
[image: Oracle Corporation]

Oracle® Database

JDBC Developer's Guide and Reference,

11g Release 1 (11.1)

B31224-04

July 2008

This book describes how to use Oracle JDBC drivers to develop powerful Java database applications.

Oracle Database JDBC Developer's Guide and Reference, 11g Release 1 (11.1)

B31224-04

Copyright © 1999, 2008, Oracle. All rights reserved.

Primary Author: Tulika Das, Venkatasubramaniam Iyer, Elizabeth Hanes Perry, Brian Wright, Thomas Pfaeffle

Contributing Author: Brian Martin

Contributor: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul Bastawala, Luxi Chidambaran, Srinath Krishnaswamy, Longxing Deng, Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Catherine Wong, Scott Urman, Jerry Schwarz, Steve Ding, Soulaiman Htite, Anthony Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl Maring

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New

	New Features for Release 1 (11.1)
	Desupported Features
	Interface Changes

Part I Overview

1 Introducing JDBC

	Overview of Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	Choosing the Appropriate Driver
	Feature Differences Between JDBC OCI and Thin Drivers

	Environments and Support
	Supported JDK and JDBC Versions
	JNI and Java Environments
	JDBC and IDEs

	Feature List

2 Getting Started

	Version Compatibility for Oracle JDBC Drivers
	Verification of a JDBC Client Installation
	Check the Installed Directories and Files
	Check the Environment Variables
	Ensure that the Java Code Can Be Compiled and Run
	Determine the Version of the JDBC Driver
	Test JDBC and the Database Connection

	Basic Steps in JDBC
	Importing Packages
	Opening a Connection to a Database
	Creating a Statement Object
	Running a Query and Retrieving a Result Set Object
	Processing the Result Set Object
	Closing the Result Set and Statement Objects
	Making Changes to the Database
	Committing Changes
	Closing the Connection

	Sample: Connecting, Querying, and Processing the Results
	Stored Procedure Calls in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Processing SQL Exceptions

Part II Oracle JDBC

3 JDBC Standards Support

	Support for JDBC 2.0 Standard
	Data Type Support
	Standard Feature Support
	Extended Feature Support
	Standard versus Oracle Performance Enhancement APIs

	Support for JDBC 3.0 Standard
	Transaction Savepoints
	Creating a Savepoint
	Rolling Back to a Savepoint
	Releasing a Savepoint
	Checking Savepoint Support
	Savepoint Notes

	Retrieval of Auto-Generated Keys
	java.sql.Statement
	Sample Code
	Limitations

	JDBC 3.0 LOB Interface Methods
	Result Set Holdability

	Support for JDBC 4.0 Standard

4 Oracle Extensions

	Overview of Oracle Extensions
	Features of the Oracle Extensions
	Database Management Using JDBC
	Support for Oracle Data Types
	Support for Oracle Objects
	Support for Schema Naming
	DML Returning
	Accessing PL/SQL Index-by Tables

	Oracle JDBC Packages
	Package oracle.sql
	Package oracle.jdbc

	Oracle Character Data Types Support
	SQL CHAR Data Types
	SQL NCHAR Data Types
	Class oracle.sql.CHAR

	Additional Oracle Type Extensions
	Oracle ROWID Type
	Oracle REF CURSOR Type Category
	Oracle BINARY_FLOAT and BINARY_DOUBLE Types
	Oracle SYS.ANYTYPE and SYS.ANYDATA Types
	The oracle.jdbc Package
	Interface oracle.jdbc.OracleConnection
	Interface oracle.jdbc.OracleStatement
	Interface oracle.jdbc.OraclePreparedStatement
	Interface oracle.jdbc.OracleCallableStatement
	Interface oracle.jdbc.OracleResultSet
	Interface oracle.jdbc.OracleResultSetMetaData
	Class oracle.jdbc.OracleTypes
	Method getJavaSqlConnection

	DML Returning
	Oracle-Specific APIs
	Running DML Returning Statements
	Example of DML Returning
	Limitations of DML Returning

	Accessing PL/SQL Index-by Tables
	Overview
	Binding IN Parameters
	Receiving OUT Parameters
	Type Mappings

5 Features Specific to JDBC Thin

	Overview of JDBC Thin Client
	Additional Features Supported
	Support for Applets
	Default Support for Native XA

	JDBC in Applets
	Connecting to the Database Through the Applet
	Connecting to a Database on a Different Host Than the Web Server
	Using the Oracle Connection Manager
	Using Signed Applets

	Using Applets with Firewalls
	Configuring a Firewall for Applets that use the JDBC Thin Driver
	Writing a URL to Connect Through a Firewall

	Packaging Applets
	Specifying an Applet in an HTML Page
	CODE, HEIGHT, and WIDTH
	CODEBASE
	ARCHIVE

6 Features Specific to JDBC OCI Driver

	OCI Connection Pooling
	Client Result Cache
	Usage Guidelines in JDBC
	Validation of the Client Result Cache
	Client Cache Statistics Verification
	Timing Measurement

	Transparent Application Failover
	OCI Native XA
	OCI Instant Client
	Overview of Instant Client
	Benefits of Instant Client
	JDBC OCI Instant Client Installation Process
	Usage of Instant Client
	Patching Instant Client Shared Libraries
	Regeneration of Data Shared Library and ZIP files
	Database Connection Names for OCI Instant Client
	Environment Variables for OCI Instant Client

	Instant Client Light (English)
	Globalization Settings
	Operation
	Installation

7 Server-Side Internal Driver

	Overview of the Server-Side Internal Driver
	Connecting to the Database
	Exception-Handling Extensions
	Session and Transaction Context
	Testing JDBC on the Server
	Loading an Application into the Server

Part III Connection and Security

8 Data Sources and URLs

	Data Sources
	Overview of Oracle Data Source Support for JNDI
	Features and Properties of Data Sources
	Creating a Data Source Instance and Connecting
	Creating a Data Source Instance, Registering with JNDI, and Connecting
	Supported Connection Properties
	Using Roles for SYS Login
	Configuring Database Remote Login
	Bequeath Connection and SYS Logon
	Properties for Oracle Performance Extensions

	Database URLs and Database Specifiers

9 JDBC Client-Side Security Features

	Support for Oracle Advanced Security
	Support for Login Authentication
	Support for Strong Authentication
	Support for OS Authentication
	Configuration Steps for Linux
	Configuration Steps for Windows
	JDBC Code Using OS Authentication

	Support for Data Encryption and Integrity
	JDBC OCI Driver Support for Encryption and Integrity
	JDBC Thin Driver Support for Encryption and Integrity
	Setting Encryption and Integrity Parameters in Java

	Support for SSL
	Managing Certificates and Wallets
	Keys and certificates containers

	Support for Kerberos
	Configuring Oracle Database to Use Kerberos
	Code Example

	Support for RADIUS
	Configuring Oracle Database to Use RADIUS
	Code Example

	Secure External Password Store

10 Proxy Authentication

	About Proxy Authentication
	Types of Proxy Connections
	Creating Proxy Connections
	Closing a Proxy Session
	Caching Proxy Connections

Part IV Data Access and Manipulation

11 Accessing and Manipulating Oracle Data

	Data Type Mappings
	Table of Mappings
	Notes Regarding Mappings

	Data Conversion Considerations
	Standard Types Versus Oracle Types
	Converting SQL NULL Data
	Testing for NULLs

	Result Set and Statement Extensions
	Comparison of Oracle get and set Methods to Standard JDBC
	Standard getObject Method
	Oracle getOracleObject Method
	Summary of getObject and getOracleObject Return Types
	Other getXXX Methods
	Return Types of getXXX Methods
	Special Notes about getXXX Methods

	Data Types For Returned Objects from getObject and getXXX
	The setObject and setOracleObject Methods
	Other setXXX Methods
	Input Data Binding
	Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

	Using Result Set Metadata Extensions
	Using SQL CALL and CALL INTO Statements

12 Java Streams in JDBC

	Overview of Java Streams
	Streaming LONG or LONG RAW Columns
	LONG RAW Data Conversions
	LONG Data Conversions
	Streaming Example for LONG RAW Data
	Avoiding Streaming for LONG or LONG RAW

	Streaming CHAR, VARCHAR, or RAW Columns
	Streaming LOBs and External Files
	Data Streaming and Multiple Columns
	Closing a Stream
	Notes and Precautions on Streams
	Streaming Data Precautions
	Using Streams to Avoid Limits on setBytes and setString
	Streaming and Row Prefetching

13 Working with Oracle Object Types

	Mapping Oracle Objects
	Using the Default STRUCT Class for Oracle Objects
	STRUCT Class Functionality
	Retrieving STRUCT Objects and Attributes
	Creating STRUCT Objects and Descriptors
	Binding STRUCT Objects into Statements
	STRUCT Automatic Attribute Buffering

	Creating and Using Custom Object Classes for Oracle Objects
	Relative Advantages of ORAData versus SQLData
	Understanding Type Maps for SQLData Implementations
	Creating Type Map and Defining Mappings for a SQLData Implementation
	Adding Entries to an Existing Type Map
	Creating a New Type Map
	Materializing Object Types not Specified in the Type Map

	Understanding the SQLData Interface
	Reading and Writing Data with a SQLData Implementation
	Understanding the ORAData Interface
	Reading and Writing Data with a ORAData Implementation
	Additional Uses for ORAData
	The Deprecated CustomDatum Interface

	Object-Type Inheritance
	Creating Subtypes
	Implementing Customized Classes for Subtypes
	Use of ORAData for Type Inheritance Hierarchy
	Use of SQLData for Type Inheritance Hierarchy
	JPublisher Utility

	Retrieving Subtype Objects
	Creating Subtype Objects
	Sending Subtype Objects
	Accessing Subtype Data Fields
	Inheritance Metadata Methods

	Using JPublisher to Create Custom Object Classes
	JPublisher Functionality
	JPublisher Type Mappings

	Describing an Object Type
	Functionality for Getting Object Metadata
	Steps for Retrieving Object Metadata

14 Working with LOBs and BFILEs

	Oracle Extensions for LOBs and BFILEs
	Working with BLOBs, CLOBs and NCLOBs
	Getting and Passing BLOB, CLOB, and NCLOB Locators
	Retrieving BLOB, CLOB, and NCLOB Locators
	Passing BLOB, CLOB and NCLOB Locators

	Reading and Writing BLOB, CLOB and NCLOB Data
	Creating and Populating a BLOB, CLOB or NCLOB Column
	Accessing and Manipulating BLOB, CLOB, or NCLOB Data

	Data Interface for LOBs
	Working With Temporary LOBs
	Using Open and Close With LOBs
	Working with BFILEs
	Getting and Passing BFILE Locators
	Reading BFILE Data
	Creating and Populating a BFILE Column
	Accessing and Manipulating BFILE Data

	Oracle SecureFiles

15 Using Oracle Object References

	Oracle Extensions for Object References
	Overview of Object Reference Functionality
	Object Reference Getter and Setter Methods
	Key REF Class Methods

	Retrieving and Passing an Object Reference
	Retrieving an Object Reference from a Result Set
	Retrieving an Object Reference from a Callable Statement
	Passing an Object Reference to a Prepared Statement

	Accessing and Updating Object Values Through an Object Reference
	Custom Reference Classes with JPublisher

16 Working with Oracle Collections

	Oracle Extensions for Collections
	Choices in Materializing Collections
	Creating Collections
	Creating Multilevel Collection Types

	Overview of Collection Functionality
	ARRAY Performance Extension Methods
	Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
	ARRAY Automatic Element Buffering
	ARRAY Automatic Indexing

	Creating and Using Arrays
	Creating ARRAY Objects
	Retrieving an Array and Its Elements
	Retrieving the Array
	Data Retrieval Methods
	Comparing the Data Retrieval Methods
	Retrieving Elements of a Structured Object Array According to a Type Map
	Retrieving a Subset of Array Elements
	Retrieving Array Elements into an oracle.sql.Datum Array
	Accessing Multilevel Collection Elements

	Passing Arrays to Statement Objects

	Using a Type Map to Map Array Elements
	Custom Collection Classes with JPublisher

17 Result Set

	Overview of JDBC 2.0 Result Set
	Result Set Functionality and Result Set Categories Supported in JDBC 2.0
	Oracle JDBC Implementation Overview for Result Set Enhancements

	Creating Scrollable or Updatable Result Sets
	Specifying Result Set Scrollability and Updatability
	Result Set Limitations and Downgrade Rules

	Positioning and Processing in Scrollable Result Sets
	Positioning in a Scrollable Result Set
	Processing a Scrollable Result Set

	Updating Result Sets
	Performing a DELETE Operation in a Result Set
	Performing an UPDATE Operation in a Result Set
	Performing an INSERT Operation in a Result Set
	Avoiding Update Conflicts

	Fetch Size
	Setting the Fetch Size

	Refetching Rows
	Seeing Database Changes Made Internally and Externally
	Seeing Internal Changes
	Seeing External Changes
	Visibility versus Detection of External Changes
	Summary of Visibility of Internal and External Changes
	Oracle Implementation of Scroll-Sensitive Result Sets

18 JDBC RowSets

	Overview of JDBC RowSets
	RowSet Properties
	Events and Event Listeners
	Command Parameters and Command Execution
	Traversing RowSets

	CachedRowSet
	JdbcRowSet
	WebRowSet
	FilteredRowSet
	JoinRowSet

19 Globalization Support

	Providing Globalization Support
	NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property in JDK 1.5
	New Methods for National Character Set Type Data in JDK 1.6

Part V Performance and Scalability

20 Statement and Result Set Caching

	About Statement Caching
	Basics of Statement Caching
	Implicit Statement Caching
	Explicit Statement Caching

	Using Statement Caching
	Enabling and Disabling Statement Caching
	Closing a Cached Statement
	Using Implicit Statement Caching
	Using Explicit Statement Caching

	Reusing Statements Objects
	Using a Pooled Statement
	Closing a Pooled Statement

	Result Set Caching
	Server-side Cache
	Client Result Cache

21 Implicit Connection Caching

	The Implicit Connection Cache
	Using the Connection Cache
	Turning Caching On
	Opening a Connection
	Setting Connection Cache Name
	Setting Connection Cache Properties
	Closing a Connection
	Implicit Connection Cache Example

	Connection Attributes
	Getting Connections
	Setting Connection Attributes
	Checking Attributes of a Returned Connection
	Connection Attribute Example

	Connection Cache Properties
	Limit Properties
	TIMEOUT Properties
	Other Properties
	Connection Property Example

	Connection Cache Manager API
	Advanced Topics
	Attribute Weights and Connection Matching
	Connection Cache Callbacks
	Use Cases for TimeToLiveTimeout and AbandonedConnectionTimeout

22 Run-Time Connection Load Balancing

	Overview of Run-Time Connection Load Balancing
	Enabling Run-Time Connection Load Balancing

23 Performance Extensions

	Update Batching
	Overview of Update Batching Models
	Oracle Update Batching
	Oracle Update Batching Characteristics and Limitations
	Setting the Connection Batch Value
	Setting the Statement Batch Value
	Checking the Batch Value
	Overriding the Batch Value
	Committing the Changes in Oracle Batching
	Update Counts in Oracle Batching
	Error Reporting in Oracle Update Batching

	Standard Update Batching
	Limitations in the Oracle Implementation of Standard Batching
	Adding Operations to the Batch
	Processing the Batch
	Committing the Changes in the Oracle Implementation of Standard Batching
	Clearing the Batch
	Update Counts in the Oracle Implementation of Standard Batching
	Error Handling in the Oracle Implementation of Standard Batching
	Intermixing Batched Statements and Nonbatched Statements

	Premature Batch Flush

	Additional Oracle Performance Extensions
	Oracle Row-Prefetching Limitations
	Defining Column Types
	DatabaseMetaData TABLE_REMARKS Reporting

24 OCI Connection Pooling

	OCI Driver Connection Pooling: Background
	OCI Driver Connection Pooling and Shared Servers Compared
	Defining an OCI Connection Pool
	Connecting to an OCI Connection Pool
	Sample Code for OCI Connection Pooling
	Statement Handling and Caching
	JNDI and the OCI Connection Pool

25 Oracle Advanced Queuing

	Functionality and Framework of Oracle Advanced Queuing
	AQ Asynchronous Event Notification
	Creating Messages
	Enqueuing Messages
	Dequeuing Messages
	Examples: Enqueuing and Dequeuing

Part VI High Availability

26 Fast Connection Failover

	Overview of Fast Connection Failover
	Using Fast Connection Failover
	Fast Connection Failover Prerequisites
	Configuring ONS for Fast Connection Failover
	ONS Configuration File
	Client-Side ONS Configuration
	Server-Side ONS Configuration Using racgons
	Remote ONS Subscription

	Enabling Fast Connection Failover
	Querying Fast Connection Failover Status

	Understanding Fast Connection Failover
	What the Application Sees
	How It Works

	Comparison of Fast Connection Failover and TAF

27 Transparent Application Failover

	Overview of Transparent Application Failover
	Failover Type Events
	TAF Callbacks
	Java TAF Callback Interface

Part VII Transaction Management

28 Distributed Transactions

	Overview of Distributed Transactions
	Distributed Transaction Components and Scenarios
	Distributed Transaction Concepts
	Switching Between Global and Local Transactions
	Oracle XA Packages

	XA Components
	XADatasource Interface and Oracle Implementation
	XAConnection Interface and Oracle Implementation
	XAResource Interface and Oracle Implementation
	OracleXAResource Method Functionality and Input Parameters
	Xid Interface and Oracle Implementation

	Error Handling and Optimizations
	XAException Classes and Methods
	Mapping Between Oracle Errors and XA Errors
	XA Error Handling
	Oracle XA Optimizations

	Implementing a Distributed Transaction
	Summary of Imports for Oracle XA
	Oracle XA Code Sample

	Native-XA in Oracle JDBC Drivers
	OCI Native XA
	Thin Native XA

Part VIII Manageability

29 Database Management

	Database Startup and Shutdown
	Database Change Notification

30 Diagnosability in JDBC

	Logging
	Enabling and Using JDBC Logging
	Configuring the CLASSPATH Environment Variable
	Enabling Logging
	Configuring Logging
	Using Loggers
	An Example

	Performance, Scalability, and Security Issues

	Diagnosability Management

31 JDBC DMS Metrics

	Overview of JDBC DMS Metrics
	Determining the Type of Metric to Be Generated
	Generating the SQLText Metric
	Accessing DMS Metrics Using JMX

Part IX Appendixes

A Reference Information

	Valid SQL-JDBC Data Type Mappings
	Supported SQL and PL/SQL Data Types
	Embedded SQL92 Syntax
	Time and Date Literals
	Date Literals
	Time Literals
	Timestamp Literals

	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example

	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN, and RECORD Types
	IEEE 754 Floating Point Compliance
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Binding Named Parameters

B Coding Tips

	JDBC and Multithreading
	Performance Optimization
	Disabling Auto-Commit Mode
	Standard Fetch Size and Oracle Row Prefetching
	Standard and Oracle Update Batching
	Statement Caching
	Mapping Between Built-in SQL and Java Types

	Transaction Isolation Levels and Access Modes

C JDBC Error Messages

	General Structure of JDBC Error Messages
	General JDBC Messages
	JDBC Messages Sorted by ORA Number
	JDBC Messages Sorted in Alphabetic Order

	Native XA Messages
	Native XA Messages Sorted by ORA Number
	Native XA Messages Sorted in Alphabetic Order

	TTC Messages
	TTC Messages Sorted by ORA Number
	TTC Messages Sorted in Alphabetic Order

D Troubleshooting

	Common Problems
	Memory Consumption for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process
	Using statement.cancel
	Using JDBC with Firewalls

	Basic Debugging Procedures
	Oracle Net Tracing to Trap Network Events
	Client-Side Tracing
	Server-Side Tracing

	Third Party Debugging Tools

Index

List of Examples

	4-1 Code Snippet for Accessing SYS.ANYTYPE Type
	4-2 Creating a Transient Object Type Through PL/SQL and Retrieving Through JDBC
	4-3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN Parameter
	4-4 Accessing an Instance of ANYDATA from the Database
	4-5 Inserting an Object as ANYDATA in a Database Table
	4-6 Selecting an ANYDATA Column from a Database Table
	8-1 Using SYS Login To Make a Remote Connection
	9-1
	9-2
	9-3 Setting Data Encryption and Integrity Parameters
	9-4
	9-5
	17-1 Prepared Statement Object With Result Set
	21-1 Using the Implicit Connection Cache
	21-2 Connection Cache Example
	21-3 Using Connection Attributes
	21-4 Using Connection Properties
	21-5 Connection Cache Manager Example
	23-1 Oracle Update Batching
	23-2 Standard Update Batching
	23-3 Premature Batch Flushing
	23-4 Defining Column Types
	23-5 TABLE_REMARKS Reporting
	25-1 AQ Asynchronous Event Notification Example
	25-2 Enqueuing a Single Message
	25-3 Dequeuing a Single Message
	26-1 Example of a Sample ons.config File
	26-2 Enabling Fast Connection Failover
	29-1 Database Startup and Shutdown
	29-2 Database Change Notification

List of Figures

	1-1 Architecture of Oracle JDBC Drivers and Oracle Database
	5-1 Applet, Connection Manager, and Database Relationship
	22-1 Run-Time Connection Load Balancing

List of Tables

	1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers
	1-2 Feature List
	2-1 Import Statements for JDBC Driver
	3-1 Key Areas of JDBC 3.0 Functionality
	3-2 BLOB Method Equivalents
	3-3 CLOB Method Equivalents
	4-1 Oracle Data Type Classes
	4-2 Key Interfaces and Classes of the oracle.jdbc Package
	4-3 PL/SQL Types and Corresponding JDBC Types
	4-4 Arguments of the setPlsqlIndexTable Method
	4-5 Arguments of the registerIndexTableOutParameter Method
	4-6 Argument of the getPlsqlIndexTable Method
	4-7 Argument of the getOraclePlsqlIndexTable Method
	4-8 Arguments of the getPlsqlIndexTable Method
	6-1 OCI Instant Client Shared Libraries
	6-2 Data Shared Library for Instant Client and Instant Client Light (English)
	8-1 Standard Data Source Properties
	8-2 Oracle Extended Data Source Properties
	8-3 Supported Database Specifiers
	9-1 Client/Server Negotiations for Encryption or Integrity
	9-2 OCI Driver Client Parameters for Encryption and Integrity
	9-3 Thin Driver Client Parameters for Encryption and Integrity
	11-1 Default Mappings Between SQL Types and Java Types
	11-2 getObject and getOracleObject Return Types
	12-1 LONG and LONG RAW Data Conversions
	13-1 JPublisher SQL Type Categories, Supported Settings, and Defaults
	17-1 Visibility of Internal and External Changes for Oracle JDBC
	18-1 The JDBC and Cached Row Sets Compared
	20-1 Comparing Methods Used in Statement Caching
	20-2 Methods Used in Statement Allocation and Implicit Statement Caching
	20-3 Methods Used to Retrieve Explicitly Cached Statements
	23-1 Valid Column Type Specifications
	26-1 onsctl Commands
	28-1 Connection Mode Transitions
	28-2 Oracle-XA Error Mapping
	29-1 Supported Database Startup Options
	29-2 Supported Database Shutdown Options
	29-3 Database Change Notification Registration Options
	A-1 Valid SQL Data Type-Java Class Mappings
	A-2 Support for SQL Data Types
	A-3 Support for ANSI-92 SQL Data Types
	A-4 Support for SQL User-Defined Types
	A-5 Support for PL/SQL Data Types
	B-1 Mapping of SQL Data Types to Java Classes that Represent SQL Data Types

Preface

This preface introduces you to the Oracle Database JDBC Developer's Guide and Reference discussing the intended audience, structure, and conventions of this document. A list of related Oracle documents is also provided.

Audience

The Oracle Database JDBC Developer's Guide and Reference is intended for developers of Java Database Connectivity (JDBC)-based applications and applets. This book can be read by anyone with an interest in JDBC programming, but assumes at least some prior knowledge of the following:

	
Java

	
PL/SQL

	
Oracle databases

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

The following books are also available from the Oracle Java Platform group:

	
Oracle Database Java Developer's Guide

This book introduces the basic concepts of Java and provides general information about server-side configuration and functionality. Information that pertains to the Oracle Java platform as a whole, rather than to a particular product (such as JDBC) is in this book. This book also discusses Java stored procedures, which were formerly discussed in a standalone book.

	
Oracle Database JPublisher User's Guide

This book describes how to use the Oracle JPublisher utility to translate object types and other user-defined types to Java classes. If you are developing JDBC applications that use object types, VARRAY types, nested table types, or object reference types, then JPublisher can generate custom Java classes to map to them.

The following OC4J documents, for Oracle Application Server releases, are also available from the Oracle Java Platform group:

	
Oracle Application Server Containers for J2EE User's Guide

This book provides some overview and general information for OC4J; primer chapters for servlets, JSP pages, and EJBs; and general configuration and deployment instructions.

	
Oracle Application Server Containers for J2EE Support for JavaServer Pages Developer's Guide

This book provides information for JSP developers who want to run their pages in OC4J. It includes a general overview of JSP standards and programming considerations, as well as discussion of Oracle value-added features and steps for getting started in the OC4J environment.

	
Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference

This book provides conceptual information and detailed syntax and usage information for tag libraries, JavaBeans, and other Java utilities provided with OC4J.

	
Oracle Application Server Containers for J2EE Servlet Developer's Guide

This book provides information for servlet developers regarding use of servlets and the servlet container in OC4J. It also documents relevant OC4J configuration files.

	
Oracle Application Server Containers for J2EE Services Guide

This book provides information about basic Java services supplied with OC4J, such as JTA, JNDI, and the Oracle Application Server Java Object Cache.

	
Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer's Guide

This book provides information about the EJB implementation and EJB container in OC4J.

The following documents are from the Oracle Server Technologies group:

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database PL/SQL Packages and Types Reference

	
Oracle Database PL/SQL Language Reference

	
Oracle Database SQL Language Reference

	
Oracle Database Net Services Administrator's Guide

	
Oracle Database Advanced Security Administrator's Guide

	
Oracle Database Reference

	
Oracle Database Error Messages

The following documents from the Oracle Application Server group may also be of some interest:

	
Oracle Application Server 10g Administrator's Guide

	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle Application Server 10g Performance Guide

	
Oracle Application Server 10g Globalization Guide

	
Oracle Application Server Web Cache Administrator's Guide

	
Oracle Application Server 10g Upgrading to 10g (9.0.4)

The following are available from the JDeveloper group:

	
Oracle JDeveloper online help

	
Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Printed documentation is available for sale in the Oracle Store at:

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a user name and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

The following resources are available from Sun Microsystems:

	
Web site for Java Platform, Standard Edition (Java SE):

http://java.sun.com/javase/technologies/core.jsp

	
Web site for JDBC, including the latest specifications:

http://java.sun.com/javase/technologies/database.jsp

	
jdbc-interest discussion group for JDBC

To subscribe, send an e-mail to listserv@java.sun.com with the following line in the body of the message:

subscribe jdbc-interest yourlastname yourfirstname

We recommend that you request only the daily digest of the posted e-mails. To do this add the following line to the message body as well:

set jdbc-interest digest

Conventions

This section describes the conventions used in the text and code examples of this documentation set. The following table describes those conventions and provides examples of their use.

	Convention	Meaning	Example
	Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
	Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts
Ensure that the recovery catalog and target database do not reside on the same disk.

	UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, data types, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, user names, and roles.	You can specify this clause only for a NUMBER column.
You can back up the database by using the BACKUP command.

Query the TABLE_NAME column in the USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS procedure.

	lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executables, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names, and connect identifiers, as well as user-supplied database objects and structures, column names, packages and classes, user names and roles, program units, and parameter values.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	Enter sqlplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the /disk1/oracle/dbs directory.

The department_id, department_name, and location_id columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

	lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause.
Run old_release.SQL where old_release refers to the release you installed prior to upgrading.

What's New

The changes in Oracle Database 11g Release 1 (11.1) can be divided into the following categories:

	
New Features for Release 1 (11.1)

	
Desupported Features

	
Interface Changes

New Features for Release 1 (11.1)

In this release, Oracle JDBC drivers support the following new features:

JDK 1.5 and 1.6 Support

The Oracle JDBC Thin and OCI drivers have been enhanced to provide support for JDK 1.5 and 1.6. The server-side JDBC drivers provide support for only JDK 1.5.

JDBC 4.0 Support

Oracle JDBC drivers provide support for most of the JDBC 4.0 standard features. Refer to "Support for JDBC 4.0 Standard" for more information about the JDBC 4.0 standard features

ANYTYPE and ANYDATA

This release of Oracle JDBC drivers provides a Java interface to access SYS.ANYTYPE and SYS.ANYDATA Oracle types. For more information refer "Oracle SYS.ANYTYPE and SYS.ANYDATA Types" Types .

Oracle Advanced Security

Oracle Advanced Security provides confidentiality, integrity, and availability features. This release of Oracle JDBC drivers have been enhanced to support all the features of Oracle Advanced Security. This feature is covered in Chapter 9, "JDBC Client-Side Security Features".

Oracle SecureFiles

Java/JDBC applications get richer SecureFiles LOB data manipulation API and performance enhancements such as versioning, sliding inserts, sliding delete, fragment move, in-place data replacement, compression, encryption, sharing, and client-side read. This feature is covered in "Oracle SecureFiles".

Native Streams AQ Protocol

This release of Oracle JDBC drivers provides a Java interface to Oracle Streams Advanced Queuing (AQ). This feature is covered in Chapter 25, "Oracle Advanced Queuing".

Database Startup and Shutdown

Starting from this release, you can start up and shut down an Oracle Database instance from your JDBC application in the same way as you would from SQL*Plus. This feature is covered in "Database Startup and Shutdown".

Database Diagnosability

In this release the JDBC drivers have been enhanced by including new diagnosabilty features and improving existing diagnosabilty features. These features enable users to diagnose problems in the applications that use Oracle JDBC drivers and the problems in the drivers themselves. This feature is covered in detail in Chapter 30, "Diagnosability in JDBC".

Database Change Notification

This release of Oracle JDBC drivers provide support for the Database Change Notification feature of Oracle Database. Using this functionality of the JDBC drivers, multi-tier systems can take advantage of the Database Change Notification feature to maintain a data cache as updated as possible by receiving invalidation events from the JDBC drivers. This feature is covered in detail in "Database Change Notification".

New JDBC DMS Metrics with JMX Support

The Dynamic Monitoring Service (DMS) metrics generated in Oracle JDBC 11.1 release are different from 10.2, 10.1, 9.2, and earlier versions of Oracle JDBC as it makes no attempt to retain compatibility with earlier versions. For more information refer "Accessing DMS Metrics Using JMX".

RowSets in the server

Starting from this release, RowSets are also supported in the server-side drivers, in addition to the Thin and OCI drivers. For more information refer "Overview of JDBC RowSets".

Result Cache

This release of Oracle JDBC drivers provide support for Result Cache feature, which is very different from traditional caching and presummarization mechanisms. For more information refer "Result Set Caching".

Desupported Features

From this release onwards, Oracle JDBC drivers will not support JDK versions earlier than 1.5.

Interface Changes

In this release, the oracle.jdbc.OracleConnection interface has been enhanced. For better visibility and clarity, all connection properties are defined as constants in this interface.

The oracle.jdbc.driver package, which was deprecated in Oracle Database release 9.0.1, is desupported in this release. Code having references to this package will not compile and run. You can use oracle.jdbc package instead of this package.

Part I

Overview

The chapters in this part introduce the concept of Java Database Connectivity (JDBC) and provide an overview of the Oracle implementation of JDBC. This part provides basic information about installation and configuration of the Oracle client with reference to JDBC drivers. This part also covers the basic steps in creating and running any JDBC application.

Part I contains the following chapters:

	
Chapter 1, "Introducing JDBC"

	
Chapter 2, "Getting Started"

1 Introducing JDBC

Java Database Connectivity (JDBC) is a Java standard that provides the interface for connecting from Java to relational databases. The JDBC standard is defined by Sun Microsystems and implemented through the standard java.sql interfaces. This allows individual providers to implement and extend the standard with their own JDBC drivers. JDBC is based on the X/Open SQL Call Level Interface (CLI). JDBC 4.0 complies with the SQL 2003 standard.

This chapter provides an overview of the Oracle implementation of JDBC, covering the following topics:

	
Overview of Oracle JDBC Drivers

	
Environments and Support

	
Feature List

Overview of Oracle JDBC Drivers

In addition to supporting the standard JDBC application programming interfaces (APIs), Oracle drivers have extensions to support Oracle-specific data types and to enhance performance.

Oracle provides the following JDBC drivers:

	
Thin driver

It is a pure Java driver used on the client-side, without an Oracle client installation. It can be used with both applets and applications.

	
Oracle Call Interface (OCI) driver

It is used on the client-side with an Oracle client installation. It can be used only with applications.

	
Server-side Thin driver

It is functionally similar to the client-side Thin driver. However, it is used for code that runs on the database server and needs to access another session either on the same server or on a remote server on any tier.

	
Server-side internal driver

It is used for code that runs on the database server and accesses the same session. That is, the code runs and accesses data from a single Oracle session.

Figure 1-1 illustrates the architecture of Oracle JDBC drivers and Oracle Database.

Figure 1-1 Architecture of Oracle JDBC Drivers and Oracle Database

[image: Architecture of Oracle JDBC drivers and Oracle Database.]

This section covers the following topics:

	
Common Features of Oracle JDBC Drivers

	
Choosing the Appropriate Driver

	
Feature Differences Between JDBC OCI and Thin Drivers

Common Features of Oracle JDBC Drivers

The server-side and client-side Oracle JDBC drivers provide the same basic functionality.

The JDBC Thin and OCI drivers support Java Development Kit (JDK) 1.5 and 1.6. The server-side internal drivers support only JDK 1.5. All the JDBC drivers support the following standards and features:

	
Same syntax and APIs

	
Same Oracle extensions

	
Full support for multithreaded applications

Oracle JDBC drivers implement the standard java.sql interfaces. You can access the Oracle-specific features, in addition to the standard features, by using the oracle.jdbc package.

JDBC Thin Driver

The JDBC Thin driver is a pure Java, Type IV driver that can be used in applications and applets. It is platform-independent and does not require any additional Oracle software on the client-side. The JDBC Thin driver communicates with the server using SQL*Net to access Oracle Database.

The JDBC Thin driver allows a direct connection to the database by providing an implementation of SQL*Net on top of Java sockets. The driver supports the TCP/IP protocol and requires a TNS listener on the TCP/IP sockets on the database server.

	
See Also:

Chapter 5, "Features Specific to JDBC Thin"

JDBC OCI Driver

The JDBC OCI driver is a Type II driver used with Java applications. It requires an Oracle client installation and, therefore, is Oracle platform-specific. It supports all installed Oracle Net adapters, including interprocess communication (IPC), named pipes, TCP/IP, and Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX).

The JDBC OCI driver, written in a combination of Java and C, converts JDBC invocations to calls to OCI, using native methods to call C-entry points. These calls communicate with the database using SQL*Net.

The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core libraries, and other necessary files on the client computer where it is installed.

OCI is an API that enables you to create applications that use the native procedures or function calls of a third-generation language to access Oracle Database and control all phases of the SQL statement processing.

	
See Also:

Chapter 6, "Features Specific to JDBC OCI Driver"

JDBC Server-Side Thin Driver

The JDBC server-side Thin driver offers the same functionality as the JDBC Thin driver that runs on the client-side. However, the JDBC server-side Thin driver runs inside Oracle Database and accesses a remote database or a different session on the same database.

This driver is useful in the following scenarios:

	
Accessing a remote database server from an Oracle Database instance acting as a middle tier

	
Accessing an Oracle Database session from inside another, such as from a Java stored procedure

The use of JDBC Thin driver from a client application or from inside a server does not affect the code.

	
See Also:

Chapter 5, "Features Specific to JDBC Thin"

JDBC Server-Side Internal Driver

The JDBC server-side internal driver supports any Java code that runs inside Oracle Database, such as in a Java stored procedure, and must access the same database. It lets the Java Virtual Machine (JVM) to communicate directly with the SQL engine. This driver supports only JDK 1.5.

The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL engine all run within the same address space, and therefore, the issue of network round-trips is irrelevant. The programs access the SQL engine by using function calls.

	
Note:

The server-side internal driver does not support the cancel and setQueryTimeout methods of the Statement class.

The JDBC server-side internal driver is fully consistent with the client-side drivers and supports the same features and extensions.

	
See Also:

Chapter 7, "Server-Side Internal Driver"

Choosing the Appropriate Driver

Consider the following when choosing a JDBC driver for your application or applet:

	
In general, unless you need OCI-specific features, such as support for non-TCP/IP networks, use the JDBC Thin driver.

	
If you want maximum portability and performance, then use the JDBC Thin driver. You can connect to Oracle Database from either an application or an applet using the JDBC Thin driver.

	
If you want to use Lightweight Directory Access Protocol (LDAP) over Secure Sockets Layer (SSL), then use the JDBC Thin driver.

	
If you are writing a client application for an Oracle client environment and need OCI-driver-specific features, such as support for non-TCP/IP networks, then use the JDBC OCI driver.

	
If you are writing an applet, then you must use the JDBC Thin driver.

	
For code that runs in the database server and needs to access a remote database or another session within the same database instance, use the JDBC server-side Thin driver.

	
If your code runs inside the database server and needs to access data locally within the session, then use the JDBC server-side internal driver to access that server.

Feature Differences Between JDBC OCI and Thin Drivers

Table 1-1 lists the features that are specific either to the JDBC OCI or JDBC Thin driver in Oracle Database 11g Release 1 (11.1).

Table 1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

	JDBC OCI Driver	JDBC Thin Driver
	
OCI connection pooling

	
Default support for Native XA

	
Transparent Application Failover (TAF)

	

	
OCI Client Result Cache

	

	
Note:

	
The OCI optimized fetch and client-side object cache features are internal to the JDBC OCI driver and are not applicable to the JDBC Thin driver.

	
Most JDBC OCI driver features are not available in the JDBC Thin driver because they are inherited from OCI.

Environments and Support

This section provides a brief discussion of the following topics:

	
Supported JDK and JDBC Versions

	
JNI and Java Environments

	
JDBC and IDEs

Supported JDK and JDBC Versions

In Oracle Database 11g Release 1 (11.1), all the JDBC drivers are compatible with JDK 1.5. The JDBC Thin and OCI drivers also support JDK 1.6. All versions of JDK earlier than 1.5 are no longer supported. Support for JDK 1.5 and 1.6 is provided through the ojdbc5.jar and ojdbc6.jar files, respectively.

	
See Also:

"Version Compatibility for Oracle JDBC Drivers"

JNI and Java Environments

The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C libraries. You can use the JDBC OCI driver with JVMs other than that of Sun Microsystems, in particular, with Microsoft and IBM JVMs.

JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of products to build, debug, and deploy component-based database applications for the Internet. The Oracle JDeveloper environment contains integrated support for JDBC, including the JDBC Thin driver and the native OCI driver. The database component of Oracle JDeveloper uses the JDBC drivers to manage the connection between the application running on the client and the server.

Feature List

Table 1-2 lists the features and the versions in which they were first supported for each of the three Oracle JDBC drivers: server-side internal driver, JDBC OCI driver, and JDBC Thin driver.

Table 1-2 Feature List

	Feature	Server-Side Internal	JDBC OCI	JDBC Thin
	
JDK 1.0

	
	
7.2.2

	
7.2.2

	
JDBC 1.0.2

	
	
7.2.2

	
7.2.2

	
JDK 1.1.1

	
	
8.0.6

	
8.0.6

	
JDBC 1.22 (No new features; just minor revisions)

	
	
8.0.6

	
8.0.6

	
defineColumnType

	
	
8.0.6

	
8.0.6

	
Row Prefetch

	
	
8.0.6

	
8.0.6

	
Oracle Batching

	
	
8.0.6

	
8.0.6

	
Java Native Interface

	
	
8.1.6

	

	
JDK 1.2

	
9.0.1

	
8.1.6

	
8.1.6

	
JDBC 2.0 SQL3 Types (BLOB, CLOB, Struct, Array, REF)

	
8.1.5

	
8.1.5

	
8.1.5

	
Native LOB

	
	
8.1.6

	
9.2.0

	
Index-by Tables

	
10.2.0

	
8.1.6

	
10.1.0

	
JDBC 2.0 Scrollable Result Sets

	
8.1.6

	
8.1.6

	
8.1.6

	
JDBC 2.0 Updatable Result Sets

	
8.1.6

	
8.1.6

	
8.1.6

	
JDBC 2.0 Standard Batching

	
8.1.6

	
8.1.6

	
8.1.6

	
JDBC 2.0 Connection Pooling

	
NA

	
8.1.6

	
8.1.6

	
JDBC 2.0 XA

	
8.1.6

	
8.1.6

	
8.1.6

	
Server-side Thin driver

	
8.1.6

	
NA

	
NA

	
JDBC 2.0 RowSets

	
	
9.0.1

	
9.0.1

	
Implicit Statement Caching

	
8.1.7

	
8.1.7

	
8.1.7

	
Explicit Statement Caching

	
8.1.7

	
8.1.7

	
8.1.7

	
Temporary LOBs

	
9.0.1

	
9.0.1

	
9.0.1

	
Object Type Inheritance

	
9.0.1

	
9.0.1

	
9.0.1

	
Multilevel Collections

	
9.0.1

	
9.0.1

	
9.0.1

	
oracle.jdbc Interfaces

	
9.0.1

	
9.0.1

	
9.0.1

	
Native XA

	
	
9.0.1

	
10.1.0

	
OCI Connection Pooling

	
NA

	
9.0.1

	
NA

	
OCI Client Result Cache

	
	
11.1.0

	

	
Server Result Cache

	
	
11.1.0

	
11.1.0

	
TAF

	
NA

	
9.0.1

	
NA

	
NLS Support

	
9.0.1

	
9.0.1

	
9.0.1

	
JDK 1.3

	
9.2.0

	
9.2.0

	
9.2.0

	
JDK 1.4

	
10.1.0

	
9.2.0

	
9.2.0

	
JDBC 3.0 Savepoints

	
9.2.0

	
9.2.0

	
9.2.0

	
New Statement Caching API

	
9.2.0

	
9.2.0

	
9.2.0

	
ConnectionCacheImpl connection cache

	
NA

	
8.1.7

	
8.1.7

	
Implicit Connection Cache

	
NA

	
10.1.0

	
10.1.0

	
Fast Connection Failover

	
	
10.1.0.3

	
10.1.0.3

	
Connection Wrapping

	
	
9.2.0

	
9.2.0

	
DMS

	
	
9.2.0

	
9.2.0

	
Service Names in URLs

	
	
9.2.0

	
10.2.0

	
JDBC 3.0 Connection Pooling Properties

	
NA

	
10.1.0

	
10.1.0

	
JDBC 3.0 Updatable BLOB, CLOB, REF

	
10.1.0

	
10.1.0

	
10.1.0

	
JDBC 3.0 Multiple Open Result Sets

	
10.2.0

	
10.2.0

	
10.2.0

	
JDBC 3.0 Parameter Metadata

	
10.1.0

	
10.1.0

	
10.1.0

	
JDBC 3.0 Set/Get Stored Procedures Parameters by Name

	
10.1.0

	
10.1.0

	
10.1.0

	
JDBC 3.0 Statement Pooling

	
10.1.0

	
10.1.0

	
10.1.0

	
Set Statement Parameters by Name

	
10.1.0

	
10.1.0

	
10.1.0

	
End-to-End Tracing

	
	
10.1.0

	
10.1.0

	
Web RowSet

	
	
10.1.0

	
10.1.0

	
Proxy Authentication

	
	
10.2.0

	
10.1.0

	
JDBC 3.0 Auto Generated Keys

	
	
10.2.0

	
10.2.0

	
JDBC 3.0 Holdable Cursors

	
10.2.0

	
10.2.0

	
10.2.0

	
JDBC 3.0 Local/Global Transaction Switching

	
9.2.0

	
9.2.0

	
9.2.0

	
Run-time Connection Load Balancing

	
NA

	
10.2.0

	
10.2.0

	
Extended setXXX and getXXX for LOBs

	
	
10.2.0

	
10.2.0

	
XA Connection Cache

	
NA

	
10.2.0

	
10.2.0

	
DML Returning

	
	
10.2.0

	
10.2.0

	
JSR 114 RowSets

	
	
10.2.0

	
10.2.0

	
SSL Encryption

	
	
9.2.0

	
10.2.0

	
SSL Authentication

	
	
9.2.0

	
11.1

	
Radius Authentication

	
	
10.2.0

	

	
JDK 1.5

	
10.2

	
10.2

	
10.2

	
JDK 1.6

	
	
11.1

	
11.1

	
JDBC 4.0

	
11.1

	
11.1

	
11.1

	
Database startup and shutdown

	
NA

	
11.1

	
11.1

	
Java interface to Streams AQ

	
	
	
11.1

	
Note:

	
In the table, NA means that the feature is not applicable for the corresponding Oracle JDBC driver.

	
The ConnectionCacheImpl connection cache feature is deprecated since Oracle Database 10g and Implicit Connection Cache replaces this.

2 Getting Started

This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC) driver versions, database versions, and Java Development Kit (JDK) versions. It also describes the basics of testing a client installation and configuration and running a simple application. This chapter contains the following sections:

	
Version Compatibility for Oracle JDBC Drivers

	
Verification of a JDBC Client Installation

	
Basic Steps in JDBC

	
Sample: Connecting, Querying, and Processing the Results

	
Stored Procedure Calls in JDBC Programs

	
Processing SQL Exceptions

Version Compatibility for Oracle JDBC Drivers

This section discusses the general JDBC version compatibility issues.

Backward Compatibility

The JDBC drivers are certified to work with the currently supported versions of Oracle Database. For example, the JDBC Thin drivers in Oracle Database 11g Release 1 (11.1) are certified to work with the 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x Oracle Database releases. However, they are not certified to work with older, unsupported database releases, such as 8.0.x and 7.x.

Forward Compatibility

Existing and supported JDBC drivers are certified to work with Oracle Database 11g Release 1 (11.1).

	
Note:

	
In Oracle Database 11g Release 1 (11.1), Oracle JDBC drivers no longer support JDK 1.4.x or earlier versions.

	
You can find a complete, up-to-date list of supported databases at http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm.

Verification of a JDBC Client Installation

To verify a JDBC client installation, you must do all of the following:

	
Check the Installed Directories and Files

	
Check the Environment Variables

	
Ensure that the Java Code Can Be Compiled and Run

	
Determine the Version of the JDBC Driver

	
Test JDBC and the Database Connection

Installation of an Oracle JDBC driver is platform-specific. Follow the installation instructions for the driver you want to install in your platform-specific documentation.

This section describes the steps for verifying an Oracle client installation of the JDBC drivers, assuming that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, then no further installation on the client computer is necessary.

	
Note:

The JDBC Thin driver requires a TCP/IP listener to be running on the computer where the database is installed.

If you have installed the JDBC Oracle Call Interface (OCI) driver, then you must also install the Oracle client software. This includes Oracle Net and the OCI libraries.

Check the Installed Directories and Files

Installing the Oracle Java products creates, among other things, the following directories:

	
ORACLE_HOME/jdbc

	
ORACLE_HOME /jlib

Check whether or not the following directories and files have been created and populated in the ORACLE_HOME/jdbc directory:

	
demo

This directory contains a compressed file, demo.zip or demo.tar. When you uncompress this compressed file, the samples directory and the Samples-Readme.txt file are created. The samples directory contains sample programs, including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL blocks, streams, user-defined types, additional Oracle type extensions, and Oracle performance extensions.

	
doc

This directory contains the javadoc.zip file, which is the Oracle JDBC application programming interface (API) documentation.

	
lib

The lib directory contains the following required Java classes:

	
orai18n.jar and orai18n-mapping.jar

Contain classes for globalization and multibyte character sets support

	
ojdbc5.jar, ojdbc5_g.jar, ojdbc6.jar, and ojdbc6_g.jar

Contain the JDBC driver classes for use with JDK 1.5 and JDK 1.6

	
Note:

	
In Oracle Database 11g Release 1 (11.1), support for a version of JDK earlier than version 1.5 has been removed. Also, the ojdbc14.jar and classes12.jar files are no longer shipped. Instead, you can use the ojdbc5.jar and ojdbc6.jar files, which are shipped with Oracle Database 11g.

	
If you are using JSE 6 and later, then there is no need to explicitly load the JDBC driver. This means that the Java run-time loads the driver when needed and you need not include Class.forName("oracle.jdbc.OracleDriver") or new oracle.jdbc.OracleDriver() in your code. But if you are using J2SE 5, then you need to load the JDBC driver explicitly.

	
Readme.txt

This file contains late-breaking and release-specific information about the drivers, which may not have been included in other documentation on the product.

Check whether or not the following directories have been created and populated in the ORACLE_HOME /jlib directory:

	
jta.jar and jndi.jar

These files contain classes for the Java Transaction API (JTA) and the Java Naming and Directory Interface (JNDI). These are required only if you are using JTA features for distributed transaction management or JNDI features for naming services.

	
Note:

These files can also be obtained from the Sun Microsystems Web site. However, it is recommended that you use the versions supplied by Oracle, which have been tested with the Oracle drivers.

Check the Environment Variables

This section describes the environment variables that must be set for the JDBC OCI driver and the JDBC Thin driver, focusing on the Sun Solaris, Linux, and Microsoft Windows platforms.

You must set the CLASSPATH environment variable for your installed JDBC OCI or Thin driver. Include the following in the CLASSPATH environment variable:

ORACLE_HOME/jdbc/lib/ojdbc5.jar
ORACLE_HOME/jlib/orai18n.jar

	
Note:

If you use the JTA features and the JNDI features, then you must specify jta.jar and jndi.jar in your CLASSPATH environment variable.

JDBC OCI Driver

If you are installing the JDBC OCI driver, then you must also set the following value for the library path environment variable:

	
On Sun Solaris or Linux, set the LD_LIBRARY_PATH environment variable as follows:

ORACLE_HOME/lib

This directory contains the libocijdbc11.so shared object library.

	
Note:

If you are running a 32-bit Java Virtual Machine (JVM) against a 64-bit client or database, then you must also add ORACLE_HOME/lib32 to the LD_LIBRARY_PATH environment variable.

	
On Microsoft Windows, set the PATH environment variable as follows:

ORACLE_HOME\bin

This directory contains the ocijdbc11.dll dynamic link library.

All of the JDBC OCI demonstration programs can be run in the Instant Client mode by including the JDBC OCI Instant Client data shared library on the library path environment variable.

	
See Also:

Chapter 6, "Features Specific to JDBC OCI Driver"

JDBC Thin Driver

If you are installing the JDBC Thin driver, then you do not have to set any other environment variables. However, to use the JDBC server-side Thin driver, you need to set permission.

Setting Permission for the Server-Side Thin Driver

The JDBC server-side Thin driver opens a socket for its connection to the database. Because Oracle Database enforces the Java security model, a check is performed for a SocketPermission object.

To use the JDBC server-side Thin driver, the connecting user must be granted the appropriate permission. The following is an example of how the permission can be granted for the user SCOTT:

CREATE ROLE jdbcthin;
CALL dbms_java.grant_permission('JDBCTHIN', 'java.net.SocketPermission', '*', 'connect');
GRANT jdbcthin TO SCOTT;

Note that JDBCTHIN in the grant_permission call must be in uppercase. The asterisk (*) is a pattern. You can restrict the user by granting permission to connect to only specific computers or ports.

	
See Also:

Oracle Database Java Developer's Guide

Ensure that the Java Code Can Be Compiled and Run

To further ensure that Java is set up properly on your client system, go to the samples directory under the ORACLE_HOME/jdbc/demo directory. Now, type the following commands on the command line, one after the other, to see if the Java compiler and the Java interpreter run without error. :

javac

java

Each of the preceding commands should display a list of options and parameters and then exit. Ideally, verify that you can compile and run a simple test program, such as jdbc/demo/samples/generic/SelectExample.

Determine the Version of the JDBC Driver

You can determine the version of the JDBC driver that you installed, by calling the getDriverVersion method of the OracleDatabaseMetaData class.

The following sample code shows how to determine the driver version:

import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

class JDBCVersion
{
 public static void main (String args[]) throws SQLException
 {
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:scott/tiger@host:port:service");
 Connection conn = ods.getConnection();

 // Create Oracle DatabaseMetaData object
 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:
 System.out.println("JDBC driver version is " + meta.getDriverVersion());
 }
}

You can also determine the version of the JDBC driver by executing the following commands:

	
java -jar ojdbc5.jar

	
java -jar ojdbc6.jar

Test JDBC and the Database Connection

The samples directory contains sample programs for a particular Oracle JDBC driver. One of the programs, JdbcCheckup.java, is designed to test JDBC and the database connection. The program queries for the user name, password, and the name of the database to which you want to connect. The program connects to the database, queries for the string "Hello World", and prints it to the screen.

Go to the samples directory, and compile and run the JdbcCheckup.java program. If the results of the query print without error, then your Java and JDBC installations are correct.

Although JdbcCheckup.java is a simple program, it demonstrates several important functions by performing the following:

	
Imports the necessary Java classes, including JDBC classes

	
Creates a DataSource instance

	
Connects to the database

	
Runs a simple query

	
Prints the query results to your screen

The JdbcCheckup.java program, which uses the JDBC OCI driver, is as follows:

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */

// You need to import the java.sql and JDBC packages to use JDBC
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main(String args[]) throws SQLException, IOException
 {

 // Prompt the user for connect information
 System.out.println("Please enter information to test connection to
 the database");
 String user;
 String password;
 String database;

 user = readEntry("user: ");
 int slash_index = user.indexOf('/');
 if (slash_index != -1)
 {
 password = user.substring(slash_index + 1);
 user = user.substring(0, slash_index);
 }
 else
 password = readEntry("password: ");
 database = readEntry("database(a TNSNAME entry): ");

 System.out.print("Connecting to the database...");
 System.out.flush();
 System.out.println("Connecting...");
 // Open an OracleDataSource and get a connection
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci:@" + database);
 ods.setUser(user);
 ods.setPassword(password);
 Connection conn = ods.getConnection();
 System.out.println("connected.");

 // Create a statement
 Statement stmt = conn.createStatement();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery("select 'Hello World' from dual");

 while (rset.next())
 System.out.println(rset.getString(1));
 // close the result set, the statement and the connection
 rset.close();
 stmt.close();
 conn.close();
 System.out.println("Your JDBC installation is correct.");
 }

 // Utility function to read a line from standard input
 static String readEntry(String prompt)
 {
 try
 {
 StringBuffer buffer = new StringBuffer();
 System.out.print(prompt);
 System.out.flush();
 int c = System.in.read();
 while (c != '\n' && c != -1)
 {
 buffer.append((char)c);
 c = System.in.read();
 }
 return buffer.toString().trim();
 }
 catch(IOException e)
 {
 return "";
 }
 }
}

Basic Steps in JDBC

After verifying the JDBC client installation, you can start creating your JDBC applications. When using Oracle JDBC drivers, you must include certain driver-specific information in your programs. This section describes, in the form of a tutorial, where and how to add the information. The tutorial guides you through the steps to create code that connects to and queries a database from the client.

You must write code to perform the following tasks:

	
Importing Packages

	
Opening a Connection to a Database

	
Creating a Statement Object

	
Running a Query and Retrieving a Result Set Object

	
Processing the Result Set Object

	
Closing the Result Set and Statement Objects

	
Making Changes to the Database

	
Committing Changes

	
Closing the Connection

	
Note:

You must supply Oracle driver-specific information for the first three tasks, which allow your program to use the JDBC application programming interface (API) to access a database. For the other tasks, you can use standard JDBC Java code, as you would for any Java application.

Importing Packages

Regardless of which Oracle JDBC driver you use, include the import statements shown in Table 2-1 at the beginning of your program.

Table 2-1 Import Statements for JDBC Driver

	Import statement	Provides
	
import java.sql.*;

	
Standard JDBC packages.

	
import java.math.*;

	
The BigDecimal and BigInteger classes. You can omit this package if you are not going to use these classes in your application.

	
import oracle.jdbc.*;

import oracle.jdbc.pool.*;

import oracle.sql.*;

	
Oracle extensions to JDBC. This is optional.

OracleDataSource.

Oracle type extensions. This is optional.

The Oracle packages listed as optional provide access to the extended functionality provided by Oracle JDBC drivers, but are not required for the example presented in this section.

	
Note:

It is better to import only the classes your application needs, rather than using the wildcard asterisk (*). This guide uses the asterisk (*) for simplicity, but this is not the recommended way of importing classes and interfaces.

Opening a Connection to a Database

First, you must create an OracleDataSource instance. Then, open a connection to the database using the OracleDataSource.getConnection method. The properties of the retrieved connection are derived from the OracleDataSource instance. If you set the URL connection property, then all other properties, including TNSEntryName, DatabaseName, ServiceName, ServerName, PortNumber, Network Protocol, and driver type are ignored.

Specifying a Database URL, User Name, and Password

The following code sets the URL, user name, and password for a data source:

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setUser(user);
ods.setPassword(password);

The following example connects user scott with password tiger to a database with service orcl through port 1521 of the host myhost, using the JDBC Thin driver:

OracleDataSource ods = new OracleDataSource();
String url = "jdbc:oracle:thin:@//myhost:1521/orcl",
ods.setURL(url);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

	
Note:

The user name and password specified in the arguments override any user name and password specified in the URL.

Specifying a Database URL that Includes User Name and Password

The following example connects user scott with password tiger to a database host whose Transparent Network Substrate (TNS) entry is myTNSEntry, using the JDBC Oracle Call Interface (OCI) driver. In this case, the URL includes the user name and password and is the only input parameter.

String url = "jdbc:oracle:oci:scott/tiger@myTNSEntry");
ods.setURL(url);
Connection conn = ods.getConnection();

If you want to connect using the Thin driver, then you must specify the port number. For example, if you want to connect to the database on the host myhost that has a TCP/IP listener on port 1521 and the service identifier is orcl, then provide the following code:

String URL = "jdbc:oracle:thin:scott/tiger@//myhost:1521/orcl");
ods.setURL(URL);
Connection conn = ods.getConnection();

	
See Also:

Chapter 8, "Data Sources and URLs"

Creating a Statement Object

Once you connect to the database and, in the process, create a Connection object, the next step is to create a Statement object. The createStatement method of the JDBC Connection object returns an object of the JDBC Statement type. To continue the example from the previous section, where the Connection object conn was created, here is an example of how to create the Statement object:

Statement stmt = conn.createStatement();

Running a Query and Retrieving a Result Set Object

To query the database, use the executeQuery method of the Statement object. This method takes a SQL statement as input and returns a JDBC ResultSet object.

	
Note:

	
The method used to execute a Statement object depends on the type of SQL statement being executed. If the Statement object represents a SQL query returning a ResultSet object, the executeQuery method should be used. If the SQL is known to be a DDL statement or a DML statement returning an update count, the executeUpdate method should be used. If the type of the SQL statement is not known, the execute method should be used.

	
In case of a standard JDBC driver, if the SQL string being executed does not return a ResultSet object, then the executeQuery method throws a SQLException exception. In case of an Oracle JDBC driver, the executeQuery method does not throw a SQLException exception even if the SQL string being executed does not return a ResultSet object.

To continue the example, once you create the Statement object stmt, the next step is to run a query that returns a ResultSet object with the contents of the ename column of a table of employees named EMP:

ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");

Processing the Result Set Object

Once you run your query, use the next() method of the ResultSet object to iterate through the results. This method steps through the result set row by row, detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate getXXX methods of the ResultSet object, where XXX corresponds to a Java data type.

For example, the following code will iterate through the ResultSet object, rset, from the previous section and will retrieve and print each employee name:

while (rset.next())
 System.out.println (rset.getString(1));

The next() method returns false when it reaches the end of the result set. The employee names are materialized as Java String values.

Closing the Result Set and Statement Objects

You must explicitly close the ResultSet and Statement objects after you finish using them. This applies to all ResultSet and Statement objects you create when using Oracle JDBC drivers. The drivers do not have finalizer methods. The cleanup routines are performed by the close method of the ResultSet and Statement classes. If you do not explicitly close the ResultSet and Statement objects, serious memory leaks could occur. You could also run out of cursors in the database. Closing both the result set and the statement releases the corresponding cursor in the database. If you close only the result set, then the cursor is not released.

For example, if your ResultSet object is rset and your Statement object is stmt, then close the result set and statement with the following lines of code:

rset.close();
stmt.close();

When you close a Statement object that a given Connection object creates, the connection itself remains open.

	
Note:

Typically, you should put close statements in a finally clause.

Making Changes to the Database

DML Operations

To perform DML (Data Manipulation Language) operations, such as INSERT or UPDATE operations, you can create either a Statement object or a PreparedStatement object. PreparedStatement objects enable you to run a statement with varying sets of input parameters. The prepareStatement method of the JDBC Connection object lets you define a statement that takes variable bind parameters and returns a JDBC PreparedStatement object with your statement definition.

Use the setXXX methods on the PreparedStatement object to bind data to the prepared statement to be sent to the database.

	
See Also:

"The setObject and setOracleObject Methods" and "Other setXXX Methods"

The following example shows how to use a prepared statement to run INSERT operations that add two rows to the EMP table.

 // Prepare to insert new names in the EMP table
PreparedStatement pstmt = null;
try{
 pstmt = conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?, ?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();
}

finally{
 if(pstmt!=null)

 // Close the statement
 pstmt.close();
}

DDL Operations

To perform data definition language (DDL) operations, you can create either a Statement object or a PreparedStatement object. The following example shows how to create a table in the database using a Statement object.

//create table EMP with columns EMPNO and ENAME
String query;
Statement stmt=null;

try{
 query="create table EMP " +
 "(EMPNO int, " +
 "ENAME varchar(50))";
 stmt = conn.createStatement();
 stmt.executeUpdate(query);
 }
finally{
 //close the Statement object
 stmt.close();
 }

If your code involves reexecuting a DDL operation, then, before reexecuting the statement, you must prepare it again. The following example shows how to prepare your DDL statements before any reexecution:

//
PreparedStatement pstmt = null;
PreparedStatement tstmt = null;
try{
 pstmt = conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?, ?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 tstmt = conn.prepareStatement("truncate table EMP");
 tstmt.executeUpdate();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 tstmt.close();
 tstmt = conn.prepareStatement("truncate table EMP");
 tstmt.executeUpdate();
 }
finally{
if(pstmt!=null)

 // Close the statement
 pstmt.close();
}

Committing Changes

By default, data manipulation language (DML) operations are committed automatically as soon as they are run. This is known as the auto-commit mode. However, you can disable auto-commit mode with the following method call on the Connection object:

conn.setAutoCommit(false);

	
See Also:

"Disabling Auto-Commit Mode".

If you disable the auto-commit mode, then you must manually commit or roll back changes with the appropriate method call on the Connection object:

conn.commit();

or:

conn.rollback();

A COMMIT or ROLLBACK operation affects all DML statements run since the last COMMIT or ROLLBACK.

	
Note:

	
If the auto-commit mode is disabled and you close the connection without explicitly committing or rolling back your last changes, then an implicit COMMIT operation is run.

	
Any data definition language (DDL) operation always causes an implicit COMMIT. If the auto-commit mode is disabled, then this implicit COMMIT will commit any pending DML operations that had not yet been explicitly committed or rolled back.

Closing the Connection

You must close the connection to the database after you have performed all the required operations and no longer require the connection. You can close the connection by using the close method of the Connection object, as follows:

conn.close();

	
Note:

Typically, you should put close statements in a finally clause.

Sample: Connecting, Querying, and Processing the Results

The steps in the preceding sections are illustrated in the following example, which uses the Oracle JDBC Thin driver to create a data source, connects to the database, creates a Statement object, runs a query, and processes the result set.

Note that the code for creating the Statement object, running the query, returning and processing the ResultSet object, and closing the statement and connection uses the standard JDBC API.

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.Statement;
import oracle.jdbc.pool.OracleDataSource;

class JdbcTest
{
 public static void main (String args []) throws SQLException
 {

OracleDataSource ods = null;
Connection conn = null;
Statement stmt = null;
ResultSet rset = null;

 // Create DataSource and connect to the local database
 ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:thin:@//myhost:1521/orcl");
 ods.setUser("scott");
 ods.setPassword("tiger");
 conn = ods.getConnection();

try
{
 // Query the employee names
 stmt = conn.createStatement ();
 rset = stmt.executeQuery ("SELECT ename FROM emp");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 }

 //Close the result set, statement, and the connection

finally{
 if(rset!=null) rset.close();
 if(stmt!=null) stmt.close();
 if(conn!=null) conn.close();
}
 }
}

If you want to adapt the code for the OCI driver, then replace the call to the OracleDataSource.setURL method with the following:

ods.setURL("jdbc:oracle:oci:@MyHostString");

where, MyHostString is an entry in the TNSNAMES.ORA file.

Stored Procedure Calls in JDBC Programs

This section describes how Oracle JDBC drivers support the following kinds of stored procedures:

	
PL/SQL Stored Procedures

	
Java Stored Procedures

PL/SQL Stored Procedures

Oracle JDBC drivers support the processing of PL/SQL stored procedures and anonymous blocks. They support PL/SQL block syntax and most of SQL92 escape syntax. The following PL/SQL calls would work with any Oracle JDBC driver:

// SQL92 syntax
CallableStatement cs1 = conn.prepareCall
 ("{call proc (?,?)}") ; // stored proc
CallableStatement cs2 = conn.prepareCall
 ("{? = call func (?,?)}") ; // stored func
// PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall
 ("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
 ("begin ? := func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates a stored function. The PL/SQL function gets a character sequence and concatenates a suffix to it:

create or replace function foo (val1 char)
return char as
begin
 return val1 || 'suffix';
end;

The function invocation in your JDBC program should look like the following:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:oci:@<hoststring>");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter(1,Types.CHAR);
cs.setString(2, "aa");
cs.executeUpdate();
String result = cs.getString(1);

Java Stored Procedures

You can use JDBC to call Java stored procedures through the SQL and PL/SQL engines. The syntax for calling Java stored procedures is the same as the syntax for calling PL/SQL stored procedures, presuming they have been properly published. That is, you have written call specifications to publish them to the Oracle data dictionary. Applications can call Java stored procedures using the Native Java Interface for direct invocation of static Java methods.

Processing SQL Exceptions

To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing instances of the java.sql.SQLException class or its subclass. Errors can originate either in the JDBC driver or in the database itself. Resulting messages describe the error and identify the method that threw the error. Additional run-time information can also be appended.

JDBC 3.0 defines only a single exception, SQLException. However, there are large categories of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set of subclasses of the SQLException exception is introduced to identify the different categories of errors. To know more about this feature, see Support for JDBC 4.0 Standard.

Basic exception handling can include retrieving the error message, retrieving the error code, retrieving the SQL state, and printing the stack trace. The SQLException class includes functionality to retrieve all of this information, when available.

	
See Also:

	
Appendix C, "JDBC Error Messages"

	
Oracle Database Error Messages

Retrieving Error Information

You can retrieve basic error information with the following methods of the SQLException class:

	
getMessage

	
getErrorCode

	
getSQLState

The following example prints output from a getMessage method call:

catch(SQLException e)
{
 System.out.println("exception: " + e.getMessage());
}

This would print the output, such as the following, for an error originating in the JDBC driver:

exception: Invalid column type

	
Note:

Error message text is available in alternative languages and character sets supported by Oracle.

Printing the Stack Trace

The SQLException class provides the printStackTrace() method for printing a stack trace. This method prints the stack trace of the throwable object to the standard error stream. You can also specify a java.io.PrintStream object or java.io.PrintWriter object for output.

The following code fragment illustrates how you can catch SQL exceptions and print the stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an incorrect column index:

// Iterate through the result and print the employee names
// of the code

try {
 while (rset.next ())
 System.out.println (rset.getString (5)); // incorrect column index
}
catch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, running the program would produce the following error text:

java.sql.SQLException: Invalid column index
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:112)
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:146)
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:208)
at oracle.jdbc.driver.OracleResultSetImpl.getDate(OracleResultSetImpl.java:1556)
at Employee.main(Employee.java:41)

Part II

Oracle JDBC

This part includes chapters that discuss the different Java Database Connectivity (JDBC) versions that Oracle Database 11g supports. It also includes chapters that cover features specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver, and the server-side internal driver.

Part II contains the following chapters:

	
Chapter 3, "JDBC Standards Support"

	
Chapter 4, "Oracle Extensions"

	
Chapter 5, "Features Specific to JDBC Thin"

	
Chapter 6, "Features Specific to JDBC OCI Driver"

	
Chapter 7, "Server-Side Internal Driver"

3 JDBC Standards Support

The Oracle Java Database Connectivity (JDBC) drivers support different versions of the JDBC standard features. In Oracle Database 11g Release 1 (11.1), Oracle JDBC drivers have been enhanced to provide support for the JDBC 4.0 standards. These features are provided through the oracle.jdbc and oracle.sql packages. These packages support Java Development Kit (JDK) releases 1.5 and 1.6. This chapter discusses the JDBC standards support in Oracle JDBC drivers. It contains the following sections:

	
Support for JDBC 2.0 Standard

	
Support for JDBC 3.0 Standard

	
Support for JDBC 4.0 Standard

Support for JDBC 2.0 Standard

Standard JDBC 2.0 features are supported by JDK 1.2 and later versions. There are three areas to consider:

	
Support for data types, such as objects, arrays, and large objects (LOBs). This is handled through the standard java.sql package.

	
Support for standard features, such as result set enhancements and update batching. This is handled through standard objects, such as Connection, ResultSet, and PreparedStatement, under JDK 1.2.x and later.

	
Support for extended features, such as features of the JDBC 2.0 optional package, also known as the standard extension application programming interface (API), including data sources, connection pooling, and distributed transactions.

This section covers the following topics:

	
Data Type Support

	
Standard Feature Support

	
Extended Feature Support

	
Standard versus Oracle Performance Enhancement APIs

	
Note:

Versions of JDK earlier than 1.5 are no longer supported. The package oracle.jdbc2 has been removed.

Data Type Support

Oracle JDBC fully supports JDK 1.5 and JDK 1.6, which includes standard JDBC 2.0 functionality through implementation of interfaces in the standard java.sql package. These interfaces are implemented as appropriate by classes in the oracle.sql and oracle.jdbc packages.

Standard Feature Support

In a JDK 1.5 environment, using the JDBC classes in ojdbc5.jar, JDBC 2.0 features, such as scrollable result sets, updatable result sets, and update batching, are supported through methods specified by standard JDBC 2.0 interfaces.

Extended Feature Support

Features of the JDBC 2.0 optional package, including data sources, connection pooling, and distributed transactions, are supported in a JDK 1.2.x or later environment.

The standard javax.sql package and classes that implement its interfaces are included in the Java Archive (JAR) files packaged with Oracle Database.

Standard versus Oracle Performance Enhancement APIs

The following performance enhancements are available under JDBC 2.0, which had previously been available only as Oracle extensions:

	
Update batching

	
Fetch size or row prefetching

In each case, you have the option of using the standard model or the Oracle model. Oracle recommends that you use the JDBC standard model whenever possible. Do not, however, try to mix usage of the standard model and Oracle model within a single application for either of these features.

	
See Also:

	
"Update Batching"

	
"Fetch Size"

Support for JDBC 3.0 Standard

Standard JDBC 3.0 features are supported by JDK 1.4 and later versions. Table 3-1 lists the JDBC 3.0 features supported by Oracle Database 11g Release 1 (11.1) and gives references to a detailed discussion of each feature.

Table 3-1 Key Areas of JDBC 3.0 Functionality

	Feature	Comments and References
	
Transaction savepoints

	
See "Transaction Savepoints" for information.

	
Statement caching

	
Reuse of prepared statements by connection pools. See Chapter 20, "Statement and Result Set Caching".

	
Switching between local and global transactions

	
See "Switching Between Global and Local Transactions".

	
LOB modification

	
See "JDBC 3.0 LOB Interface Methods" .

	
Named SQL parameters

	
See "Interface oracle.jdbc.OracleCallableStatement" and "Interface oracle.jdbc.OraclePreparedStatement" .

	
RowSets

	
See Chapter 18, "JDBC RowSets"

	
Retrieving auto-generated keys

	
See "Retrieval of Auto-Generated Keys"

	
Result set holdability

	
See "Result Set Holdability"

The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this section:

	
Transaction Savepoints

	
Retrieval of Auto-Generated Keys

	
JDBC 3.0 LOB Interface Methods

	
Result Set Holdability

Transaction Savepoints

The JDBC 3.0 specification supports savepoints, which offer finer demarcation within transactions. Applications can set a savepoint within a transaction and then roll back all work done after the savepoint. Savepoints relax the atomicity property of transactions. A transaction with a savepoint is atomic in the sense that it appears to be a single unit outside the context of the transaction, but code operating within the transaction can preserve partial states.

	
Note:

Savepoints are supported for local transactions only. Specifying a savepoint within a global transaction causes a SQLException exception to be thrown.

Creating a Savepoint

You create a savepoint using the Connection.setSavepoint method, which returns a java.sql.Savepoint instance.

A savepoint is either named or unnamed. You specify the name of a savepoint by supplying a string to the setSavepoint method. If you do not specify a name, then the savepoint is assigned an integer ID. You retrieve a name using the getSavepointName method. You retrieve an ID using the getSavepointId method.

	
Note:

Attempting to retrieve a name from an unnamed savepoint or attempting to retrieve an ID from a named savepoint throws a SQLException exception.

Rolling Back to a Savepoint

You roll back to a savepoint using the Connection.rollback(Savepoint svpt) method. If you try to roll back to a savepoint that has been released, then a SQLException exception is thrown.

Releasing a Savepoint

You remove a savepoint using the Connection.releaseSavepoint(Savepoint svpt) method.

Checking Savepoint Support

You query if savepoints are supported by your database by calling the oracle.jdbc.OracleDatabaseMetaData.supportsSavepoints method, which returns true if savepoints are available, false otherwise.

Savepoint Notes

When using savepoints, you must consider the following:

	
After a savepoint has been released, attempting to reference it in a rollback operation will cause a SQLException exception to be thrown.

	
When a transaction is committed or rolled back, all savepoints created in that transaction are automatically released and become invalid.

	
Rolling a transaction back to a savepoint automatically releases and makes invalid any savepoints created after the savepoint in question.

Retrieval of Auto-Generated Keys

Many database systems automatically generate a unique key field when a row is inserted. Oracle Database provides the same functionality with the help of sequences and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that enables you to retrieve such generated values. In JDBC 3.0, the following interfaces are enhanced to support the retrieval of auto-generated keys feature:

	
java.sql.DatabaseMetaData

	
java.sql.Connection

	
java.sql.Statement

These interfaces provide methods that support retrieval of auto-generated keys. However, this feature is supported only when INSERT statements are processed. Other data manipulation language (DML) statements are processed, but without retrieving auto-generated keys.

	
Note:

The Oracle server-side internal driver does not support the retrieval of auto-generated keys feature.

java.sql.Statement

If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify which columns need to be retrieved. When a column name or column index array is used, Oracle JDBC drivers can identify which columns contain auto-generated keys that you want to retrieve. However, when the Statement.RETURN_GENERATED_KEYS integer flag is used, Oracle JDBC drivers cannot identify these columns. When the integer flag is used to indicate that auto-generated keys are to be returned, the ROWID pseudo column is returned as key. The ROWID can be then fetched from the ResultSet object and can be used to retrieve other columns.

Sample Code

The following code illustrates retrieval of auto-generated keys:

/** SQL statements for creating an ORDERS table and a sequence for generating the
 * ORDER_ID.
 *
 * CREATE TABLE ORDERS (ORDER_ID NUMBER, CUSTOMER_ID NUMBER, ISBN NUMBER,
 * DESCRIPTION NCHAR(5))
 *
 * CREATE SEQUENCE SEQ01 INCREMENT BY 1 START WITH 1000
 */

...
String cols[] = {"ORDER_ID", "DESCRIPTION"};

// Create a PreparedStatement for inserting a row into the ORDERS table.
OraclePreparedStatement pstmt = (OraclePreparedStatement)
conn.prepareStatement("INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID, ISBN, DESCRIPTION) VALUES (SEQ01.NEXTVAL, 101,
 966431502, ?)", cols);
char c[] = {'a', '\u5185', 'b'};
String s = new String(c);
pstmt.setNString(1, s);
pstmt.executeUpdate();
ResultSet rset = pstmt.getGeneratedKeys();
...

In the preceding example, a sequence, SEQ01, is created to generate values for the ORDER_ID column starting from 1000 and incrementing by 1 each time the sequence is processed to generate the next value. An OraclePreparedStatement object is created to insert a row in to the ORDERS table.

Limitations

Auto-generated keys are implemented using the DML returning clause. So, they are subjected to the following limitations:

	
You cannot combine auto-generated keys with batch update.

	
You need to access the ResultSet object returned from getGeneratedKeys method by position only and no bind variable names should be used as columns in the ResultSet object.

JDBC 3.0 LOB Interface Methods

Table 3-2 and Table 3-3 show the conversions between Oracle proprietary methods and JDBC 3.0 standard methods.

Table 3-2 BLOB Method Equivalents

	Oracle Proprietary Method	JDBC 3.0 Standard Method
	
putBytes(long pos, byte [] bytes)

	
setBytes(long pos, byte[] bytes)

	
putBytes(long pos, byte [] bytes, int length)

	
setBytes(long pos, byte[] bytes, int offset, int len)

	
getBinaryOutputStream(long pos)

	
setBinaryStream(long pos)

	
trim (long len)

	
truncate(long len)

Table 3-3 CLOB Method Equivalents

	Oracle Proprietary Method	JDBC 3.0 Standard Method
	
putString(long pos, String str)

	
setString(long pos, String str)

	
not applicable

	
setString(long pos, String str, int offset, int len)

	
getAsciiOutputStream(long pos)

	
setAsciiStream(long pos)

	
getCharacterOutputStream(long pos)

	
setCharacterStream(long pos)

	
trim (long len)

	
truncate(long len)

Result Set Holdability

Result set holdability was introduced since JDBC 3.0. This feature enables applications to decide whether the ResultSet objects should be open or closed, when a commit operation is performed. The commit operation could be either implicit or explicit.

Oracle Database supports only HOLD_CURSORS_OVER_COMMIT. Therefore, it is the default value for Oracle JDBC drivers. Any attempt to change holdability will throw a SQLException exception.

Support for JDBC 4.0 Standard

The JDBC 4.0 standard support is provided by JDK 1.6 and later versions. Oracle Database 11g Release 1 (11.1) JDBC drivers provide support for the JDBC 4.0 standard.

	
Note:

You need to have the ojdbc6*.jar in your classpath environment variable in order to have JDBC 4.0 standard support.

Some of the new features available in Oracle Database 11g Release 1 (11.1) JDBC drivers are the following:

	
Wrapper Pattern Support

	
Enhanced Exception Hierarchy and SQLException

	
The RowId Data Type

	
LOB Creation

	
National Language Character Set Support

This document provides only an overview of these new features. For detailed information about these features, see "Java 2 Platform, Standard Edition (JSE) 6.0 specification" at

http://java.sun.com/javase/6/docs/

Wrapper Pattern Support

Wrapper pattern is a common coding pattern used in Java applications to provide extensions beyond the traditional JDBC API that are specific to a data source. You may need to use these extensions to access the resources that are wrapped as proxy class instances representing the actual resources. JDBC 4.0 introduces the Wrapper interface that describes a standard mechanism to access these wrapped resources represented by their proxy, to permit direct access to the resource delegates.

The Wrapper interface provides the following two methods:

	
public boolean isWrapperFor(Class<?> iface) throws SQLException;

	
public <T> T unwrap(Class<T> iface) throws SQLException;

The other JDBC 4.0 interfaces, except those that represent SQL data, all implement this interface. These include Connection, Statement and its subtypes, ResultSet, and the metadata interfaces.

	
See Also:

http://java.sun.com/javase/6/docs/api/java/sql/Wrapper.html

Enhanced Exception Hierarchy and SQLException

JDBC 3.0 defines only a single exception, SQLException. However, there are large categories of errors and it is useful to distinguish them. This feature provides subclasses of the SQLException class to identify the different categories of errors. The primary distinction is between permanent errors and transient errors. Permanent errors are a result of the correct operation of the system and will always occur. Transient errors are the result of failures, including timeouts, of some part of the system and may not reoccur.

New exceptions have been added to represent transient and permanent errors and the different categories of these errors.

Also, the SQLException class and its subclasses have been enhanced to provide support for the J2SE chained exception functionality.

The RowId Data Type

JDBC 4.0 provides the java.sql.RowId data type to represent SQL ROWID values. You can retrieve a RowId value using the getter methods defined in the ResultSet and CallableStatement interfaces. You can also use a RowId value in a parameterized PreparedStatement to set a parameter with a RowId object or in an updatable result set to update a column with a specific RowId value.

A RowId object is valid until the identified row is not deleted. A RowId object may also be valid for the following:

	
The duration of the transaction in which it is created

	
The duration of the session in which it is created

	
An undefined duration where by it is valid forever

The lifetime of the RowId object can be determined by calling the DatabaseMetaData.getRowIdLifetime method.

LOB Creation

In JDBC 4.0, the Connection interface has been enhanced to provide support for the creation of BLOB, CLOB, and NCLOB objects. The interface provides the createBlob, createClob, and createNClob methods that enable you to create Blob, Clob, and NClob objects.

The created large objects (LOBs) do not contain any data. You can add data in these objects by calling the appropriate setXXX methods. To retrieve the data from these objects, you can call the getBlob, getClob, and getNClob methods defined in the ResultSet and CallableStatement interfaces. You can either retrieve the entire content or a part of the content from these objects. The following code snippet illustrates how to retrieve 100 bytes of data from a BLOB object starting at offset 200:

...
Connection con = DriverManager.getConnection(url, props);
Blob aBlob = con.createBlob();
// Add data to the BLOB object.
...
// Retrieve part of the data from the BLOB object.
InputStream is = aBlob.getBinaryStream(200, 100);
...

You can also pass LOBs as input parameters to a PreparedStatement object using the setBlob, setClob, and setNClob methods. You can use the updateBlob, updateClob, and updateNClob methods to update a column value in an updatable result set.

LOBs remain valid for at least the duration of the transaction in which they are created. This may result in unwarranted use of memory during a long running transaction. You can release LOBs by calling their free method, as follows:

...
Clob aClob = con.createClob();
int numWritten = aClob.setString(1, val);
aClob.free();
...

National Language Character Set Support

JDBC 4.0 introduces the NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB JDBC types to access the national character set types. These types are similar to the CHAR, VARCHAR, LONGVARCHAR, and CLOB types, except that the values are encoded using the national character set.

4 Oracle Extensions

Oracle provides Java classes and interfaces that extend the Java Database Connectivity (JDBC) standard implementation, enabling you to access and manipulate Oracle data types and use Oracle performance extensions. Compared to standard JDBC, the Oracle extensions offer greater flexibility in manipulating the data. This chapter provides an overview of the classes and interfaces provided by Oracle that extend the JDBC standard implementation. It also describes some of the key support features of the extensions.

This chapter contains the following sections:

	
Overview of Oracle Extensions

	
Features of the Oracle Extensions

	
Oracle JDBC Packages

	
Oracle Character Data Types Support

	
Additional Oracle Type Extensions

	
DML Returning

	
Accessing PL/SQL Index-by Tables

	
Note:

This chapter focuses on type extensions, as opposed to performance extensions, which are discussed in detail in Chapter 23, "Performance Extensions".

Overview of Oracle Extensions

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type extensions and performance extensions. These extensions are provided through the following Java packages:

	
oracle.sql

Provides classes that represent SQL data in Oracle format

	
oracle.jdbc

Provides interfaces to support database access and updates in Oracle type formats

	
See Also:

"Oracle JDBC Packages"

Features of the Oracle Extensions

The Oracle extensions to JDBC include a number of features that enhance your ability to work with Oracle Databases. These include the following:

	
Database Management Using JDBC

	
Support for Oracle Data Types

	
Support for Oracle Objects

	
Support for Schema Naming

	
DML Returning

	
Accessing PL/SQL Index-by Tables

Database Management Using JDBC

Oracle Database 11g Release 1 (11.1) introduces new JDBC methods, startup and shutdown, in the oracle.jdbc.OracleConnection interface that enable you to start up and shut down an Oracle Database instance. You also have support for the Database Change Notification feature of Oracle Database. These new features have been discussed in details in "Database Management".

Support for Oracle Data Types

One of the features of the Oracle JDBC extensions is the type support in the oracle.sql package. This package includes classes that are an exact representation of the data in Oracle format. Keep the following important points in mind, when you use oracle.sql types in your program:

	
For numeric type of data, the conversion to standard Java types does not guarantee to retain full precision due to limitations of the data conversion process. Use the BigDecimal type to minimize any data loss issues.

	
For certain data types, the conversion to standard Java types can be dependent on the system settings and your program may not run as expected. This is a known limitation while converting data from oracle.sql types to standard Java types.

	
If the functionalities of your program is limited to reading data from one table and writing the same to another table, then for numeric and date data, oracle.sql types are slightly faster as compared to standard Java types. But, if your program involves even a simple data manipulation opearation like compare or print, then standard Java types are faster.

	
oracle.sql.CHAR is not an exact representation of the data in Oracle format. oracle.sql.CHAR is constructed from java.lang.String. There is no advantage of using oracle.sql.CHAR because java.lang.String is always faster and represents the same character sets, excluding a couple of desupported character sets.

	
Note:

Oracle strongly recommends you to use standard Java types and convert any existing oracle.sql type of data to standard Java types. Internally, the Oracle JDBC drivers strive to maximize the performance of Java standard types. oracle.sql types are supported only for backward compatibility and their use is discouraged.

	
See Also:

	
Package oracle.sql

	
"Oracle Character Data Types Support"

	
"Additional Oracle Type Extensions"

Support for Oracle Objects

Oracle JDBC supports the use of structured objects in the database, where an object data type is a user-defined type with nested attributes. For example, a user application could define an Employee object type, where each Employee object has a firstname attribute (character string), a lastname attribute (character string), and an employeenumber attribute (integer).

Oracle JDBC supports Oracle object data types. When you work with Oracle object data types in a Java application, you must consider the following:

	
How to map between Oracle object data types and Java classes

	
How to store Oracle object attributes in corresponding Java objects

	
How to convert attribute data between SQL and Java formats

	
How to access data

Oracle objects can be mapped either to the weak java.sql.Struct type or to strongly typed customized classes. These strong types are referred to as custom Java classes, which must implement either the standard java.sql.SQLData interface or the Oracle extension oracle.sql.ORAData interface. Each interface specifies methods to convert data between SQL and Java.

	
Note:

The ORAData interface has replaced the CustomDatum interface. The latter interface is desupported in Oracle Database release 11.1.

Oracle recommends the use of the Oracle JPublisher utility to create custom Java classes to correspond to your Oracle objects. Oracle JPublisher performs this task seamlessly with command-line options and can generate either SQLData or ORAData interface implementations.

For SQLData interface implementations, a type map defines the correspondence between Oracle object data types and Java classes. Type maps are objects that specify which Java class corresponds to each Oracle object data type. Oracle JDBC uses these type maps to determine which Java class to instantiate and populate when it retrieves Oracle object data from a result set.

	
Note:

Oracle recommends using the ORAData interface, instead of the SQLData interface, in situations where portability is not a concern. The ORAData interface works more easily and flexibly in conjunction with other features of the Oracle platform offerings using Java.

JPublisher automatically defines getXXX methods of the custom Java classes, which retrieve data into your Java application.

	
See Also:

	
Chapter 13, "Working with Oracle Object Types"

	
Oracle Database JPublisher User's Guide.

Support for Schema Naming

Oracle object data type classes have the ability to accept and return fully qualified schema names. A fully qualified schema name has this syntax:

{[schema_name].}[sql_type_name]

Where, schema_name is the name of the schema and sql_type_name is the SQL type name of the object. schema_name and sql_type_name are separated by a period (.).

To specify an object type in JDBC, use its fully qualified name. It is not necessary to enter a schema name if the type name is in the current naming space, that is, the current schema. Schema naming follows these rules:

	
Both the schema name and the type name may or may not be within quotation marks. However, if the SQL type name has a period in it, such as CORPORATE.EMPLOYEE, the type name must be quoted.

	
The JDBC driver looks for the first period in the object name that is not within quotation marks and uses the string before the period as the schema name and the string following the period as the type name. If no period is found, then the JDBC driver takes the current schema as default. That is, you can specify only the type name, without indicating a schema, instead of specifying the fully qualified name if the object type name belongs to the current schema. This also explains why you must put the type name within quotation marks if the type name has a dot in it.

For example, assume that user Scott creates a type called person.address and then wants to use it in his session. Scott may want to skip the schema name and pass in person.address to the JDBC driver. In this case, if person.address is not within quotation marks, then the period will be detected and the JDBC driver will mistakenly interpret person as the schema name and address as the type name.

	
JDBC passes the object type name string to the database unchanged. That is, the JDBC driver will not change the character case even if the object type name is within quotation marks.

For example, if Scott.PersonType is passed to the JDBC driver as an object type name, then the JDBC driver will pass the string to the database unchanged. As another example, if there is white space between characters in the type name string, then the JDBC driver will not remove the white space.

DML Returning

Oracle Database supports the use of the RETURNING clause with data manipulation language (DML) statements. This enables you to combine two SQL statements into one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC Thin driver support DML returning.

	
See Also:

"DML Returning"

Accessing PL/SQL Index-by Tables

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by table parameters. Oracle JDBC drivers support PL/SQL index-by tables of scalar data types

	
Note:

Index-by tables of PL/SQL records are not supported.

	
See Also:

"Accessing PL/SQL Index-by Tables"

Oracle JDBC Packages

This section describes the following Java packages, which support the Oracle JDBC extensions:

	
Package oracle.sql

	
Package oracle.jdbc

Package oracle.sql

The oracle.sql package supports direct access to data in SQL format. This package consists primarily of classes that provide Java mappings to SQL data types and their support classes. Essentially, the classes act as Java containers for SQL data.

Each of the oracle.sql.* data type classes extends oracle.sql.Datum, a superclass that encapsulates functionality common to all the data types. Some of the classes are for JDBC 2.0-compliant data types. These classes, as Table 4-1 indicates, implement standard JDBC 2.0 interfaces in the java.sql package, as well as extending the oracle.sql.Datum class.

	
Note:

Oracle recommends the use of standard JDBC types or Java types whenever possible. The types in the package oracle.sql.* are provided primarily for backward compatibility or for support of a few Oracle specific features such as OPAQUE, OraData, TIMESTAMPTZ, and so on.

Classes of the oracle.sql Package

Table 4-1 lists the oracle.sql data type classes and their corresponding Oracle SQL types.

Table 4-1 Oracle Data Type Classes

	Java Class	Oracle SQL Types and Interfaces Implemented
	
oracle.sql.STRUCT

	
STRUCT (objects) implements java.sql.Struct

	
oracle.sql.REF

	
REF (object references) implements java.sql.Ref

	
oracle.sql.ARRAY

	
VARRAY or nested table (collections) implements java.sql.Array

	
oracle.sql.BLOB

	
BLOB (binary large objects) implements java.sql.Blob

	
oracle.sql.CLOB

	
SQL CLOB (character large objects) and globalization support NCLOB data types both implement java.sql.Clob

	
oracle.sql.NCLOB

	
NCLOB implements java.sql.NClob

	
oracle.sql.BFILE

	
BFILE (external files)

	
oracle.sql.CHAR

	
CHAR, NCHAR, VARCHAR2, NVARCHAR2

	
oracle.sql.DATE

	
DATE

	
oracle.sql.TIMESTAMP

	
TIMESTAMP

	
oracle.sql.TIMESTAMPTZ

	
TIMESTAMP WITH TIME ZONE

	
oracle.sql.TIMESTAMPLTZ

	
TIMESTAMP WITH LOCAL TIME ZONE

	
oracle.sql.NUMBER

	
NUMBER

	
oracle.sql.RAW

	
RAW

	
oracle.sql.ROWID

	
ROWID (row identifiers) implements java.sql.RowId

	
oracle.sql.OPAQUE

	
OPAQUE

	
oracle.sql.ANYDATA

	
ANYDATA

	
Note:

The LONG and LONG RAW SQL types and REF CURSOR type category have no oracle.sql.* classes. Use standard JDBC functionality for these types. For example, retrieve LONG or LONG RAW data as input streams using the standard JDBC result set and callable statement methods getBinaryStream and getCharacterStream. Use the getCursor method for REF CURSOR types.

In addition to the data type classes, the oracle.sql package includes the following support classes and interfaces, primarily for use with objects and collections:

	
oracle.sql.ArrayDescriptor

This class is used in constructing oracle.sql.ARRAY objects. It describes the SQL type of the array.

	
oracle.sql.StructDescriptor

This class is used in constructing oracle.sql.STRUCT objects, which you can use as a default mapping to Oracle objects in the database.

	
oracle.sql.ORAData and oracle.sql.ORADataFactory

These interfaces are used in Java classes implementing the Oracle ORAData scenario of Oracle object support.

	
oracle.sql.OpaqueDescriptor

This class is used to obtain the metadata for an instance of the oracle.sql.OPAQUE class.

	
oracle.sql.TypeDescriptor

This class is used to represent transient and persistent SQL types in Java.

General oracle.sql.* Data Type Support

Each of the Oracle data type classes provides, among other things, the following:

	
Data storage as Java byte arrays for SQL data

	
A getBytes() method, which returns the SQL data as a byte array

	
A toJdbc() method that converts the data into an object of a corresponding Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific data types that are not part of the JDBC specification, such as BFILE. The driver returns the object in the corresponding oracle.sql.* format.

	
Appropriate xxxValue methods to convert SQL data to Java type. For example, stringValue, intValue, booleanValue, dateValue, and bigDecimalValue

	
Additional conversion methods, getXXX and setXXX, as appropriate, for the functionality of the data type, such as methods in the large object (LOB) classes that get the data as a stream and methods in the REF class that get and set object data through the object reference.

Overview of Class oracle.sql.STRUCT

For any given Oracle object type, it is usually desirable to define a custom mapping between SQL and Java. For example, if you use a SQLData custom Java class, then the mapping must be defined in a type map.

If you choose not to define a mapping, however, then data from the object type will be materialized in Java in an instance of the oracle.sql.STRUCT class.

The STRUCT class implements the standard JDBC 2.0 java.sql.Struct interface and extends the oracle.sql.Datum class.

A STRUCT object is a Java representation of the raw bytes of an Oracle object. It contains the SQL type name of the Oracle object and an array of oracle.sql.Datum objects that hold the attribute values in SQL format.

If you want to create a STRUCT object, then use the createStruct method of the oracle.jdbc.OracleConnection interface. The signature of this factory method for creating STRUCT objects is as follows:

Struct createStruct (String typeName, Object[] attributes) throws SQLException

The parameters in this signature are as follows:

	
The typeName parameter is the SQL type name of the SQL structured type to which the STRUCT object maps. The typeName is the name of a user-defined type that has been defined for this database. It is the value returned by the Struct.getSQLTypeName method.

	
The attributes parameter specifies the attributes that populate the returned object.

You can materialize attributes of a STRUCT object as oracle.sql.Datum[] objects, if you use the getOracleAttributes method, or as java.lang.Object[] objects, if you use the getAttributes method. Materializing the attributes as oracle.sql.* objects gives you the following advantages of the oracle.sql.* format:

	
Materializing oracle.sql.STRUCT data in oracle.sql.* format completely preserves data by maintaining it in SQL format. No translation is performed. This is useful if you want to access data but not necessarily display it.

	
It allows complete flexibility in how your Java application unpacks data.

	
Note:

	
Elements of the array, although of the generic Datum type, actually contain data associated with the relevant oracle.sql.* type appropriate for the given attribute. You can cast the element to the appropriate oracle.sql.* type as desired. For example, a CHAR data attribute within the STRUCT is materialized as oracle.sql.Datum. To use it as CHAR data, you must cast it to oracle.sql.CHAR.

	
Nested objects in the values array of a STRUCT object are materialized by the JDBC driver as instances of STRUCT.

Overview of Class oracle.sql.REF

The oracle.sql.REF class is the generic class that supports Oracle object references. This class, as with all oracle.sql.* data type classes, is a subclass of the oracle.sql.Datum class. It implements the standard JDBC 2.0 java.sql.Ref interface.

The REF class has methods to retrieve and pass object references. However, selecting an object reference retrieves only a pointer to an object. This does not materialize the object itself. But the REF class also includes methods to retrieve and pass the object data.

You cannot create REF objects in your JDBC application. You can only retrieve existing REF objects from the database.

	
See Also:

Chapter 15, "Using Oracle Object References".

Overview of Class oracle.sql.ARRAY

The oracle.sql.ARRAY class supports Oracle collections, either VARRAYs or nested tables. If you select either a VARRAY or a nested table from the database, then the JDBC driver materializes it as an object of the ARRAY class. The structure of the data is equivalent in either case. The oracle.sql.ARRAY class extends the oracle.sql.Datum class and implements the standard JDBC 2.0 java.sql.Array interface.

You can use the setARRAY method of the OraclePreparedStatement or OracleCallableStatement interface to pass an ARRAY as an input parameter to a prepared statement. Similarly, you can use the createARRAY method of the OracleConnection interface to create an ARRAY object to pass it to a prepared statement or callable statement, perhaps to insert into the database.

	
See Also:

"Overview of Collection Functionality"

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

Binary large objects (BLOBs), character large objects (CLOBs), and binary files (BFILEs) are for data items that are too large to store directly in a database table. Instead, the database table stores a locator that points to the location of the actual data.

The oracle.sql package supports these data types in several ways:

	
BLOBs point to large unstructured binary data items and are supported by the oracle.sql.BLOB class.

	
CLOBs point to large character data items and are supported by the oracle.sql.CLOB class.

	
BFILEs point to the content of external files (operating system files) and are supported by the oracle.sql.BFILE class. BFiles are read-only.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard SELECT statement. However, you receive only the locator, and not the data. Additional steps are necessary to retrieve the data.

	
See Also:

Chapter 14, "Working with LOBs and BFILEs".

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes map to primitive SQL data types, which are a part of standard JDBC, and supply conversions to and from the corresponding JDBC Java types.

Because Java Double and Float NaN values do not have an equivalent Oracle NUMBER representation, a NullPointerException is thrown whenever a Double.NaN value or a Float.NaN value is converted into an Oracle NUMBER using the oracle.sql.NUMBER class. For instance, the following code throws a NullPointerException:

oracle.sql.NUMBER n = new oracle.sql.NUMBER(Double.NaN);
System.out.println(n.doubleValue()); // throws NullPointerException

Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and oracle.sql.TIMESTAMPLTZ

The JDBC drivers support the following date/time data types:

	
TIMESTAMP (TIMESTAMP)

	
TIMESTAMP WITH TIME ZONE (TIMESTAMPTZ)

	
TIMESTAMP WITH LOCAL TIME ZONE (TIMESTAMPLTZ)

The JDBC drivers allow conversions between DATE and date/time data types. For example, you can access a TIMESTAMP WITH TIME ZONE column as a DATE value.

The JDBC drivers support the most popular time zone names used in the industry as well as most of the time zone names defined in the JDK. Time zones are specified by using the java.util.Calendar class.

	
Note:

Do not use TimeZone.getTimeZone to create time zone objects. The Oracle time zone data types support more time zone names than does the JDK.

The following code shows how the TimeZone and Calendar objects are created for US_PACIFIC, which is a time zone name not defined in the JDK:

TimeZone tz = TimeZone.getDefault();
tz.setID("US_PACIFIC");
GregorianCalendar gcal = new GregorianCalendar(tz);

The following Java classes represent the SQL date/time types:

	
oracle.sql.TIMESTAMP

	
oracle.sql.TIMESTAMPTZ

	
oracle.sql.TIMESTAMPLTZ

Before accessing TIMESTAMP WITH LOCAL TIME ZONE data, call the OracleConnection.setSessionTimeZone(String regionName) method to set the session time zone. When this method is called, the JDBC driver sets the session time zone of the connection and saves the session time zone so that any TIMESTAMP WITH LOCAL TIME ZONE data accessed through JDBC can be adjusted using the session time zone.

Class oracle.sql.OPAQUE

The oracle.sql.OPAQUE class gives you the name and characteristics of the OPAQUE type and any attributes. The OPAQUE type provides access only to the uninterrupted bytes of the instance.

	
Note:

There is minimal support for the OPAQUE type.

Package oracle.jdbc

The interfaces of the oracle.jdbc package define the Oracle extensions to the interfaces in java.sql. These extensions provide access to Oracle SQL-format data and other Oracle-specific functionality, including Oracle performance enhancements.

	
See Also:

"The oracle.jdbc Package"

Oracle Character Data Types Support

Oracle character data types include the SQL CHAR and NCHAR data types. The following sections describe how these data types can be accessed using the oracle.sql.* classes:

	
SQL CHAR Data Types

	
SQL NCHAR Data Types

	
Class oracle.sql.CHAR

SQL CHAR Data Types

The SQL CHAR data types include CHAR, VARCHAR2, and CLOB. These data types let you store character data in the database character set encoding scheme. The character set of the database is established when you create the database.

SQL NCHAR Data Types

The SQL NCHAR data types were created for Globalization Support. The SQL NCHAR data types include NCHAR, NVARCHAR2, and NCLOB. These data types allow you to store Unicode data in the database NCHAR character set encoding. The NCHAR character set, which never changes, is established when you create the database.

	
Note:

Because the UnicodeStream class is deprecated in favor of the CharacterStream class, the setUnicodeStream and getUnicodeStream methods are not supported for NCHAR data type access. Use the setCharacterStream method and the getCharacterStream method if you want to use stream access.

The usage of SQL NCHAR data types is similar to that of the SQL CHAR data types. JDBC uses the same classes and methods to access SQL NCHAR data types that are used for the corresponding SQL CHAR data types. Therefore, there are no separate, corresponding classes defined in the oracle.sql package for SQL NCHAR data types. Similarly, there is no separate, corresponding constant defined in the oracle.jdbc.OracleTypes class for SQL NCHAR data types.

The following code shows how to access SQL NCHAR data:

//
// Table TEST has the following columns:
// - NUMBER
// - NVARCHAR2
// - NCHAR
//
oracle.jdbc.OraclePreparedStatement pstmt =
 (oracle.jdbc.OraclePreparedStatement)
conn.prepareStatement("insert into TEST values(?, ?, ?)");

//
// oracle.jdbc.OraclePreparedStatement.FORM_NCHAR should be used for all NCHAR,
// NVARCHAR2 and NCLOB data types.
//

pstmt.setInt(1, 1); // NUMBER column
pstmt.setNString(2, myUnicodeString1); // NVARCHAR2 column
pstmt.setNString(3, myUnicodeString2); // NCHAR column
pstmt.execute();

Class oracle.sql.CHAR

The oracle.sql.CHAR class is used by Oracle JDBC in handling and converting character data. This class provides the Globalization Support functionality to convert character data. This class has two key attributes: Globalization Support character set and the character data. The Globalization Support character set defines the encoding of the character data. It is a parameter that is always passed when a CHAR object is constructed. Without the Globalization Support character set information, the data bytes in the CHAR object are meaningless. The oracle.sql.CHAR class is used for both SQL CHAR and SQL NCHAR data types.

	
Note:

In versions of Oracle JDBC drivers prior to 10g release 1 (10.1), there were performance advantages to using the oracle.SQL.CHAR. Starting from Oracle Database 10g, there are no longer any such advantages. In fact, optimum performance is achieved using the java.lang.String. All Oracle JDBC drivers handle all character data in the Java UCS2 character set. Using the oracle.sql.CHAR does not prevent conversions between the database character set and UCS2 character set.

The only remaining use of the oracle.sql.CHAR class is to handle character data in the form of raw bytes encoded in an Oracle Globalization Support character set. All character data retrieved from Oracle Database should be accessed using the java.lang.String class. When processing byte data from another source, you can use an oracle.sql.CHAR to convert the bytes to java.lang.String.

To convert an oracle.sql.CHAR, you must provide the data bytes and an oracle.sql.CharacterSet instance that represents the Globalization Support character set used to encode the data bytes.

The CHAR objects that are Oracle object attributes are returned in the database character set.

JDBC application code rarely needs to construct CHAR objects directly, because the JDBC driver automatically creates CHAR objects as needed.

To construct a CHAR object, you must provide character set information to the CHAR object by way of an instance of the CharacterSet class. Each instance of this class represents one of the Globalization Support character sets that Oracle supports. A CharacterSet instance encapsulates methods and attributes of the character set, mainly involving functionality to convert to or from other character sets.

Constructing an oracle.sql.CHAR Object

Follow these general steps to construct a CHAR object:

	
Create a CharacterSet object by calling the static CharacterSet.make method.

This method is a factory for the character set instance. The make method takes an integer as input, which corresponds to a character set ID that Oracle supports. For example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set ID,
 // 832
...
CharacterSet mycharset = CharacterSet.make(oracleId);

Each character set that Oracle supports has a unique, predefined Oracle ID.

	
Construct a CHAR object.

Pass a string, or the bytes that represent the string, to the factory method along with the CharacterSet object that indicates how to interpret the bytes based on the character set. For example:

String mystring = "teststring";
...
CHAR mychar = new CHAR(teststring, mycharset);

There are multiple factory methods for CHAR, which can take a String, a byte array, or an object as input along with the CharacterSet object. In the case of a String, the string is converted to the character set indicated by the CharacterSet object before being placed into the CHAR object.

	
Note:

	
The CharacterSet object cannot be a null value.

	
The CharacterSet class is an abstract class, therefore it has no constructor. The only way to create instances is to use the make method.

	
The server recognizes the special value CharacterSet.DEFAULT_CHARSET as the database character set. For the client, this value is not meaningful.

	
Oracle does not intend or recommend that users extend the CharacterSet class.

oracle.sql.CHAR Conversion Methods

The CHAR class provides the following methods for translating character data to strings:

	
getString

This method converts the sequence of characters represented by the CHAR object to a string, returning a Java String object. If you enter an invalid OracleID, then the character set will not be recognized and the getString method will throw a SQLException exception.

	
toString

This method is identical to the getString method. But if you enter an invalid OracleID, then the character set will not be recognized and the toString method will return a hexadecimal representation of the CHAR data and will not throw a SQLException exception.

	
getStringWithReplacement

This method is identical to the getString method, except a default replacement character replaces characters that have no unicode representation in the CHAR object character set. This default character varies from character set to character set, but is often a question mark (?).

The database server and the client, or application running on the client, can use different character sets. When you use the methods of the CHAR class to transfer data between the server and the client, the JDBC drivers must convert the data from the server character set to the client character set or vice versa. To convert the data, the drivers use Globalization Support.

	
See Also:

Chapter 19, "Globalization Support"

Additional Oracle Type Extensions

Oracle JDBC drivers support the Oracle-specific BFILE and ROWID data types and REF CURSOR types, which are not part of the standard JDBC specification. This section describes the ROWID and REF CURSOR type extensions. The ROWID is supported as a Java string, and REF CURSOR types are supported as JDBC result sets.

This section covers the following topics:

	
Oracle ROWID Type

	
Oracle REF CURSOR Type Category

	
Oracle BINARY_FLOAT and BINARY_DOUBLE Types

	
Oracle SYS.ANYTYPE and SYS.ANYDATA Types

	
The oracle.jdbc Package

Oracle ROWID Type

A ROWID is an identification tag unique for each row of an Oracle Database table. The ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sql.ROWID class is supplied as a container for ROWID SQL data type.

ROWIDs provide functionality similar to the getCursorName method specified in the java.sql.ResultSet interface and the setCursorName method specified in the java.sql.Statement interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the ROWIDs with the result set getString method. You can also bind a ROWID to a PreparedStatement parameter with the setString method. This enables in-place updating, as in the example that follows.

	
Note:

The oracle.sql.ROWID class replaces oracle.jdbc.driver.ROWID, which was used in previous releases of Oracle JDBC. But, use the former class only when using J2SE 1.5. For JSE 6, use the java.sql.RowId interface instead.

Example

The following example shows how to access and manipulate ROWID data:

Statement stmt = conn.createStatement();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
 stmt.executeQuery ("SELECT ename, rowid FROM emp FOR UPDATE");

// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 oracle.sql.ROWID rowid = rset.getROWID (2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

Oracle REF CURSOR Type Category

A cursor variable holds the memory location of a query work area, rather than the contents of the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has the data type REF x, where REF is short for REFERENCE and x represents the entity being referenced. A REF CURSOR, then, identifies a reference to a cursor variable. Because many cursor variables might exist to point to many work areas, REF CURSOR can be thought of as a category or data type specifier that identifies many different types of cursor variables.

	
Note:

REF CURSOR instances are not scrollable.

To create a cursor variable, begin by identifying a type that belongs to the REF CURSOR category. For example:

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Then, create the cursor variable by declaring it to be of the type DeptCursorTyp:

dept_cv DeptCursorTyp - - declare cursor variable
...

REF CURSOR, then, is a category of data types, rather than a particular data type.

Stored procedures can return cursor variables of the REF CURSOR category. This output is equivalent to a database cursor or a JDBC result set. A REF CURSOR essentially encapsulates the results of a query.

In JDBC, a REF CURSOR is materialized as a ResultSet object and can be accessed as follows:

	
Use a JDBC callable statement to call a stored procedure. It must be a callable statement, as opposed to a prepared statement, because there is an output parameter.

	
The stored procedure returns a REF CURSOR.

	
The Java application casts the callable statement to an Oracle callable statement and uses the getCursor method of the OracleCallableStatement class to materialize the REF CURSOR as a JDBC ResultSet object.

	
The result set is processed as requested.

	
Important:

The cursor associated with a REF CURSOR is closed whenever the statement object that produced the REF CURSOR is closed.
Unlike in past releases, the cursor associated with a REF CURSOR is not closed when the result set object in which the REF CURSOR was materialized is closed.

Example

This example shows how to access REF CURSOR data.

import oracle.jdbc.*;
...
CallableStatement cstmt;
ResultSet cursor;

// Use a PL/SQL block to open the cursor
cstmt = conn.prepareCall
 ("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
cursor = ((OracleCallableStatement)cstmt).getCursor(1);

// Use the cursor like a standard ResultSet
while (cursor.next ())
 {System.out.println (cursor.getString(1));}

In the preceding example:

	
A CallableStatement object is created by using the prepareCall method of the connection class.

	
The callable statement implements a PL/SQL procedure that returns a REF CURSOR.

	
As always, the output parameter of the callable statement must be registered to define its type. Use the type code OracleTypes.CURSOR for a REF CURSOR.

	
The callable statement is run, returning the REF CURSOR.

	
The CallableStatement object is cast to OracleCallableStatement to use the getCursor method, which is an Oracle extension to the standard JDBC API, and returns the REF CURSOR into a ResultSet object.

Oracle BINARY_FLOAT and BINARY_DOUBLE Types

The Oracle BINARY_FLOAT and BINARY_DOUBLE types are used to store IEEE 574 float and double data. These correspond to the Java float and double scalar types with the exception of negative zero and NaN.

	
See Also:

Oracle Database SQL Language Reference

If you include a BINARY_DOUBLE column in a query, then the data is retrieved from the database in the binary format. Also, the getDouble method will return the data in the binary format. In contrast, for a NUMBER data type column, the number bits are returned and converted to the Java double data type.

	
Note:

The Oracle representation for the SQL FLOAT, DOUBLE PRECISION, and REAL data types use the Oracle NUMBER representation. The BINARY_FLOAT and BINARY_DOUBLE data types can be regarded as proprietary types.

A call to the JDBC standard setDouble(int, double) method of the PreparedStatement interface converts the Java double argument to Oracle NUMBER style bits and send them to the database. In contrast, the setBinaryDouble(int, double) method of the oracle.jdbc.OraclePreparedStatement interface converts the data to the internal binary bits and sends them to the database.

You must ensure that the data format used matches the type of the target parameter of the PreparedStatement interface. This will result in correct data and least use of CPU. If you use setBinaryDouble for a NUMBER parameter, then the binary bits are sent to the server and converted to NUMBER format. The data will be correct, but server CPU load will be increased. If you use setDouble for a BINARY_DOUBLE parameter, then the data will first be converted to NUMBER bits on the client and sent to the server, where it will be converted back to binary format. This will increase the CPU load on both client and server and can result in data corruption as well.

The SetFloatAndDoubleUseBinary connection property when set to true causes the JDBC standard APIs, setFloat(int, float), setDouble(int, double), and all the variations, to send internal binary bits instead of NUBMER bits.

	
Note:

Although this section largely discusses BINARY_DOUBLE, the same is true for BINARY_FLOAT.

Oracle SYS.ANYTYPE and SYS.ANYDATA Types

Oracle Database 11g Release 1 (11.1) provides a Java interface to access the SYS.ANYTYPE and SYS.ANYDATA Oracle types.

	
See Also:

For information about these Oracle types, refer Oracle Database PL/SQL Packages and Types Reference

An instance of the SYS.ANYTYPE type contains a type description of any SQL type, persistent or transient, named or unnamed, including object types and collection types. You can use the oracle.sql.TypeDescriptor class to access the SYS.ANYTYPE type. An ANYTYPE instance can be retrieved from a PL/SQL procedure or a SQL SELECT statement where SYS.ANYTYPE is used as a column type. To retrieve an ANYTYPE instance from the database, use the getObject method. This method returns an instance of the TypeDescriptor.

The retrieved ANYTYPE instance could be any of the following:

	
Transient object type

	
Transient predefined type

	
Persistent object type

	
Persistent predefined type

Example 4-1 Code Snippet for Accessing SYS.ANYTYPE Type

The following code snippet illustrates how to retrieve an instance on ANYTYPE from the database:

...
ResultSet rs = stmt.executeQuery("select anytype_column from my_table");
TypeDescriptor td = (TypeDescriptor)rs.getObject(1);
short typeCode = td.getInternalTypeCode();
if(typeCode == TypeDescriptor.TYPECODE_OBJECT)
{
 // check if it's a transient type
 if(td.isTransientType())
 {
 AttributeDescriptor[] attributes = ((StructDescriptor)td).getAttributesDescriptor();
 for(int i=0; i<attributes.length; i++)
 System.out.println(attributes[i].getAttributeName());
 }
 else
 { System.out.println(td.getTypeName()); }}
...

Example 4-2 Creating a Transient Object Type Through PL/SQL and Retrieving Through JDBC

This example provides a code snippet illustrating how to retrieve a transient object type through JDBC.

...
OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("BEGIN ? := transient_obj_type (); END;");
cstmt.registerOutParameter(1,OracleTypes.OPAQUE,"SYS.ANYTYPE");
cstmt.execute();
TypeDescriptor obj = (TypeDescriptor)cstmt.getObject(1);
if(!obj.isTransient())
 System.out.println("This must be a JDBC bug");
cstmt.close();
return obj;
...

Example 4-3 Calling a PL/SQL Stored Procedure That Takes an ANYTPE as IN Parameter

The following code snippet illustrates how to call a PL/SQL stored procedure that takes an ANYTYPE as IN parameter:

...
CallableStatement cstmt = conn.prepareCall("BEGIN ? := dumpanytype(?); END;");
cstmt.registerOutParameter(1,OracleTypes.VARCHAR);
// obj is the instance of TypeDescriptor that you have retrieved
cstmt.setObject(2,obj);
cstmt.execute();
String str = (String)cstmt.getObject(1);
...

The oracle.sql.ANYDATA class enables you to access SYS.ANYDATA instances from the database. An instance of this class can be obtained from any valid instance of oracle.sql.Datum class. The convertDatum factory method takes an instance of Datum and returns an instance of ANYDATA. The syntax for this factory method is as follows:

public static ANYDATA convertDatum(Datum datum) throws SQLException

The following is sample code for creating an instance of oracle.sql.ANYDATA:

// struct is a valid instance of oracle.sql.STRUCT that either comes from the
// database or has been constructed in Java.
ANYDATA myAnyData = ANYDATA.convertDatum(struct);

Example 4-4 Accessing an Instance of ANYDATA from the Database

...
// anydata_table has been created as:
// CREATE TABLE anydata_tab (data SYS.ANYDATA)
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from my_anydata_tab");
while(rs.next())
{
 ANYDATA anydata = (ANYDATA)rs.getObject(1);
 if(!anydata.isNull())
 {
 TypeDescriptor td = anydata.getTypeDescriptor();
 if(td.getTypeCode() == OracleType.TYPECODE_OBJECT)
 STRUCT struct = (STRUCT)anydata.accessDatum();
 }
}
...

Example 4-5 Inserting an Object as ANYDATA in a Database Table

Consider the following table and object type definition:

CREATE TABLE anydata_tab (id NUMBER, data SYS.ANYDATA)

CREATE OR REPLACE TYPE employee AS OBJECT (empno NUMBER, ename VARCHAR2(10))

To create an instance of the EMPLOYEE SQL object type and to insert it into anydata_tab:

...
PreparedStatement pstmt = conn.prepareStatement("insert into anydata_table values (?,?)");
StructDescriptor sd = StructDescriptor.createDescriptor("EMPLOYEE",(OracleConnection)conn);
Object[] objattr = new Object[2];
objattr[0] = new BigDecimal(1120);
objattr[1] = new String("Papageno");
STRUCT myEmployeeStr = new STRUCT(sd,conn,objattr);
ANYDATA anyda = ANYDATA.convertDatum(myEmployeeStr);
pstmt.setInt(1,123);
pstmt.setObject(2,anyda);
pstmt.executeUpdate();
...

Example 4-6 Selecting an ANYDATA Column from a Database Table

...
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select data from anydata_table");
while(rs.next())
{
 ANYDATA obj = (ANYDATA)rs.getObject(1);
 TypeDescriptor td = obj.getTypeDescriptor();
}
rs.close();
stmt.close();
...

The oracle.jdbc Package

The interfaces of the oracle.jdbc package define the Oracle extensions to the interfaces in java.sql. These extensions provide access to SQL-format data as described in this chapter. They also provide access to other Oracle-specific functionality, including Oracle performance enhancements.

For the oracle.jdbc package, Table 4-2 lists key interfaces and classes used for connections, statements, and result sets.

Table 4-2 Key Interfaces and Classes of the oracle.jdbc Package

	Name	Interface or Class	Key Functionality
	
OracleDriver

	
Class

	
Implements java.sql.Driver

	
OracleConnection

	
Interface

	
Provides methods to start and stop an Oracle Database instance and to return Oracle statement objects and methods to set Oracle performance extensions for any statement run in the current connection.

Implements java.sql.Connection.

	
OracleStatement

	
Interface

	
Provides methods to set Oracle performance extensions for individual statement.

Is a supertype of OraclePreparedStatement and OracleCallableStatement.

Implements java.sql.Statement.

	
OraclePreparedStatement

	
Interface

	
Provides setXXX methods to bind oracle.sql.* types into a prepared statement.

Implements java.sql.PreparedStatement.

Extends OracleStatement.

Is a supertype of OracleCallableStatement.

	
OracleCallableStatement

	
Interface

	
Provides getXXX methods to retrieve data in oracle.sql format and setXXX methods to bind oracle.sql.* types into a callable statement.

Implements java.sql.CallableStatement.

Extends OraclePreparedStatement.

	
OracleResultSet

	
Interface

	
Provides getXXX methods to retrieve data in oracle.sql format.

Implements java.sql.ResultSet.

	
OracleResultSetMetaData

	
Interface

	
Provides methods to get metadata information about Oracle result sets, such as column names and data types.

Implements java.sql.ResultSetMetaData.

	
OracleDatabaseMetaData

	
Class

	
Provides methods to get metadata information about the database, such as database product name and version, table information, and default transaction isolation level.

Implements java.sql.DatabaseMetaData).

	
OracleTypes

	
Class

	
Defines integer constants used to identify SQL types.

For standard types, it uses the same values as the standard java.sql.Types class. In addition, it adds constants for Oracle extended types.

This section covers the following topics:

	
Interface oracle.jdbc.OracleConnection

	
Interface oracle.jdbc.OracleStatement

	
Interface oracle.jdbc.OraclePreparedStatement

	
Interface oracle.jdbc.OracleCallableStatement

	
Interface oracle.jdbc.OracleResultSet

	
Interface oracle.jdbc.OracleResultSetMetaData

	
Class oracle.jdbc.OracleTypes

	
Method getJavaSqlConnection

Interface oracle.jdbc.OracleConnection

This interface extends standard JDBC connection functionality to create and return Oracle statement objects, set flags and options for Oracle performance extensions, support type maps for Oracle objects, and support client identifiers.

In Oracle Database 11g Release 1 (11.1), new methods have been added to this interface that enable the starting up and shutting down of an Oracle Database instance. Also, for better visibility and clarity, all connection properties are defined as constants in the OracleConnection interface.

This interface also defines factory methods for constructing oracle.sql data values like DATE and NUMBER. Remember the following points while using factory methods:

	
All code that constructs instances of the oracle.sql types should use the Oracle extension factory methods. For example, ARRAY, BFILE, DATE, INTERVALDS, NUMBER, STRUCT, TIME, TIMESTAMP, and so on.

	
All code that constructs instances of the standard types should use the JDBC 4.0 standard factory methods. For example, CLOB, BLOB, NCLOB, and so on.

	
There are no factory methods for CHAR, JAVA_STRUCT, ArrayDescriptor, and StructDescriptor. These types are for internal driver use only.

Client Identifiers

In a connection pooling environment, the client identifier can be used to identify the lightweight user using the database session currently. A client identifier can also be used to share the Globally Accessed Application Context between different database sessions. The client identifier set in a database session is audited when database auditing is turned on.

	
See Also:

Oracle Database Advanced Application Developer's Guide

The following oracle.jdbc.OracleConnection methods are Oracle-defined extensions:

	
cancel

Performs an immediate (asynchronous) termination of any currently executing operation on this connection

	
commit

Commits the transaction with the given options

	
getDefaultExecuteBatch

Retrieves the default update-batching value for this connection

	
setDefaultExecuteBatch

Sets the default update-batching value for this connection

	
getDefaultRowPrefetch

Retrieves the default row-prefetch value for this connection

	
setDefaultRowPrefetch

Sets the default row-prefetch value for this connection

Interface oracle.jdbc.OracleStatement

This interface extends standard JDBC statement functionality and is the superinterface of the OraclePreparedStatement and OracleCallableStatement classes. Extended functionality includes support for setting flags and options for Oracle performance extensions on a statement-by-statement basis, as opposed to the OracleConnection interface that sets these on a connectionwide basis.

The following oracle.jdbc.OracleStatement methods are Oracle-defined extensions:

	
defineColumnType

Defines the type you will use to retrieve data from a particular database table column

	
Note:

This method is no longer needed or recommended for use with the JDBC Thin driver.

	
getRowPrefetch

Retrieves the row-prefetch value for this statement

	
setRowPrefetch

Sets the row-prefetch value for this statement

Interface oracle.jdbc.OraclePreparedStatement

This interface extends the OracleStatement interface and extends standard JDBC prepared statement functionality. Also, the oracle.jdbc.OraclePreparedStatement interface is extended by the OracleCallableStatement interface. Extended functionality consists of setXXX methods for binding oracle.sql.* types and objects to prepared statements, and methods to support Oracle performance extensions on a statement-by-statement basis.

	
Note:

Do not use the PreparedStatement interface to create a trigger that refers to a :NEW or :OLD column. Use Statement instead. Using PreparedStatement will cause execution to fail with the message java.sql.SQLException: Missing IN or OUT parameter at index:: 1

Interface oracle.jdbc.OracleCallableStatement

This interface extends the OraclePreparedStatement interface, which extends the OracleStatement interface and incorporates standard JDBC callable statement functionality.

	
Note:

Do not use the CallableStatement interface to create a trigger that refers to a :NEW or :OLD column. Use Statement instead; using CallableStatement will cause execution to fail with the message java.sql.SQLException: Missing IN or OUT parameter at index::1

	
Note:

	
The setXXX(String,...) and registerOutParameter(String,...) methods can be used only if all binds are procedure or function parameters only. The statement can contain no other binds and the parameter binds must be indicated with a question mark (?) and not :XX.

	
If you are using setXXX(int,...), setXXXAtName(String,...) or a combination of both, then any output parameter is bound with registerOutParameter(int,...) and not registerOutParameter(String,...), which is for named parameter notation.

Interface oracle.jdbc.OracleResultSet

This interface extends standard JDBC result set functionality, implementing getXXX methods for retrieving data into oracle.sql.* objects.

Interface oracle.jdbc.OracleResultSetMetaData

This interface extends standard JDBC result set metadata functionality to retrieve information about Oracle result set objects.

	
See Also:

"Using Result Set Metadata Extensions"

Class oracle.jdbc.OracleTypes

The OracleTypes class defines constants that JDBC uses to identify SQL types. Each variable in this class has a constant integer value. The oracle.jdbc.OracleTypes class duplicates the type code definitions of the standard Java java.sql.Types class and contains these additional type codes for Oracle extensions:

	
OracleTypes.BFILE

	
OracleTypes.ROWID

	
OracleTypes.CURSOR (for REF CURSOR types)

As in java.sql.Types, all the variable names are in uppercase text.

JDBC uses the SQL types identified by the elements of the OracleTypes class in two main areas: registering output parameters and in the setNull method of the PreparedStatement class.

OracleTypes and Registering Output Parameters

The type codes in java.sql.Types or oracle.jdbc.OracleTypes identify the SQL types of the output parameters in the registerOutParameter method of the java.sql.CallableStatement and oracle.jdbc.OracleCallableStatement interfaces.

These are the forms that the registerOutputParameter method can take for the CallableStatement and OracleCallableStatement interfaces

cs.registerOutParameter(int index, int sqlType);

cs.registerOutParameter(int index, int sqlType, String sql_name);

cs.registerOutParameter(int index, int sqlType, int scale);

In these signatures, index represents the parameter index, sqlType is the type code for the SQL data type, sql_name is the name given to the data type, for user-defined types, when sqlType is a STRUCT, REF, or ARRAY type code, and scale represents the number of digits to the right of the decimal point, when sqlType is a NUMERIC or DECIMAL type code.

The following example uses a CallableStatement interface to call a procedure named charout, which returns a CHAR data type. Note the use of the OracleTypes.CHAR type code in the registerOutParameter method.

CallableStatement cs = conn.prepareCall ("BEGIN charout (?); END;");
cs.registerOutParameter (1, OracleTypes.CHAR);
cs.execute ();
System.out.println ("Out argument is: " + cs.getString (1));

The next example uses a CallableStatement interface to call structout, which returns a STRUCT data type. The form of registerOutParameter requires you to specify the type code, Types.STRUCT or OracleTypes.STRUCT, as well as the SQL name, EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE type, so it is retrieved into a STRUCT data type. To retrieve the value of EMPLOYEE as an oracle.sql.STRUCT object, the statement object cs is cast to OracleCallableStatement and the Oracle extension getSTRUCT method is invoked.

CallableStatement cs = conn.prepareCall ("BEGIN structout (?); END;");
cs.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
cs.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)cs).getSTRUCT (1);

OracleTypes and the setNull Method

The type codes in Types and OracleTypes identify the SQL type of the data item, which the setNull method sets to NULL. The setNull method can be found in the java.sql.PreparedStatement and oracle.jdbc.OraclePreparedStatement interfaces.

These are the forms that the setNull method can take for the PreparedStatement and OraclePreparedStatement objects:

ps.setNull(int index, int sqlType);

ps.setNull(int index, int sqlType, String sql_name);

In these signatures, index represents the parameter index, sqlType is the type code for the SQL data type, and sql_name is the name given to the data type, for user-defined types, when sqlType is a STRUCT, REF, or ARRAY type code. If you enter an invalid sqlType, a ParameterTypeConflict exception is thrown.

The following example uses a prepared statement to insert a null value into the database. Note the use of OracleTypes.NUMERIC to identify the numeric object set to NULL. Alternatively, Types.NUMERIC can be used.

PreparedStatement pstmt =
 conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type EMPLOYEE into the database.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO employee_table VALUES (?)");

pstmt.setNull (1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();

Method getJavaSqlConnection

The getJavaSqlConnection method of the oracle.sql.* classes returns java.sql.Connection. This method is available for the following Oracle data type classes:

	
Note:

The getConnection method used in Oracle 8i and earlier versions of JDBC driver returns oracle.jdbc.driver.OracleConnection. The use of the classes in the oracle.jdbc.driver package was deprecated in favor of the oracle.jdbc package in Oracle 9i release. In Oracle Database 11g Release 1 (11.1), the classes in the package oracle.jdbc.driver have been desupported.

	
oracle.sql.ARRAY

	
oracle.sql.BFILE

	
oracle.sql.BLOB

	
oracle.sql.CLOB

	
oracle.sql.OPAQUE

	
oracle.sql.REF

	
oracle.sql.STRUCT

The following code snippet shows the getJavaSqlConnection method in the Array class:

public class ARRAY
{
 java.sql.Connection getJavaSqlConnection()
 throws SQLException;
 ...
}

DML Returning

The DML returning feature provides more functionality compared to retrieval of auto-generated keys. It can be used to retrieve not only auto-generated keys, but also other columns or values that the application may use.

	
Note:

	
The server-side internal driver does not support DML returning and retrieval of auto-generated keys.

	
You cannot use both DML returning and retrieval of auto-generated keys in the same statement.

The following sections explain the support for DML returning:

	
Oracle-Specific APIs

	
Running DML Returning Statements

	
Example of DML Returning

	
Limitations of DML Returning

	
See Also:

"Retrieval of Auto-Generated Keys"

Oracle-Specific APIs

The OraclePreparedStatement interface is enhanced with Oracle-specific application programming interfaces (APIs) to support DML returning. The registerReturnParameter and getReturnResultSet methods have been added to the oracle.jdbc.OraclePreparedStatement interface, to register parameters that are returned and data retrieved by DML returning.

The registerReturnParameter method is used to register the return parameter for DML returning. The method throws a SQLException instance if an error occurs. You must pass a positive integer specifying the index of the return parameter. You also must specify the type of the return parameter. You can also specify the maximum bytes or characters of the return parameter. This method can be used only with char or RAW types. You can also specify the fully qualified name of a SQL structure type.

	
Note:

If you do not know the maximum size of the return parameters, then you should use registerReturnParameter(int paramIndex, int externalType), which picks the default maximum size. If you know the maximum size of return parameters, using registerReturnParameter(int paramIndex, int externalType, int maxSize) can reduce memory consumption.

The getReturnResultSet method fetches the data returned from DML returning and returns it as a ResultSet object. The method throws a SQLException exception if an error occurs.

	
Note:

The Oracle-specific APIs for the DML returning feature are in ojdbc5.jar for Java Development Kit (JDK) 1.5 and in ojdbc6.jar for JDK 1.6.

Running DML Returning Statements

Before running a DML returning statement, the JDBC application must call one or more of the registerReturnParameter methods. The method provides the JDBC drivers with information, such as type and size, of the return parameters. The DML returning statement is then processed using one of the standard JDBC APIs, executeUpdate or execute. You can then fetch the returned parameters as a ResultSet object using the getReturnResultSet method of the oracle.jdbc.OraclePreparedStatement interface.

In order to read the values in the ResultSet object, the underlying Statement object must be open. When the underlying Statement object is closed, the returned ResultSet object is also closed. This is consistent with ResultSet objects that are retrieved by processing SQL query statements.

When a DML returning statement is run, the concurrency of the ResultSet object returned by the getReturnResultSet method must be CONCUR_READ_ONLY and the type of the ResultSet object must be TYPE_FORWARD_ONLY or TYPE_SCROLL_INSENSITIVE.

Example of DML Returning

This section provides two code examples of DML returning.

The following code example illustrates the use of DML returning. In this example, assume that the maximum size of the name column is 100 characters. Because the maximum size of the name column is known, the registerReturnParameter(int paramIndex, int externalType, int maxSize) method is used.

...
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement(
 "delete from tab1 where age < ? returning name into ?");
pstmt.setInt(1,18);

/** register returned parameter
 * in this case the maximum size of name is 100 chars
 */
pstmt.registerReturnParameter(2, OracleTypes.VARCHAR, 100);

// process the DML returning statement
count = pstmt.executeUpdate();
if (count>0)
{
 ResultSet rset = pstmt.getReturnResultSet(); //rest is not null and not empty
 while(rset.next())
 {
 String name = rset.getString(1);
 ...
 }
}
...

The following code example also illustrates the use of DML returning. However, in this case, the maximum size of the return parameters is not known. Therefore, the registerReturnParameter(int paramIndex, int externalType) method is used.

...
OraclePreparedStatement pstmt = (OraclePreparedStatement)conn.prepareStatement(
 "insert into lobtab values (100, empty_clob()) returning col1, col2 into ?, ?");

// register return parameters
pstmt.registerReturnParameter(1, OracleTypes.INTEGER);
pstmt.registerReturnParameter(2, OracleTypes.CLOB);

// process the DML returning SQL statement
pstmt.executeUpdate();
ResultSet rset = pstmt.getReturnResultSet();
int r;
CLOB clob;
if (rset.next())
{
 r = rset.getInt(1);
 System.out.println(r);
 clob = (CLOB)rset.getClob(2);
 ...
}
...

Limitations of DML Returning

When using DML returning, be aware of the following:

	
It is unspecified what the getReturnResultSet method returns when it is invoked more than once. You should not rely on any specific action in this regard.

	
The ResultSet objects returned from the execution of DML returning statements do not support the ResultSetMetaData type. Therefore, the applications must know the information of return parameters before running DML returning statements.

	
Streams are not supported with DML returning.

	
DML returning cannot be combined with batch update.

	
You cannot use both the auto-generated key feature and the DML returning feature in a single SQL DML statement. For example, the following is not allowed:

...
PreparedStatement pstmt = conn.prepareStatement('insert into orders (?, ?, ?) returning order_id into ?");
pstmt.setInt(1, seq01.NEXTVAL);
pstmt.setInt(2, 100);
pstmt.setInt(3, 966431502);
pstmt.registerReturnParam(4, OracleTypes.INTEGER);
pstmt.executeUpdate;
ResultSet rset = pstmt.getGeneratedKeys;
...

Accessing PL/SQL Index-by Tables

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with index-by table parameters. This section covers the following topics:

	
Overview

	
Binding IN Parameters

	
Receiving OUT Parameters

	
Type Mappings

	
Note:

Index-by tables of PL/SQL records are not supported.

Overview

Oracle JDBC drivers support PL/SQL index-by tables of scalar data types. Table 4-3 displays the supported scalar types and the corresponding JDBC type codes.

Table 4-3 PL/SQL Types and Corresponding JDBC Types

	PL/SQL Types	JDBC Types
	
BINARY_INTEGER

	
NUMERIC

	
NATURAL

	
NUMERIC

	
NATURALN

	
NUMERIC

	
PLS_INTEGER

	
NUMERIC

	
POSITIVE

	
NUMERIC

	
POSITIVEN

	
NUMERIC

	
SIGNTYPE

	
NUMERIC

	
STRING

	
VARCHAR

	
Note:

Oracle JDBC does not support RAW, DATE, and PL/SQL RECORD as element types.

Typical Oracle JDBC input binding, output registration, and data access methods do not support PL/SQL index-by tables. This chapter introduces additional methods to support these types.

The OraclePreparedStatement and OracleCallableStatement classes define the additional methods. These methods include the following:

	
setPlsqlIndexTable

	
registerIndexTableOutParameter

	
getOraclePlsqlIndexTable

	
getPlsqlIndexTable

These methods handle PL/SQL index-by tables as IN, OUT, or IN OUT parameters, including function return values.

	
See Also:

Oracle Database PL/SQL Language Reference

Binding IN Parameters

To bind a PL/SQL index-by table parameter in the IN parameter mode, use the setPlsqlIndexTable method defined in the OraclePreparedStatement and OracleCallableStatement classes.

synchronized public void setPlsqlIndexTable (int paramIndex, Object arrayData, int maxLen, int curLen, int elemSqlType,
 int elemMaxLen) throws SQLException

Table 4-4 describes the arguments of the setPlsqlIndexTable method.

Table 4-4 Arguments of the setPlsqlIndexTable Method

	Argument	Description
	
int paramIndex

	
Indicates the parameter position within the statement.

	
Object arrayData

	
Is an array of values to be bound to the PL/SQL index-by table parameter. The value is of type java.lang.Object. The value can be a Java primitive type array, such as int[], or a Java object array, such as BigDecimal[].

	
int maxLen

	
Specifies the maximum table length of the index-by table bind value that defines the maximum possible curLen for batch updates. For standalone binds, maxLen should use the same value as curLen. This argument is required.

	
int curLen

	
Specifies the actual size of the index-by table bind value in arrayData. If the curLen value is smaller than the size of arrayData, then only the curLen number of table elements is passed to the database. If the curLen value is larger than the size of arrayData, then the entire arrayData is sent to the database.

	
int elemSqlType

	
Specifies the index-by table element type based on the values defined in the OracleTypes class.

	
int elemMaxLen

	
Specifies the index-by table element maximum length in case the element type is CHAR, VARCHAR, or RAW. This value is ignored for other types.

The following code example uses the setPlsqlIndexTable method to bind an index-by table as an IN parameter:

// Prepare the statement
OracleCallableStatement procin = (OracleCallableStatement)
 conn.prepareCall ("begin procin (?); end;");

// index-by table bind value
int[] values = { 1, 2, 3 };

// maximum length of the index-by table bind value. This
// value defines the maximum possible "currentLen" for batch
// updates. For standalone binds, "maxLen" should be the
// same as "currentLen".
int maxLen = values.length;

// actual size of the index-by table bind value
int currentLen = values.length;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types.
int elemMaxLen = 0;

// set the value
procin.setPlsqlIndexTable (1, values,
 maxLen, currentLen,
 elemSqlType, elemMaxLen);

// execute the call
procin.execute ();

Receiving OUT Parameters

This section describes how to register a PL/SQL index-by table as an OUT parameter. In addition, it describes how to access the OUT bind values in various mapping styles.

	
Note:

The methods described in this section apply to function return values and the IN OUT parameter mode as well.

Registering the OUT Parameters

To register a PL/SQL index-by table as an OUT parameter, use the registerIndexTableOutParameter method defined in the OracleCallableStatement class.

synchronized public void registerIndexTableOutParameter (int paramIndex, int maxLen, int elemSqlType, int elemMaxLen)
 throws SQLException

Table 4-5 describes the arguments of the registerIndexTableOutParameter method.

Table 4-5 Arguments of the registerIndexTableOutParameter Method

	Argument	Description
	
int paramIndex

	
Indicates the parameter position within the statement.

	
int maxLen

	
Specifies the maximum table length of the index-by table bind value to be returned.

	
int elemSqlType

	
Specifies the index-by table element type based on the values defined in the OracleTypes class.

	
int elemMaxLen

	
Specifies the index-by table element maximum length in case the element type is CHAR, VARCHAR, or FIXED_CHAR. This value is ignored for other types.

The following code example uses the registerIndexTableOutParameter method to register an index-by table as an OUT parameter:

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or FIXED_CHAR. This value is ignored for other
// types
int elemMaxLen = 0;

// register the return value
funcnone.registerIndexTableOutParameter
 (1, maxLen, elemSqlType, elemMaxLen);

Accessing the OUT Parameter Values

To access the OUT bind value, the OracleCallableStatement class defines multiple methods that return the index-by table values in different mapping styles. There are three mapping choices available in JDBC drivers:

	Mappings	Methods to Use
	JDBC default mappings	getPlsqlIndexTable(int)
	Oracle mappings	getOraclePlsqlIndexTable(int)
	Java primitive type mappings	getPlsqlIndexTable(int, Class)

Type Mappings

This section covers the following topics:

	
JDBC Default Mappings

	
Oracle Mappings

	
Java Primitive Type Mappings

JDBC Default Mappings

The getPlsqlIndexTable(int) method returns index-by table elements using the JDBC default mappings. The syntax for this method is the following:

public Object getPlsqlIndexTable (int paramIndex)
 throws SQLException

Table 4-6 describes the argument of the getPlsqlIndexTable method.

Table 4-6 Argument of the getPlsqlIndexTable Method

	Argument	Description
	
int paramIndex

	
This argument indicates the parameter position within the statement.

The return value is a Java array. The elements of this array are of the default Java type corresponding to the SQL type of the elements. For example, for an index-by table with elements of NUMERIC type code, the element values are mapped to BigDecimal by Oracle JDBC driver, and the getPlsqlIndexTable method returns a BigDecimal[] array. For a JDBC application, you must cast the return value to BigDecimal[] to access the table element values.

The following code example uses the getPlsqlIndexTable method to return index-by table elements with JDBC default mapping:

// access the value using JDBC default mapping
BigDecimal[] values =
 (BigDecimal[]) procout.getPlsqlIndexTable (1);

// print the elements
for (int i=0; i<values.length; i++)
 System.out.println (values[i].intValue());

Oracle Mappings

The getOraclePlsqlIndexTable method returns index-by table elements using Oracle mapping.

public Datum[] getOraclePlsqlIndexTable (int paramIndex)
 throws SQLException

Table 4-7 describes the argument of the getOraclePlsqlIndexTable method.

Table 4-7 Argument of the getOraclePlsqlIndexTable Method

	Argument	Description
	
int paramIndex

	
Indicates the parameter position within the statement.

The return value is an oracle.sql.Datum array, and the elements in the array are of the default Datum type corresponding to the SQL type of the element. For example, the element values of an index-by table of numeric elements are mapped to the oracle.sql.NUMBER type in Oracle mapping, and the getOraclePlsqlIndexTable method returns an oracle.sql.Datum array that contains oracle.sql.NUMBER elements.

The following code example uses the getOraclePlsqlIndexTable method to access the elements of a PL/SQL index-by table OUT parameter, using Oracle mapping:

// Prepare the statement
OracleCallableStatement procout = (OracleCallableStatement)
 conn.prepareCall ("begin procout (?); end;");

...

// run the call
procout.execute ();

// access the value using Oracle JDBC mapping
Datum[] outvalues = procout.getOraclePlsqlIndexTable (1);

// print the elements
for (int i=0; i<outvalues.length; i++)
 System.out.println (outvalues[i].intValue());

Java Primitive Type Mappings

The getPlsqlIndexTable(int, Class) method returns index-by table elements in Java primitive types. The return value is a Java array. The syntax for this method is the following:

synchronized public Object getPlsqlIndexTable (int paramIndex, Class primitiveType) throws SQLException

Table 4-8 describes the arguments of the getPlsqlIndexTable method.

Table 4-8 Arguments of the getPlsqlIndexTable Method

	Argument	Description
	
int paramIndex

	
Indicates the parameter position within the statement.

	
Class primitiveType

	
Specifies a Java primitive type to which the index-by table elements are to be converted. For example, if you specify java.lang.Integer.TYPE, the return value is an int array.

The following are the possible values of this parameter:

java.lang.Integer.TYPE

java.lang.Long.TYPE

java.lang.Float.TYPE

java.lang.Double.TYPE

java.lang.Short.TYPE

The following code example uses the getPlsqlIndexTable method to access the elements of a PL/SQL index-by table of numbers. In the example, the second parameter specifies java.lang.Integer.TYPE and the return value of the getPlsqlIndexTable method is an int array.

OracleCallableStatement funcnone = (OracleCallableStatement)
 conn.prepareCall ("begin ? := funcnone; end;");

// maximum length of the index-by table value. This
// value defines the maximum table size to be returned.
int maxLen = 10;

// index-by table element type
int elemSqlType = OracleTypes.NUMBER;

// index-by table element length in case the element type
// is CHAR, VARCHAR or RAW. This value is ignored for other
// types
int elemMaxLen = 0;

// register the return value
funcnone.registerIndexTableOutParameter (1, maxLen,
 elemSqlType, elemMaxLen);
// execute the call
funcnone.execute ();

// access the value as a Java primitive array.
int[] values = (int[])
 funcnone.getPlsqlIndexTable (1, java.lang.Integer.TYPE);

// print the elements
for (int i=0; i<values.length; i++)
 System.out.println (values[i]);

5 Features Specific to JDBC Thin

This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers the features supported only by the JDBC Thin driver. It also provides basic information about working with Oracle JDBC applets. This following topics are covered in this chapter:

	
Overview of JDBC Thin Client

	
Additional Features Supported

	
JDBC in Applets

Overview of JDBC Thin Client

The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to install. It provides high performance, comparable to the performance provided by the JDBC Oracle Call Interface (OCI) driver. The JDBC Thin driver is written entirely in Java, and therefore, it is platform-independent. Also, this driver does not require any additional Oracle software on the client-side.

The JDBC Thin driver communicates with the server using TTC, a protocol developed by Oracle to access data from Oracle Database. It can be used for application servers as well as for applets. The driver allows a direct connection to the database by providing an implementation of TCP/IP that implements Oracle Net and TTC on top of Java sockets. Both of these protocols are lightweight implementation versions of their counterparts on the server. The Oracle Net protocol runs over TCP/IP only.

The JDBC Thin driver can be used on both the client-side and the server-side. On the client-side, drivers can be used in Java applications or Java applets that run either on the client or in the middle tier of a three-tier configuration. On the server-side, this driver is used to access a remote Oracle Database instance or another session on the same database.

Additional Features Supported

The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also provides support for the following additional features:

	
Support for Applets

	
Default Support for Native XA

Support for Applets

The JDBC Thin driver is the only Oracle JDBC driver that provides support for applets. This driver can be downloaded along with the Java applet that is being run in a browser.

	
Note:

When the JDBC Thin driver is used with an applet, the browser used on the client-side must have the capability to support Java sockets.

The HTTP protocol, which is usually used for communication over a network, is stateless. However, the JDBC Thin driver is not stateless. Therefore, the initial HTTP request to download the applet and the JDBC Thin driver is stateless. After the JDBC Thin driver establishes the database connection, the communication between the browser and the database is stateful and in a two-tier configuration.

	
See Also:

"JDBC in Applets"

Default Support for Native XA

Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native XA. However, the JDBC Thin driver provides support for Native XA by default. This is unlike the case of the JDBC OCI driver, in which the support for Native XA is not enabled by default.

	
See Also:

"Native-XA in Oracle JDBC Drivers"

JDBC in Applets

You can use only the Oracle JDBC Thin driver for an applet. This section describes what you must do to connect an applet to a database. This description includes how to use the Connection Manager feature of Oracle Database, or signed applets if you are connecting to a database that is running on a different host from the Web server. It also describes how your applet can connect to a database through a firewall. The section concludes with how to package and deploy the applet.

The following topics are covered:

	
Connecting to the Database Through the Applet

	
Connecting to a Database on a Different Host Than the Web Server

	
Using Applets with Firewalls

	
Packaging Applets

	
Specifying an Applet in an HTML Page

Connecting to the Database Through the Applet

The most common task of an applet using the JDBC driver is to connect to and query a database. Because of applet security restrictions, unless particular steps are taken, an applet can open TCP/IP sockets only to the host from which it was downloaded. This is the host on which the Web server is running. This means that without these steps, your applet can connect only to a database that is running on the same host as the Web server.

If your database and Web server are running on the same host, then there is no issue and no special steps are required. You can connect to the database as you would from an application.

As with connecting from an application, there are two ways in which you can specify the connection information to the driver. You can provide it in the form of host:port:sid or in the form of TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host prodHost, at port 1521, and system identifier (SID) ORCL, and you want to connect with user name scott and password tiger, then use either of the two following connection strings:

	
Using host:port:sid syntax:

String connString="jdbc:oracle:thin:@prodHost:1521:ORCL";

OracleDataSource ods = new OracleDataSource();
ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

	
Using TNS keyword-value syntax:

String connString = "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1521)(host=prodHost)))
(connect_data=(INSTANCE_NAME=ORCL)))";
OracleDataSource ods = new OracleDataSource();

ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

If you use the TNS keyword-value pair to specify the connection information to the JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and database server both require many resources. You seldom find both servers running on the same computer. Usually, your applet connects to a database on a host other than the one on which the Web server runs. If you want your applet to connect to a database running on a different computer, then you have the following options:

	
Use the Oracle Connection Manager on the host computer. The applet can connect to the Connection Manager, which connects to a database on another computer.

	
Use signed applets, which can request socket connection privileges to other computers.

Your applet can also take advantage of the data encryption and integrity checksum features of the Advanced Security option of Oracle Database.

Connecting to a Database on a Different Host Than the Web Server

If you are connecting to a database on a host other than the one on which the Web server is running, then you must overcome applet security restrictions. You can do this in the following ways:

	
Using the Oracle Connection Manager

	
Using Signed Applets

Using the Oracle Connection Manager

The Oracle Connection Manager is a lightweight, highly scalable program that can receive Oracle Net packets and retransmit them to a different server. To a client running Oracle Net, the Connection Manager looks exactly like a database server. An applet that uses the JDBC Thin driver can connect to a Connection Manager running on the Web server host and have the Connection Manager redirect the Oracle Net packets to an Oracle server running on a different host.

Figure 5-1 illustrates the relationship between the applet, the Oracle Connection Manager, and the database.

Figure 5-1 Applet, Connection Manager, and Database Relationship

[image: Applet, Connection Manager, and database relationship.]

Using the Oracle Connection Manager requires two steps:

	
Install and run the Connection Manager.

	
Write the connection string that targets the Connection Manager.

Installing and Running the Oracle Connection Manager

You must install the Connection Manager, available on the Oracle distribution media, onto the Web server host.

On the Web server host, create a CMAN.ORA file in the ORACLE_HOME/NET8/ADMIN directory. The options you can declare in a CMAN.ORA file include firewall and connection pooling support.

Here is an example of a very simple CMAN.ORA file. Replace web-server-host with the name of your Web server host. The fourth line in the file indicates that the Connection Manager is listening on port 1610. You must use the same port number in your connection string for JDBC.

cman = (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=TCP)
 (HOST=web-server-host)
 (PORT=1610)))

cman_profile = (parameter_list =
 (MAXIMUM_RELAYS=512)
 (LOG_LEVEL=1)
 (TRACING=YES)
 (RELAY_STATISTICS=YES)
 (SHOW_TNS_INFO=YES)
 (USE_ASYNC_CALL=YES)
 (AUTHENTICATION_LEVEL=0)
)

After you create the file, start the Connection Manager at the operating system prompt with the following command:

cmctl start

To use your applet, you must now write the connection string for it.

Writing the URL that Targets the Connection Manager

The following text describes how to write the URL in your applet, so that the applet connects to the Connection Manager and the Connection Manager connects with the database. In the URL, you specify an address list that lists the protocol, port, and name of the Web server host on which the Connection Manager is running, followed by the protocol, port, and name of the host on which the database is running.

The following example describes the configuration illustrated in Figure 5-1. The Web server on which the Connection Manager is running is on host webHost and is listening on port 1610. The database to which you want to connect is running on host oraHost, listening on port 1521, and SID ORCL. You write the URL in TNS keyword-value format:

String myURL =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1610)(host=webHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(INSTANCE_NAME=orcl))
 (source_route=yes))";
 OracleDataSource ods = new OracleDataSource();
 ods.setURL(myURL);
 ods.setUser("scott");
 ods.setPassword("tiger");
 Connection conn = ods.getConnection();

The first element in the address_list entry represents the connection to the Connection Manager. The second element represents the database to which you want to connect. The order in which you list the addresses is important.

When your applet uses a URL, such as the preceding one, it will function exactly as if it were connected directly to the database on the host oraHost.

Connecting Through Multiple Connection Managers

Your applet can reach its target database even if it first has to go through multiple Connection Managers. For example, if the Connection Managers form a proxy chain. To do this, add the addresses of the Connection Managers to the address list, in the order that you plan to access them. The database listener should be the last address on this list.

Using Signed Applets

In a Java Development Kit (JDK) 1.2.x-based or later browser, an applet can request socket connection privileges and connect to a database running on a different host than the Web server host. Starting from Netscape 4.0, you perform this by signing your applet, that is, writing a signed applet. You must follow these steps:

	
Sign the applet. For information about the steps you must follow to sign an applet, refer to the Sun Microsystems Web site.

	
Include applet code that asks for appropriate privileges before opening a socket.

If you are using Netscape, then your code would include a statement like this:

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:scott/tiger@dlsun511:1721:orcl");
Connection conn = ods.getConnection();

	
You must obtain an object-signing certificate. Refer to a site that provides information about obtaining and installing a certificate.

For information about the Java Security API, including signed applet examples, see the following Sun Microsystems site:

http://java.sun.com/security

Using Applets with Firewalls

Under standard circumstances, an applet that uses the JDBC Thin driver cannot access the database through a firewall. In general, the purpose of a firewall is to prevent unauthorized clients from reaching the server. In the case of applets trying to connect to the database, the firewall prevents the opening of a TCP/IP socket to the database.

In general, firewalls are rule-based. They have a list of rules that define which clients can connect, and which cannot. Firewalls compare the host name of the client with the rules and, based on this comparison, either grant the client access or deny access. If the host name lookup fails, then the firewall tries again. This time, the firewall extracts the IP address of the client and compares it to the rules. The firewall is designed to do this so that users can specify rules that include host names as well as IP addresses.

You can solve the firewall issue by using an Oracle Net-compliant firewall and connection strings that comply with the firewall configuration. Oracle Net-compliant firewalls are available from many leading vendors.

An unsigned applet can access only the same host from which it is downloaded. In this case, the Oracle Net-compliant firewall must be installed on that host. In contrast, a signed applet can connect to any host. In this case, the firewall on the target host controls the access.

Connecting through a firewall requires two steps, as described in the following sections:

	
Configuring a Firewall for Applets that use the JDBC Thin Driver

	
Writing a URL to Connect Through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver

The instructions in this section assume that you are running an Oracle Net-compliant firewall.

Java applets do not have access to the local system. Because of the security limitations, applets cannot access the host name or environment variables on the local system. As a result, the JDBC Thin driver cannot access the host name on which it is running. The firewall cannot be provided with the host name. To allow requests from JDBC Thin clients to go through the firewall, you must do the following to the list of firewall rules:

	
Add the IP address, and not the host name, of the host on which the JDBC applet is running.

	
Ensure that the host name, "__jdbc__", never appears in the firewall rules. This host name has been hard-coded as a false host name inside the driver to force an IP address lookup. If you do enter this host name in the list of rules, then every applet using the JDBC Thin driver will be able to go through your firewall.

Writing a URL to Connect Through a Firewall

To write a URL that enables you to connect through a firewall, you must specify the name of the firewall host and the name of the database host to which you want to connect.

For example, if you want to connect to a database on host oraHost, listening on port 1521, with SID ORCL, and you are going though a firewall on host fireWallHost, listening on port 1610, then use the following URL:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:" +
 "@(description=(address_list=" +
 (address=(protocol=tcp)(host=<firewall-host>)(port=1610))" +
 "(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
 "(source_route=yes)" +
 "(connect_data=(SERVICE_NAME=orcl)))");
);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

	
Note:

To connect through a firewall, you cannot specify the URL in host:port:sid syntax. For example, a URL specified as follows will not work:

String connString =
 "jdbc:oracle:thin:@example.us.oracle.com:1521:orcl";

OracleDataSource ods = new OracleDataSource();
ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

The first element in the address_list represents the connection to the firewall. The second element represents the database to which you want to connect. Note that the order in which you specify the addresses is important.

You can also write the preceding URL in the following format:

String connString =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1600)(host=fireWallHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(INSTANCE_NAME=orcl))
 (source_route=yes))";
OracleDataSource ods = new OracleDataSource();
ods.setURL(connString);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

When your applet uses a URL similar to the preceding URL, it will act as if it were connected to the database on host oraHost.

	
Note:

All the parameters shown in the preceding example are required. In address_list, the firewall address must precede the database server address.

Packaging Applets

After you have coded your applet, you must package it and make it available to users. To package an applet, you will need your applet class files and the JDBC driver class files contained in the ojdbc5.jar or ojdbc6.jar files.

Follow these steps:

	
Move the JDBC driver classes file ojdbc5.jar or ojdbc6.jar to an empty directory.

If your applet connects to a database with a non-US7ASCII and non-WE8ISO8859P1 character set and uses Oracle object types, then also move the orai18n.jar file to the same directory.

	
Add your applet classes files to the directory and any other files that the applet may require.

	
Zip the applet classes and driver classes together into a single ZIP or Java Archive (JAR) file. The single ZIP file should contain the following:

	
Class files from the ojdbc5.jar or ojdbc6.jar files and required class files from the orai18n.jar files, if the applet requires Globalization Support

	
Your applet classes

	
Ensure that the ZIP or JAR file is not compressed.

You can now make the applet available to users. One way to do this is to add the APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet ARCHIVE=JdbcApplet.zip
 CODEBASE=Applet_Samples
</APPLET>

Specifying an Applet in an HTML Page

The APPLET tag specifies an applet that runs in the context of an HTML page. The APPLET tag can have the following attributes: CODE, ARCHIVE, CODEBASE, WIDTH, and HEIGHT. These attributes are described in the following sections:

	
CODE, HEIGHT, and WIDTH

	
CODEBASE

	
ARCHIVE

CODE, HEIGHT, and WIDTH

The HTML page that runs the applet must have an APPLET tag with an initial width and height to specify the size of the applet display area. You use the HEIGHT and WIDTH attributes to specify the size, measured in pixels. This size should not count any windows or dialog boxes that the applet opens.

The APPLET tag must also specify the name of the file that contains the compiled applet. Specify the file name with the CODE attribute. Any path specified must be relative to the base URL of the applet. The path cannot be absolute.

In the following example, JdbcApplet.class is the name of the compiled applet:

<APPLET CODE="JdbcApplet" WIDTH=500 HEIGHT=200>
</APPLET>

If you use this form of the CODE attribute, then the classes for the applet and the JDBC Thin driver must be in the same directory as the HTML page.

	
Note:

Do not include the file name extension, .class, in the CODE attribute.

CODEBASE

The CODEBASE attribute is optional. It specifies the base URL of the applet, that is, the name of the directory that contains the code of the applet. If it is not specified, then the URL of the document is used. This means that the classes for the applet and the JDBC Thin driver must be in the same directory as the HTML page. For example, if the current directory is my_Dir:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="."
</APPLET>

The attribute, CODEBASE=".", indicates that the applet resides in the current directory, my_Dir.

Now, consider that the value of CODEBASE is set to Applet_Samples, as follows:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="Applet_Samples"
</APPLET>

This would indicate that the applet resides in the my_Dir/Applet_Samples directory.

ARCHIVE

The ARCHIVE attribute is optional. It specifies the name of the archive file that contains the applet classes and resources the applet needs. Oracle recommends using an archive file, which saves many extra round-trips to the server.

The archive file will be preloaded. If you have more than one archive file in the list, separate them with commas. In the following example, the class files are stored in the archive file, JdbcApplet.zip:

<APPLET CODE="JdbcApplet" ARCHIVE="JdbcApplet.zip" WIDTH=500 HEIGHT=200>
</APPLET>

	
Note:

Version 3.0 browsers do not support the ARCHIVE attribute.

6 Features Specific to JDBC OCI Driver

This chapter introduces the features specific to the Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This chapter contains the following sections:

	
OCI Connection Pooling

	
Client Result Cache

	
Transparent Application Failover

	
OCI Native XA

	
OCI Instant Client

	
Instant Client Light (English)

OCI Connection Pooling

The OCI connection pooling feature is an Oracle-designed extension. The connection pooling provided by the JDBC OCI driver enables applications to have multiple logical connections, all of which are using a small set of physical connections. Each call on a logical connection is routed on to the physical connection that is available at the given time.

	
See Also:

Chapter 24, "OCI Connection Pooling"

Client Result Cache

Client result cache feature enables client-side caching of SQL query result sets in client memory. In this way, OCI applications can use client memory to take advantage of the client result cache to improve response times of repetitive queries.

Usage Guidelines in JDBC

You must annotate a query with a /*+ result_cache */ hint to indicate that results are to be stored in the client result cache. For example, look at the following code snippet:

String query = "select /*+ result_cache */ * from emp where empno < : 1";
 ((oracle.jdbc.OracleConnection)conn).setImplicitCachingEnabled(true);
 ((oracle.jdbc.OracleConnection)conn).setStatementCacheSize(10);
 PreparedStatement pstmt;
 ResultSet rs;

 for (int j = 0 ; j < 10 ; j++)
 {
 pstmt = conn.prepareStatement (query);
 pstmt.setInt(1,7500);
 rs = pstmt.executeQuery();
 while (rs.next())
 { // see the values }
 rs.close;
 pstmt.close() ;
 }
 }

In the preceding example, the client result cache hint /*+ result_cache */ is annotated to the actual query, that is, select * from emp where empno < : 1. So, the first execution of the query goes to the database and the result set is cached for the remaining nine executions of the query. This improves the performance of your application significantly.

	
See Also:

Oracle Call Interface Programmer's Guide

You must use JDBC statement caching or cache statements at the application level when using the JDBC OCI client result cache.

	
See Also:

"Statement and Result Set Caching" for more information on JDBC statement caching

Validation of the Client Result Cache

Validation of the JDBC OCI client result cache can be achieved in the following ways:

Client Cache Statistics Verification

JDBC OCI driver periodically sends statistics related to the client result cache to the server. These statistics that contain information such as the number of result sets successfully cached, number of cache hits, and number of cached result sets invalidated are stored in CLIENT_RESULT_CACHE_STATS$.

	
See Also:

Oracle Call Interface Programmer's Guide

Timing Measurement

First, you measure the time taken to run the queries without the /*+ result_cache */ hints. Then add the /*+ result_cache */ hints to the query and measure the time again. You will see the performance gain.

Transparent Application Failover

The Transparent Application Failover feature of JDBC OCI driver enables you to automatically reconnect to a database if the database instance to which the connection is made goes down. The new database connection, though created by a different node, is identical to the original.

	
See Also:

Chapter 27, "Transparent Application Failover"

OCI Native XA

The JDBC OCI driver also provides a feature called Native XA.

	
See Also:

"OCI Native XA"

OCI Instant Client

This section covers the following topics:

	
Overview of Instant Client

	
Benefits of Instant Client

	
JDBC OCI Instant Client Installation Process

	
Usage of Instant Client

	
Patching Instant Client Shared Libraries

	
Regeneration of Data Shared Library and ZIP files

	
Database Connection Names for OCI Instant Client

	
Environment Variables for OCI Instant Client

Overview of Instant Client

The Instant Client feature makes it extremely easy to deploy OCI, Oracle C++ Call Interface (OCCI), Open Database Connectivity (ODBC), and JDBC-OCI based customer applications, by eliminating the need for an Oracle home. The storage space requirement of a JDBC OCI application running in the Instant Client mode is significantly reduced compared to the same application running on a full client-side installation. The Instant Client shared libraries occupy only about one-fourth the disk space used by a full client installation.

Table 6-1 shows the Oracle client-side files required to deploy a JDBC OCI application. Library names of release 11.1 are used in the table. The number part of library names will change in future releases to agree with the release.

Table 6-1 OCI Instant Client Shared Libraries

	Linux and UNIX Systems	Description for Linux and UNIX Systems	Microsoft Windows	Description for Microsoft Windows
	
libclntsh.so.11.1

	
Client Code Library

	
oci.dll

	
Forwarding functions that applications link with

	
libociei.so

	
OCI Instant Client Data Shared Library

	
oraociei11.dll

	
Data and code

	
libnnz11.so

	
Security Library

	
orannzsbb11.dll

	
Security Library

	
libocijdbc11.so

	
OCI Instant Client JDBC Library

	
ocijdbc11.dll

	
OCI Instant Client JDBC Library

	
ALL JDBC Java Archive (JAR) files

	
See Also: "Check the Environment Variables"

	
All JDBC JAR files

	
See Also: "Check the Environment Variables"

	
Note:

To provide Native XA functionality, you must copy the JDBC XA class library. On UNIX systems, this library, libheteroxa11.so, is located in the ORACLE_HOME/jdbc/lib directory. On Microsoft Windows, this library, heteroxa11.dll, is located in the ORACLE_HOME\bin directory.

Benefits of Instant Client

The benefits of Instant Client are the following:

	
Installation involves copying a small number of files.

	
The number of required files and the total disk storage on the Oracle client-side are significantly reduced.

	
There is no loss of functionality or performance for applications deployed with the Instant Client.

	
It is simple for independent software vendors to package applications.

JDBC OCI Instant Client Installation Process

The Instant Client libraries can be installed by choosing the Instant Client option from Oracle Universal Installer. The Instant Client libraries can also be downloaded from the Oracle Technology Network Web site. The installation process is as follows:

	
Download and install the Instant Client shared libraries and Oracle JDBC class libraries to a directory, such as instantclient.

	
Set the library path environment variable to the directory from Step 1. For example, on UNIX systems, set the LD_LIBRARY_PATH environment variable to instantclient. On Microsoft Windows, set the PATH environment variable to locate the instantclient directory.

	
Add the full path names of the JDBC class libraries to the CLASSPATH environment variable.

After completing these steps you are ready to run the JDBC OCI application.

The JDBC OCI application operates in the Instant Client mode when the OCI and JDBC shared libraries are accessible through the library path environment variable. In the Instant Client mode, there is no dependency on the ORACLE_HOME and none of the other code and data files provided in ORACLE_HOME is needed by JDBC OCI, except for the tnsnames.ora file.

Instant Client can be also installed from Oracle Universal Installer by selecting the Instant Client option. The Instant Client files should always be installed in an empty directory. As with the OTN installation, you must set the LD_LIBRARY_PATH environment variable to the Instant Client directory to operate in the Instant Client mode.

If you have done a complete client installation by choosing the Admin option, then the Instant Client shared libraries are also installed. The location of the Instant Client shared libraries and JDBC class libraries in a full client installation is:

On Linux or UNIX systems:

	
libociei.so library is in $ORACLE_HOME/instantclient

	
libclnstsh.so.11.1, libocijdbc11.so, and libnnz11.so are in $ORACLE_HOME/lib

	
The JDBC class libraries are in $ORACLE_HOME/jdbc/lib

On Microsoft Windows:

	
oraociei11.dll library is in ORACLE_HOME\instantclient

	
oci.dll, ocijdbc11.dll, and orannzsbb11.dll are in ORACLE_HOME\bin

	
The JDBC class libraries are in ORACLE_HOME\jdbc\lib

By copying these files to a different directory, setting the library path to locate this directory, and adding the path names of the JDBC class libraries to the CLASSPATH environment variable, you can enable running the JDBC OCI application in the Instant Client mode.

	
Note:

	
To provide Native XA functionality, you must copy the JDBC XA class library. On UNIX, this library, libheteroxa11.so, is located in ORACLE_HOME/jdbc/lib. On Windows, this library, heteroxa11.dll, is located in ORACLE_HOME\bin.

	
All the libraries must be copied from the same ORACLE_HOME and must be placed in the same directory.

	
On hybrid platforms, such as Sparc64, if the JDBC OCI driver needs to be operated in the Instant Client mode, then you must copy the libociei.so library from the ORACLE_HOME/instantclient32 directory. You must copy all other Sparc64 libraries needed for the JDBC OCI Instant Client from the ORACLE_HOME/lib32 directory.

	
Only one set of Oracle libraries should be specified in the library path environment variable. That is, if you have multiple directories containing Instant Client libraries, then only one such directory should be specified in the library path environment variable.

	
If you have an Oracle home on your computer, then you should not have the ORACLE_HOME/lib and Instant Client directories in the library path environment variable simultaneously, regardless of the order in which they appear in the variable. That is, only one of ORACLE_HOME/lib directory (for non-Instant Client operation) or Instant Client directory (for Instant Client operation) should be specified in the library path environment variable.

	
Oracle recommends that you download Instant Client from Oracle Technology Network (OTN)

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

Usage of Instant Client

Instant Client is a deployment feature and should be used for running production applications. For development, a full installation is necessary to access demonstration programs and so on. In general, all JDBC OCI functionality is available to an application being run in the Instant Client mode, except that the Instant Client mode is for client-side operation only. Therefore, server-side external procedures cannot operate in the Instant Client mode.

Patching Instant Client Shared Libraries

Because Instant Client is a deployment feature, the emphasis has been on reducing the number and size of files required to run a JDBC OCI application. Therefore, all files needed to patch Instant Client shared libraries are not available in an Instant Client deployment. An ORACLE_HOME based full client installation is needed to patch the Instant Client shared libraries. The opatch utility will take care of patching the Instant Client shared libraries.

	
Note:

On Microsoft Windows, you cannot patch the shared libraries.

After applying the patch in an ORACLE_HOME environment, copy the files listed in Table 6-1, "OCI Instant Client Shared Libraries" to the instant client directory as described in "JDBC OCI Instant Client Installation Process".

Instead of copying individual files, you can generate Instant Client ZIP files for OCI, OCCI, JDBC, and SQL*Plus as described in "Regeneration of Data Shared Library and ZIP files". Then, you can copy the ZIP files to the target computer and unzip them as described in "JDBC OCI Instant Client Installation Process".

The opatch utility stores the patching information of the ORACLE_HOME installation in libclnstsh.so.11.1. This information can be retrieved by the following command:

genezi -v

Note that if the computer from where Instant Client is deployed does not have the genezi utility, then it must be copied from the ORACLE_HOME/bin directory on the computer that has the ORACLE_HOME installation.

Regeneration of Data Shared Library and ZIP files

The OCI Instant Client Data Shared Library, libociei.so, can be regenerated by performing the following steps in an Administrator Installation of ORACLE_HOME:

mkdir -p $ORACLE_HOME/rdbms/install/instantclient/light
cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk ilibociei

A new version of the libociei.so Data Shared Library based on the current files in the ORACLE_HOME is then placed in the ORACLE_HOME/rdbms/install/instantclient directory.

Note that the location of the regenerated Data Shared Library, libociei.so, is different from that of the original Data Shared Library, libociei.so, which is located in the ORACLE_HOME/instantclient directory.The preceding steps also generate Instant Client ZIP files for OCI, OCCI, JDBC, and SQL*Plus.

Regeneration of data shared library and ZIP files is not available on Microsoft Windows platforms.

Database Connection Names for OCI Instant Client

All Oracle Net naming methods that do not require the ORACLE_HOME or TNS_ADMIN environment variables to locate configuration files, such as tnsnames.ora or sqlnet.ora, work in the Instant Client mode. In particular, the connection string can be specified in the following formats:

	
A Thin-style connection string of the form:

 host:port:service_name

For example:

url="jdbc:oracle:oci:@//example.com:5521:bjava21"

	
A SQL connection URL string of the form:

//host:[port][/service name]

For example:

url="jdbc:oracle:oci:@//example.com:5521/bjava21

	
As an Oracle Net keyword-value pair. For example:

url="jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=dlsun242) (PORT=5521))
 (CONNECT_DATA=(SERVICE_NAME=bjava21)))"

Naming methods that require TNS_ADMIN to locate configuration files continue to work if the TNS_ADMIN environment variable is set.

	
See Also:

Oracle Database Net Services Administrator's Guide for more information about connection formats

If the TNS_ADMIN environment variable is not set and TNSNAMES entries, such as inst1, are used, then the ORACLE_HOME environment variable must be set and the configuration files are expected to be in the $ORACLE_HOME/network/admin directory.

	
Note:

In this case, the ORACLE_HOME environment variable is used only for locating Oracle Net configuration files. No other component of Client Code Library uses the value of the ORACLE_HOME environment variable.

The empty connection string is not supported. However, an alternate way to use the empty connection string is to set the TWO_TASK environment variable on UNIX systems, or the LOCAL variable on Microsoft Windows, to either a tnsnames.ora entry or an Oracle Net keyword-value pair. If TWO_TASK or LOCAL is set to a tnsnames.ora entry, then the tnsnames.ora file must be loaded by the TNS_ADMIN or ORACLE_HOME setting.

Example

Consider that the listener.ora file on the database server contains the following information:

LISTENER = (ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573)))

SID_LIST_LISTENER = (SID_LIST=
 (SID_DESC=(SID_NAME=rdbms3)
 (GLOBAL_DBNAME=rdbms3.server6.us.alchemy.com)
 (ORACLE_HOME=/home/dba/rdbms3/oracle)))

You can connect to this server in one of the following ways:

url = "jdbc:oracle:oci:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
 (HOST=server6)(PORT=1573))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or:

url = "jdbc:oracle:oci:@//server6:1573/rdbms3.server6.us.alchemy.com"

Alternatively, you can set the TWO_TASK environment variable to any of the connection strings and connect to the database server without specifying the connection string along with the sqlplus command. For example, set the TWO_TASK environment in one of the following ways:

setenv TWO_TASK "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))"

or:

setenv TWO_TASK //server6:1573/rdbms3.server6.us.alchemy.com

Now, you can connect to the database server using the following URL:

url = "jdbc:oracle:oci:@"

The connection string can also be stored in the tnsnames.ora file. For example, consider that the tnsnames.ora file contains the following:

conn_str = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=server6)(PORT=1573))
 (CONNECT_DATA=(SERVICE_NAME=rdbms3.server6.us.alchemy.com)))

If this tnsnames.ora file is located in the /home/webuser/instantclient directory, then you can set the TNS_ADMIN environment variable (or LOCAL on Microsoft Windows) as follows:

setenv TNS_ADMIN /home/webuser/instantclient

Now, you can connect as follows:

url = "jdbc:oracle:oci:@conn_str"

	
Note:

The TNS_ADMIN environment variable specifies the directory where the tnsnames.ora file is located. However, TNS_ADMIN does not specify the full path of the tnsnames.ora file, instead it specifies the directory.

If this tnsnames.ora file is located in the /network/server6/home/dba/oracle/network/admin directory in the Oracle home, then instead of using TNS_ADMIN to locate the tnsnames.ora file, you can set the ORACLE_HOME environment variable as follows:

setenv ORACLE_HOME /network/server6/home/dba/oracle

Now, you can connect with either of the conn_str connection strings, as specified previously.

If tnsnames.ora can be located by TNS_ADMIN or ORACLE_HOME, then TWO_TASK can be set to:

setenv TWO_TASK conn_str

You can then connect with the following URL:

url = "jdbc:oracle:oci:@"

Environment Variables for OCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of the Globalization Support files and error message files. An OCI-only application does not require the ORACLE_HOME environment variable to be set. However, if the variable is set, then it does not have an impact on the operation of the OCI driver. OCI will always obtain its data from the Data Shared Library. If the Data Shared Library is not available, only then is the ORACLE_HOME environment variable used and a full client installation is assumed. Even though the ORACLE_HOME environment variable is not required to be set, if it is set, then it must be set to a valid operating system path name that identifies a directory.

Environment variables ORA_NLS10 and ORA_NLSPROFILES33 are ignored in the Instant Client mode.

In the Instant Client mode, if the ORA_TZFILE variable is not set, then the smaller, default, timezone.dat file from the Data Shared Library is used. If the larger timezlrg.dat file is to be used from the Data Shared Library, then set the ORA_TZFILE environment variable to the name of the file without any absolute or relative path names. That is:

On UNIX systems:

setenv ORA_TZFILE timezlrg.dat

On Microsoft Windows:

set ORA_TZFILE timezlrg.dat

If the driver is not operating in the Instant Client mode, then the ORA_TZFILE variable, if set, names a complete path name, as it does in previous Oracle Database releases.

If TNSNAMES entries are used, then, as mentioned earlier, the TNS_ADMIN directory must contain the TNSNAMES configuration files, and if TNS_ADMIN is not set, then the ORACLE_HOME/network/admin directory must contain Oracle Net Services configuration files.

Instant Client Light (English)

The lightweight version of Instant Client is called Instant Client Light (English). Instant Client Light is the short name. Instant Client Light is a significantly smaller version of Instant Client. This reduces the disk space requirements of the client installation by about 63 MB. This is achieved by the lightweight Data Shared Library, libociicus.so on UNIX systems, which is 4 MB in size and a subset of the data shared library, libociei.so, which is 67 MB in size.

The lightweight data shared library supports only a few character sets and error messages that are only in English. Therefore, the name Instant Client Light (English). Instant Client Light is designed for applications that require English-only error messages and use either US7ASCII, WE8DEC, or one of the Unicode character sets.

Table 6-2 lists the names of the data shared libraries for Instant Client and Instant Client Light (English) on different platforms. The table also specifies the size of each data shared library in parentheses following the library file name.

Table 6-2 Data Shared Library for Instant Client and Instant Client Light (English)

	Platform	Instant Client	Instant Client Light (English)
	
Sun Solaris

	
libociei.so (67 MB)

	
libociicus.so (4 MB)

	
Linux

	
libociei.so (67 MB)

	
libociicus.so (4 MB)

	
Microsoft Windows

	
oraociei11.dll (85 MB)

	
oraociicus11.dll (15 MB)

This section covers the following topics:

	
Globalization Settings

	
Operation

	
Installation

Globalization Settings

The NLS_LANG setting determines the language, territory, and character set as language_territory.characterset. In Instant Client Light, language can only be American, territory can be any that is supported, and characterset can be any one of the following:

	
Single-byte

	
US7ASCII

	
WE8DEC

	
WE8MSWIN1252

	
WE8ISO8859P1

	
Unicode

	
UTF8

	
AL16UTF16

	
AL32UTF8

Specifying character set or national character set other than those listed as the client or server character set or setting the language in NLS_LANG on the client will throw one of the following errors:

	
ORA-12734

	
ORA-12735

	
ORA-12736

	
ORA-12737

With Instant Client Light, the error messages obtained are only in English. Therefore, the valid values for the NLS_LANG setting are of the type:

American_territory.characterset

where, territory can be any valid and supported territory and characterset can be any one the previously listed character sets.

Instant Client Light can operate with the OCI environment handles created in the OCI_UTF16 mode.

	
See Also:

Oracle Database Globalization Support Guide for more information about NLS settings.

Operation

To operate in the Instant Client Light mode, an application must set the LD_LIBARARY_PATH environment variable in UNIX systems or the PATH environment variable in Microsoft Windows to a location containing the client and data shared libraries. OCI applications by default look for the OCI Data Shared Library, libociei.so in the LD_LIBRARY_PATH environment variable in UNIX systems or the oraociei11.dll Data Shared Library in the PATH environment variable in Microsoft Windows, to determine if the application should operate in the Instant Client mode. In case this library is not found, then OCI tries to load the Instant Client Light Data Shared Library, libociicus.so in UNIX systems or libociicus11.dll in Microsoft Windows. If this library is found, then the application operates in the Instant Client Light mode. Otherwise, a non-Instant Client mode is assumed.

Installation

Instant Client Light can be installed in one of the following ways:

	
From OTN

You can download the required file from

http://www.oracle.com/technology/tech/oci/instantclient/instantclient.html

For Instant Client Light, instead of downloading and expanding the Basic package, download and unzip the Basic Light package. The instantclient_11_1 directory in which the lightweight libraries are unzipped should be empty before unzipping the files.

	
From Client Admin Install

Instead of copying libociei.so or oraociei11.dll from the ORACLE_HOME/instantclient directory, copy libociicus.so or oraociic10.dll from the ORACLE_HOME/instantclient/light directory. That is, the Instant Client directory on the LD_LIBRARY_PATH environment variable, in UNIX systems, should contain the Instant Client Light Data Shared Library, libociicus.so, instead of the larger OCI Instant Client Data Shared Library, libociei.so. In Microsoft Windows, the PATH environment variable should contain oraociicus11.dll instead of oraociei11.dll.

	
From Oracle Universal Installer

If the Instant Client option is selected from Oracle Universal Installer, then libociei.so (or oraociei11.dll on Microsoft Windows) is installed in the base directory of the installation which is going to be placed on the LD_LIBRARY_PATH environment variable. This is so that Instant Client Light is not enabled by default. The Instant Client Light Data Shared Library, libociicus.so (or oraociicus11.dll on Microsoft Windows), is installed in the light subdirectory of the base directory. Therefore, to operate in the Instant Client Light mode, the OCI Data Shared Library, libociei.so (or oraociei11.dll on Windows) must be deleted or renamed and the Instant Client Light Data Shared Library must be copied from the light subdirectory to the base directory of the installation.

For example, if Oracle Universal Installer has installed the Instant Client in my_oraic_11_1 directory on the LD_LIBRARY_PATH environment variable, then one would need to do the following to operate in the Instant Client Light mode:

cd my_oraic_11_1
rm libociei.so
mv light/libociicus.so .

	
Note:

All the Instant Client files should always be copied or installed in an empty directory. This is to ensure that no incompatible binaries exist in the installation.

7 Server-Side Internal Driver

This chapter covers the following topics:

	
Overview of the Server-Side Internal Driver

	
Connecting to the Database

	
Exception-Handling Extensions

	
Session and Transaction Context

	
Testing JDBC on the Server

	
Loading an Application into the Server

Overview of the Server-Side Internal Driver

The server-side internal driver is intrinsically tied to Oracle Database and to the Java Virtual Machine (JVM). The driver runs as part of the same process as the database. It also runs within the default session, the same session in which the JVM was started.

The server-side internal driver is optimized to run within the database server and provide direct access to SQL data and PL/SQL subprograms on the local database. The entire JVM operates in the same address space as the database and the SQL engine. Access to the SQL engine is a function call. This enhances the performance of your Java Database Connectivity (JDBC) applications and is much faster than running a remote Oracle Net call to access the SQL engine.

The server-side internal driver supports the same features, application programming interfaces (APIs), and Oracle extensions as the client-side drivers. This makes application partitioning very straightforward. For example, if you have a Java application that is data-intensive, then you can easily move it into the database server for better performance, without having to modify the application-specific calls.

Connecting to the Database

As described in the preceding section, the server-side internal driver runs within a default session. Therefore, you are already connected. There are two methods to access the default connection:

	
Use the OracleDataSource.getConnection method, with any of the following forms as the URL string:

	
jdbc:oracle:kprb

	
jdbc:default:connection

	
jdbc:oracle:kprb:

	
jdbc:default:connection:

	
Use the Oracle-specific defaultConnection method of the OracleDriver class.

Using defaultConnection is generally recommended.

	
Note:

You are no longer required to register the OracleDriver class for connecting with the server-side internal driver.

Connecting with the OracleDriver Class defaultConnection Method

The defaultConnection method of the oracle.jdbc.OracleDriver class is an Oracle extension and always returns the same connection object. Even if you call this method multiple times, assigning the resulting connection object to different variable names, then only a single connection object is reused.

You need not include a connection string in the defaultConnection call. For example:

import java.sql.*;
import oracle.jdbc.*;

class JDBCConnection
{
 public static Connection connect() throws SQLException
 {
 Connection conn = null;
 try {
 // connect with the server-side internal driver
 conn = ora.defaultConnection();
 }

 } catch (SQLException e) {...}
 return conn;
 }
}

Note that there is no conn.close call in the example. When JDBC code is running inside the target server, the connection is an implicit data channel, not an explicit connection instance as from a client. It should not be closed.

If you do call the close method, then be aware of the following:

	
All connection instances obtained through the defaultConnection method, which actually reference the same database connection, will be closed and unavailable for further use, with state and resource cleanup as appropriate. Running defaultConnection afterward would result in a new connection object.

	
Even though the connection object is closed, the implicit connection to the database will not be closed.

Connecting with the OracleDataSource.getConnection Method

To connect to the internal server connection from code that is running within the target server, you can use the OracleDataSource.getConnection method with either of the following URLs:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:kprb");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:default:connection");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:kprb:");
Connection conn = ods.getConnection();

or:

OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:default:connection:");
Connection conn = ods.getConnection();

Any user name or password you include in the URL is ignored in connecting to the default server connection.

The OracleDataSource.getConnection method returns a new Java Connection object every time you call it. The fact that OracleDataSource.getConnection returns a new connection object every time you call it is significant if you are working with object maps or type maps. A type map is associated with a specific Connection object and with any state that is part of the object. If you want to use multiple type maps as part of your program, then you can call getConnection to create a new Connection object for each type map.

	
Note:

Although the OracleDataSource.getConnection method is returning a new object every time you call it, it is not creating a new database connection every time.

Exception-Handling Extensions

The server-side internal driver, in addition to having standard exception-handling capabilities, such as getMessage(), getErrorCode(), and getSQLState(), provides the oracle.jdbc.driver.OracleSQLException class, which is a legacy from the earliest server-side internal driver. This class is a subclass of the standard java.sql.SQLException class and is not available to the client-side JDBC drivers or the server-side Thin driver.

When an error condition occurs in the server, it often results in a series of related errors being placed in an internal error stack. The JDBC server-side internal driver retrieves errors from the stack and places them in a chain of OracleSQLException objects.

You can use the following methods in processing these exceptions:

	
SQLException getNextException()

This method returns the next exception in the chain or a null value if there are no further exceptions. You can start with the first exception you receive and work through the chain. This is a standard method.

	
int getNumParameters() (Oracle extension)

Errors from the server usually include parameters, or variables, that are part of the error message. These may indicate what type of error occurred, what kind of operation was being attempted, or the invalid or affected values. This method returns the number of parameters included with this error. It is an Oracle extension.

	
Object[] getParameters() (Oracle extension)

This method returns a Java Object[] array containing the parameters included with this error. It is an Oracle extension.

However, in 11g release 1, only a subset of the exceptions thrown by the driver are instances of this class. In 11g release 1 (11.1), this class is deprecated and will be removed in the next release.

	
Note:

Oracle strongly discourages the use of this class.

Exception-handling differs depending on the version of JDK you are using.

Session and Transaction Context

The server-side driver operates within a default session and default transaction context. The default session is the session in which the JVM was started. In effect, you are already connected to the database on the server. This is different from the client-side where there is no default session. You must explicitly connect to the database.

Auto-commit mode is disabled in the server. You must manage transaction COMMIT and ROLLBACK operations explicitly by using the appropriate methods on the connection object:

conn.commit();

or:

conn.rollback();

	
Note:

As a best practice, it is recommended not to commit or rollback a transaction inside the server.

Testing JDBC on the Server

Almost any JDBC program that can run on a client can also run on the server. All the programs in the samples directory can be run on the server, with only minor modifications. Usually, these modifications concern only the connection statement.

Consider the following code fragment which obtains a connection to a database:

ods.setUrl(
"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))");
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

We can modify this code fragment for use in the server-side internal driver. In the server-side internal driver, no user, password, or database information is necessary. For the connection statement, you use:

ods.setUrl(
"jdbc:oracle:kprb:@");
Connection conn = ods.getConnection();

However, the most convenient way to get a connection is to call the OracleDriver.defaultConnection method, as follows:

Connection conn = OracleDriver.defaultConnection();

Loading an Application into the Server

When loading an application into the server, you can load .class files that you have already compiled on the client or you can load .java source files and have them automatically compiled on the server.

In either case, use the loadjava utility to load your files. You can either specify source file names on the command line or put the files into a Java Archive (JAR) file and specify the JAR file name on the command line.

The loadjava script, which runs the actual utility, is in the bin directory in your Oracle home. This directory should already be in your path once Oracle has been installed.

	
Note:

The loadjava utility supports compressed files.

Loading Class Files into the Server

Consider a case where you have the following three class files in your application: Foo1.class, Foo2.class, and Foo3.class. Each class is written into its own class schema object in the server.

You can load the class files using the default JDBC Oracle Call Interface (OCI) driver in the following ways:

	
Specifying the individual class file names, as follows:

loadjava -user scott Foo1.class Foo2.class Foo3.class
Password: password

	
Specifying the class file names using a wildcard, as follows:

loadjava -user scott Foo*.class
Password: password

	
Specifying a JAR file that contains the class files, as follows:

loadjava -user scott Foo.jar
Password: password

You can load the files using the JDBC Thin driver, as follows:

loadjava -thin -user scott@localhost:1521:ORCL Foo.jar
Password: password

	
Note:

Because the server-side embedded JVM uses Java Development Kit (JDK) 1.5, it is advisable to compile classes under JDK 1.5, if they will be loaded into the server. This will catch incompatibilities during compilation, instead of at run time.

Loading Source Files into the Server

If you enable the loadjava -resolve option when loading a .java source file, then the server-side compiler will compile your application as it is loaded, resulting in both a source schema object for the original source code and one or more class schema objects for the compiled output.

If you do not specify -resolve, then the source is loaded into a source schema object without any compilation. In this case, however, the source is implicitly compiled the first time an attempt is made to use a class defined in the source.

For example, run loadjava as follows to load and compile Foo.java, using the default JDBC OCI driver:

loadjava -user scott -resolve Foo.java
Password: password

Or, use the following command to load using the JDBC Thin driver:

loadjava -thin -user scott@localhost:1521:ORCL -resolve Foo.java
Password: password

Either of these will result in appropriate class schema objects being created in addition to the source schema object.

	
Note:

Oracle generally recommends compiling source on the client, whenever possible, and loading the .class files instead of the source files into the server.

Part III

Connection and Security

This part consists of chapters that discuss the use of data sources and URLs to connect to the database. It also includes chapters that discuss the security features supported by the Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and Thin drivers, Secure Sockets Layer (SSL) support in JDBC Thin driver, and middle-tier authentication through proxy connections.

Part III contains the following chapters:

	
Chapter 8, "Data Sources and URLs"

	
Chapter 9, "JDBC Client-Side Security Features"

	
Chapter 10, "Proxy Authentication"

8 Data Sources and URLs

This chapter discusses connecting applications to databases using Java Database Connectivity (JDBC) data sources, as well as the URLs that describe databases. This chapter contains the following sections:

	
Data Sources

	
Database URLs and Database Specifiers

Data Sources

Data sources are standard, general-use objects for specifying databases or other resources to use. The JDBC 2.0 extension application programming interface (API) introduced the concept of data sources. For convenience and portability, data sources can be bound to Java Naming and Directory Interface (JNDI) entities, so that you can access databases by logical names.

The data source facility provides a complete replacement for the previous JDBC DriverManager facility. You can use both facilities in the same application, but it is recommended that you transition your application to data sources.

This section covers the following topics:

	
Overview of Oracle Data Source Support for JNDI

	
Features and Properties of Data Sources

	
Creating a Data Source Instance and Connecting

	
Creating a Data Source Instance, Registering with JNDI, and Connecting

	
Supported Connection Properties

	
Using Roles for SYS Login

	
Configuring Database Remote Login

	
Bequeath Connection and SYS Logon

	
Properties for Oracle Performance Extensions

Overview of Oracle Data Source Support for JNDI

The JNDI standard provides a way for applications to find and access remote services and resources. These services can be any enterprise services. However, for a JDBC application, these services would include database connections and services.

JNDI allows an application to use logical names in accessing these services, removing vendor-specific syntax from application code. JNDI has the functionality to associate a logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required to use this functionality, but accessing databases through JNDI logical names makes the code more portable.

	
Note:

Using JNDI functionality requires the jndi.jar file to be in the CLASSPATH environment variable. This file is included with the Java products on the installation CD. You must add it to the CLASSPATH environment variable separately. You can also obtain it from the Sun Microsystems Web site, but it is advisable to use the version from Oracle, because it has been tested with the Oracle drivers.

Features and Properties of Data Sources

By using the data source functionality with JNDI, you do not need to register the vendor-specific JDBC driver class name and you can use logical names for URLs and other properties. This ensures that the code for opening database connections is portable to other environments.

The DataSource Interface and Oracle Implementation

A JDBC data source is an instance of a class that implements the standard javax.sql.DataSource interface:

public interface DataSource
{
 Connection getConnection() throws SQLException;
 Connection getConnection(String username, String password)
 throws SQLException;
 ...
}

Oracle implements this interface with the OracleDataSource class in the oracle.jdbc.pool package. The overloaded getConnection method returns a connection to the database.

To use other values, you can set properties using appropriate setter methods. For alternative user names and passwords, you can also use the getConnection method that takes these parameters as input. This would take priority over the property settings.

	
Note:

The OracleDataSource class and all subclasses implement the java.io.Serializable and javax.naming.Referenceable interfaces.

Properties of DataSource

The OracleDataSource class, as with any class that implements the DataSource interface, provides a set of properties that can be used to specify a database to connect to. These properties follow the JavaBeans design pattern.

Table 8-1 and Table 8-2 list OracleDataSource properties. The properties in Table 8-1 are standard properties according to the Sun Microsystems specification. The properties in Table 8-2 are Oracle extensions.

	
Note:

Oracle does not implement the standard roleName property.

Table 8-1 Standard Data Source Properties

	Name	Type	Description
	
databaseName

	
String

	
Name of the particular database on the server. Also known as the SID in Oracle terminology.

	
dataSourceName

	
String

	
Name of the underlying data source class. For connection pooling, this is an underlying pooled connection data source class. For distributed transactions, this is an underlying XA data source class.

	
description

	
String

	
Description of the data source.

	
networkProtocol

	
String

	
Network protocol for communicating with the server. For Oracle, this applies only to the JDBC Oracle Call Interface (OCI) drivers and defaults to tcp.

	
password

	
String

	
Password for the connecting user.

	
portNumber

	
int

	
Number of the port where the server listens for requests

	
serverName

	
String

	
Name of the database server

	
user

	
String

	
Name for the login

The OracleDataSource class implements the following setter and getter methods for the standard properties:

	
public synchronized void setDatabaseName(String dbname)

	
public synchronized String getDatabaseName()

	
public synchronized void setDataSourceName(String dsname)

	
public synchronized String getDataSourceName()

	
public synchronized void setDescription(String desc)

	
public synchronized String getDescription()

	
public synchronized void setNetworkProtocol(String np)

	
public synchronized String getNetworkProtocol()

	
public synchronized void setPassword(String pwd)

	
public synchronized void setPortNumber(int pn)

	
public synchronized int getPortNumber()

	
public synchronized void setServerName(String sn)

	
public synchronized String getServerName()

	
public synchronized void setUser(String user)

	
public synchronized String getUser()

	
Note:

For security reasons, there is no getPassword() method.

Table 8-2 Oracle Extended Data Source Properties

	Name	Type	Description
	
connectionCacheName

	
String

	
Specifies the name of the cache. This cannot be changed after the cache has been created.

	
connection­Cache­Properties

	
java.util.Properties

	
Specifies properties for implicit connection cache.

	
connectionCachingEnabled

	
Boolean

	
Specifies whether implicit connection cache is in use.

	
connectionProperties

	
java.util.Properties

	
Specifies the connection properties.

	
driverType

	
String

	
Specifies Oracle JDBC driver type. It can be one of oci, thin, or kprb.

	
fastConnectionFailoverEnabled

	
Boolean

	
Specifies whether Fast Connection Failover is in use.

	
implicitCachingEnabled

	
Boolean

	
Specifies whether the implicit statement connection cache is enabled.

	
loginTimeout

	
int

	
Specifies the maximum time in seconds that this data source will wait while attempting to connect to a database.

	
logWriter

	
java.io.PrintWriter

	
Specifies the log writer for this data source.

	
maxStatements

	
int

	
Specifies the maximum number of statements in the application cache.

	
serviceName

	
String

	
Specifies the database service name for this data source.

	
tnsEntry

	
String

	
Specifies the TNS entry name, relevant only for the OCI driver. The TNS entry name corresponds to the TNS entry specified in the tnsnames.ora configuration file. This property is only for OracleXADatasource.

Enable this OracleXADataSource property when using the Native XA feature with the OCI driver, to access Oracle pre-8.1.6 databases and later. If the tnsEntry property is not set when using the Native XA feature, then a SQLException with error code ORA-17207 is thrown

	
url

	
String

	
Specifies the URL of the database connection string. Provided as a convenience, it can help you migrate from an older Oracle Database. You can use this property in place of the Oracle tnsEntry and driverType properties and the standard portNumber, networkProtocol, serverName, and databaseName properties.

	
nativeXA

	
Boolean

	
Allows an OracleXADataSource using the Native XA feature with the OCI driver, to access Oracle pre-8.1.6 databases and later. If the nativeXA property is enabled, be sure to set the tnsEntry property as well. This property is only for OracleXADatasource.

This DataSource property defaults to false.

	
ONSConfiguration

	
String

	
Specifies the ONS configuration string that is used to remotely subscribe to FaN/ONS events.

	
Note:

	
This table omits properties that supported the deprecated connection cache based on OracleConnectionCache.

	
Because Native XA performs better than Java XA, use Native XA whenever possible.

The OracleDataSource class implements the following setXXX and getXXX methods for the Oracle extended properties:

	
String getConnectionCacheName()

	
java.util.Properties getConnectionCacheProperties()

	
void setConnectionCacheProperties(java.util.Properties cp)

	
java.util.Properties getConnectionProperties()

	
void setConnectionProperties(java.util.Properties cp)

	
Note:

Use the setConnectionProperties method to set the properties of the connection and the setConnectionCacheProperties method to set the properties of the connection cache.
For more information about the properties of the connection refer to "Supported Connection Properties".

For more information about the properties of the connection refer to "Connection Cache Properties".

	
boolean getConnectionCachingEnabled()

	
void setImplicitCachingEnabled()

	
String getDriverType()

	
void setDriverType(String dt)

	
String getURL()

	
void setURL(String url)

	
String getTNSEntryName()

	
void setTNSEntryName(String tns)

	
boolean getNativeXA()

	
void setNativeXA(boolean nativeXA)

	
String getONSConfiguration()

	
void setONSConfiguration(String onsConfig)

If you are using the server-side internal driver, that is, the driverType property is set to kprb, then any other property settings are ignored.

If you are using the JDBC Thin or OCI driver, then note the following:

	
A URL setting can include settings for user and password, as in the following example, in which case this takes precedence over individual user and password property settings:

jdbc:oracle:thin:scott/tiger@localhost:1521:orcl

	
Settings for user and password are required, either directly through the URL setting or through the getConnection call. The user and password settings in a getConnection call take precedence over any property settings.

	
If the url property is set, then any tnsEntry, driverType, portNumber, networkProtocol, serverName, and databaseName property settings are ignored.

	
If the tnsEntry property is set, which presumes the url property is not set, then any databaseName, serverName, portNumber, and networkProtocol settings are ignored.

	
If you are using an OCI driver, which presumes the driverType property is set to oci, and the networkProtocol is set to ipc, then any other property settings are ignored.

Also, note that getConnectionCacheName() will return the name of the cache only if the ConnectionCacheName property of the data source is set after caching is enabled on the data source.

Creating a Data Source Instance and Connecting

This section shows an example of the most basic use of a data source to connect to a database, without using JNDI functionality. Note that this requires vendor-specific, hard-coded property settings.

Create an OracleDataSource instance, initialize its connection properties as appropriate, and get a connection instance, as in the following example:

OracleDataSource ods = new OracleDataSource();
ods.setDriverType("oci");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");
Connection conn = ods.getConnection();

Or, optionally, override the user name and password, as follows:

Connection conn = ods.getConnection("bill", "lion");

Creating a Data Source Instance, Registering with JNDI, and Connecting

This section exhibits JNDI functionality in using data sources to connect to a database. Vendor-specific, hard-coded property settings are required only in the portion of code that binds a data source instance to a JNDI logical name. From that point onward, you can create portable code by using the logical name in creating data sources from which you will get your connection instances.

	
Note:

Creating and registering data sources is typically handled by a JNDI administrator, not in a JDBC application.

Initialize Data Source Properties

Create an OracleDataSource instance, and then initialize its properties as appropriate, as in the following example:

OracleDataSource ods = new OracleDataSource();
ods.setDriverType("oci");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");

Register the Data Source

Once you have initialized the connection properties of the OracleDataSource instance ods, as shown in the preceding example, you can register this data source instance with JNDI, as in the following example:

Context ctx = new InitialContext();
ctx.bind("jdbc/sampledb", ods);

Calling the JNDI InitialContext() constructor creates a Java object that references the initial JNDI naming context. System properties, which are not shown, instruct JNDI which service provider to use.

The ctx.bind call binds the OracleDataSource instance to a logical JNDI name. This means that anytime after the ctx.bind call, you can use the logical name jdbc/sampledb in opening a connection to the database described by the properties of the OracleDataSource instance ods. The logical name jdbc/sampledb is logically bound to this database.

The JNDI namespace has a hierarchy similar to that of a file system. In this example, the JNDI name specifies the subcontext jdbc under the root naming context and specifies the logical name sampledb within the jdbc subcontext.

The Context interface and InitialContext class are in the standard javax.naming package.

	
Note:

The JDBC 2.0 Specification requires that all JDBC data sources be registered in the jdbc naming subcontext of a JNDI namespace or in a child subcontext of the jdbc subcontext.

Open a Connection

To perform a lookup and open a connection to the database logically bound to the JNDI name, use the logical JNDI name. Doing this requires casting the lookup result, which is otherwise a Java Object, to OracleDataSource and then using its getConnection method to open the connection.

Here is an example:

OracleDataSource odsconn = (OracleDataSource)ctx.lookup("jdbc/sampledb");
Connection conn = odsconn.getConnection();

Supported Connection Properties

For a detailed list of connection properties that Oracle JDBC drivers support, see the Javadoc.

Using Roles for SYS Login

To specify the role for the SYS login, use the internal_logon connection property. To logon as SYS, set the internal_logon connection property to SYSDBA or SYSOPER.

	
Note:

The ability to specify a role is supported only for the sys user name.

For a bequeath connection, we can get a connection as SYS by setting the internal_logon property. For a remote connection, we need additional password file setting procedures.

Configuring Database Remote Login

Before the JDBC Thin driver can connect to the database as SYSDBA, you must configure the user, because Oracle Database security system requires a password file for remote connections as an administrator. Perform the following:

	
Set a password file on the server-side or on the remote database, using the orapwd password utility. You can add a password file for user sys as follows:

	
In UNIX

orapwd file=$ORACLE_HOME/dbs/orapw entries=200
Enter password: password

	
In Microsoft Windows

orapwd file=%ORACLE_HOME%\database\PWDsid_name.ora entries=200
Enter password: password

file must be the name of the password file. password is the password for the user SYS. It can be altered using the ALTER USER statement in SQL Plus. You should set entries to a value higher than the number of entries you expect.

The syntax for the password file name is different on Microsoft Windows and UNIX.

	
See Also:

Oracle Database Administrator's Guide

	
Enable remote login as sysdba. This step grants SYSDBA and SYSOPER system privileges to individual users and lets them connect as themselves.

Stop the database, and add the following line to initservice_name.ora, in UNIX, or init.ora, in Microsoft Windows:

remote_login_passwordfile=exclusive

The initservice_name.ora file is located at ORACLE_HOME/dbs/ and also at ORACLE_HOME/admin/db_name/pfile/. Ensure that you keep the two files synchronized.

The init.ora file is located at %ORACLE_BASE%\ADMIN\db_name\pfile\.

	
Change the password for the SYS user. This is an optional step.

PASSWORD sys
 Changing password for sys
New password: password
Retype new password: password

	
Verify whether SYS has the SYSDBA privilege.

SQL> select * from v$pwfile_users;
USERNAME SYSDB SYSOP
---------------------- --------- ---------
SYS TRUE TRUE

	
Restart the remote database.

Example 8-1 Using SYS Login To Make a Remote Connection

//This example works regardless of language settings of the database.
 /** case of remote connection using sys **/
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;
// create an OracleDataSource
OracleDataSource ods = new OracleDataSource();
// set connection properties
java.util.Properties prop = new java.util.Properties();
prop.put("user", "sys");
prop.put("password", "sys");
prop.put("internal_logon", "sysoper");
ods.setConnectionProperties(prop);
// set the url
// the url can use oci driver as well as:
// url = "jdbc:oracle:oci8:@inst1"; the inst1 is a remote database
String url = "jdbc:oracle:thin:@//myHost:1521/service_name";
ods.setURL(url);
// get the connection
Connection conn = ods.getConnection();
...

Bequeath Connection and SYS Logon

The following example illustrates how to use the internal_logon and SYSDBA arguments to specify the SYS login. This example works regardless of the database's national-language settings of the database.

/** Example of bequeath connection **/
import java.sql.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.*;

// create an OracleDataSource instance
OracleDataSource ods = new OracleDataSource();

// set neccessary properties
java.util.Properties prop = new java.util.Properties();
prop.put("user", "sys");
prop.put("password", "sys");
prop.put("internal_logon", "sysdba");
ods.setConnectionProperties(prop);

// the url for bequeath connection
String url = "jdbc:oracle:oci8:@";
ods.setURL(url);

// retrieve the connection
Connection conn = ods.getConnection();
...

Properties for Oracle Performance Extensions

Some of the connection properties are for use with Oracle performance extensions. Setting these properties is equivalent to using corresponding methods on the OracleConnection object, as follows:

	
Setting the defaultRowPrefetch property is equivalent to calling setDefaultRowPrefetch.

	
Setting the remarksReporting property is equivalent to calling setRemarksReporting.

	
See Also:

"DatabaseMetaData TABLE_REMARKS Reporting"

	
Setting the defaultBatchValue property is equivalent to calling setDefaultExecuteBatch

	
See Also:

"Oracle Update Batching"

Example

The following example shows how to use the put method of the java.util.Properties class, in this case, to set Oracle performance extension parameters.

//import packages and register the driver
import java.sql.*;
import java.math.*;
import oracle.jdbc.*;
import oracle.jdbc.pool.OracleDataSource;

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password", "tiger");
info.put ("defaultRowPrefetch","20");
info.put ("defaultBatchValue", "5");

//specify the datasource object
OracleDataSource ods = new OracleDataSource();
ods.setURL("jdbc:oracle:thin:@//myhost:1521/orcl");
ods.setUser("scott");
ods.setPassword("tiger");
ods.setConnectionProperties(info);
...

Database URLs and Database Specifiers

Database URLs are strings. The complete URL syntax is:

jdbc:oracle:driver_type:[username/password]@database_specifier

	
Note:

	
The brackets indicate that the username/password pair is optional.

	
kprb, the internal server-side driver, uses an implicit connection. Database URLs for the server-side driver end after the driver_type.

The first part of the URL specifies which JDBC driver is to be used. The supported driver_type values are thin, oci, and kprb.

The remainder of the URL contains an optional user name and password separated by a slash, an @, and the database specifier, which uniquely identifies the database to which the application is connected. Some database specifiers are valid only for the JDBC Thin driver, some only for the JDBC OCI driver, and some for both.

Database Specifiers

Table 8-3, shows the possible database specifiers, listing which JDBC drivers support each specifier.

	
Note:

	
Starting Oracle Database 10g, Oracle Service IDs are not supported.

	
Starting Oracle Database 10g, Oracle no longer supports Oracle Names as a naming method.

Table 8-3 Supported Database Specifiers

	Specifier	Supported Drivers	Example
	
Oracle Net connection descriptor

	
Thin, OCI

	
Thin, using an address list:

url="jdbc:oracle:thin:@(DESCRIPTION=
 (LOAD_BALANCE=on)
(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))
 (ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

OCI, using a cluster:

"jdbc:oracle:oci:@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias)
 (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=service_name)))"

	
Thin-style service name

	
Thin

	
Refer to "Thin-style Service Name Syntax" for details.

"jdbc:oracle:thin:scott/tiger@//myhost:1521/myservicename"

	
LDAP syntax

	
Thin

	
Refer to LDAP Syntax for details.

	
Bequeath connection

	
OCI

	
Empty. That is, nothing after @

"jdbc:oracle:oci:scott/tiger/@"

	
TNSNames alias

	
Thin, OCI

	
Refer to "TNSNames Alias Syntax" for details.

Thin-style Service Name Syntax

Thin-style service names are supported only by the JDBC Thin driver. The syntax is:

@//host_name:port_number/service_name

For example:

jdbc:oracle:thin:scott/tiger@//myhost:1521/myservicename

	
Note:

The JDBC Thin driver supports only the TCP/IP protocol.

TNSNames Alias Syntax

You can find the available TNSNAMES entries listed in the tnsnames.ora file on the client computer from which you are connecting. On Windows, this file is located in the ORACLE_HOME\NETWORK\ADMIN directory. On UNIX systems, you can find it in the ORACLE_HOME directory or the directory indicated in your TNS_ADMIN environment variable.

For example, if you want to connect to the database on host myhost as user scott with password tiger that has a TNSNAMES entry of MyHostString, then write the following:

OracleDataSource ods = new OracleDataSource();
ods.setTNSEntryName("MyTNSAlias");
ods.setUser("scott");
ods.setPassword("tiger");
ods.setDriverType("oci");
Connection conn = ods.getConnection();

The oracle.net.tns_admin system property must be set to the location of the tnsnames.ora file so that the JDBC Thin driver can locate the tnsnames.ora file. For example:

System.setProperty("oracle.net.tns_admin", "c:\\Temp");
String url = "jdbc:oracle:thin:@tns_entry";

	
Note:

When using TNSNames with the JDBC Thin driver, you must set the oracle.net.tns_admin property to the directory that contains your tnsnames.ora file.

java -Doracle.net.tns_admin=$ORACLE_HOME/network/admin

LDAP Syntax

An example of database specifier using the Lightweight Directory Access Protocol (LDAP) syntax is as follows:

"jdbc:oracle:thin:@ldap://ldap.acme.com:7777/sales,cn=OracleContext,dc=com"

When using SSL, change this to:

"jdbc:oracle:thin:@ldaps://ldap.acme.com:7777/sales,cn=OracleContext,dc=com"

	
Note:

The JDBC Thin driver can use LDAP over SSL to communicate with Oracle Internet Directory if you substitute ldaps: for ldap: in the database specifier. The LDAP server must be configured to use SSL. If it is not, then the connection attempt will hang.

The JDBC Thin driver supports failover of a list of LDAP servers during the service name resolution process, without the need for a hardware load balancer. Also, client-side load balancing is supported for connecting to LDAP servers. A list of space separated LDAP URLs syntax is used to support failover and load balancing.

When a list of LDAP URLs is specified, both failover and load balancing are enabled by default. The oracle.net.ldap_loadbalance connection property can be used to disable load balancing, and the oracle.net.ldap_failover connection property can be used to disable failover.

An example, which uses failover, but with client-side load balancing disabled, is as follows:

Properties prop = new Properties();
String url = "jdbc:oracle:thin:@ldap://ldap1.acme.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb " +
"ldap://ldap2.acme.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb " +
"ldap://ldap3.acme.com:3500/cn=salesdept,cn=OracleContext,dc=com/salesdb";

prop.put("oracle.net.ldap_loadbalance", "OFF");
OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setConnectionProperties(prop);

The JDBC Thin driver supports LDAP nonanonymous bind. A set of JNDI environment properties, which contains authentication information, can be specified for a data source. If a LDAP server is configured as not allowing anonymous bind, then authentication information must be provided to connect to the LDAP server. The following example shows a simple clear-text password authentication:

String url = "jdbc:oracle:thin:@ldap://ldap.acme.com:7777/sales,cn=salesdept,cn=OracleContext,dc=com";

Properties prop = new Properties();
prop.put("java.naming.security.authentication", "simple");
prop.put("java.naming.security.principal","cn=salesdept,cn=OracleContext,dc=com");
prop.put("java.naming.security.credentials", "mysecret");

OracleDataSource ods = new OracleDataSource();
ods.setURL(url);
ods.setConnectionProperties(prop);

Since JDBC passes down the three properties to JNDI, the authentication mechanism chosen by client is consistent with how these properties are interpreted by JNDI. For example, if the client specifies authentication information without explicitly specifying the java.naming.security.authentication property, then the default authentication mechanism is "simple". Please refer to relevant JDNI documentation for details.

9 JDBC Client-Side Security Features

This chapter discusses support in the Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and JDBC Thin drivers for login authentication, data encryption, and data integrity, particularly, with respect to features of the Oracle Advanced Security option.

Oracle Advanced Security, previously known as the Advanced Networking Option (ANO) or Advanced Security Option (ASO), provides industry standards-based data encryption, data integrity, third-party authentication, single sign-on, and access authorization. From 11g release 1 (11.1), both the JDBC OCI and Thin drivers support all the Oracle Advanced Security features. Earlier releases of the JDBC drivers did not support some of the ASO features.

	
Note:

This discussion is not relevant to the server-side internal driver, given that all communication through that driver is completely internal to the server.

This chapter contains the following sections:

	
Support for Oracle Advanced Security

	
Support for Login Authentication

	
Support for Strong Authentication

	
Support for OS Authentication

	
Support for Data Encryption and Integrity

	
Support for SSL

	
Support for Kerberos

	
Support for RADIUS

	
Secure External Password Store

Support for Oracle Advanced Security

Oracle Advanced Security provides the following security features:

	
Data Encryption

Sensitive information communicated over enterprise networks and the Internet can be protected by using encryption algorithms, which transform information into a form that can be deciphered only with a decryption key. Some of the supported encryption algorithms are RC4, DES, 3DES, and AES.

To ensure data integrity during transmission, Oracle Advanced Security generates a cryptographically secure message digest, using MD5 or SHA-1 hashing algorithms, and includes it with each message sent across a network. This protects the communicated data from attacks, such as data modification, deleted packets, and replay attacks.

	
Strong Authentication

To ensure network security in distributed environments, it is necessary to authenticate the user and check his credentials. Password authentication is the most common means of authentication. Oracle Advanced Security enables strong authentication with Oracle authentication adapters, which support various third-party authentication services, including SSL with digital certificates. Oracle Advanced Security supports the following industry-standard authentication methods:

	
Kerberos

	
Remote Authentication Dial-In User Service (RADIUS)

	
Distributed Computing Environment (DCE)

	
Secure Sockets Layer (SSL)

	
Tip:

Oracle Database Advanced Security Administrator's Guide

JDBC OCI Driver Support for Oracle Advanced Security

If you are using the JDBC OCI driver, which presumes you are running from a computer with an Oracle client installation, then support for Oracle Advanced Security and incorporated third-party features is fairly similar to the support provided by in any Oracle client situation. Your use of Advanced Security features is determined by related settings in the sqlnet.ora file on the client computer.

Starting from Oracle Database 11g Release 1 (11.1), the JDBC OCI driver attempts to use external authentication if you try connecting to a database without providing a password. The following are some examples using the JDBC OCI driver to connect to a database without providing a password:

SSL Authentication

Example 9-1 uses SSL authentication to connect to the database.

Example 9-1

import java.sql.*;
import java.util.Properties;

public class test
{
 public static void main(String [] args) throws Exception
 {
 String url = "jdbc:oracle:oci:@"
 +"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=stadh25)(PORT=1529))"
 +"(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))";
 Driver driver = new oracle.jdbc.OracleDriver();
 Properties props = new Properties();
 Connection conn = driver.connect(url, props);
 conn.close();
 }
}

Using Data Source

Example 9-2 uses a data source to connect to the database.

Example 9-2

import java.sql.*;
import javax.sql.*;
import java.util.Properties;
import oracle.jdbc.pool.*;

public class testpool {
 public static void main(String args) throws Exception
 { String url = "jdbc:oracle:oci:@" +"(DESCRIPTION=(ADDRESS=(PROTOCOL=tcps)(HOST=stadh25)(PORT=1529))"
 +"(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))";
 OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();
 ocpds.setURL(url);
 PooledConnection pc = ocpds.getPooledConnection();
 Connection conn = pc.getConnection();
 }
 }

	
Note:

The key exception to the preceding, with respect to Java, is that the Secure Sockets Layer (SSL) protocol is supported by the Oracle JDBC OCI drivers only if you use native threads in your application. This requires special attention, because green threads are generally the default.

JDBC Thin Driver Support for Oracle Advanced Security

The JDBC Thin driver cannot assume the existence of an Oracle client installation or the presence of the sqlnet.ora file. Therefore, it uses a Java approach to support Oracle Advanced Security. Java classes that implement Oracle Advanced Security are included in the ojdbc5.jar and ojdbc6.jar files. Security parameters for encryption and integrity, usually set in sqlnet.ora, are set using a Java Properties object or through system properties.

Support for Login Authentication

Basic login authentication through JDBC consists of user names and passwords, as with any other means of logging in to an Oracle server. Specify the user name and password through a Java properties object or directly through the getConnection method call. This applies regardless of which client-side Oracle JDBC driver you are using, but is irrelevant if you are using the server-side internal driver, which uses a special direct connection and does not require a user name or password.

Starting with 11g release 1 (11.1), the Oracle JDBC Thin driver implements a challenge-response protocol to authenticate the user.

Support for Strong Authentication

Oracle Advanced Security enables Oracle Database users to authenticate externally. External authentication can be with RADIUS, KERBEROS, Certificate-Based Authentication, Token Cards, Smart Cards, and DCE. This is called strong authentication. Oracle JDBC drivers provide support for the following strong authentication methods:

	
Kerberos

	
RADIUS

	
SSL (certificate-based authentication)

Support for OS Authentication

Operating System (OS) authentication allows Oracle to pass control of user authentication to the operating system. It allows the users to connect to the database by authenticating their OS username in the database. No password is associated with the account since it is assumed that OS authentication is sufficient. In other words, the server delegates the authentication to the client OS. You need to perform the following steps to achieve this:

	
Use the following command to check the value of the Oracle OS_AUTHENT_PREFIX initialization parameter:

SQL> SHOW PARAMETER os_authent_prefix
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
os_authent_prefix string ops$
SQL>

	
Note:

Remember the OS authentication prefix. You need to create a database user to allow an OS authenticated connection, where the username must be the prefix value concatenated to the OS username.

	
Add the following line in the t_init1.ora file:

REMOTE_OS_AUTHENT = TRUE

When a connection is attempted from the local database server, the OS username is passed to the Oracle server. If the username is recognized, the Oracle the connection is accepted, otherwise the connection is rejected.

Configuration Steps for Linux

The configuration steps necessary to set up OS authentication on Linux are the following:

	
Use the following commands to create an OS user w_rose:

useradd w_rose
passwd w_rose
Changing password for w_rose
New password: password
Retype new password: password

	
Use the following command to create a database user to allow an OS authenticated connection:

CREATE USER ops$w_rose IDENTIFIED EXTERNALLY;
GRANT CONNECT TO ops$w_rose;

	
Use the following commands to test the OS authentication connection:

su - w_rose
export ORACLE_HOME=/u01/app/oracle/product/10.1.0/db_1
export PATH=$PATH:$ORACLE_HOME/bin
export ORACLE_SID=DEV1
sqlplus /

SQL*Plus: Release 10.1.0.3.0 - Production on Wed Jun 7 08:41:15 2006

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, Oracle Label Security, OLAP and Data Mining options

SQL>

Configuration Steps for Windows

The configuration steps necessary to set up OS authentication on Windows are the following:

	
Create a local user, say, w_rose, using the Computer Management dialog box. For this you have to do the following:

	
Click Start.

	
From the Start menu, select Programs, then select Administrative Tools and then select Computer Management.

	
Expand Local Users and Groups by clicking on the Plus ("+") sign.

	
Click Users.

	
Select New User from the Action menu.

	
Enter details of the user in the New User dialog box and click Create.

	
Note:

The preceding steps are only for creating a local user. Domain users can be created in Active Directory.

	
Use the following command to create a database user to allow an OS authenticated connection:

CREATE USER "OPS$yourdomain.com\p_floyd" IDENTIFIED EXTERNALLY;
GRANT CONNECT TO "OPS$yourdomain.com\p_floyd";

	
Note:

When you create the database user in Windows environment, the user name should be in the following format:

<OS_authentication_prefix_parameter>$<DOMAIN>\<OS_user_name>

When using a Windows server, there is an additional consideration. The following option must be set in the %ORACLE_HOME%\network\admin\sqlnet.ora file:

SQLNET.AUTHENTICATION_SERVICES= (NTS)

	
Use the following commands to test the OS authentication connection:

C:\> set ORACLE_SID=DB11G
C:\> sqlplus /
SQL*Plus: Release 11.1.0.1.0 - Production on Thu July 12 11:47:01 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.1.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
SQL>

JDBC Code Using OS Authentication

Now that you have set up OS authentication to connect to the database, you can use the following JDBC code for connecting to the database:

String url = "jdbc:oracle:thin:@oracleserver.mydomain.com:5521:dbja"
Driver driver = new oracle.jdbc.OracleDriver();
DriverManager.registerDriver(driver);
Properties props = new Properties();
Connection conn = DriverManager.getConnection(url, props);

The preceding code assumes that it is executed by p_floyd on the client machine. The JDBC drivers retrieve the OS username from the user.name system property that is set by the JVM. As a result, the following thin driver-specific error no longer exists:

ORA-17443=Null user or password not supported in THIN driver

	
Note:

By default, the JDBC driver retrieves the OS username from the user.name system property, which is set by the JVM. If the JDBC driver is unable to retrieve this system property or if you want to override the value of this system property, then you can use the OracleConnection.CONNECTION_PROPERTY_THIN_VSESSION_OSUSER connection property. For more information, see Oracle Javadoc.

Support for Data Encryption and Integrity

You can use Oracle Advanced Security data encryption and integrity features in your Java database applications, depending on related settings in the server. When using the JDBC OCI driver, set parameters as you would in any Oracle client situation. When using the Thin driver, set parameters through a Java properties object.

Encryption is enabled or disabled based on a combination of the client-side encryption-level setting and the server-side encryption-level setting. Similarly, integrity is enabled or disabled based on a combination of the client-side integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels, REJECTED, ACCEPTED, REQUESTED, and REQUIRED. Table 9-1 shows how these possible settings on the client-side and server-side combine to either enable or disable the feature. By default, remote OS authentication (through TCP) is disabled in the database for obvious security reasons.

Table 9-1 Client/Server Negotiations for Encryption or Integrity

	
	Client Rejected	Client Accepted (default)	Client Requested	Client Required
	
Server Rejected

	
OFF

	
OFF

	
OFF

	
connection fails

	
Server Accepted (default)

	
OFF

	
OFF

	
ON

	
ON

	
Server Requested

	
OFF

	
ON

	
ON

	
ON

	
Server Required

	
connection fails

	
ON

	
ON

	
ON

Table 9-1 shows, for example, that if encryption is requested by the client, but rejected by the server, it is disabled. The same is true for integrity. As another example, if encryption is accepted by the client and requested by the server, it is enabled. And, again, the same is true for integrity.

	
See Also:

Oracle Database Advanced Security Administrator's Guide

	
Note:

The term checksum still appears in integrity parameter names, but is no longer used otherwise. For all intents and purposes, checksum and integrity are synonymous.

This section covers the following topics:

	
JDBC OCI Driver Support for Encryption and Integrity

	
JDBC Thin Driver Support for Encryption and Integrity

	
Setting Encryption and Integrity Parameters in Java

JDBC OCI Driver Support for Encryption and Integrity

If you are using the JDBC OCI driver, which presumes an Oracle-client setting with an Oracle client installation, then you can enable or disable data encryption or integrity and set related parameters as you would in any Oracle client situation, through settings in the SQLNET.ORA file on the client.

To summarize, the client parameters are shown in Table 9-2:

Table 9-2 OCI Driver Client Parameters for Encryption and Integrity

	Parameter Description	Parameter Name	Possible Settings
	
Client encryption level

	
SQLNET.ENCRYPTION_CLIENT

	
REJECTED ACCEPTED REQUESTED REQUIRED

	
Client encryption selected list

	
SQLNET.ENCRYPTION_TYPES_CLIENT

	
RC4_40, RC4_56, DES, DES40, AES128, AES192, AES256, 3DES112, 3DES168

(see Note)

	
Client integrity level

	
SQLNET.CRYPTO_CHECKSUM_CLIENT

	
REJECTED ACCEPTED REQUESTED REQUIRED

	
Client integrity selected list

	
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

	
MD5, SHA-1

	
Note:

For the Oracle Advanced Security domestic edition only, settings of RC4_128 and RC4_256 are also possible.

	
See Also:

Oracle Database Advanced Security Administrator's Guide

JDBC Thin Driver Support for Encryption and Integrity

The JDBC Thin driver support for data encryption and integrity parameter settings parallels the JDBC OCI driver support discussed in the preceding section. Corresponding parameters can be set through a Java properties object that you would then be used when opening a database connection.

Table 9-3 lists the parameter information for the JDBC Thin driver. These parameters are defined in the oracle.jdbc.OracleConnection interface.

Table 9-3 Thin Driver Client Parameters for Encryption and Integrity

	Parameter Name	Parameter Type	Possible Settings
	
CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL

	
String

	
REJECTED ACCEPTED REQUESTED REQUIRED

	
CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES

	
String

	
AES256, AES192, AES128, 3DES168, 3DES112, DES56C, DES40C, RC4_256, RC4_128, RC4_40, RC4_56

	
CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL

	
String

	
REJECTED ACCEPTED REQUESTED REQUIRED

	
CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES

	
String

	
MD5, SHA1

	
Note:

	
Because Oracle Advanced Security support for the Thin driver is incorporated directly into the JDBC classes JAR file, there is only one version, not separate domestic and export editions. Only parameter settings that would be suitable for an export edition are possible.

	
The letter C in DES40C and DES56C refers to Cipher Block Chaining (CBC) mode.

Setting Encryption and Integrity Parameters in Java

Use a Java properties object, that is, an instance of java.util.Properties, to set the data encryption and integrity parameters supported by the JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the parameters in Table 9-3, and then uses the properties object in opening a connection to the database:

...
Properties prop = new Properties();
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL, "REQUIRED");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES, "(DES40C)");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL, "REQUESTED");
prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES, "(MD5)");

OracleDataSource ods = new OracleDataSource();ods.setProperties(prop);ods.setURL("jdbc:oracle:thin:@localhost:1521:main");
Connection conn = ods.getConnection();
...

The parentheses around the values encryption type and checksum type allow for lists of values. When multiple values are supplied, the server and the client negotiate to determine which value is to be actually used.

Example

Example 9-3 is a complete class that sets data encryption and integrity parameters before connecting to a database to perform a query.

	
Note:

In the example, the string "REQUIRED" is retrieved dynamically through functionality of the AnoServices and Service classes. You have the option of retrieving the strings in this manner or hardcoding them as in the previous examples

Before running this example, you must turn on encryption in the sqlnet.ora file. For example, the following lines will turn on AES256, AES192, and AES128 for the encryption and MD5 and SHA1 for the checksum:

 SQLNET.ENCRYPTION_SERVER = ACCEPTED
 SQLNET.CRYPTO_CHECKSUM_SERVER = ACCEPTED
 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (MD5, SHA1)
 SQLNET.ENCRYPTION_TYPES_SERVER= (AES256, AES192, AES128)
 SQLNET.CRYPTO_SEED = 2z0hslkdharUJCFtkwbjOLbgwsj7vkqt3bGoUylihnvkhgkdsbdskkKGhdk

Example 9-3 Setting Data Encryption and Integrity Parameters

import java.sql.*;
import java.util.Properties;
import oracle.net.ano.AnoServices;
import oracle.jdbc.*;

public class DemoAESAndSHA1
{
 static final String USERNAME= "scott";
 static final String PASSWORD= "tiger";
 static final String URL = "jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=WXYZ)(PORT=5561))"
 +"(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))";

 public static final void main(String[] argv)
 {
 DemoAESAndSHA1 demo = new DemoAESAndSHA1();
 try
 {
 demo.run();
 }catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }

 void run() throws SQLException
 {
 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();

 // We require the connection to be encrypted with either AES256 or AES192.
 // If the database doesn't accept such a security level, then the connection attempt will fail.

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL,AnoServices.ANO_REQUIRED);
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES,"(" + AnoServices.ENCRYPTION_AES256
 + "," + AnoServices.ENCRYPTION_AES192 + ")");

 // We also require the use of the SHA1 algorithm for data integrity checking.

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,AnoServices.ANO_REQUIRED);
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES,"(" + AnoServices.CHECKSUM_SHA1 + ")");
 prop.setProperty("user",DemoAESAndSHA1.USERNAME);
 prop.setProperty("password",DemoAESAndSHA1.PASSWORD);
 OracleConnection oraConn = (OracleConnection)dr.connect(DemoAESAndSHA1.URL,prop);
 System.out.println("Connection created! Encryption algorithm is: " + oraConn.getEncryptionAlgorithmName() + ", data
 integrity algorithm is: " + oraConn.getDataIntegrityAlgorithmName());
 oraConn.close();
 }

}

Support for SSL

Oracle Database 11g provides support for the Secure Sockets Layer (SSL) protocol. SSL is a widely used industry standard protocol that provides secure communication over a network. SSL provides authentication, data encryption, and data integrity. It provides a secure enhancement to the standard TCP/IP protocol, which is used for Internet communication..

SSL uses digital certificates that comply with the X.509v3 standard for authentication and a public and private key pair for encryption. SSL also uses secret key cryptography and digital signatures to ensure privacy and integrity of data. When a network connection over SSL is initiated, the client and server perform an SSL handshake that includes the following steps:

	
Client and server negotiate about the cipher suites to use. This includes deciding on the encryption algorithms to be used for data transfer.

	
Server sends its certificate to the client, and the client verifies that the certificate was signed by a trusted certification authority (CA). This step verifies the identity of the server.

	
If client authentication is required, the client sends its own certificate to the server, and the server verifies that the certificate was signed by a trusted CA.

	
Client and server exchange key information using public key cryptography. Based on this information, each generates a session key. All subsequent communications between the client and the server is encrypted and decrypted by using this set of session keys and the negotiated cipher suite.

	
Note:

In Oracle Database 11g Release 1 (11.1), SSL authentication is supported in the thin driver. So, you do not need to provide a username/password pair if you are using SSL authentication.

SSL Terminology

The following terms are commonly used in the SSL context:

	
certificate: A certificate is a digitally signed document that binds a public key with an entity. The certificate can be used to verify that the public key belongs to that individual.

	
certification authority: A certification authority (CA), also known as certificate authority, is an entity which issues digitally signed certificates for use by other parties.

	
cipher suite: A cipher suite is a set of cryptographic algorithms and key sizes used to encrypt data sent over an SSL-enabled network.

	
private key: A private key is a secret key, which is never transmitted over a network. The private key is used to decrypt a message that has been encrypted using the corresponding public key. It is also used to sign certificates. The certificate is verified using the corresponding public key.

	
public key: A public key is an encryption key that can be made public or sent by ordinary means such as an e-mail message. The public key is used for encrypting the message sent over SSL. It is also used to verify a certificate signed by the corresponding private key.

	
wallet: A wallet is a password-protected container that is used to store authentication and signing credentials, including private keys, certificates, and trusted certificates required by SSL.

Java Version of SSL

The Java Secure Socket Extension (JSSE) provides a framework and an implementation for a Java version of the SSL and TLS protocols. JSSE provides support for data encryption, server and client authentication, and message integrity. It abstracts the complex security algorithms and handshaking mechanisms and simplifies application development by providing a building block for application developers, which they can directly integrate into their applications. JSSE is integrated into Java Development Kit (JDK) 1.4 and later, and supports SSL version 2.0 and 3.0.

Oracle strongly recommends that you have a clear understanding of the JavaTM Secure Socket Extension (JSSE) framework by Sun Microsystems before using SSL in the Oracle JDBC drivers.

The JSSE standard application programming interface (API) is available in the javax.net, javax.net.ssl, and javax.security.cert packages. These packages provide classes for creating and configuring sockets, server sockets, SSL sockets, and SSL server sockets. The packages also provide a class for secure HTTP connections, a public key certificate API compatible with JDK1.1-based platforms, and interfaces for key and trust managers.

SSL works the same way, as in any networking environment, in Oracle Database 11g. This section covers the following:

	
Managing Certificates and Wallets

	
Keys and certificates containers

Managing Certificates and Wallets

To establish an SSL connection with a JDBC client, Thin or OCI, Oracle database server sends its certificate, which is stored in its wallet. The client may or may not need a certificate or wallet depending on the server configuration.

The Oracle JDBC Thin driver uses the JSSE framework to create an SSL connection. It uses the default provider (SunJSSE) to create an SSL context. However you can provide your own provider.

You do not need a certificate for the client, unless the SSL_CLIENT_AUTHENTICATION parameter is set on the server.

Keys and certificates containers

Java clients can use multiple types of containers such as Oracle wallets, JKS, PKCS12, and so on, as long as a provider is available. For Oracle wallets, OraclePKI provider must be used because the PKCS12 support provided by SunJSSE provider does not support all the features of PKCS12. In order to use OraclePKI provider, the following JARs are required:

	
oraclepki.jar

	
osdt_cert.jar

	
osdt_core.jar

All these JAR files should be under $ORACLE_HOME/jlib directory.

Support for Kerberos

Oracle Database 11g Release 1 (11.1) introduces support for Kerberos. Kerberos is a network authentication protocol that provides the tools of authentication and strong cryptography over the network. Kerberos helps you secure your information systems across your entire enterprise by using secret-key cryptography. The Kerberos protocol uses strong cryptography so that a client or a server can prove its identity to its server or client across an insecure network connection. After a client and server have used Kerberos to prove their identity, they can also encrypt all of their communications to assure privacy and data integrity as they go about their business.

The Kerberos architecture is centered around a trusted authentication service called the key distribution center, or KDC. Users and services in a Kerberos environment are referred to as principals; each principal shares a secret, such as a password, with the KDC. A principal can be a user such as scott or a database server instance.

Configuring Oracle Database to Use Kerberos

Perform the following steps to configure Oracle Database to use Kerberos:

	
Use the following command to connect to the database:

SQL> connect system
Enter password: password

	
Use the following commands to create a user CLIENT@US.ORACLE.COM that is identified externally:

SQL> create user "CLIENT@US.ORACLE.COM" identified externally;
SQL> grant create session to "CLIENT@US.ORACLE.COM";

	
Use the following commands to connect to the database as sysdba and dismount it:

SQL> connect / as sysdba
SQL> shutdown immediate;

	
Add the following line to $T_WORK/t_init1.ora file:

OS_AUTHENT_PREFIX=""

	
Use the following command to restart the database:

SQL> startup pfile=t_init1.ora

	
Modify the sqlnet.ora file to include the following lines:

names.directory_path = (tnsnames)
#Kerberos
sqlnet.authentication_services = (beq,kerberos5)
sqlnet.authentication_kerberos5_service = dbji
sqlnet.kerberos5_conf = /home/Jdbc/Security/kerberos/krb5.conf
sqlnet.kerberos5_keytab = /home/Jdbc/Security/kerberos/dbji.oracleserver
sqlnet.kerberos5_conf_mit = true
sqlnet.kerberos_cc_name = /tmp/krb5cc_5088
logging (optional):
trace_level_server=16
trace_directory_server=/scratch/sqlnet/

	
Use the following commands to verify that you can connect through SQL*Plus:

> kinit client
> klist
 Ticket cache: FILE:/tmp/krb5cc_5088
 Default principal: client@US.ORACLE.COM

 Valid starting Expires Service principal
 06/22/06 07:13:29 06/22/06 17:13:29 krbtgt/US.ORACLE.COM@US.ORACLE.COM

 Kerberos 4 ticket cache: /tmp/tkt5088
 klist: You have no tickets cached
> sqlplus '/@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracleserver.mydomain.com)(PORT=5529))
(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))'

Code Example

This following example demonstrates the new Kerberos authentication feature that is part of Oracle Database 11g Release 1 (11.1) JDBC thin driver. This demo covers two scenarios:

	
In the first scenario, the OS maintains the user name and credentials. The credentials are stored in the cache and the driver retrieves the credentials before trying to authenticate to the server. This scenario is in the module connectWithDefaultUser().

	
Note:

	Before you run this part of the demo, use the following command to verify that you have valid credentials:

> /usr/kerberos/bin/kinit client
where, the password is welcome.

	
Use the following command to list your tickets:

> /usr/kerberos/bin/klist

	
The second scenario covers the case where the application wants to control the user credentials. This is the case of the application server where multiple web users have their own credentials. This scenario is in the module connectWithSpecificUser().

	
Note:

To run this demo, you need to have a working setup, that is, a Kerberos server up and running, and an Oracle database server that is configured to use Kerberos authentication. You then need to change the URLs used in the example to compile and run it.

Example 9-4

import com.sun.security.auth.module.Krb5LoginModule;
import java.io.IOException;

import java.security.PrivilegedExceptionAction;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

import java.util.HashMap;
import java.util.Properties;
import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;

import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.net.ano.AnoServices;
public class KerberosJdbcDemo
{
 String url ="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+
 "(HOST=oracleserver.mydomain.com)(PORT=5561))(CONNECT_DATA=" +
 "(SERVICE_NAME=mydatabaseinstance)))";

 public static void main(String[] arv)
 {
 /* If you see the following error message [Mechanism level: Could not load
 * configuration file c:\winnt\krb5.ini (The system cannot find the path
 * specified] it's because the JVM cannot locate your kerberos config file.
 * You have to provide the location of the file. For example, on Windows,
 * the MIT Kerberos client uses the config file: C\WINDOWS\krb5.ini:
 */
 // System.setProperty("java.security.krb5.conf","C:\\WINDOWS\\krb5.ini");
 System.setProperty("java.security.krb5.conf","/home/Jdbc/Security/kerberos/krb5.conf");

 KerberosJdbcDemo kerberosDemo = new KerberosJdbcDemo();
 try
 {
 System.out.println("Attempt to connect with the default user:");
 kerberosDemo.connectWithDefaultUser();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 try
 {
 System.out.println("Attempt to connect with a specific user:");
 kerberosDemo.connectWithSpecificUser();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 void connectWithDefaultUser() throws SQLException
 {
 OracleDriver driver = new OracleDriver();
 Properties prop = new Properties();

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES,
 "("+AnoServices.AUTHENTICATION_KERBEROS5+")");
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5_MUTUAL,
 "true");

 /* If you get the following error [Unable to obtain Princpal Name for
 * authentication] although you know that you have the right TGT in your
 * credential cache, then it's probably because the JVM can't locate your
 * cache.
 *
 * Note that the default location on windows is "C:\Documents and Settings\krb5cc_username".
 */

 // prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5_CC_NAME,
 /*
 On linux:
 > which kinit
 /usr/kerberos/bin/kinit
 > ls -l /etc/krb5.conf
 lrwxrwxrwx 1 root root 47 Jun 22 06:56 /etc/krb5.conf -> /home/Jdbc/Security/kerberos/krb5.conf

 > kinit client
 Password for client@US.ORACLE.COM:
 > klist
 Ticket cache: FILE:/tmp/krb5cc_5088
 Default principal: client@US.ORACLE.COM

 Valid starting Expires Service principal
 11/02/06 09:25:11 11/02/06 19:25:11 krbtgt/US.ORACLE.COM@US.ORACLE.COM

 Kerberos 4 ticket cache: /tmp/tkt5088
 klist: You have no tickets cached
 */
 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_KRB5_CC_NAME,
 "/tmp/krb5cc_5088");
 Connection conn = driver.connect(url,prop);
 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void connectWithSpecificUser() throws Exception
 {
 Subject specificSubject = new Subject();

 // This first part isn't really meaningful to the sake of this demo. In
 // a real world scenario, you have a valid "specificSubject" Subject that
 // represents a web user that has valid Kerberos credentials.
 Krb5LoginModule krb5Module = new Krb5LoginModule();
 HashMap sharedState = new HashMap();
 HashMap options = new HashMap();
 options.put("doNotPrompt","false");
 options.put("useTicketCache","false");
 options.put("principal","client@US.ORACLE.COM");

 krb5Module.initialize(specificSubject,newKrbCallbackHandler(),sharedState,options);
 boolean retLogin = krb5Module.login();
 krb5Module.commit();
 if(!retLogin)
 throw new Exception("Kerberos5 adaptor couldn't retrieve credentials (TGT) from the cache");

 // to use the TGT from the cache:
 // options.put("useTicketCache","true");
 // options.put("doNotPrompt","true");
 // options.put("ticketCache","C:\\Documents and Settings\\Jean de Lavarene\\krb5cc");
 // krb5Module.initialize(specificSubject,null,sharedState,options);

 // Now we have a valid Subject with Kerberos credentials. The second scenario
 // really starts here:
 // execute driver.connect(...) on behalf of the Subject 'specificSubject':
 Connection conn =
 (Connection)Subject.doAs(specificSubject, new PrivilegedExceptionAction()
 {
 public Object run()
 {
 Connection con = null;
 Properties prop = new Properties();
 prop.setProperty(AnoServices.AUTHENTICATION_PROPERTY_SERVICES,
 "(" + AnoServices.AUTHENTICATION_KERBEROS5 + ")");
 try
 {
 OracleDriver driver = new OracleDriver();
 con = driver.connect(url, prop);

 } catch (Exception except)
 {
 except.printStackTrace();
 }
 return con;
 }
 });

 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void printUserName(Connection conn) throws SQLException
 {
 Statement stmt = null;
 try
 {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select user from dual");
 while(rs.next())
 System.out.println("User is:"+rs.getString(1));
 rs.close();
 }
 finally
 {
 if(stmt != null)
 stmt.close();
 }
 }
}

class KrbCallbackHandler implements CallbackHandler
{
 public void handle(Callback[] callbacks) throws IOException,
 UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++)
 {
 if (callbacks[i] instanceof PasswordCallback)
 {
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 System.out.println("set password to 'welcome'");
 pc.setPassword((new String("welcome")).toCharArray());
 } else
 {
 throw new UnsupportedCallbackException(callbacks[i],
 "Unrecognized Callback");
 }
 }
 }
}

Support for RADIUS

Oracle Database 11g Release 1 (11.1) introduces support for Remote Authentication Dial-In User Service (RADIUS). RADIUS is a client/server security protocol that is most widely known for enabling remote authentication and access. Oracle Advanced Security uses this standard in a client/server network environment to enable use of any authentication method that supports the RADIUS protocol. RADIUS can be used with a variety of authentication mechanisms, including token cards and smart cards. This section contains the following sections:

	
Configuring Oracle Database to Use RADIUS

	
Code Example

Configuring Oracle Database to Use RADIUS

Perform the following steps to configure Oracle Database to use RADIUS:

	
Use the following command to connect to the database:

SQL> connect system
Enter password: password

	
Use the following commands to create a new user aso from within a database:

SQL> create user aso identified externally;
SQL> grant create session to aso;

	
Use the following commands to connect to the database as sysdba and dismount it:

SQL> connect / as sysdba
SQL> shutdown immediate;

	
Add the following lines to the t_init1.ora file:

os_authent_prefix = ""

	
Note:

Once the test is over, you need to revert the preceding changes made to the t_init1.ora file.

	
Use the following command to restart the database:

SQL> startup pfile=?/work/t_init1.ora

	
Modify the sqlnet.ora file so that it contains only these lines:

sqlnet.authentication_services = (beq, radius)
sqlnet.radius_authentication = <RADUIUS_SERVER_HOST_NAME>
sqlnet.radius_authentication_port = 1812
sqlnet.radius_authentication_timeout = 120
sqlnet.radius_secret=/home/Jdbc/Security/radius/radius_key
logging (optional):
trace_level_server=16
trace_directory_server=/scratch/sqlnet/

	
Use the following command to verify that you can connect through SQL*Plus:

>sqlplus 'aso/1234@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=oracleserver.mydomain.com)(PORT=5529))
(CONNECT_DATA=(SERVICE_NAME=mydatabaseinstance)))'

Code Example

This example demonstrates the new RADIUS authentication feature that is a part of Oracle Database 11g Release 1 (11.1) JDBC thin driver. You need to have a working setup, that is, a RADIUS server up and running, and an Oracle database server that is configured to use RADIUS authentication. You then need to change the URLs given in the example to compile and run it.

Example 9-5

import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;
import oracle.jdbc.OracleConnection;
import oracle.jdbc.OracleDriver;
import oracle.net.ano.AnoServices;
public class RadiusJdbcDemo
{
 String url ="jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)"+
 "(HOST=oracleserver.mydomain.com)(PORT=5561))(CONNECT_DATA=" +
 "(SERVICE_NAME=mydatabaseinstance)))";

 public static void main(String[] arv)
 {
 RadiusJdbcDemo radiusDemo = new RadiusJdbcDemo();
 try
 {
 radiusDemo.connect();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 /*
 * This method attempts to logon to the database using the RADIUS
 * authentication protocol.
 *
 * It should print the following output to stdout:
 * ---
 * Authentication adaptor=RADIUS
 * User is:ASO
 * ---
 */
 void connect() throws SQLException
 {
 OracleDriver driver = new OracleDriver();
 Properties prop = new Properties();

 prop.setProperty(OracleConnection.CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES,
 "("+AnoServices.AUTHENTICATION_RADIUS+")");
 // The user "aso" needs to be properly setup on the radius server with
 // password "1234".
 prop.setProperty("user","aso");
 prop.setProperty("password","1234");

 Connection conn = driver.connect(url,prop);
 String auth = ((OracleConnection)conn).getAuthenticationAdaptorName();
 System.out.println("Authentication adaptor="+auth);
 printUserName(conn);
 conn.close();
 }

 void printUserName(Connection conn) throws SQLException
 {
 Statement stmt = null;
 try
 {
 stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("select user from dual");
 while(rs.next())
 System.out.println("User is:"+rs.getString(1));
 rs.close();
 }
 finally
 {
 if(stmt != null)
 stmt.close();
 }
 }
}

Secure External Password Store

As an alternative for large-scale deployments where applications use password credentials to connect to databases, it is possible to store such credentials in a client-side Oracle wallet. An Oracle wallet is a secure software container that is used to store authentication and signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the need to embed user names and passwords in application code, batch jobs, or scripts. This reduces the risk of exposing passwords in the clear in scripts and application code, and simplifies maintenance because you need not change your code each time user names and passwords change. In addition, not having to change application code also makes it easier to enforce password management policies for these user accounts.

When you configure a client to use the external password store, applications can use the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

Note that you need not specify database login credentials in this CONNECT statement. Instead your system looks for database login credentials in the client wallet.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for information about configuring your client to use secure external password store and for information about managing credentials in it.

10 Proxy Authentication

Oracle Java Database Connectivity (JDBC) provides proxy authentication, also called N-tier authentication. This feature is supported through both the JDBC Oracle Call Interface (OCI) driver and the JDBC Thin driver. This chapter contains the following sections:

	
About Proxy Authentication

	
Types of Proxy Connections

	
Creating Proxy Connections

	
Closing a Proxy Session

	
Caching Proxy Connections

	
Note:

Oracle Database supports proxy authentication functionality in three tiers only. It does not support it across multiple middle tiers.

About Proxy Authentication

Proxy authentication is the process of using a middle-tier for user authentication. You can design a middle-tier server to proxy clients in a secure fashion by using the following three forms of proxy authentication:

	
The middle-tier server authenticates itself with the database server and a client. In this case, an application user or another application, authenticates itself with the middle-tier server. Client identities can be maintained all the way through to the database.

	
The client, that is, a database user, is not authenticated by the middle-tier server. The client's identity and database password are passed through the middle-tier server to the database server for authentication.

	
The client, that is, a global user, is authenticated by the middle-tier server, and passes either a Distinguished name (DN) or a Certificate through the middle tier for retrieving the client's user name.

	
See Also:

"Creating Proxy Connections"

In all cases, an administrator must authorize the middle-tier server to proxy a client, that is, to act on behalf of the client. Operations done on behalf of a client by a middle-tier server can be audited. Issue the following command to authorize the middle-tier server to proxy a client:

ALTER USER jeff GRANT CONNECT THROUGH scott;

where, scott is the name of the proxy user.

You can also:

	
Specify roles that the middle tier is permitted to activate when connecting as the client. For example,

CREATE ROLE role1;
GRANT SELECT ON emp TO role1;

The role clause limits the access only to those database objects that are mentioned in the list of the roles. The list of roles can be empty.

	
Find the users who are currently authorized to connect through a middle tier by querying the PROXY_USERS data dictionary view.

	
Disallow a proxy connection by using the REVOKE CONNECT THROUGH clause of ALTER USER command.

	
Note:

In this chapter, a JDBC connection to a database is a user session in the database and vice versa.

You need to use the different fields and methods present in the oracle.jdbc.OracleConnection interface to set up the different types of proxy connections.

Types of Proxy Connections

You can create proxy connections using any one of the following options:

	
USER NAME

This is done by supplying the user name or the password or both. The SQL statement for specifying authentication using password is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING password;

In this case, jeff is the user name and scott is the proxy for jeff.

The password option exists for additional security. Having no authenticated clause implies default authentication, which is using only the user name without the password. The SQL statement for specifying default authentication is:

ALTER USER jeff GRANT CONNECT THROUGH scott

	
DISTINGUISHED NAME

This is a global name in lieu of the password of the user being proxied for. An example of the corresponding SQL statement using a distinguished name is:

CREATE USER jeff IDENTIFIED GLOBALLY AS 'CN=jeff,OU=americas,O=oracle,L=redwoodshores,ST=ca,C=us';

The string that follows the identified globally as clause is the distinguished name. It is then necessary to authenticate using this distinguished name. The corresponding SQL statement to specify authentication using distinguished name is:

ALTER USER jeff GRANT CONNECT THROUGH scott AUTHENTICATED USING DISTINGUISHED NAME;

	
CERTIFICATE

This is a more encrypted way of passing the crede