Ein ImageCollection
ist ein Stapel oder eine Sequenz von Bildern.
Aus einer Sammlungs-ID erstellen
Eine ImageCollection
kann geladen werden, indem eine Earth Engine-Asset-ID in den ImageCollection
-Konstruktor eingefügt wird. ImageCollection
-IDs finden Sie im Data Catalog. So laden Sie beispielsweise die Sentinel-2-Sammlung für die Oberflächenreflexion:
Code-Editor (JavaScript)
var sentinelCollection = ee.ImageCollection('COPERNICUS/S2_SR');
import ee import geemap.core as geemap
Colab (Python)
sentinel_collection = ee.ImageCollection('COPERNICUS/S2_SR')
Diese Sammlung enthält alle Sentinel-2-Bilder im öffentlichen Katalog. Es gibt viele. Normalerweise sollten Sie die Sammlung wie hier oder hier filtern.
Aus einer Bildliste erstellen
Mit dem Konstruktor ee.ImageCollection()
oder der praktischen Methode ee.ImageCollection.fromImages()
können Sie Bildsammlungen aus Listen mit Bildern erstellen. Sie können auch neue Bildersammlungen erstellen, indem Sie vorhandene Sammlungen zusammenführen. Beispiel:
Code-Editor (JavaScript)
// Create arbitrary constant images. var constant1 = ee.Image(1); var constant2 = ee.Image(2); // Create a collection by giving a list to the constructor. var collectionFromConstructor = ee.ImageCollection([constant1, constant2]); print('collectionFromConstructor: ', collectionFromConstructor); // Create a collection with fromImages(). var collectionFromImages = ee.ImageCollection.fromImages( [ee.Image(3), ee.Image(4)]); print('collectionFromImages: ', collectionFromImages); // Merge two collections. var mergedCollection = collectionFromConstructor.merge(collectionFromImages); print('mergedCollection: ', mergedCollection); // Create a toy FeatureCollection var features = ee.FeatureCollection( [ee.Feature(null, {foo: 1}), ee.Feature(null, {foo: 2})]); // Create an ImageCollection from the FeatureCollection // by mapping a function over the FeatureCollection. var images = features.map(function(feature) { return ee.Image(ee.Number(feature.get('foo'))); }); // Print the resultant collection. print('Image collection: ', images);
import ee import geemap.core as geemap
Colab (Python)
# Create arbitrary constant images. constant_1 = ee.Image(1) constant_2 = ee.Image(2) # Create a collection by giving a list to the constructor. collection_from_constructor = ee.ImageCollection([constant_1, constant_2]) display('Collection from constructor:', collection_from_constructor) # Create a collection with fromImages(). collection_from_images = ee.ImageCollection.fromImages( [ee.Image(3), ee.Image(4)] ) display('Collection from images:', collection_from_images) # Merge two collections. merged_collection = collection_from_constructor.merge(collection_from_images) display('Merged collection:', merged_collection) # Create a toy FeatureCollection features = ee.FeatureCollection( [ee.Feature(None, {'foo': 1}), ee.Feature(None, {'foo': 2})] ) # Create an ImageCollection from the FeatureCollection # by mapping a function over the FeatureCollection. images = features.map(lambda feature: ee.Image(ee.Number(feature.get('foo')))) # Display the resultant collection. display('Image collection:', images)
In diesem Beispiel wird eine ImageCollection
erstellt, indem eine Funktion, die eine Image
zurückgibt, auf eine FeatureCollection
angewendet wird. Weitere Informationen zur Kartierung finden Sie im Abschnitt Kartierung über eine ImageCollection. Weitere Informationen zu Feature-Sammlungen finden Sie im Abschnitt FeatureCollection.
Aus einer COG-Liste erstellen
ImageCollection
aus GeoTiffs in Cloud Storage erstellen
Beispiel:
Code-Editor (JavaScript)
// All the GeoTiffs are in this folder. var uriBase = 'gs://gcp-public-data-landsat/LC08/01/001/002/' + 'LC08_L1GT_001002_20160817_20170322_01_T2/'; // List of URIs, one for each band. var uris = ee.List([ uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF', uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF', uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF', uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF', ]); // Make a collection from the list of images. var images = uris.map(ee.Image.loadGeoTIFF); var collection = ee.ImageCollection(images); // Get an RGB image from the collection of bands. var rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']); Map.centerObject(rgb); Map.addLayer(rgb, {bands: ['B4', 'B3', 'B2'], min: 0, max: 20000}, 'rgb');
import ee import geemap.core as geemap
Colab (Python)
# All the GeoTiffs are in this folder. uri_base = ( 'gs://gcp-public-data-landsat/LC08/01/001/002/' + 'LC08_L1GT_001002_20160817_20170322_01_T2/' ) # List of URIs, one for each band. uris = ee.List([ uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF', uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF', uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF', uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF', ]) # Make a collection from the list of images. images = uris.map(lambda uri: ee.Image.loadGeoTIFF(uri)) collection = ee.ImageCollection(images) # Get an RGB image from the collection of bands. rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']) m = geemap.Map() m.center_object(rgb) m.add_layer(rgb, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 20000}, 'rgb') m
Weitere Informationen zum Laden von Bildern aus Cloud-GeoTIFFs
Aus einem Zarr v2-Array erstellen
Erstellen Sie eine ImageCollection
aus einem Zarr v2-Array in Cloud Storage, indem Sie Bildschnitte entlang einer höheren Dimension erstellen.
Beispiel:
Code-Editor (JavaScript)
var timeStart = 1000000; var timeEnd = 1000048; var zarrV2ArrayImages = ee.ImageCollection.loadZarrV2Array({ uri: 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray', proj: 'EPSG:4326', axis: 0, starts: [timeStart], ends: [timeEnd] }); print(zarrV2ArrayImages); Map.addLayer(zarrV2ArrayImages, {min: -0.0001, max: 0.00005}, 'Evaporation');
import ee import geemap.core as geemap
Colab (Python)
time_start = 1000000 time_end = 1000048 zarr_v2_array_images = ee.ImageCollection.loadZarrV2Array( uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray', proj='EPSG:4326', axis=0, starts=[time_start], ends=[time_end], ) display(zarr_v2_array_images) m = geemap.Map() m.add_layer( zarr_v2_array_images, {'min': -0.0001, 'max': 0.00005}, 'Evaporation' ) m