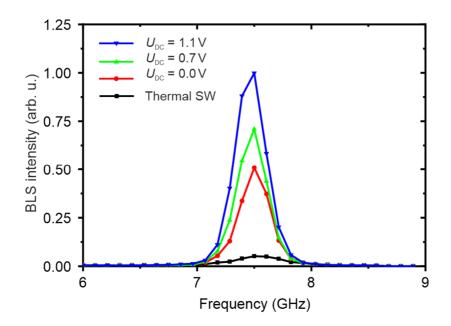
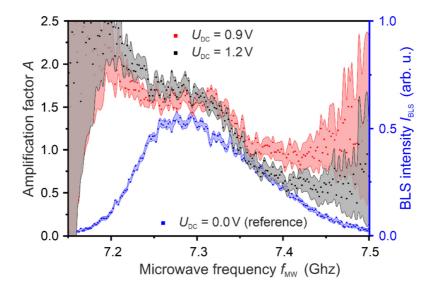
Supplementary material

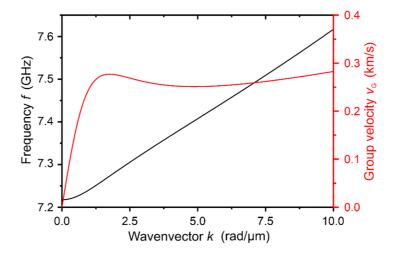

-

Stimulated amplification of propagating spin waves


D. Breitbach, M. Schneider, F. Kohl, L. Scheuer, B. Heinz, R. O. Serha, J. J. Maskill, T. Brächer, B. Lägel, C. Dubs, V. S. Tiberkevich, A. N. Slavin, A. A. Serga, B. Hillebrands, A. V. Chumak and P. Pirro

¹⁾Fachbereich Physik and Landesforschungszentrum OPTIMAS, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany ²⁾ Faculty of Physics, University of Vienna, A-1090 Vienna, Austria ³⁾INNOVENT e.V. Technologieentwicklung, Jena, Germany ⁴⁾Department of Physics, Oakland University, Rochester, MI, USA

I. FREQUENCY OF THE AMPLIFIED SPIN-WAVE PACKET



Supplementary Fig. 1: BLS frequency of the spin-wave packet for different DC pulse amplitudes/amplification levels. The frequency of the spin-wave packet is preserved in the amplification process. **Black:** Thermal spin-wave spectrum for comparison.

Supplementary Fig. 2: Left scale: Amplification factor as a function of the microwave frequency used for spin-wave excitation, for two different DC pulse voltages (red, black curves). Right scale: BLS intensity of the spin-wave packet as a function of the microwave frequency without DC pulse ($U_{DC} = 0.0 \,\mathrm{V}$) as reference (blue curve).

III. SPIN-WAVE DISPERSION RELATION AND GROUP VELOCITY

Supplementary Fig. 3: Left scale: Calculated spin-wave dispersion relation for the fundamental waveguide mode. Right scale: Corresponding spin-wave group velocity as a function of the wavevector. Calculations were performed following [S1] and assuming $M_{\rm S}=142.3$ kA/m, A=3.5 pJ/m, $t_{\rm YIG}=34$ nm, $w_{\rm eff}=1.9$ µm and $\mu_0 H_{\rm app}=188$ mT, additionally taking into account $\mu_0 H_{\rm demag}=3.58$ mT.

References

S1. B. A. Kalinikos, A. N. Slavin, Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions,

Journal of Physics C: Solid State Physics 19, 7013 (1986)