-
Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
Authors:
Gheorghe Comanici,
Eric Bieber,
Mike Schaekermann,
Ice Pasupat,
Noveen Sachdeva,
Inderjit Dhillon,
Marcel Blistein,
Ori Ram,
Dan Zhang,
Evan Rosen,
Luke Marris,
Sam Petulla,
Colin Gaffney,
Asaf Aharoni,
Nathan Lintz,
Tiago Cardal Pais,
Henrik Jacobsson,
Idan Szpektor,
Nan-Jiang Jiang,
Krishna Haridasan,
Ahmed Omran,
Nikunj Saunshi,
Dara Bahri,
Gaurav Mishra,
Eric Chu
, et al. (3284 additional authors not shown)
Abstract:
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal unde…
▽ More
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal understanding and it is now able to process up to 3 hours of video content. Its unique combination of long context, multimodal and reasoning capabilities can be combined to unlock new agentic workflows. Gemini 2.5 Flash provides excellent reasoning abilities at a fraction of the compute and latency requirements and Gemini 2.0 Flash and Flash-Lite provide high performance at low latency and cost. Taken together, the Gemini 2.X model generation spans the full Pareto frontier of model capability vs cost, allowing users to explore the boundaries of what is possible with complex agentic problem solving.
△ Less
Submitted 22 July, 2025; v1 submitted 7 July, 2025;
originally announced July 2025.
-
Gemma 3 Technical Report
Authors:
Gemma Team,
Aishwarya Kamath,
Johan Ferret,
Shreya Pathak,
Nino Vieillard,
Ramona Merhej,
Sarah Perrin,
Tatiana Matejovicova,
Alexandre Ramé,
Morgane Rivière,
Louis Rouillard,
Thomas Mesnard,
Geoffrey Cideron,
Jean-bastien Grill,
Sabela Ramos,
Edouard Yvinec,
Michelle Casbon,
Etienne Pot,
Ivo Penchev,
Gaël Liu,
Francesco Visin,
Kathleen Kenealy,
Lucas Beyer,
Xiaohai Zhai,
Anton Tsitsulin
, et al. (191 additional authors not shown)
Abstract:
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achie…
▽ More
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
△ Less
Submitted 25 March, 2025;
originally announced March 2025.
-
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
Authors:
Gemini Team,
Petko Georgiev,
Ving Ian Lei,
Ryan Burnell,
Libin Bai,
Anmol Gulati,
Garrett Tanzer,
Damien Vincent,
Zhufeng Pan,
Shibo Wang,
Soroosh Mariooryad,
Yifan Ding,
Xinyang Geng,
Fred Alcober,
Roy Frostig,
Mark Omernick,
Lexi Walker,
Cosmin Paduraru,
Christina Sorokin,
Andrea Tacchetti,
Colin Gaffney,
Samira Daruki,
Olcan Sercinoglu,
Zach Gleicher,
Juliette Love
, et al. (1112 additional authors not shown)
Abstract:
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February…
▽ More
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
△ Less
Submitted 16 December, 2024; v1 submitted 8 March, 2024;
originally announced March 2024.
-
Let Your Graph Do the Talking: Encoding Structured Data for LLMs
Authors:
Bryan Perozzi,
Bahare Fatemi,
Dustin Zelle,
Anton Tsitsulin,
Mehran Kazemi,
Rami Al-Rfou,
Jonathan Halcrow
Abstract:
How can we best encode structured data into sequential form for use in large language models (LLMs)? In this work, we introduce a parameter-efficient method to explicitly represent structured data for LLMs. Our method, GraphToken, learns an encoding function to extend prompts with explicit structured information. Unlike other work which focuses on limited domains (e.g. knowledge graph representati…
▽ More
How can we best encode structured data into sequential form for use in large language models (LLMs)? In this work, we introduce a parameter-efficient method to explicitly represent structured data for LLMs. Our method, GraphToken, learns an encoding function to extend prompts with explicit structured information. Unlike other work which focuses on limited domains (e.g. knowledge graph representation), our work is the first effort focused on the general encoding of structured data to be used for various reasoning tasks. We show that explicitly representing the graph structure allows significant improvements to graph reasoning tasks. Specifically, we see across the board improvements - up to 73% points - on node, edge and, graph-level tasks from the GraphQA benchmark.
△ Less
Submitted 8 February, 2024;
originally announced February 2024.
-
UGSL: A Unified Framework for Benchmarking Graph Structure Learning
Authors:
Bahare Fatemi,
Sami Abu-El-Haija,
Anton Tsitsulin,
Mehran Kazemi,
Dustin Zelle,
Neslihan Bulut,
Jonathan Halcrow,
Bryan Perozzi
Abstract:
Graph neural networks (GNNs) demonstrate outstanding performance in a broad range of applications. While the majority of GNN applications assume that a graph structure is given, some recent methods substantially expanded the applicability of GNNs by showing that they may be effective even when no graph structure is explicitly provided. The GNN parameters and a graph structure are jointly learned.…
▽ More
Graph neural networks (GNNs) demonstrate outstanding performance in a broad range of applications. While the majority of GNN applications assume that a graph structure is given, some recent methods substantially expanded the applicability of GNNs by showing that they may be effective even when no graph structure is explicitly provided. The GNN parameters and a graph structure are jointly learned. Previous studies adopt different experimentation setups, making it difficult to compare their merits. In this paper, we propose a benchmarking strategy for graph structure learning using a unified framework. Our framework, called Unified Graph Structure Learning (UGSL), reformulates existing models into a single model. We implement a wide range of existing models in our framework and conduct extensive analyses of the effectiveness of different components in the framework. Our results provide a clear and concise understanding of the different methods in this area as well as their strengths and weaknesses. The benchmark code is available at https://github.com/google-research/google-research/tree/master/ugsl.
△ Less
Submitted 21 August, 2023;
originally announced August 2023.
-
Learning Large Graph Property Prediction via Graph Segment Training
Authors:
Kaidi Cao,
Phitchaya Mangpo Phothilimthana,
Sami Abu-El-Haija,
Dustin Zelle,
Yanqi Zhou,
Charith Mendis,
Jure Leskovec,
Bryan Perozzi
Abstract:
Learning to predict properties of large graphs is challenging because each prediction requires the knowledge of an entire graph, while the amount of memory available during training is bounded. Here we propose Graph Segment Training (GST), a general framework that utilizes a divide-and-conquer approach to allow learning large graph property prediction with a constant memory footprint. GST first di…
▽ More
Learning to predict properties of large graphs is challenging because each prediction requires the knowledge of an entire graph, while the amount of memory available during training is bounded. Here we propose Graph Segment Training (GST), a general framework that utilizes a divide-and-conquer approach to allow learning large graph property prediction with a constant memory footprint. GST first divides a large graph into segments and then backpropagates through only a few segments sampled per training iteration. We refine the GST paradigm by introducing a historical embedding table to efficiently obtain embeddings for segments not sampled for backpropagation. To mitigate the staleness of historical embeddings, we design two novel techniques. First, we finetune the prediction head to fix the input distribution shift. Second, we introduce Stale Embedding Dropout to drop some stale embeddings during training to reduce bias. We evaluate our complete method GST-EFD (with all the techniques together) on two large graph property prediction benchmarks: MalNet and TpuGraphs. Our experiments show that GST-EFD is both memory-efficient and fast, while offering a slight boost on test accuracy over a typical full graph training regime.
△ Less
Submitted 5 November, 2023; v1 submitted 20 May, 2023;
originally announced May 2023.
-
TF-GNN: Graph Neural Networks in TensorFlow
Authors:
Oleksandr Ferludin,
Arno Eigenwillig,
Martin Blais,
Dustin Zelle,
Jan Pfeifer,
Alvaro Sanchez-Gonzalez,
Wai Lok Sibon Li,
Sami Abu-El-Haija,
Peter Battaglia,
Neslihan Bulut,
Jonathan Halcrow,
Filipe Miguel Gonçalves de Almeida,
Pedro Gonnet,
Liangze Jiang,
Parth Kothari,
Silvio Lattanzi,
André Linhares,
Brandon Mayer,
Vahab Mirrokni,
John Palowitch,
Mihir Paradkar,
Jennifer She,
Anton Tsitsulin,
Kevin Villela,
Lisa Wang
, et al. (2 additional authors not shown)
Abstract:
TensorFlow-GNN (TF-GNN) is a scalable library for Graph Neural Networks in TensorFlow. It is designed from the bottom up to support the kinds of rich heterogeneous graph data that occurs in today's information ecosystems. In addition to enabling machine learning researchers and advanced developers, TF-GNN offers low-code solutions to empower the broader developer community in graph learning. Many…
▽ More
TensorFlow-GNN (TF-GNN) is a scalable library for Graph Neural Networks in TensorFlow. It is designed from the bottom up to support the kinds of rich heterogeneous graph data that occurs in today's information ecosystems. In addition to enabling machine learning researchers and advanced developers, TF-GNN offers low-code solutions to empower the broader developer community in graph learning. Many production models at Google use TF-GNN, and it has been recently released as an open source project. In this paper we describe the TF-GNN data model, its Keras message passing API, and relevant capabilities such as graph sampling and distributed training.
△ Less
Submitted 23 July, 2023; v1 submitted 7 July, 2022;
originally announced July 2022.
-
Zero-shot Transfer Learning within a Heterogeneous Graph via Knowledge Transfer Networks
Authors:
Minji Yoon,
John Palowitch,
Dustin Zelle,
Ziniu Hu,
Ruslan Salakhutdinov,
Bryan Perozzi
Abstract:
Data continuously emitted from industrial ecosystems such as social or e-commerce platforms are commonly represented as heterogeneous graphs (HG) composed of multiple node/edge types. State-of-the-art graph learning methods for HGs known as heterogeneous graph neural networks (HGNNs) are applied to learn deep context-informed node representations. However, many HG datasets from industrial applicat…
▽ More
Data continuously emitted from industrial ecosystems such as social or e-commerce platforms are commonly represented as heterogeneous graphs (HG) composed of multiple node/edge types. State-of-the-art graph learning methods for HGs known as heterogeneous graph neural networks (HGNNs) are applied to learn deep context-informed node representations. However, many HG datasets from industrial applications suffer from label imbalance between node types. As there is no direct way to learn using labels rooted at different node types, HGNNs have been applied to only a few node types with abundant labels. We propose a zero-shot transfer learning module for HGNNs called a Knowledge Transfer Network (KTN) that transfers knowledge from label-abundant node types to zero-labeled node types through rich relational information given in the HG. KTN is derived from the theoretical relationship, which we introduce in this work, between distinct feature extractors for each node type given in an HGNN model. KTN improves performance of 6 different types of HGNN models by up to 960% for inference on zero-labeled node types and outperforms state-of-the-art transfer learning baselines by up to 73% across 18 different transfer learning tasks on HGs.
△ Less
Submitted 12 October, 2022; v1 submitted 3 March, 2022;
originally announced March 2022.
-
DDGK: Learning Graph Representations for Deep Divergence Graph Kernels
Authors:
Rami Al-Rfou,
Dustin Zelle,
Bryan Perozzi
Abstract:
Can neural networks learn to compare graphs without feature engineering? In this paper, we show that it is possible to learn representations for graph similarity with neither domain knowledge nor supervision (i.e.\ feature engineering or labeled graphs). We propose Deep Divergence Graph Kernels, an unsupervised method for learning representations over graphs that encodes a relaxed notion of graph…
▽ More
Can neural networks learn to compare graphs without feature engineering? In this paper, we show that it is possible to learn representations for graph similarity with neither domain knowledge nor supervision (i.e.\ feature engineering or labeled graphs). We propose Deep Divergence Graph Kernels, an unsupervised method for learning representations over graphs that encodes a relaxed notion of graph isomorphism. Our method consists of three parts. First, we learn an encoder for each anchor graph to capture its structure. Second, for each pair of graphs, we train a cross-graph attention network which uses the node representations of an anchor graph to reconstruct another graph. This approach, which we call isomorphism attention, captures how well the representations of one graph can encode another. We use the attention-augmented encoder's predictions to define a divergence score for each pair of graphs. Finally, we construct an embedding space for all graphs using these pair-wise divergence scores.
Unlike previous work, much of which relies on 1) supervision, 2) domain specific knowledge (e.g. a reliance on Weisfeiler-Lehman kernels), and 3) known node alignment, our unsupervised method jointly learns node representations, graph representations, and an attention-based alignment between graphs.
Our experimental results show that Deep Divergence Graph Kernels can learn an unsupervised alignment between graphs, and that the learned representations achieve competitive results when used as features on a number of challenging graph classification tasks. Furthermore, we illustrate how the learned attention allows insight into the the alignment of sub-structures across graphs.
△ Less
Submitted 21 April, 2019;
originally announced April 2019.