ImageCollection – Übersicht

Ein ImageCollection ist ein Stapel oder eine Sequenz von Bildern.

Aus einer Sammlungs-ID erstellen

Eine ImageCollection kann geladen werden, indem eine Earth Engine-Asset-ID in den ImageCollection-Konstruktor eingefügt wird. ImageCollection-IDs finden Sie im Data Catalog. So laden Sie beispielsweise die Sentinel-2-Sammlung für die Oberflächenreflexion:

Code-Editor (JavaScript)

var sentinelCollection = ee.ImageCollection('COPERNICUS/S2_SR');

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

sentinel_collection = ee.ImageCollection('COPERNICUS/S2_SR')

Diese Sammlung enthält alle Sentinel-2-Bilder im öffentlichen Katalog. Es gibt viele. Normalerweise sollten Sie die Sammlung wie hier oder hier filtern.

Aus einer Bildliste erstellen

Mit dem Konstruktor ee.ImageCollection() oder der praktischen Methode ee.ImageCollection.fromImages() können Sie Bildsammlungen aus Listen mit Bildern erstellen. Sie können auch neue Bildersammlungen erstellen, indem Sie vorhandene Sammlungen zusammenführen. Beispiel:

Code-Editor (JavaScript)

// Create arbitrary constant images.
var constant1 = ee.Image(1);
var constant2 = ee.Image(2);

// Create a collection by giving a list to the constructor.
var collectionFromConstructor = ee.ImageCollection([constant1, constant2]);
print('collectionFromConstructor: ', collectionFromConstructor);

// Create a collection with fromImages().
var collectionFromImages = ee.ImageCollection.fromImages(
  [ee.Image(3), ee.Image(4)]);
print('collectionFromImages: ', collectionFromImages);

// Merge two collections.
var mergedCollection = collectionFromConstructor.merge(collectionFromImages);
print('mergedCollection: ', mergedCollection);

// Create a toy FeatureCollection
var features = ee.FeatureCollection(
  [ee.Feature(null, {foo: 1}), ee.Feature(null, {foo: 2})]);

// Create an ImageCollection from the FeatureCollection
// by mapping a function over the FeatureCollection.
var images = features.map(function(feature) {
  return ee.Image(ee.Number(feature.get('foo')));
});

// Print the resultant collection.
print('Image collection: ', images);

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

# Create arbitrary constant images.
constant_1 = ee.Image(1)
constant_2 = ee.Image(2)

# Create a collection by giving a list to the constructor.
collection_from_constructor = ee.ImageCollection([constant_1, constant_2])
display('Collection from constructor:', collection_from_constructor)

# Create a collection with fromImages().
collection_from_images = ee.ImageCollection.fromImages(
    [ee.Image(3), ee.Image(4)]
)
display('Collection from images:', collection_from_images)

# Merge two collections.
merged_collection = collection_from_constructor.merge(collection_from_images)
display('Merged collection:', merged_collection)

# Create a toy FeatureCollection
features = ee.FeatureCollection(
    [ee.Feature(None, {'foo': 1}), ee.Feature(None, {'foo': 2})]
)

# Create an ImageCollection from the FeatureCollection
# by mapping a function over the FeatureCollection.
images = features.map(lambda feature: ee.Image(ee.Number(feature.get('foo'))))

# Display the resultant collection.
display('Image collection:', images)

In diesem Beispiel wird eine ImageCollection erstellt, indem eine Funktion, die eine Image zurückgibt, auf eine FeatureCollection angewendet wird. Weitere Informationen zur Kartierung finden Sie im Abschnitt Kartierung über eine ImageCollection. Weitere Informationen zu Feature-Sammlungen finden Sie im Abschnitt FeatureCollection.

Aus einer COG-Liste erstellen

ImageCollection aus GeoTiffs in Cloud Storage erstellen Beispiel:

Code-Editor (JavaScript)

// All the GeoTiffs are in this folder.
var uriBase = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +
    'LC08_L1GT_001002_20160817_20170322_01_T2/';

// List of URIs, one for each band.
var uris = ee.List([
  uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF',
  uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF',
  uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF',
  uriBase + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF',
]);

// Make a collection from the list of images.
var images = uris.map(ee.Image.loadGeoTIFF);
var collection = ee.ImageCollection(images);

// Get an RGB image from the collection of bands.
var rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5']);
Map.centerObject(rgb);
Map.addLayer(rgb, {bands: ['B4', 'B3', 'B2'], min: 0, max: 20000}, 'rgb');

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

# All the GeoTiffs are in this folder.
uri_base = (
    'gs://gcp-public-data-landsat/LC08/01/001/002/'
    + 'LC08_L1GT_001002_20160817_20170322_01_T2/'
)

# List of URIs, one for each band.
uris = ee.List([
    uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B2.TIF',
    uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B3.TIF',
    uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B4.TIF',
    uri_base + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF',
])

# Make a collection from the list of images.
images = uris.map(lambda uri: ee.Image.loadGeoTIFF(uri))
collection = ee.ImageCollection(images)

# Get an RGB image from the collection of bands.
rgb = collection.toBands().rename(['B2', 'B3', 'B4', 'B5'])
m = geemap.Map()
m.center_object(rgb)
m.add_layer(rgb, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 20000}, 'rgb')
m

Weitere Informationen zum Laden von Bildern aus Cloud-GeoTIFFs

Aus einem Zarr v2-Array erstellen

Erstellen Sie eine ImageCollection aus einem Zarr v2-Array in Cloud Storage, indem Sie Bildschnitte entlang einer höheren Dimension erstellen. Beispiel:

Code-Editor (JavaScript)

var timeStart = 1000000;
var timeEnd = 1000048;
var zarrV2ArrayImages = ee.ImageCollection.loadZarrV2Array({
  uri:
      'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
  proj: 'EPSG:4326',
  axis: 0,
  starts: [timeStart],
  ends: [timeEnd]
});

print(zarrV2ArrayImages);

Map.addLayer(zarrV2ArrayImages, {min: -0.0001, max: 0.00005}, 'Evaporation');

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

time_start = 1000000
time_end = 1000048
zarr_v2_array_images = ee.ImageCollection.loadZarrV2Array(
    uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
    proj='EPSG:4326',
    axis=0,
    starts=[time_start],
    ends=[time_end],
)

display(zarr_v2_array_images)

m = geemap.Map()
m.add_layer(
    zarr_v2_array_images, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'
)
m