, to launch j accesswal ker, run one of the following
Windows applications:

ORACLE 11-5

ORACLE

Chapter 11
jaccesswalker

Note:

* The no-suffix version is installed with 64 bit Java.

* JAVA HOME is an environment variable and it should be set to the path of
the JDK or JRE, for example c: \ Program Fi | es\ Java\ | dk-9.

e 64-bit Windows:

— 9%JAVA HOVE% bi n\j accesswal ker . exe: Inspects a Java application as if
j accesswal ker were a 64-bit assistive technology application

— 9% AVA HOVE% bi n\j accesswal ker - 32. exe: Inspects a Java application
as if jaccesswal ker were a 32-bit assistive technology application

You now have two windows open: The Java application window, and the window for
the j accesswal ker tool. There are two tasks that you can do with j accesswal ker. You
can build a tree view of the Java applications' GUI hierarchy, and you can query the
Java Accessibility API information of a particular element in the GUI hierarchy.

Building the GUI Hierarchy

From the File menu, select Refresh Tree menu. The jaccesswal ker tool builds a list of
the top-level windows belonging to Java applications and applets. The tool then
recursively queries the elements in those windows, and builds a tree of all of the GUI
components in all of the Java applications and applets in all of the JVMs running in the
system.

Examining a GUI Component

After a GUI tree is built, you can view detailed accessibility information about an
individual GUI component by selecting it in the tree, then selecting Panels, and then
Display Accessibility Information.

11-6

Troubleshooting Tools and Commands

jcmd

ORACLE

You use JDK troubleshooting tools and commands to troubleshoot Java applications
and the Java Virtual Machine (JVM).

Note:

Tools identified as Experimental are unsupported and might not be available
in future JDK releases.

The following sections describe the JDK troubleshooting tools and commands:

e jcmd: You use the j cnd utility to send diagnostic command requests to a running
Java Virtual Machine (JVM).

* jdb: You use the j db command and it's options to find and fix bugs in Java platform
programs.

e jhsdb: You use the j hsdb tool to attach to a Java process or to launch a
postmortem debugger to analyze the content of a core dump from a crashed Java
Virtual Machine (JVM).

» jinfo: Experimental You use the jinfo command to generate Java configuration
information for a specified Java process. This command is experimental and
unsupported.

e jmap: Experimental You use the j mmp command to print details of a specified
process. This command is experimental and unsupported.

» jstack: Experimental You use the j st ack command to print Java stack traces of
Java threads for a specified Java process. This command is experimental and
unsupported.

You use the j cnd utility to send diagnostic command requests to a running Java Virtual
Machine (JVM).

Synopsis

jemd [pid | main-class] command... | PerfCounter.print
-f filenane

jemd -1

jcmd -h

12-1

ORACLE

Chapter 12
jemd

Note:

The Java Flight Recorder (JFR) used with the j cnd utility is a commercial
product and must be enabled before it is used. Once the JVM is running, the
j cmd command VM unl ock_commerci al _feat ures is used to unlock commercial
features and enable use of the JFR commands described in Commands for
jemd.

pid
When used, the j cnd utility sends the diagnostic command request to the process ID
for the Java process.

main-class
When used, the j cnd utility sends the diagnostic command request to all Java
processes with the specified name of the main class.

command

The command must be a valid j cmd command for the selected JVM. The list of available
commands for j cnd is obtained by running the hel p command (j cnd pi d hel p) where

pi d is the process ID for the running Java process. If the pi d is 0, commands will be
sent to all Java processes. The main class argument will be used to match, either
partially or fully, the class used to start Java. If no options are given, it lists the running
Java process identifiers with the main class and command-line arguments that were
used to launch the process (the same as using -1).

Perfcounter.print
Prints the performance counters exposed by the specified Java process.

—f filename
Reads and executes commands from a specified file,fi | enane .

-1
Displays the list of running Java Virtual Machine process identifiers with the main
class and command-line arguments that were used to launch the process.

-h
Displays thej cnmd utility’'s command-line help.

Description

The j cnd utility is used to send diagnostic command requests to the JVM. It must be
used on the same machine on which the JVM is running, and have the same effective
user and group identifiers that were used to launch the JVM. Each diagnostic
command has its own set of arguments. To display the description, syntax, and a list
of available arguments for a diagnostic command, use the name of the command as
the argument. For example

jemd pid help command

If arguments contain spaces, then you must surround them with single or double
guotation marks (' or "). In addition, you must escape single or double quotation
marks with a backslash (\) to prevent the operating system shell from processing
guotation marks. Alternatively, you can surround these arguments with single

12-2

ORACLE

Chapter 12
jemd

guotation marks and then with double quotation marks (or with double quotation marks
and then with single quotation marks).

If you specify the process identifier (pi d) or the main class (mai n- cl ass) as the first
argument, then the j cnd utility sends the diagnostic command request to the Java
process with the specified identifier or to all Java processes with the specified name of
the main class. You can also send the diagnostic command request to all available
Java processes by specifying 0 as the process identifier.

If you run j cmd without arguments or with the -1 option, it prints the list of running Java
process identifiers with the main class and command-line arguments that were used to
launch the process. Running j cnd with the -h or - hel p option prints the tool's help
message.

Use one of the following as the diagnostic command request:

e Perfcounter.print
e -f filenane

e conmmand [argunents]

Commands for jemd

The command must be a valid j cnmd diagnostic command for the selected JVM. The list of
available commands for j cmd is obtained by running the hel p command (j cnd pi d hel p)
where pi d is the process ID for the running Java process. If the pi d is 0, commands will
be sent to all Java processes. The main class argument will be used to match, either
partially or fully, the class used to start Java. If no options are given, it lists the running
Java process identifiers with the main class and command-line arguments that were
used to launch the process (the same as using -1).

The following commands are available:

help [options][arguments]
For more information about a specific command.
argunents:

* command name : The name of the command for which we want help (STRING,
no default value)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e —all: (Optional) Show help for all commands (BOOLEAN, false) .
Compi ler.codecache

Prints code cache layout and bounds.

Impact: Low
Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Compiler.codelist
Prints all compiled methods in code cache that are alive.

12-3

Chapter 12
jemd

Impact: Medium
Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

Compiler.queue

Prints methods queued for compilation.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Compiler.directives_add <filename> arguments

Adds compiler directives from a file.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)
argunents:

filename : The name of the directives file (STRING, no default value)

Compiler.directives_clear

Remove all compiler directives.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Compiler.directives_print

Prints all active compiler directives.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per mi ssi on(noni t or)

Compiler.directives_remove

Remove latest added compiler directive.

Impact: Low

Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

GC.class_histogram [options]

Provides statistics about the Java heap usage.

Impact: High — depends on Java heap size and content.
Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

Note:

The opt i ons must be specified using either key or key=val ue syntax.

options:

e -all : (Optional) Inspects all objects, including unreachable objects (BOOLEAN,
false)

GC.class_stats [options] [arguments]

Provide statistics about Java class meta data.
Impact: High — depends on Java heap size and content.

Note:

The opti ons must be specified using either key or key=val ue syntax.

ORACLE 12-4

Chapter 12
jemd

options:
e -all: (Optional) Shows all columns (BOOLEAN, false)

e -csv: (Optional) Prints in CSV (comma-separated values) format for spreadsheets
(BOOLEAN, false)

e -hel p: (Optional) Shows the meaning of all the columns (BOOLEAN, false)
argument s

e columns: (Optional) Comma-separated list of all the columns to be shown. If not
specified, the following columns are shown:

— InstBytes

— KlassBytes

— CpAll

— annotations

— MethodCount
— Bytecodes

— MethodAll

— ROAI

- RWAII

— Total

(STRING, no default value)
GC.finalizer_info
Provides information about the Java finalization queue.

Impact: Medium
Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

GC.heap_dump [options] [arguments]

Generates a HPROF format dump of the Java heap.

Impact: High — depends on the Java heap size and content. Request a full GC
unless the -al | option is specified.

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e -all :[optional] Dump all objects, including unreachable objects (BOOLE AN,
false)

arguments:

e filename: The name of the dump file (STRING, no default value)

GC.heap_info
Provides generic Java heap information.

ORACLE 12-5

ORACLE

Chapter 12
jemd

Impact: Medium
Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

GC.run
Calls j ava. | ang. System gc() .
Impact: Medium — depends on the Java heap size and content.

GC.run_finalization
Calls j ava. |l ang. System runFi nal i zation().
Impact: Medium — depends on the Java content.

JFR.check [options]

Checks running JFR recording(s).

Impact: Low

Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

* nane : (Optional) Recording text, e.g. \"My Recording\" or omit to see all
recordings (STRING, no default value)

e verbose : (Optional) Print event settings for the recording(s) (BOOLEAN, false)

JFR.configure [options]

Configures the Java Flight Recorder (JFR)

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(moni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:
e repositorypath: (Optional) Sets the path to the repository, such as
\My Repository\ (STRING, no default value)
* dunppat h: (Optional) Sets the path to dump, such as,
\"My Dunp path\" (STRING, no default value)
* stackdept h: (Optional) Sets the stack Depth (JLONG, 64)
e global buffercount: (Optional) Sets the number of global buffers, (JLONG, 32)
* global buffersize: (Optional) Sets the size of a global buffers, (JLONG, 524288)
e thread_buffer_size: (Optional) Sets the size of a thread buffer (JLONG, 8192)
* nenorysi ze: (Optional) Sets the overall memory size, (JLONG, 16777216)

12-6

ORACLE

Chapter 12
jemd

* threadbufferstodi sk: (Optional) Sets the thread buffers to be written directly to
disk (BOOLEAN, false)

e maxchunksi ze: (Optional) Sets the size of an individual disk chunk (JLONG, 12582
912)

» sanpl et hreads: (Optional) Activates thread sampling (BOOLEAN, true)

JFR.dump [options]

Copies contents of a JFR recording to file. Either the name or the recording id must
be specified.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e nane : (Optional) Recording name, e.g. \"My Recording\" (STRING, no default
value)

« filenane : Copy recording data to file, i.e \"C:\Users\user\My Recording.jfr\"
(STRING, no default value)

* path-to-gc-roots: (Optional) Collects path to GC roots (BOOLEAN, false)

JFR.start [options]

Starts a new JFR recording.

Impact: Medium: Depending on the settings for a recording, the impact can range
from low to high.

Permission: j ava. | ang. management . Managenent Per i ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

* nane : (Optional) Name that can be used to identify recording, e.g. \"My Recording
\" (STRING, no default value)

e settings : (Optional) Settings file(s), e.g. profile or default. See JRE _HOME/lib/jfr
(STRING SET, no default value)

e delay : (Optional) Delay recording start with (s)econds, (m)inutes), (h) ours), or
(d)ays, e.g. 5h. (NANOTIME, 0)

e duration : (Optional) Duration of recording in (s)econds, (m)inutes, (h) ours, or
(d)ays, e.g. 300s. (NANOTIME, 0)

e disk : (Optional) Recording should be persisted to disk (BOOLEAN, no def ault
value)

12-7

Chapter 12
jemd

e filenane : (Optional) Resulting recording filename, e.g. \"C:\Users\user \My
Recording.jfr\" (STRING, no default value)

e nmaxage : (Optional) Maximum time to keep recorded data (on disk) in (s)e conds,
(m)inutes, (h)ours, or (d)ays, e.g. 60m, or 0 for no limit (NANOTIME, 0)

* maxsize : (Optional) Maximum amount of bytes to keep (on disk) in (k)B, (M)B or
(G)B, e.g. 500M, or 0 for no limit (MEMORY SIZE, 0)

e dunponexit : (Optional) Dump running recording when JVM shuts down (BOOL
EAN, no default value)

e path-to-gc-roots: (Optional) Collects path to GC roots (BOOLEAN, false)

JFR.stop [options]

Stops a JFR recording

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per mi ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:
* nane: (Optional) Recording text, such as,
\"M/ Recording\" (STRING, no default value)
e filenane: (Optional) Copy recording data to file, such as,
. \"C\Users\user\ My Recording.jfr\" (STRING, no default value)

JUMTI .agent_load [arguments]

Loads JVMTI native agent.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(control)
argunents:

* library path : Absolute path of the JVMTI agent to load. (STRING, no default
value)

e agent option : (Optional) Option string to pass the agent. (STRING, no default
value)

JVMTI .data_dump

Signals the JVM to do a data-dump request for JVMTI.

Impact: High

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

ManagementAgent.start [options]
Starts remote management agent.
Impact: Low — no impact

ORACLE 12-8

ORACLE

Chapter 12
jemd

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

config.file: (Optional) Sets com sun. managenent . config. file (STRING, no default
value)

j mrenot e. host : (Optional) Sets com sun. managenent . j mxr enot e. host (STRIN G, no
default value)

jmxrenmote. port : (Optional) Sets com sun. managenent . j nxremot e. port (STRIN G, no
default value)

jmrenote.rni.port : (Optional) Sets com sun. managenent . j nxrenot e. rni . port
(STRING, no default value)

j mxrenot e. ssl : (Optional) Sets com sun. managenent . j nxremot e. ssl (STRING, no
default value)

jmxrenmote. registry.ssl : (Optional) Sets
com sun. managenent . j mxrenot e. regi stry. ssl (STRING, no default value)

j mxrenot e. aut henti cat e : (Optional) Sets
com sun. managenent . j nxrenot e. aut hent i cate (STRING, no default value)

jmxremote.password.file : (Optional) Sets
com sun. management . j nxrenot e. passwor d. fi l e (STRING, no default value)

jmxrenot e. access. fil e : (Optional) Sets com sun. managenent . j nxr enot e. acce
ss.file (STRING, no default value)

j mxrenote. | ogi n. confi g : (Optional) Sets com sun. managenent . j mxrenot e. | og
in.config (STRING, no default value)

j mxrenot e. ssl . enabl ed. ci pher. suites : (Optional) Sets com sun. managenent .
j mxrenot e. ssl . enabl ed. ci pher. sui te: (STRING, no default value)

j mxrenot e. ssl . enabl ed. prot ocol s : (Optional) Sets com sun. managenent . j nxr
enmot e. ssl . enabl ed. prot ocol s (STRING, no default value)

j mxrenot e. ssl . need. client.auth : (Optional) Sets com sun. managenent . j nxre
not e. need. cl i ent. auth (STRING, no default value)

jmxremote. ssl.config.file: (Optional) Sets com sun. management . j nxr enot e.
ssl_config_file (STRING, no default value)

j mxr enot e. aut odi scovery : (Optional) Sets com sun. managenent . j nxr enot e. au
t odi scovery (STRING, no default value)

jdp. port : (Optional) Sets com sun. managenent . j dp. port (INT, no default v alue)

j dp. address : (Optional) Sets com sun. managenent . j dp. addr ess (STRING, no default
value)

j dp. source_addr : (Optional) Sets com sun. managenent . j dp. source_addr (STR ING,
no default value)

jdp.ttl : (Optional) Sets com sun. management . jdp.ttl (INT, no default value)

12-9

Chapter 12
jemd

* jdp. pause : (Optional) Sets com sun. managenent . j dp. pause (INT, no default value)

e jdp. nane : (Optional) Sets com sun. managenent . j dp. nane (STRING, no defaul t
value)

ManagementAgent.start_local
Starts the local management agent.
Impact: Low —no impact

ManagementAgent.status

Print the management agent status.

Impact: Low — no impact

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

ManagementAgent.stop
Stops the remote management agent.
Impact: Low — no impact

Thread.print [options]

Prints all threads with stacktraces.

Impact: Medium — depends on the number of threads.
Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e -l :(Optional) Prints java. util.concurrent locks (BOOLEAN, false)

VM.check _commercial_features
Display status of commercial features
Impact: Low — no impact

VM.unlock_commercial_features

Unlock commercial features

Impact: Low — no impact

Permission: j ava. | ang. managenent . Management Per ni ssi on(control)

VM.classloader_stats

Prints statistics about all ClassLoaders.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(moni t or)

VM.class_hierarchy [options] [arguments]

Prints a list of all loaded classes, indented to show the class hierarchy. The name of
each class is followed by the ClassLoaderData* of its ClassLoader, or "null " if it is
loaded by the bootstrap class loader.

Impact: Medium — depends on the number of loaded classes.

Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

ORACLE 12-10

ORACLE

Chapter 12
jemd

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:
e -i:(Optional) Inherited interfaces should be printed. (BOOLEAN, false)

* -s:(Optional) If a class name is specified, it prints the subclasses. If the class
name is not specified, only the superclasses are printed. (BOOLEAN, false)

argunent s

e classname: (Optional) The name of the class whose hierarchy should be printed.
If not specified, all class hierarchies are printed. (STRING, no default value)

VM.command_line

Prints the command line used to start this VM instance.

Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(moni t or)

VM._dynlibs

Prints the loaded dynamic libraries.

Impact: Low

Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

VM. info

Prints information about the JVM environment and status.
Impact: Low

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

VM. log [options]

Lists current log configuration, enables/disables/configures a log output, or ro tates all
logs.

Impact: Low

Perm ssion: java. | ang. nanagenent . Managenent Per m ssi on(control)

options:

Note:

The following opti ons must be specified using either key or key=val ue syntax.

e output: (Optional) The name or index (#) of output to configure. (STRING, no
default value)

e output_options: (Optional) Options for the output. (STRING, no default value)
* what: (Optional) Configures what tags to log. (STRING, no default value)

e decorators: (Optional) Configures which decorators to use. Use 'none' o r an
empty value to remove all. (STRING, no default value)

» disabl e: (Optional) Turns off all logging and clears the log configurat ion.
(BOOLEAN, no default value)

12-11

ORACLE

Chapter 12
jemd

e list: (Optional) Lists current log configuration. (BOOLEAN, no default value)
e rotate: (Optional) Rotates all logs. (BOOLEAN, no default value)

VM._flags [options]

Prints the VM flag options and their current values.

Impact: Low
Permission: j ava. | ang. managenent . Managenent Per ni ssi on(moni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e -all : (Optional) Prints all flags supported by the VM (BOOLEAN, false).

VM.native_memory [options]

Prints native memory usage

Impact: Medium

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e summary: (Optional) Requests runtime to report current memory summary, which
includes total reserved and committed memory, along with memory usage
summary by each subsystem. (BOOLEAN, false)

e detail: (Optional) Requests runtime to report memory allocation >= 1K by each
callsite. (BOOLEAN, false)

* basel ine: (Optional) Requests runtime to baseline current memory usage, so it
can be compared against in later time. (BOOLEAN, false)

e summary. di ff: (Optional) Requests runtime to report memory summary
comparison against previous baseline. (BOOLEAN, false)

e detail.diff :(Optional) Requests runtime to report memory detail comparison
against previous baseline, which shows the memory allocation activities at
different callsites. (BOOLEAN, false)

e shut down: (Optional) Requests runtime to shutdown itself and free the memory
used by runtime. (BOOLEAN, false)

e statistics: (Optional) Prints tracker statistics for tuning purpose. (BOOLEAN,
false)

e scal e : (Optional) Memory usage in which scale, KB, MB or GB (STRING, KB)

VM._print_touched_methods
Prints all methods that have ever been touched during the lifetime of this JVM.

12-12

ORACLE

Chapter 12
jemd

Impact: Medium — depends on Java content.

VM_set_flag [arguments]

Sets the VM flag option by using the provided value.

Impact: Low

Permission: j ava. | ang. managenent . Management Per ni ssi on(control)
argunents:

* flag name : The name of the flag that you want to set (STRING, no default value)

e string value : (Optional) The value that you want to set (STRING, no default value)

VM.stringtable [options]

Dumps the string table.

Impact: Medium — depends on the Java content.

Permission: j ava. | ang. managenent . Managenent Per ni ssi on(noni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

* -verbose : (Optional) Dumps the content of each string in the table (BOOLEAN,
false)

VM._symboltable [options]

Dumps the symbol table.

Impact: Medium — depends on the Java content.

Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax).

options:

e -verbose : (Optional) Dumps the content of each symbol in the table (BOOLEAN,
false)

VM.systemdictionary
Prints the statistics for dictionary hashtable sizes and bucket length.

Impact: Medium
Permission: j ava. | ang. managenent . Management Per ni ssi on(moni t or)

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

12-13

idb

ORACLE

Chapter 12
jdb

* verbose : (Optional) Dump the content of each dictionary entry for all class loaders
(BOOLEAN, false) .

VM._system_properties

Prints the system properties.

Impact: Low

Permission: java. util.PropertyPernission(*, read)

VM.uptime [options]
Prints the VM uptime.
Impact: Low

Note:

The following opti ons must be specified using either key or key=val ue syntax.

options:

e -date: (Optional) Adds a prefix with the current date (BOOLEAN, false)

VM.version

Prints JVM version information.

Impact: Low

Permission: java. util.PropertyPernission(java.vmversion, read)

You use the j db command and it's options to find and fix bugs in Java platform
programs.

Synopsis
jdb [options] [classname] [argunents]

options
This represents the j db command-line options. See Options for the jdb command.

classname
This represents the name of the main class to debug.

arguments
This represents the arguments that are passed to the mai n() method of the class.

Description

The Java Debugger (JDB) is a simple command-line debugger for Java classes. The
j db command and its options call the JDB. The j do command demonstrates the Java
Platform Debugger Architecture and provides inspection and debugging of a local or
remote JVM.

Start a JDB Session

There are many ways to start a JDB session. The most frequently used way is to have
the JDB launch a new JVM with the main class of the application to be debugged. Do
this by substituting the j db command for the j ava command in the command line. For

12-14

ORACLE

Chapter 12
jdb

example, if your application's main class is W d ass, then use the following command to
debug it under the JDB:

jdb M/ d ass
When started this way, the j db command calls a second JVM with the specified

parameters, loads the specified class, and stops the JVM before executing that class's
first instruction.

Another way to use the j db command is by attaching it to a JVM that’s already running.
Syntax for starting a JVM to which the j dbo command attaches when the JVM is
running is as follows. This loads in-process debugging libraries and specifies the kind
of connection to be made.

java -agentlib:jdwp=transport=dt_socket, server=y, suspend=n M/C ass

You can then attach the j db command to the JVM with the following command:

jdb -attach 8000

8000 is the address of the running JVM.

The Wd ass argument isn’t specified in the j db command line in this case because the
j db command is connecting to an existing JVM instead of launching a new JVM.

There are many other ways to connect the debugger to a JVM, and all of them are
supported by the j do command. The Java Platform Debugger Architecture has
additional documentation on these connection options.

Breakpoints

Breakpoints can be set in the JDB at line numbers or at the first instruction of a
method, for example:

e The command stop at M/Q ass: 22 sets a breakpoint at the first instruction for line
22 of the source file containing M/d ass.

e The command stop in java.lang. String.|ength sets a breakpoint at the beginning
of the method j ava. | ang. String. | engt h.

e The command stop in M/ ass. <cl i nit> uses <cl i ni t > to identify the static
initialization code for W/Q ass.

When a method is overloaded, you must also specify its argument types so that the
proper method can be selected for a breakpoint. For example,
My ass. nyMet hod(int, java. |l ang. String) or M\yCl ass. nyMet hod() .

The cl ear command removes breakpoints using the following syntax: cl ear M/Cl ass:
45. Using the cl ear or st op command with no argument displays a list of all breakpoints
currently set. The cont command continues execution.

Stepping

The st ep command advances execution to the next line whether it's in the current
stack frame or a called method. The next command advances execution to the next
line in the current stack frame.

Exceptions

When an exception occurs for which there isn't a cat ch statement anywhere in the
throwing thread's call stack, the JVM typically prints an exception trace and exits.

12-15

ORACLE

Chapter 12
jdb

When running under the JDB, however, control returns to the JDB at the offending
throw. You can then use the j do command to diagnose the cause of the exception.

Use the cat ch command to cause the debugged application to stop at other thrown
exceptions, for example: catch java.io. Fi | eNot FoundExcepti on or cat ch

nypackage. Bi gTr oubl eExcept i on. Any exception that's an instance of the specified class
or subclass stops the application at the point where the exception is thrown.

The i gnore command negates the effect of an earlier cat ch command. The i gnore
command doesn’t cause the debugged JVM to ignore specific exceptions, but only to
ignore the debugger.

Options for the jdb command

When you use the j db command instead of the j ava command on the command line,
the j db command accepts many of the same options as the j ava command..

The following options are accepted by the j db command:

-help
Displays a help message.

-sourcepath dirl:dir2: . . .
Uses the specified path to search for source files in the specified path. If this option is
not specified, then use the default path of dot (.).

-attach address
Attaches the debugger to a running JVM with the default connection mechanism.

-listen address
Waits for a running JVM to connect to the specified address with a standard
connector.

-listenany
Waits for a running JVM to connect at any available address using a standard
connector.

-launch

Starts the debugged application immediately upon startup of the j db command. The -
I aunch option removes the need for the run command. The debugged application is
launched and then stopped just before the initial application class is loaded. At that
point, you can set any necessary breakpoints and use the cont command to continue
execution.

-listconnectors
Lists the connectors available in this JVM.

-connect connector-name:namel=valuel.. ..
Connects to the target JVM with the named connector and listed argument values.

-dbgtrace [flags]
Prints information for debugging the j db command.

-tclient
Runs the application in the Java HotSpot VM client.

12-16

jhsdb

ORACLE

Chapter 12
jhsdb

-tserver
Runs the application in the Java HotSpot VM server.

-Joption
Passes opti on to the JVM, where option is one of the options described on the

reference page for the Java application launcher. For example, - J- Xms48msets the
startup memory to 48 MB. See Overview of Java Options.

The following options are forwarded to the debuggee process:

-v -verbose[:class|gc|jni]
Turns on the verbose mode.

-Dname=value
Sets a system property.

-classpath dir
Lists directories separated by colons in which to look for classes.

-X option
A nonstandard target JVM option.

Other options are supported to provide alternate mechanisms for connecting the
debugger to the JVM that it's to debug.

You use the j hsdb tool to attach to a Java process or to launch a postmortem
debugger to analyze the content of a core dump from a crashed Java Virtual Machine
(IVM).

Synopsis
jhsdb clhsdb [--pid pid | --exe executable --core coredunp]
jhsdb debugd [options] pid [server-id]|[option] executable core [server-id]

jhsdb hsdb [--pid pid | --exe executable --core coredunp]

jhsdb jstack [--pid pid | --exe executable --core coredunp] [options]
jhsdb jmap [--pid pid | --exe executable --core coredunp] [options]
jhsdb jinfo [--pid pid | --exe executable --core coredunp] [options]
jhsdb jsnap [options] [--pid pid | --exe executable --core coredunp]
pid

The process ID to which the j hsdb tool should attach. The process must be a Java
process. To get a list of Java processes running on a machine, use the jps command.

server-id
An optional unique ID to use when multiple debug servers are running on the same
remote host.

12-17

ORACLE

Chapter 12
jhsdb

executable
The Java executable file from which the core dump was produced.

core
The core file to which the j hsdb tool should attach.

options

The command-line options for a j hsdb mode. See Common Options for jhsdb Modes,
Options for the debugd Mode, Options for the jinfo Mode, Options for the jmap Mode,
Options for the jmap Mode, Options for the jstack Mode, and Options for the jsnap
Mode.

Note:

Either the pi d or the pair of execut abl e and cor e files must be provided.

Description

You can use the j hsdb tool to attach to a Java process or to launch a postmortem
debugger to analyze the content of a core-dump from a crashed Java Virtual Machine
(JVM). This command is experimental and unsupported.

Note:

Attaching the j hsdb tool to a live process will cause the process to hang and
the process will probably crash when the debugger detaches.

The j hsdb tool can be launched in any one of the following modes:

jhsdb clhsdb
Starts the interactive command-line debugger.

jhsdb debugd
Starts the remote debug server.

Jhsdb hsdb
Starts the interactive GUI debugger.

jhsdb jstack
Prints stack and locks information.

jhsdb jmap
Prints heap information.

jhsdb jinfo
Prints basic JVM information.

jhsdb jsnap
Prints performance counter information.

12-18

ORACLE

Chapter 12
jhsdb

Common Options for jhsdb Modes

In addition to any required j st ack, j map, j i nf o or j snap mode specific options, the pi d,
exe, or cor e options must be provided for all modes. The following options are available
for all modes.

--pid
The process ID of the hanging process.

--exe
The executable file name.

--core
The core dump file name.

--help
Displays the options available for the command.

Options for the debugd Mode

server-id
An optional unique ID for this debug server. This is required if multiple debug servers
are run on the same machine.

Options for the jinfo Mode
Without specified options, the j hsdb ji nfo prints both flags and properties.

--flags
Prints the VM flags.

--Sysprops
Prints the Java system properties.

no option
Prints the VM flags and the Java system properties.

Options for the jmap Mode

In addition to the following mode specific options, the pi d, exe, or core options
described in Common Options for jhsdb Modes must be provided.

no option
Prints the same information as Solaris pnap.

--heap
Prints the j ava heap summary.

--binaryheap
Dumps the j ava heap in hpr of binary format.

--dumpfile
Prints the name of the dumpfile.

--histo
Prints the histogram of j ava object heap.

12-19

jinfo

ORACLE

Chapter 12
jinfo

--clstats
Prints the class loader statistics.

--finalizerinfo
Prints the information on objects awaiting finalization.

Options for the jstack Mode

In addition to the following mode specific options, the pi d, exe, or core options
described in Common Options for jhsdb Modes must be provided.

--locks
Prints the java. util.concurrent locks information.

--mixed
Attempts to print both j ava and native frames if the platform allows it.

Options for the jsnap Mode

In addition to the following mode specific option, the pi d, exe, or cor e options described
in Common Options for jhsdb Modes must be provided.

--all
Prints all performance counters.

You use the ji nfo command to generate Java configuration information for a specified
Java process. This command is experimental and unsupported.

Synopsis
jinfo [option] pid

option
This represents the j i nfo command-line options. See Options for the jinfo Command.

pid

The process ID for which the configuration information is to be printed. The process
must be a Java process. To get a list of Java processes running on a machine, use
the jps command.

Description

The jinfo command prints Java configuration information for a specified Java process.
The configuration information includes Java system properties and JVM command-line
flags. If the specified process is running on a 64-bit JVM, then you might need to
specify the - J- d64 option, for example:

jinfo -J-d64 -sysprops pid

This command is unsupported and might not be available in future releases of the
JDK. In Windows Systems where dbgeng. dl | is not present, the Debugging Tools for
Windows must be installed to have these tools work. The PATH environment variable
should contain the location of the jvm dlI | that's used by the target process or the
location from which the core dump file was produced.

12-20

Jmap

ORACLE

Chapter 12
jmap

Options for the jinfo Command

Note:

If none of the following options are used, both the command-line flags and the
system property name-value pairs are printed.

-flag name
Prints the name and value of the specified command-line flag.

-flag [+]-]name
Enables or disables the specified Boolean command-line flag.

-flag name=value
Sets the specified command-line flag to the specified value.

-flags
Prints command-line flags passed to the JVM.

-sysprops
Prints Java system properties as hame-value pairs.

-h or -help
Prints a help message.

You use the j map command to print details of a specified process. This command is
experimental and unsupported.

Synopsis
jmap [options] pid

options
This represents the j map command-line options. See Options for the jmap Command.

pid
The process ID for which the information specified by the opti ons is to be printed. The

process must be a Java process. To get a list of Java processes running on a
machine, use the jps command.

Description

The j mp command prints details of a specified running process.

12-21

jstack

ORACLE

Chapter 12
jstack

Note:

This command is unsupported and might not be available in future releases of
the JDK. On Windows Systems where the dbgeng. dI | file isn’t present, the
Debugging Tools for Windows must be installed to make these tools work. The
PATH environment variable should contain the location of the jvm dI | file that’s
used by the target process or the location from which the core dump file was
produced.

Options for the jmap Command

-clstats pid
Connects to a running process and prints class loader statistics of Java heap.

-finalizerinfo pid
Connects to a running process and prints information on objects awaiting finalization.

-histo[:live] pid
Connects to a running process and prints a histogram of the Java object heap. If the
l'i ve suboption is specified, it then counts only live objects.

-dump:dump options pid
Connects to a running process and dumps the Java heap. The dunp opti ons include:

* |ive — When specified, dumps only the live objects; if not specified, then dumps
all objects in the heap.

f or mat =b — Dumps the Java heap,. in hprof binary format
e file=fil ename — Dumps the heap to fil ename

Example: j map - dunp:live, format=b,file=heap. bin pid

You use the j stack command to print Java stack traces of Java threads for a specified
Java process. This command is experimental and unsupported.

Synopsis
jstack [options] pid
options

This represents the j st ack command-line options. See Options for the jstack
Command.

pid
The process ID for which the stack trace is printed. The process must be a Java
process. To get a list of Java processes running on a machine, use the jps command.

Description

The j stack command prints Java stack traces of Java threads for a specified Java
process. For each Java frame, the full class name, method name, byte code index
(BCI), and line number, when available, are printed. C++ mangled names aren’t
demangled. To demangle C++ names, the output of this command can be piped to c+

12-22

ORACLE

Chapter 12
jstack

+filt. When the specified process is running on a 64-bit JVM, you might need to
specify the - J- d64 option, for example: j stack -J-d64pid .

¢ Note:

This command is unsupported and might not be available in future releases of
the JDK. In Windows Systems where the dbgeng. dl | file isn’t present, the
Debugging Tools for Windows must be installed so that these tools work. The
PATH environment variable needs to contain the location of the jvm dl | that is
used by the target process, or the location from which the core dump file was
produced.

Options for the jstack Command

-1
The long listing option prints additional information about locks.

-h or -help
Prints a help message.

12-23

Script Commands

Iis

ORACLE

You use JDK commands to run scripts that interact with the Java platform.

Note:

Commands identified as Experimental are unsupported and might not be
available in future JDK releases.

The following sections describe the commands used to run scripts:

e jjs: You use the jj s command-line tool to invoke the Nashorn engine.

e jrunscript: Experimental You use the jrunscri pt command to run a command-line
script shell that supports interactive and batch modes.

You use the jj s command-line tool to invoke the Nashorn engine.

Synopsis
jjs [options] script-files [-- argunents]
options

This represents one or more options of the j j s command, separated by spaces. See
Options for the jjs Command.

script-files

This represents one or more script files that you want to interpret using the Nashorn
engine, separated by spaces. If no files are specified, then an interactive shell is
started.

arguments
All values after the double hyphen marker (--) are passed through to the script or the
interactive shell as arguments. These values can be accessed by using the ar gunent s

property.
Description

The jj s command-line tool is used to invoke the Nashorn engine. You can use it to
interpret one or several script files, or to run an interactive shell.

Options for the jjs Command

The options of the j j s command control the conditions under which scripts are
interpreted by Nashorn engine.

13-1

Chapter 13
jis

-Dname=value

Sets a system property to be passed to the script by assigning a value to a property
name. The following example shows how to invoke Nashorn engine in interactive
mode and assign nyVal ue to the property named nyKey:

>> jjs -DnyKey=nyVal ue

jjs> java.lang. System get Property("myKey")
myVal ue

jis>

This option can be repeated to set multiple properties.

--add-modules modules
Specifies the root user Java modules.

-cp path or -classpath path
Specifies the path to the supporting class files. To set multiple paths, the option can
be repeated, or you can separate each path with the following character:

* Oracle Solaris, Linux, and OS X: Colon (:)

* Windows; Semicolon (;)

-doe=[true|false] or -dump-on-error=[true|false]
Provides a full stack trace when an error occurs. By default, only a brief error
message is printed. The default parameter is f al se.

-fv=[true|false] or -fullversion=[true|false]
Prints the full Nashorn version string. The default parameter is f al se.

-fx=[true|false]
Launches the script as a JavaFX application. The default parameter is f al se.

-h or -help
Prints the list of options and their descriptions.

--language=[es5|es6]
Specifies the ECMAScript language version. The default version is ES5.

--module-path path
Specifies where to find user Java modules.

-ot=[true|false] or -optimistic-types=[true|false]

Enables or disables optimistic type assumptions with deoptimizing recompilation. This
makes the compiler try, for any program symbol whose type can't be proven at
compile time, to type it as narrowly and primitively as possible. If the runtime
encounters an error because the symbol type is too narrow, then a wider method is
generated until a steady stage is reached. While this produces as optimal Java
bytecode as possible, erroneous type guesses will lead to longer warmup. Optimistic
typing is currently enabled by default, but it can be disabled for faster startup
performance. The default parameter is tr ue.

-scripting=[true|false]
Enables a shell scripting features. The default parameter is tr ue.

ORACLE 13-2

jrunscript

ORACLE

Chapter 13
jrunscript

-strict=[true|false]

Enables a strict mode, which enforces stronger adherence to the standard
(ECMAScript Edition 5.1), making it easier to detect common coding errors. The
default parameter is f al se.

-t=zone Or -timezone=zone
Sets the specified time zone for script execution. It overrides the time zone set in the
OS and used by the Dat e object. The default zone is Aneri ca/ Los_Angel es.

-v=[true|false] or-version=[true|false]
Prints the Nashorn version string. The default parameter is f al se.

Example of Running a Script with Nashorn

jis script.js

Example of Running Nashorn in Interactive Mode
>> jjs

jjs> printIn("Hello, World!")

Hel 1o, World!

jis> quitQ)
>>

Example of Passing Arguments to Nashorn

> jjs --abec

jjs> arguments.join(*, ")
a, b c

jis>

You use the jrunscri pt command to run a command-line script shell that supports
interactive and batch modes. Note: This tool is experimental and unsupported.

Synopsis
jrunscript [options] [argunents]

options
This represents the j runscri pt command-line options that can be used. See Options
for the jrunscript Command.

arguments
Arguments, when used, follow immediately after options or the command name. See
Arguments.

Description

The jrunscript command is a language-independent command-line script shell. The
jrunscri pt command supports both an interactive (read-eval-print) mode and a batch
(-f option) mode of script execution. By default, JavaScript is the language used, but
the -1 option can be used to specify a different language. By using Java to scripting
language communication, the j runscri pt command supports an exploratory
programming style.

13-3

ORACLE

Chapter 13
jrunscript

If JavaScript is used, then before it evaluates a user defined script, the j runscri pt
command initializes certain built-in functions and objects, which are documented in the
API Specification for j runscri pt JavaScript built-in functions.

Options for the jrunscript Command

-cp path or -classpath path
Indicates where any class files are that the script needs to access.

-Dname=value
Sets a Java system property.

-Jflag
Passes f1 ag directly to the Java Virtual Machine where the jrunscri pt command is
running.

-1 language

Uses the specified scripting language. By default, JavaScript is used. To use other
scripting languages, you must specify the corresponding script engine's JAR file with
the - cp or - cl asspat h option.

-e script
Evaluates the specified script. This option can be used to run one-line scripts that are
specified completely on the command line.

-encoding encoding
Specifies the character encoding used to read script files.

-f script-file
Evaluates the specified script file (batch mode).

-f -
Enters interactive mode to read and evaluate a script from standard input.

-help or -?
Displays a help message and exits.

-q
Lists all script engines available and exits.

Arguments

If arguments are present and if no -e or -f option is used, then the first argument is the
script file and the rest of the arguments, if any, are passed as script arguments. If
arguments and the - e or the -f option are used, then all arguments are passed as
script arguments. If arguments -e and -f are missing, then the interactive mode is
used.

Example of Executing Inline Scripts

jrunscript -e "print('hello world)"
jrunscript -e "cat('http://ww:. exanpl e.con)"

Example of Using Specified Language and Evaluate the Script File

jrunscript -1 js -f test.js

13-4

ORACLE

Chapter 13
jrunscript

Example of Interactive Mode

jrunscript

js>print('Hello Wrldin);

Hello Wrld

js> 34 + 55

89.0

js>t = new java.lang. Thread(function() { print('Hello Wrld\in'); })
Thread[Thread- 0, 5, mai n]

js>t.start()

js> Hello Wrld

js>
Run Script File with Script Arguments

In this example, the test. s file is the script file. The arg1, ar g2, and ar g3 arguments
are passed to the script. The script can access these arguments with an arguments
array.

jrunscript test.js argl arg2 arg3

13-5

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Tools and Commands Reference
	2 Main Tools to Create and Build Applications
	javac
	Annotation Processing
	Searching for Types

	javap
	javah
	javadoc
	java
	java Command-Line Argument Files
	Enable Logging with the JVM Unified Logging Framework
	Validate Java Virtual Machine Flag Arguments
	Large Pages
	Application Class Data Sharing
	Performance Tuning Examples
	Exit Status

	appletviewer
	AppletViewer Tags

	jar
	jlink
	jmod
	jdeps
	jdeprscan

	3 Language Shell
	jshell

	4 Security Tools and Commands
	keytool
	jarsigner
	policytool
	kinit
	klist
	ktab

	5 Remote Method Invocation (RMI) Tools and Commands
	rmic
	rmiregistry
	rmid
	serialver

	6 Java IDL and RMI-IIOP Tools and Commands
	tnameserv
	idlj
	orbd
	servertool

	7 Java Deployment Tools and Commands
	pack200
	unpack200
	javapackager

	8 Java Web Start Tool
	javaws

	9 Monitoring Tools and Commands
	jconsole
	jps
	jstat
	jstatd
	jmc

	10 Web Services Tools and Commands
	schemagen
	wsgen
	wsimport
	xjc

	11 Java Accessibility Utilities and Commands
	jaccessinspector
	jaccesswalker

	12 Troubleshooting Tools and Commands
	jcmd
	jdb
	jhsdb
	jinfo
	jmap
	jstack

	13 Script Commands
	jjs
	jrunscript

