Storage Architecture and Challenges
Google

Faculty Summit, July 29, 2010
Andrew Fikes, Principal Engineer
fikes@google.com


mailto:fikes@google.com

Introductory Thoughts

Google operates planet-scale storage systems

What keeps us programming:
e Enabling application developers
e Improving data locality and availability
e Improving performance of shared storage

A note from the trenches: "You know you have a large storage
system when you get paged at 1 AM because you only have a
few petabytes of storage left."



The Plan for Today

e Storage Landscape
e Storage Software and Challenges
e Questions (15 minutes)



Storage Landscape: Hardware

A typical warehouse-scale computer:
e 10,000+ machines, 1GB/s networking
e 6 X 1TB disk drives per machine

What has changed:
e Cost of GB of storage is lower
e Impact of machine failures is higher
e Machine throughput is higher

What has not changed:
e Latency of an RPC
e Disk drive throughput and seek latency



Storage Landscape: Development

Product success depends on:
e Development speed
e End-user latency

Application programmers:
e Never ask simple questions of the data
e Change their data access patterns frequently
e Build and use APIs that hide storage requests
e Expect uniformity of performance
e Need strong availability and consistent operations
e Need visibility into distributed storage requests



Storage Landscape: Applications

Early Google:
e US-centric traffic
e Batch, latency-insensitive indexing processes
e Document "snippets"” serving (single seek)

Current day:
e \World-wide traffic
e Continuous crawl and indexing processes (Caffeine)
e Seek-heavy, latency-sensitive apps (Gmail)
e Person-to-person, person-to-group sharing (Docs)



Storage Landscape: Flash (SSDs)

Important future direction:
e Our workloads are increasingly seek heavy
e 50-150x less expensive than disk per random read
e Best usages are still being explored

Concerns:
e Avalilability of devices
e 17-32x more expensive per GB than disk
e Endurance not yet proven in the field



Storage Landscape: Shared Data

Scenario:
e Roger shares a blog with his 100,000 followers

e Rafa follows Roger and all other ATP players
e Rafa searches all the blogs he can read

To make search fast, do we copy data to each user?
e YES: Huge fan-out on update of a document
e NO: Huge fan-in when searching documents

To make things more complicated:
e Freshness requirements
e Heavily-versioned documents (e.g. Google Wave)
e Privacy restrictions on data placement



Storage Landscape: Legal

e Laws and interpretations are constantly changing
e Governments have data privacy requirements

e Companies have email and doc. retention policies
e Sarbanes-Oxley (SOX) adds audit requirements

Things to think about:
e Major impact on storage design and performance
e Are these storage- or application-level features?
e Versioning of collaborative documents



Storage Software: Google's Stack

Tiered software stack

e Node
o Exports and verifies disks

e Cluster
o Ensures availability within a cluster
o File system (GFS/Colossus), structured storage

(Bigtable)

o 2-10%: disk drive annualized failure rate

e Planet
o Ensures availability across clusters
o Blob storage, structured storage (Spanner)
o ~1 cluster event / quarter (planned/unplanned)



Storage Software: Node Storage

Purpose: Export disks on the network

e Building-block for higher-level storage

e Single spot for tuning disk access peformance

e Management of node addition, repair and removal
e Provides user resource accounting (e.g. /O ops)
e Enforces resource sharing across users



Storage Software: GFS

The basics:
e Ouir first cluster-level file system (2001)
e Designed for batch applications with large files
e Single master for metadata and chunk management
e Chunks are typically replicated 3x for reliability

GFS lessons:
e Scaled to approximately 50M files, 10P
e Large files increased upstream app. complexity
e Not appropriate for latency sensitive applications
e Scaling limits added management overhead



Storage Software: Colossus

e Next-generation cluster-level file system

e Automatically sharded metadata layer

e Data typically written using Reed-Solomon (1.5x)
e Client-driven replication, encoding and replication
e Metadata space has enabled availability analyses

Why Reed-Solomon?
e Cost. Especially w/ cross cluster replication.
e Field data and simulations show improved MTTF
e More flexible cost vs. availability choices



Storage Software: Availability

Tidbits from our Storage Analytics team:
e Most events are transient and short (90% < 10min)
e Pays to wait before initiating recovery operations

Fault bursts are important:
e 10% of faults are part of a correlated burst
e Most small bursts have no rack correlation
e Most large bursts are highly rack-correlated

Correlated failures impact benefit of replication:
e Uncorrelated R=2 to R=3 => MTTF grows by 3500x
e Correlated R=2 to R=3 => MTTF grows by 11x



Storage Software: Bigtable

The basics:
e Cluster-level structured storage (2003)
e Exports a distributed, sparse, sorted-map
e Splits and rebalances data based on size and load
e Asynchronous, eventually-consistent replication
e Uses GFS or Colossus for file storage

The lessons:
e Hard to share distributed storage resources
e Distributed transactions are badly needed
e Application programmers want sync. replication
e Users want structured query language (e.g. SQL)



Storage Challenge: Sharing

Simple Goal: Share storage to reduce costs

Typical scenario:
e Pete runs video encoding using CPU & local disk
e Roger runs a MapReduce that does heavy GFS reads
e Rafa runs seek-heavy Gmail on Bigtable w/ GFS
e Andre runs seek-heavy Docs on Bigtable w/ GFS

Things that go wrong:
e Distribution of disks being accessed is not uniform
e Non-storage system usage impacts CPU and disk
e MapReduce impacts disks and buffer cache
e GMail and Buzz both need hundreds of seeks NOW



Storage Challenge: Sharing (cont.)

How do we:
e Measure and enforce usage? Locally or globally?
e Reconcile isolation needs across users and systems?
e Define, implement and measure SLAsS?
e Tune workload dependent parameters (e.g. initial chunk
creation)



Storage Software: BlobStore

The basics:
e Planet-scale large, immutable blob storage
e Examples: Photos, videos, and email attachments
e Built on top of Bigtable storage system
e Manual, access- and auction-based data placement
e Reduces costs by:
o De-duplicating data chunks
o Adjusting replication for cold data
o Migrating data to cheaper storage

Fun statistics:
e Duplication percentages: 55% - Gmail, 2% - Video
e 90% of Gmail attach. reads hit data < 21 days old



Storage Software: Spanner

The basics:
e Planet-scale structured storage
e Next generation of Bigtable stack
e Provides a single, location-agnostic namespace
e Manual and access-based data placement

Improved primitives:
e Distributed cross-group transactions
e Synchronous replication groups (Paxos)
e Automatic failover of client requests



Storage Software: Data Placement

e End-user latency really matters
e Application complexity is less if close to its data
e Countries have legal restrictions on locating data

Things to think about:
e How do we migrate code with data?
e How do we forecast, plan and optimize data moves?
e Your computer is always closer than the cloud.



Storage Software: Offline Access

e People want offline copies of their data
e Improves speed, availability and redundancy

Scenario:

Roger is keeping a spreadsheet with Rafa
Roger syncs copy to his laptop and edit

Roger wants to see data on laptop from phone

Things to think about:
e Conflict resolution increases application complexity
e Offline codes is often very application specific
e Do users really need peer-to-peer synchronization?



Questions

Round tables at 4 PM:

e Using Google's Computational Infrastructure
o Brian Bershad & David Konerding

e Planet-Scale Storage
o Andrew Fikes & Yonatan Zunger

e Storage, Large-Scale Data Processing, Systems
o Jeff Dean



Additional Slides




Storage Challenge: Complexity

Scenario: Read 10k from Spanner

1. Lookup names of 3 replicas
2. Lookup location of 1 replica
3. Read data from replicas
1. Lookup data locations from GFS
2. Read data from storage node
1. Read from Linux file system

Layers:
e Generate APIl impedence mismatches
e Have numerous failure and queuing points
e Make capacity and perf. prediction super-hard
e Make optimization and tuning very difficult



Storage Software: File Transfer

Common instigators of data transfer:
e Publishing production data (e.g. base index)
e Insufficient cluster capacity (disk or CPU)
e System and software upgrades

Moving data is:
e Hard: Many moving parts, and different priorities
e Expensive & time-consuming: Networks involved

Our system:
e Optimized for large, latency-insensitive networks
e Uses large windows and constant-bit rate UDP
e Produces smoother flow than TCP



