-
Music Flamingo: Scaling Music Understanding in Audio Language Models
Authors:
Sreyan Ghosh,
Arushi Goel,
Lasha Koroshinadze,
Sang-gil Lee,
Zhifeng Kong,
Joao Felipe Santos,
Ramani Duraiswami,
Dinesh Manocha,
Wei Ping,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily beca…
▽ More
We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily because of the scarcity of high-quality music data and annotations. As a result, prior models are restricted to producing short, high-level captions, answering only surface-level questions, and showing limited generalization across diverse musical cultures. To address these challenges, we curate MF-Skills, a large-scale dataset labeled through a multi-stage pipeline that yields rich captions and question-answer pairs covering harmony, structure, timbre, lyrics, and cultural context. We fine-tune an enhanced Audio Flamingo 3 backbone on MF-Skills and further strengthen multiple skills relevant to music understanding. To improve the model's reasoning abilities, we introduce a post-training recipe: we first cold-start with MF-Think, a novel chain-of-thought dataset grounded in music theory, followed by GRPO-based reinforcement learning with custom rewards. Music Flamingo achieves state-of-the-art results across 10+ benchmarks for music understanding and reasoning, establishing itself as a generalist and musically intelligent audio-language model. Beyond strong empirical results, Music Flamingo sets a new standard for advanced music understanding by demonstrating how models can move from surface-level recognition toward layered, human-like perception of songs. We believe this work provides both a benchmark and a foundation for the community to build the next generation of models that engage with music as meaningfully as humans do.
△ Less
Submitted 13 November, 2025;
originally announced November 2025.
-
NVIDIA Nemotron Nano V2 VL
Authors:
NVIDIA,
:,
Amala Sanjay Deshmukh,
Kateryna Chumachenko,
Tuomas Rintamaki,
Matthieu Le,
Tyler Poon,
Danial Mohseni Taheri,
Ilia Karmanov,
Guilin Liu,
Jarno Seppanen,
Guo Chen,
Karan Sapra,
Zhiding Yu,
Adi Renduchintala,
Charles Wang,
Peter Jin,
Arushi Goel,
Mike Ranzinger,
Lukas Voegtle,
Philipp Fischer,
Timo Roman,
Wei Ping,
Boxin Wang,
Zhuolin Yang
, et al. (99 additional authors not shown)
Abstract:
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and…
▽ More
We introduce Nemotron Nano V2 VL, the latest model of the Nemotron vision-language series designed for strong real-world document understanding, long video comprehension, and reasoning tasks. Nemotron Nano V2 VL delivers significant improvements over our previous model, Llama-3.1-Nemotron-Nano-VL-8B, across all vision and text domains through major enhancements in model architecture, datasets, and training recipes. Nemotron Nano V2 VL builds on Nemotron Nano V2, a hybrid Mamba-Transformer LLM, and innovative token reduction techniques to achieve higher inference throughput in long document and video scenarios. We are releasing model checkpoints in BF16, FP8, and FP4 formats and sharing large parts of our datasets, recipes and training code.
△ Less
Submitted 6 November, 2025; v1 submitted 5 November, 2025;
originally announced November 2025.
-
UALM: Unified Audio Language Model for Understanding, Generation and Reasoning
Authors:
Jinchuan Tian,
Sang-gil Lee,
Zhifeng Kong,
Sreyan Ghosh,
Arushi Goel,
Chao-Han Huck Yang,
Wenliang Dai,
Zihan Liu,
Hanrong Ye,
Shinji Watanabe,
Mohammad Shoeybi,
Bryan Catanzaro,
Rafael Valle,
Wei Ping
Abstract:
Recent advances in the audio language modeling (ALM) domain tackle audio understanding and text-to-audio generation as separate tasks. Very few studies attempt to unify these tasks -- an essential step toward advanced multimodal reasoning. This paper introduces U}nified Audio Language Model (UALM), which aims to unify audio understanding, text-to-audio generation, and multimodal reasoning in a sin…
▽ More
Recent advances in the audio language modeling (ALM) domain tackle audio understanding and text-to-audio generation as separate tasks. Very few studies attempt to unify these tasks -- an essential step toward advanced multimodal reasoning. This paper introduces U}nified Audio Language Model (UALM), which aims to unify audio understanding, text-to-audio generation, and multimodal reasoning in a single model. To achieve this goal, we first present UALM-Gen, a text-to-audio language model that directly predicts audio tokens and is comparable to state-of-the-art diffusion-based models. We then demonstrate, using proper data blending, training recipes, and inference techniques, that our single UALM model matches the quality of state-of-the-art specialized models in audio understanding, text-to-audio generation, and text reasoning. Furthermore, we present UALM-Reason, a multimodal reasoning model that utilizes both text and audio in the intermediate thinking steps to facilitate complex generation tasks. To our knowledge, this is the first demonstration in audio research of cross-modal generative reasoning, with its effectiveness confirmed by subjective evaluations.
△ Less
Submitted 13 October, 2025;
originally announced October 2025.
-
Front-Loading Reasoning: The Synergy between Pretraining and Post-Training Data
Authors:
Syeda Nahida Akter,
Shrimai Prabhumoye,
Eric Nyberg,
Mostofa Patwary,
Mohammad Shoeybi,
Yejin Choi,
Bryan Catanzaro
Abstract:
The prevailing paradigm for enhancing the reasoning abilities of LLMs revolves around post-training on high-quality, reasoning-intensive data. While emerging literature suggests that reasoning data is increasingly incorporated also during the mid-training stage-a practice that is relatively more proprietary and less openly characterized-the role of such data in pretraining remains unclear. In part…
▽ More
The prevailing paradigm for enhancing the reasoning abilities of LLMs revolves around post-training on high-quality, reasoning-intensive data. While emerging literature suggests that reasoning data is increasingly incorporated also during the mid-training stage-a practice that is relatively more proprietary and less openly characterized-the role of such data in pretraining remains unclear. In particular, due to the opaqueness of pretraining corpora in most frontier models, the effect of reasoning data introduced at different phases of pre- and/or post-training is relatively less reported in the scientific literature. This raises several important questions: Is adding reasoning data earlier during pretraining any better than introducing it during post-training? Could earlier inclusion risk overfitting and harm generalization, or instead establish durable foundations that later fine-tuning cannot recover? We conduct the first systematic study of how reasoning data-varying in scale, diversity, and quality-affects LLM performance when introduced at different stages of training. We find that front-loading reasoning data into pretraining is critical (19% avg gain), establishing foundational capabilities that cannot be fully replicated by later-stage SFT, even with more data. We uncover an asymmetric principle for optimal data allocation: pretraining benefits most from broad diversity in reasoning patterns (11% avg gain), while SFT is more sensitive to data quality (15% avg gain). We show that high-quality pretraining data has latent effects, activated only after SFT, and that naively scaling SFT data can be detrimental, washing away the benefits of early reasoning injection. Our results challenge the conventional separation of language modeling and reasoning, providing a principled guide for strategically allocating data across the entire training pipeline to build more capable models.
△ Less
Submitted 26 September, 2025;
originally announced October 2025.
-
RLP: Reinforcement as a Pretraining Objective
Authors:
Ali Hatamizadeh,
Syeda Nahida Akter,
Shrimai Prabhumoye,
Jan Kautz,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro,
Yejin Choi
Abstract:
The dominant paradigm for training large reasoning models starts with pre-training using next-token prediction loss on vast amounts of data. Reinforcement learning, while powerful in scaling reasoning, is introduced only as the very last phase of post-training, preceded by supervised fine-tuning. While dominant, is this an optimal way of training? In this paper, we present RLP, an information-driv…
▽ More
The dominant paradigm for training large reasoning models starts with pre-training using next-token prediction loss on vast amounts of data. Reinforcement learning, while powerful in scaling reasoning, is introduced only as the very last phase of post-training, preceded by supervised fine-tuning. While dominant, is this an optimal way of training? In this paper, we present RLP, an information-driven reinforcement pretraining objective, that brings the core spirit of reinforcement learning -- exploration -- to the last phase of pretraining. The key idea is to treat chain-of-thought as an exploratory action, with rewards computed based on the information gain it provides for predicting future tokens. This training objective essentially encourages the model to think for itself before predicting what comes next, thus teaching an independent thinking behavior earlier in the pretraining. More concretely, the reward signal measures the increase in log-likelihood of the next token when conditioning on both context and a sampled reasoning chain, compared to conditioning on context alone. This approach yields a verifier-free dense reward signal, allowing for efficient training for the full document stream during pretraining. Specifically, RLP reframes reinforcement learning for reasoning as a pretraining objective on ordinary text, bridging the gap between next-token prediction and the emergence of useful chain-of-thought reasoning. Pretraining with RLP on Qwen3-1.7B-Base lifts the overall average across an eight-benchmark math-and-science suite by 19%. With identical post-training, the gains compound, with the largest improvements on reasoning-heavy tasks such as AIME25 and MMLU-Pro. Applying RLP to the hybrid Nemotron-Nano-12B-v2 increases the overall average from 42.81% to 61.32% and raises the average on scientific reasoning by 23%, demonstrating scalability across architectures and model sizes.
△ Less
Submitted 26 September, 2025;
originally announced October 2025.
-
Pretraining Large Language Models with NVFP4
Authors:
NVIDIA,
Felix Abecassis,
Anjulie Agrusa,
Dong Ahn,
Jonah Alben,
Stefania Alborghetti,
Michael Andersch,
Sivakumar Arayandi,
Alexis Bjorlin,
Aaron Blakeman,
Evan Briones,
Ian Buck,
Bryan Catanzaro,
Jinhang Choi,
Mike Chrzanowski,
Eric Chung,
Victor Cui,
Steve Dai,
Bita Darvish Rouhani,
Carlo del Mundo,
Deena Donia,
Burc Eryilmaz,
Henry Estela,
Abhinav Goel,
Oleg Goncharov
, et al. (64 additional authors not shown)
Abstract:
Large Language Models (LLMs) today are powerful problem solvers across many domains, and they continue to get stronger as they scale in model size, training set size, and training set quality, as shown by extensive research and experimentation across the industry. Training a frontier model today requires on the order of tens to hundreds of yottaflops, which is a massive investment of time, compute…
▽ More
Large Language Models (LLMs) today are powerful problem solvers across many domains, and they continue to get stronger as they scale in model size, training set size, and training set quality, as shown by extensive research and experimentation across the industry. Training a frontier model today requires on the order of tens to hundreds of yottaflops, which is a massive investment of time, compute, and energy. Improving pretraining efficiency is therefore essential to enable the next generation of even more capable LLMs. While 8-bit floating point (FP8) training is now widely adopted, transitioning to even narrower precision, such as 4-bit floating point (FP4), could unlock additional improvements in computational speed and resource utilization. However, quantization at this level poses challenges to training stability, convergence, and implementation, notably for large-scale models trained on long token horizons.
In this study, we introduce a novel approach for stable and accurate training of large language models (LLMs) using the NVFP4 format. Our method integrates Random Hadamard transforms (RHT) to bound block-level outliers, employs a two-dimensional quantization scheme for consistent representations across both the forward and backward passes, utilizes stochastic rounding for unbiased gradient estimation, and incorporates selective high-precision layers. We validate our approach by training a 12-billion-parameter model on 10 trillion tokens -- the longest publicly documented training run in 4-bit precision to date. Our results show that the model trained with our NVFP4-based pretraining technique achieves training loss and downstream task accuracies comparable to an FP8 baseline. These findings highlight that NVFP4, when combined with our training approach, represents a major step forward in narrow-precision LLM training algorithms.
△ Less
Submitted 29 September, 2025;
originally announced September 2025.
-
Nemotron-CC-Math: A 133 Billion-Token-Scale High Quality Math Pretraining Dataset
Authors:
Rabeeh Karimi Mahabadi,
Sanjeev Satheesh,
Shrimai Prabhumoye,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Pretraining large language models (LLMs) on high-quality, structured data such as mathematics and code substantially enhances reasoning capabilities. However, existing math-focused datasets built from Common Crawl suffer from degraded quality due to brittle extraction heuristics, lossy HTML-to-text conversion, and the failure to reliably preserve mathematical structure. In this work, we introduce…
▽ More
Pretraining large language models (LLMs) on high-quality, structured data such as mathematics and code substantially enhances reasoning capabilities. However, existing math-focused datasets built from Common Crawl suffer from degraded quality due to brittle extraction heuristics, lossy HTML-to-text conversion, and the failure to reliably preserve mathematical structure. In this work, we introduce Nemotron-CC-Math, a large-scale, high-quality mathematical corpus constructed from Common Crawl using a novel, domain-agnostic pipeline specifically designed for robust scientific text extraction.
Unlike previous efforts, our pipeline recovers math across various formats (e.g., MathJax, KaTeX, MathML) by leveraging layout-aware rendering with lynx and a targeted LLM-based cleaning stage. This approach preserves the structural integrity of equations and code blocks while removing boilerplate, standardizing notation into LaTeX representation, and correcting inconsistencies.
We collected a large, high-quality math corpus, namely Nemotron-CC-Math-3+ (133B tokens) and Nemotron-CC-Math-4+ (52B tokens). Notably, Nemotron-CC-Math-4+ not only surpasses all prior open math datasets-including MegaMath, FineMath, and OpenWebMath-but also contains 5.5 times more tokens than FineMath-4+, which was previously the highest-quality math pretraining dataset. When used to pretrain a Nemotron-T 8B model, our corpus yields +4.8 to +12.6 gains on MATH and +4.6 to +14.3 gains on MBPP+ over strong baselines, while also improving general-domain performance on MMLU and MMLU-Stem.
We present the first pipeline to reliably extract scientific content--including math--from noisy web-scale data, yielding measurable gains in math, code, and general reasoning, and setting a new state of the art among open math pretraining corpora. To support open-source efforts, we release our code and datasets.
△ Less
Submitted 20 August, 2025;
originally announced August 2025.
-
NVIDIA Nemotron Nano 2: An Accurate and Efficient Hybrid Mamba-Transformer Reasoning Model
Authors:
NVIDIA,
:,
Aarti Basant,
Abhijit Khairnar,
Abhijit Paithankar,
Abhinav Khattar,
Adithya Renduchintala,
Aditya Malte,
Akhiad Bercovich,
Akshay Hazare,
Alejandra Rico,
Aleksander Ficek,
Alex Kondratenko,
Alex Shaposhnikov,
Alexander Bukharin,
Ali Taghibakhshi,
Amelia Barton,
Ameya Sunil Mahabaleshwarkar,
Amy Shen,
Andrew Tao,
Ann Guan,
Anna Shors,
Anubhav Mandarwal,
Arham Mehta,
Arun Venkatesan
, et al. (192 additional authors not shown)
Abstract:
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achi…
▽ More
We introduce Nemotron-Nano-9B-v2, a hybrid Mamba-Transformer language model designed to increase throughput for reasoning workloads while achieving state-of-the-art accuracy compared to similarly-sized models. Nemotron-Nano-9B-v2 builds on the Nemotron-H architecture, in which the majority of the self-attention layers in the common Transformer architecture are replaced with Mamba-2 layers, to achieve improved inference speed when generating the long thinking traces needed for reasoning. We create Nemotron-Nano-9B-v2 by first pre-training a 12-billion-parameter model (Nemotron-Nano-12B-v2-Base) on 20 trillion tokens using an FP8 training recipe. After aligning Nemotron-Nano-12B-v2-Base, we employ the Minitron strategy to compress and distill the model with the goal of enabling inference on up to 128k tokens on a single NVIDIA A10G GPU (22GiB of memory, bfloat16 precision). Compared to existing similarly-sized models (e.g., Qwen3-8B), we show that Nemotron-Nano-9B-v2 achieves on-par or better accuracy on reasoning benchmarks while achieving up to 6x higher inference throughput in reasoning settings like 8k input and 16k output tokens. We are releasing Nemotron-Nano-9B-v2, Nemotron-Nano12B-v2-Base, and Nemotron-Nano-9B-v2-Base checkpoints along with the majority of our pre- and post-training datasets on Hugging Face.
△ Less
Submitted 2 September, 2025; v1 submitted 20 August, 2025;
originally announced August 2025.
-
FusionFactory: Fusing LLM Capabilities with Multi-LLM Log Data
Authors:
Tao Feng,
Haozhen Zhang,
Zijie Lei,
Pengrui Han,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro,
Jiaxuan You
Abstract:
The rapid advancement of large language models (LLMs) has created a diverse landscape of models, each excelling at different tasks. This diversity drives researchers to employ multiple LLMs in practice, leaving behind valuable multi-LLM log data. This naturally leads to the question of whether such logs can be fully leveraged to fuse LLMs' complementary capabilities. Although prior work has explor…
▽ More
The rapid advancement of large language models (LLMs) has created a diverse landscape of models, each excelling at different tasks. This diversity drives researchers to employ multiple LLMs in practice, leaving behind valuable multi-LLM log data. This naturally leads to the question of whether such logs can be fully leveraged to fuse LLMs' complementary capabilities. Although prior work has explored various strategies for integrating multiple LLMs, we argue that practical fusion must meet two essential requirements: (1) compatibility with real-world serving scenarios (e.g., local and API-based serving), and (2) flexibility to operate at different stages of the LLM pipeline to meet varied user needs (e.g., fine-tuning and inference stages). To this end, we introduce LLMFusionBench, a large-scale benchmark for LLM fusion that spans 14 tasks across five domains, with responses from 20 open-source LLMs (8B--671B) totaling 103M tokens. Building on LLMFusionBench, we propose FusionFactory, a systematic framework with three elaborated levels: (1) query-level fusion via tailored LLM routers, (2) thought-level fusion leveraging retrieved abstract reasoning templates, and (3) model-level fusion via distillation from top-ranked responses. Experiments show that FusionFactory consistently outperforms the best individual LLM across all 14 benchmarks, with the optimal fusion configuration varying across benchmarks, highlighting the promise of multi-LLM log data as a practical foundation for fusing diverse LLM capabilities.
△ Less
Submitted 27 September, 2025; v1 submitted 14 July, 2025;
originally announced July 2025.
-
AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy
Authors:
Zihan Liu,
Zhuolin Yang,
Yang Chen,
Chankyu Lee,
Mohammad Shoeybi,
Bryan Catanzaro,
Wei Ping
Abstract:
In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling t…
▽ More
In this work, we investigate the synergy between supervised fine-tuning (SFT) and reinforcement learning (RL) in developing strong reasoning models. We begin by curating the SFT training data through two scaling strategies: increasing the number of collected prompts and the number of generated responses per prompt. Both approaches yield notable improvements in reasoning performance, with scaling the number of prompts resulting in more substantial gains. We then explore the following questions regarding the synergy between SFT and RL: (i) Does a stronger SFT model consistently lead to better final performance after large-scale RL training? (ii) How can we determine an appropriate sampling temperature during RL training to effectively balance exploration and exploitation for a given SFT initialization? Our findings suggest that (i) holds true, provided effective RL training is conducted, particularly when the sampling temperature is carefully chosen to maintain the temperature-adjusted entropy around 0.3, a setting that strikes a good balance between exploration and exploitation. Notably, the performance gap between initial SFT models narrows significantly throughout the RL process. Leveraging a strong SFT foundation and insights into the synergistic interplay between SFT and RL, our AceReason-Nemotron-1.1 7B model significantly outperforms AceReason-Nemotron-1.0 and achieves new state-of-the-art performance among Qwen2.5-7B-based reasoning models on challenging math and code benchmarks, thereby demonstrating the effectiveness of our post-training recipe. We release the model and data at: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
△ Less
Submitted 16 June, 2025;
originally announced June 2025.
-
Prismatic Synthesis: Gradient-based Data Diversification Boosts Generalization in LLM Reasoning
Authors:
Jaehun Jung,
Seungju Han,
Ximing Lu,
Skyler Hallinan,
David Acuna,
Shrimai Prabhumoye,
Mostafa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro,
Yejin Choi
Abstract:
Effective generalization in language models depends critically on the diversity of their training data. Yet existing diversity metrics often fall short of this goal, relying on surface-level heuristics that are decoupled from model behavior. This motivates us to ask: What kind of diversity in training data actually drives generalization in language models -- and how can we measure and amplify it?…
▽ More
Effective generalization in language models depends critically on the diversity of their training data. Yet existing diversity metrics often fall short of this goal, relying on surface-level heuristics that are decoupled from model behavior. This motivates us to ask: What kind of diversity in training data actually drives generalization in language models -- and how can we measure and amplify it? Through large-scale empirical analyses spanning over 300 training runs, carefully controlled for data scale and quality, we show that data diversity can be a strong predictor of generalization in LLM reasoning -- as measured by average model performance on unseen out-of-distribution benchmarks. We introduce G-Vendi, a metric that quantifies diversity via the entropy of model-induced gradients. Despite using a small off-the-shelf proxy model for gradients, G-Vendi consistently outperforms alternative measures, achieving strong correlation (Spearman's $ρ\approx 0.9$) with out-of-distribution (OOD) performance on both natural language inference (NLI) and math reasoning tasks. Building on this insight, we present Prismatic Synthesis, a framework for generating diverse synthetic data by targeting underrepresented regions in gradient space. Experimental results show that Prismatic Synthesis consistently improves model performance as we scale synthetic data -- not just on in-distribution test but across unseen, out-of-distribution benchmarks -- significantly outperforming state-of-the-art models that rely on 20 times larger data generator than ours. For example, PrismMath-7B, our model distilled from a 32B LLM, outperforms R1-Distill-Qwen-7B -- the same base model trained on proprietary data generated by 671B R1 -- on 6 out of 7 challenging benchmarks.
△ Less
Submitted 26 May, 2025;
originally announced May 2025.
-
AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
Authors:
Yang Chen,
Zhuolin Yang,
Zihan Liu,
Chankyu Lee,
Peng Xu,
Mohammad Shoeybi,
Bryan Catanzaro,
Wei Ping
Abstract:
Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for small…
▽ More
Despite recent progress in large-scale reinforcement learning (RL) for reasoning, the training recipe for building high-performing reasoning models remains elusive. Key implementation details of frontier models, such as DeepSeek-R1, including data curation strategies and RL training recipe, are often omitted. Moreover, recent research indicates distillation remains more effective than RL for smaller models. In this work, we demonstrate that large-scale RL can significantly enhance the reasoning capabilities of strong, small- and mid-sized models, achieving results that surpass those of state-of-the-art distillation-based models. We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks (e.g., +14.6% / +17.2% on AIME 2025 for the 7B / 14B models), but also code reasoning tasks (e.g., +6.8% / +5.8% on LiveCodeBench for the 7B / 14B models). In addition, extended code-only RL iterations further improve performance on code benchmarks with minimal or no degradation in math results. We develop a robust data curation pipeline to collect challenging prompts with high-quality, verifiable answers and test cases to enable verification-based RL across both domains. Finally, we identify key experimental insights, including curriculum learning with progressively increasing response lengths and the stabilizing effect of on-policy parameter updates. We find that RL not only elicits the foundational reasoning capabilities acquired during pretraining and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
△ Less
Submitted 5 June, 2025; v1 submitted 22 May, 2025;
originally announced May 2025.
-
MoE Parallel Folding: Heterogeneous Parallelism Mappings for Efficient Large-Scale MoE Model Training with Megatron Core
Authors:
Dennis Liu,
Zijie Yan,
Xin Yao,
Tong Liu,
Vijay Korthikanti,
Evan Wu,
Shiqing Fan,
Gao Deng,
Hongxiao Bai,
Jianbin Chang,
Ashwath Aithal,
Michael Andersch,
Mohammad Shoeybi,
Jiajie Yao,
Chandler Zhou,
David Wu,
Xipeng Li,
June Yang
Abstract:
Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end train…
▽ More
Mixture of Experts (MoE) models enhance neural network scalability by dynamically selecting relevant experts per input token, enabling larger model sizes while maintaining manageable computation costs. However, efficient training of large-scale MoE models across thousands of GPUs presents significant challenges due to limitations in existing parallelism strategies. We introduce an end-to-end training framework for large-scale MoE models that utilizes five-dimensional hybrid parallelism: Tensor Parallelism, Expert Parallelism, Context Parallelism, Data Parallelism, and Pipeline Parallelism. Central to our approach is MoE Parallel Folding, a novel strategy that decouples the parallelization of attention and MoE layers in Transformer models, allowing each layer type to adopt optimal parallel configurations. Additionally, we develop a flexible token-level dispatcher that supports both token-dropping and token-dropless MoE training across all five dimensions of parallelism. This dispatcher accommodates dynamic tensor shapes and coordinates different parallelism schemes for Attention and MoE layers, facilitating complex parallelism implementations. Our experiments demonstrate significant improvements in training efficiency and scalability. We achieve up to 49.3% Model Flops Utilization (MFU) for the Mixtral 8x22B model and 39.0% MFU for the Qwen2-57B-A14B model on H100 GPUs, outperforming existing methods. The framework scales efficiently up to 1,024 GPUs and maintains high performance with sequence lengths up to 128K tokens, validating its effectiveness for large-scale MoE model training. The code is available in Megatron-Core.
△ Less
Submitted 23 April, 2025; v1 submitted 21 April, 2025;
originally announced April 2025.
-
Nemotron-CrossThink: Scaling Self-Learning beyond Math Reasoning
Authors:
Syeda Nahida Akter,
Shrimai Prabhumoye,
Matvei Novikov,
Seungju Han,
Ying Lin,
Evelina Bakhturina,
Eric Nyberg,
Yejin Choi,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and…
▽ More
Large Language Models (LLMs) have shown strong reasoning capabilities, particularly when enhanced through Reinforcement Learning (RL). While prior work has successfully applied RL to mathematical reasoning -- where rules and correctness are well-defined -- generalizing these methods to broader reasoning domains remains challenging due to limited data, the lack of verifiable reward structures, and diverse task requirements. In this work, we propose NEMOTRON-CROSSTHINK, a framework that systematically incorporates multi-domain corpora, including both synthetic and real-world question-answer pairs, into RL training to improve generalization across diverse reasoning tasks. NEMOTRON-CROSSTHINK addresses key challenges by (1) incorporating data from varied sources spanning STEM, humanities, social sciences, etc.; (2) applying structured templates (e.g., multiple-choice and open-ended) to control answer-space complexity; (3) filtering for verifiable answers; and (4) optimizing data blending strategies that utilizes data from multiple sources effectively. Our approach enables scalable and verifiable reward modeling beyond mathematics and demonstrates improved accuracies on both math (MATH-500: +30.1%, AMC23:+27.5%) and non-math reasoning benchmarks (MMLU-PRO: +12.8%, GPQA-DIAMOND: +11.3%, AGIEVAL: +15.1%, SUPERGPQA: +3.8%). Moreover, NEMOTRON-CROSSTHINK exhibits significantly improved response efficiency -- using 28% fewer tokens for correct answers -- highlighting more focused and effective reasoning. Through NEMOTRON-CROSSTHINK, we demonstrate that integrating multi-domain, multi-format data in RL leads to more accurate, efficient, and generalizable LLMs.
△ Less
Submitted 23 April, 2025; v1 submitted 15 April, 2025;
originally announced April 2025.
-
Minitron-SSM: Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning
Authors:
Ali Taghibakhshi,
Sharath Turuvekere Sreenivas,
Saurav Muralidharan,
Marcin Chochowski,
Yashaswi Karnati,
Raviraj Joshi,
Ameya Sunil Mahabaleshwarkar,
Zijia Chen,
Yoshi Suhara,
Oluwatobi Olabiyi,
Daniel Korzekwa,
Mostofa Patwary,
Mohammad Shoeybi,
Jan Kautz,
Bryan Catanzaro,
Ashwath Aithal,
Nima Tajbakhsh,
Pavlo Molchanov
Abstract:
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce…
▽ More
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce a novel group-aware pruning strategy that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. Furthermore, we demonstrate the necessity of such SSM pruning to achieve improved accuracy and inference speed compared to traditional approaches. Our compression recipe combines SSM, FFN, embedding dimension, and layer pruning, followed by knowledge distillation-based retraining, similar to the MINITRON technique. Using this approach, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to 40x fewer training tokens. The resulting model surpasses the accuracy of similarly-sized models while achieving 2x faster inference, significantly advancing the Pareto frontier.
△ Less
Submitted 31 October, 2025; v1 submitted 15 April, 2025;
originally announced April 2025.
-
From 128K to 4M: Efficient Training of Ultra-Long Context Large Language Models
Authors:
Chejian Xu,
Wei Ping,
Peng Xu,
Zihan Liu,
Boxin Wang,
Mohammad Shoeybi,
Bo Li,
Bryan Catanzaro
Abstract:
Long-context capabilities are essential for a wide range of applications, including document and video understanding, in-context learning, and inference-time scaling, all of which require models to process and reason over long sequences of text and multimodal data. In this work, we introduce a efficient training recipe for building ultra-long context LLMs from aligned instruct model, pushing the b…
▽ More
Long-context capabilities are essential for a wide range of applications, including document and video understanding, in-context learning, and inference-time scaling, all of which require models to process and reason over long sequences of text and multimodal data. In this work, we introduce a efficient training recipe for building ultra-long context LLMs from aligned instruct model, pushing the boundaries of context lengths from 128K to 1M, 2M, and 4M tokens. Our approach leverages efficient continued pretraining strategies to extend the context window and employs effective instruction tuning to maintain the instruction-following and reasoning abilities. Our UltraLong-8B, built on Llama3.1-Instruct with our recipe, achieves state-of-the-art performance across a diverse set of long-context benchmarks. Importantly, models trained with our approach maintain competitive performance on standard benchmarks, demonstrating balanced improvements for both long and short context tasks. We further provide an in-depth analysis of key design choices, highlighting the impacts of scaling strategies and data composition. Our findings establish a robust framework for efficiently scaling context lengths while preserving general model capabilities. We release all model weights at: https://ultralong.github.io/.
△ Less
Submitted 8 April, 2025;
originally announced April 2025.
-
Retro-Search: Exploring Untaken Paths for Deeper and Efficient Reasoning
Authors:
Ximing Lu,
Seungju Han,
David Acuna,
Hyunwoo Kim,
Jaehun Jung,
Shrimai Prabhumoye,
Niklas Muennighoff,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro,
Yejin Choi
Abstract:
Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different…
▽ More
Large reasoning models exhibit remarkable reasoning capabilities via long, elaborate reasoning trajectories. Supervised fine-tuning on such reasoning traces, also known as distillation, can be a cost-effective way to boost reasoning capabilities of student models. However, empirical observations reveal that these reasoning trajectories are often suboptimal, switching excessively between different lines of thought, resulting in under-thinking, over-thinking, and even degenerate responses. We introduce Retro-Search, an MCTS-inspired search algorithm, for distilling higher quality reasoning paths from large reasoning models. Retro-Search retrospectively revises reasoning paths to discover better, yet shorter traces, which can then lead to student models with enhanced reasoning capabilities with shorter, thus faster inference. Our approach can enable two use cases: self-improvement, where models are fine-tuned on their own Retro-Search-ed thought traces, and weak-to-strong improvement, where a weaker model revises stronger model's thought traces via Retro-Search. For self-improving, R1-distill-7B, fine-tuned on its own Retro-Search-ed traces, reduces the average reasoning length by 31.2% while improving performance by 7.7% across seven math benchmarks. For weak-to-strong improvement, we retrospectively revise R1-671B's traces from the OpenThoughts dataset using R1-distill-32B as the Retro-Search-er, a model 20x smaller. Qwen2.5-32B, fine-tuned on this refined data, achieves performance comparable to R1-distill-32B, yielding an 11.3% reduction in reasoning length and a 2.4% performance improvement compared to fine-tuning on the original OpenThoughts data. Our work counters recently emergent viewpoints that question the relevance of search algorithms in the era of large reasoning models, by demonstrating that there are still opportunities for algorithmic advancements, even for frontier models.
△ Less
Submitted 15 April, 2025; v1 submitted 6 April, 2025;
originally announced April 2025.
-
Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
Authors:
NVIDIA,
:,
Aaron Blakeman,
Aarti Basant,
Abhinav Khattar,
Adithya Renduchintala,
Akhiad Bercovich,
Aleksander Ficek,
Alexis Bjorlin,
Ali Taghibakhshi,
Amala Sanjay Deshmukh,
Ameya Sunil Mahabaleshwarkar,
Andrew Tao,
Anna Shors,
Ashwath Aithal,
Ashwin Poojary,
Ayush Dattagupta,
Balaram Buddharaju,
Bobby Chen,
Boris Ginsburg,
Boxin Wang,
Brandon Norick,
Brian Butterfield,
Bryan Catanzaro,
Carlo del Mundo
, et al. (176 additional authors not shown)
Abstract:
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transf…
▽ More
As inference-time scaling becomes critical for enhanced reasoning capabilities, it is increasingly becoming important to build models that are efficient to infer. We introduce Nemotron-H, a family of 8B and 56B/47B hybrid Mamba-Transformer models designed to reduce inference cost for a given accuracy level. To achieve this goal, we replace the majority of self-attention layers in the common Transformer model architecture with Mamba layers that perform constant computation and require constant memory per generated token. We show that Nemotron-H models offer either better or on-par accuracy compared to other similarly-sized state-of-the-art open-sourced Transformer models (e.g., Qwen-2.5-7B/72B and Llama-3.1-8B/70B), while being up to 3$\times$ faster at inference. To further increase inference speed and reduce the memory required at inference time, we created Nemotron-H-47B-Base from the 56B model using a new compression via pruning and distillation technique called MiniPuzzle. Nemotron-H-47B-Base achieves similar accuracy to the 56B model, but is 20% faster to infer. In addition, we introduce an FP8-based training recipe and show that it can achieve on par results with BF16-based training. This recipe is used to train the 56B model. We are releasing Nemotron-H base model checkpoints with support in Hugging Face and NeMo.
△ Less
Submitted 5 September, 2025; v1 submitted 4 April, 2025;
originally announced April 2025.
-
Maximize Your Data's Potential: Enhancing LLM Accuracy with Two-Phase Pretraining
Authors:
Steven Feng,
Shrimai Prabhumoye,
Kezhi Kong,
Dan Su,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Pretraining large language models effectively requires strategic data selection, blending and ordering. However, key details about data mixtures especially their scalability to longer token horizons and larger model sizes remain underexplored due to limited disclosure by model developers. To address this, we formalize the concept of two-phase pretraining and conduct an extensive systematic study o…
▽ More
Pretraining large language models effectively requires strategic data selection, blending and ordering. However, key details about data mixtures especially their scalability to longer token horizons and larger model sizes remain underexplored due to limited disclosure by model developers. To address this, we formalize the concept of two-phase pretraining and conduct an extensive systematic study on how to select and mix data to maximize model accuracies for the two phases. Our findings illustrate that a two-phase approach for pretraining outperforms random data ordering and natural distribution of tokens by 3.4% and 17% on average accuracies. We provide in-depth guidance on crafting optimal blends based on quality of the data source and the number of epochs to be seen. We propose to design blends using downsampled data at a smaller scale of 1T tokens and then demonstrate effective scaling of our approach to larger token horizon of 15T tokens and larger model size of 25B model size. These insights provide a series of steps practitioners can follow to design and scale their data blends.
△ Less
Submitted 18 December, 2024;
originally announced December 2024.
-
AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
Authors:
Zihan Liu,
Yang Chen,
Mohammad Shoeybi,
Bryan Catanzaro,
Wei Ping
Abstract:
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general doma…
▽ More
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
△ Less
Submitted 17 January, 2025; v1 submitted 19 December, 2024;
originally announced December 2024.
-
Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset
Authors:
Dan Su,
Kezhi Kong,
Ying Lin,
Joseph Jennings,
Brandon Norick,
Markus Kliegl,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier en…
▽ More
Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html
△ Less
Submitted 30 May, 2025; v1 submitted 3 December, 2024;
originally announced December 2024.
-
MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs
Authors:
Sheng-Chieh Lin,
Chankyu Lee,
Mohammad Shoeybi,
Jimmy Lin,
Bryan Catanzaro,
Wei Ping
Abstract:
State-of-the-art retrieval models typically address a straightforward search scenario, in which retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search…
▽ More
State-of-the-art retrieval models typically address a straightforward search scenario, in which retrieval tasks are fixed (e.g., finding a passage to answer a specific question) and only a single modality is supported for both queries and retrieved results. This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs), enabling a broader search scenario, termed universal multimodal retrieval, where multiple modalities and diverse retrieval tasks are accommodated. To this end, we first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks. Our empirical results show that the fine-tuned MLLM retriever is capable of understanding challenging queries, composed of both text and image, but it underperforms compared to a smaller CLIP retriever in cross-modal retrieval tasks due to the modality bias exhibited by MLLMs. To address the issue, we propose modality-aware hard negative mining to mitigate the modality bias exhibited by MLLM retrievers. Second, we propose continuously fine-tuning the universal multimodal retriever to enhance its text retrieval capability while preserving multimodal retrieval capability. As a result, our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR, which spans multiple domains and tasks, while also surpassing the state-of-the-art text retrieval model, NV-Embed-v1, on the MTEB retrieval benchmark. We also explore prompting the off-the-shelf MLLMs as zero-shot rerankers to refine the ranking of the candidates from the multimodal retriever. We find that, through prompt-and-reranking, MLLMs can further improve multimodal retrieval when the user queries (e.g., text-image composed queries) are more complex and challenging to understand. These findings also pave the way for advancing universal multimodal retrieval in the future.
△ Less
Submitted 22 February, 2025; v1 submitted 4 November, 2024;
originally announced November 2024.
-
MIND: Math Informed syNthetic Dialogues for Pretraining LLMs
Authors:
Syeda Nahida Akter,
Shrimai Prabhumoye,
John Kamalu,
Sanjeev Satheesh,
Eric Nyberg,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
The utility of synthetic data to enhance pretraining data quality and hence to improve downstream task accuracy has been widely explored in recent large language models (LLMs). Yet, these approaches fall inadequate in complex, multi-hop and mathematical reasoning tasks as the synthetic data typically fails to add complementary knowledge to the existing raw corpus. In this work, we propose a novel…
▽ More
The utility of synthetic data to enhance pretraining data quality and hence to improve downstream task accuracy has been widely explored in recent large language models (LLMs). Yet, these approaches fall inadequate in complex, multi-hop and mathematical reasoning tasks as the synthetic data typically fails to add complementary knowledge to the existing raw corpus. In this work, we propose a novel large-scale and diverse Math Informed syNthetic Dialogue (MIND) generation method that improves the mathematical reasoning ability of LLMs. Specifically, using MIND, we generate synthetic conversations based on OpenWebMath (OWM), resulting in a new math corpus, MIND-OWM. Our experiments with different conversational settings reveal that incorporating knowledge gaps between dialog participants is essential for generating high-quality math data. We further identify an effective way to format and integrate synthetic and raw data during pretraining to maximize the gain in mathematical reasoning, emphasizing the need to restructure raw data rather than use it as-is. Compared to pretraining just on raw data, a model pretrained on MIND-OWM shows significant boost in mathematical reasoning (GSM8K: +13.42%, MATH: +2.30%), including superior performance in specialized knowledge (MMLU: +4.55%, MMLU-STEM: +4.28%) and general purpose reasoning tasks (GENERAL REASONING: +2.51%).
△ Less
Submitted 24 April, 2025; v1 submitted 15 October, 2024;
originally announced October 2024.
-
Upcycling Large Language Models into Mixture of Experts
Authors:
Ethan He,
Abhinav Khattar,
Ryan Prenger,
Vijay Korthikanti,
Zijie Yan,
Tong Liu,
Shiqing Fan,
Ashwath Aithal,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Upcycling pre-trained dense language models into sparse mixture-of-experts (MoE) models is an efficient approach to increase the model capacity of already trained models. However, optimal techniques for upcycling at scale remain unclear. In this work, we conduct an extensive study of upcycling methods and hyperparameters for billion-parameter scale language models. We propose a novel "virtual grou…
▽ More
Upcycling pre-trained dense language models into sparse mixture-of-experts (MoE) models is an efficient approach to increase the model capacity of already trained models. However, optimal techniques for upcycling at scale remain unclear. In this work, we conduct an extensive study of upcycling methods and hyperparameters for billion-parameter scale language models. We propose a novel "virtual group" initialization scheme and weight scaling approach to enable upcycling into fine-grained MoE architectures. Through ablations, we find that upcycling outperforms continued dense model training. In addition, we show that softmax-then-topK expert routing improves over topK-then-softmax approach and higher granularity MoEs can help improve accuracy. Finally, we upcycled Nemotron-4 15B on 1T tokens and compared it to a continuously trained version of the same model on the same 1T tokens: the continuous trained model achieved 65.3% MMLU, whereas the upcycled model achieved 67.6%. Our results offer insights and best practices to effectively leverage upcycling for building MoE language models. Code is available.
△ Less
Submitted 15 June, 2025; v1 submitted 9 October, 2024;
originally announced October 2024.
-
NVLM: Open Frontier-Class Multimodal LLMs
Authors:
Wenliang Dai,
Nayeon Lee,
Boxin Wang,
Zhuolin Yang,
Zihan Liu,
Jon Barker,
Tuomas Rintamaki,
Mohammad Shoeybi,
Bryan Catanzaro,
Wei Ping
Abstract:
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. In terms of model desi…
▽ More
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks, rivaling the leading proprietary models (e.g., GPT-4o) and open-access models (e.g., Llama 3-V 405B and InternVL 2). Remarkably, NVLM 1.0 shows improved text-only performance over its LLM backbone after multimodal training. In terms of model design, we perform a comprehensive comparison between decoder-only multimodal LLMs (e.g., LLaVA) and cross-attention-based models (e.g., Flamingo). Based on the strengths and weaknesses of both approaches, we propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities. Furthermore, we introduce a 1-D tile-tagging design for tile-based dynamic high-resolution images, which significantly boosts performance on multimodal reasoning and OCR-related tasks. Regarding training data, we meticulously curate and provide detailed information on our multimodal pretraining and supervised fine-tuning datasets. Our findings indicate that dataset quality and task diversity are more important than scale, even during the pretraining phase, across all architectures. Notably, we develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks while maintaining and even improving text-only performance compared to their LLM backbones. To achieve this, we craft and integrate a high-quality text-only dataset into multimodal training, alongside a substantial amount of multimodal math and reasoning data, leading to enhanced math and coding capabilities across modalities. To advance research in the field, we release the model weights at https://huggingface.co/nvidia/NVLM-D-72B and will open-source the training code for the community soon.
△ Less
Submitted 22 October, 2024; v1 submitted 17 September, 2024;
originally announced September 2024.
-
LLM Pruning and Distillation in Practice: The Minitron Approach
Authors:
Sharath Turuvekere Sreenivas,
Saurav Muralidharan,
Raviraj Joshi,
Marcin Chochowski,
Ameya Sunil Mahabaleshwarkar,
Gerald Shen,
Jiaqi Zeng,
Zijia Chen,
Yoshi Suhara,
Shizhe Diao,
Chenhan Yu,
Wei-Chun Chen,
Hayley Ross,
Oluwatobi Olabiyi,
Ashwath Aithal,
Oleksii Kuchaiev,
Daniel Korzekwa,
Pavlo Molchanov,
Mostofa Patwary,
Mohammad Shoeybi,
Jan Kautz,
Bryan Catanzaro
Abstract:
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Align…
▽ More
We present a comprehensive report on compressing the Llama 3.1 8B and Mistral NeMo 12B models to 4B and 8B parameters, respectively, using pruning and distillation. We explore two distinct pruning strategies: (1) depth pruning and (2) joint hidden/attention/MLP (width) pruning, and evaluate the results on common benchmarks from the LM Evaluation Harness. The models are then aligned with NeMo Aligner and tested in instruct-tuned versions. This approach produces a compelling 4B model from Llama 3.1 8B and a state-of-the-art Mistral-NeMo-Minitron-8B (MN-Minitron-8B for brevity) model from Mistral NeMo 12B. We found that with no access to the original data, it is beneficial to slightly fine-tune teacher models on the distillation dataset. We open-source our base model weights on Hugging Face with a permissive license.
△ Less
Submitted 9 December, 2024; v1 submitted 21 August, 2024;
originally announced August 2024.
-
Compact Language Models via Pruning and Knowledge Distillation
Authors:
Saurav Muralidharan,
Sharath Turuvekere Sreenivas,
Raviraj Joshi,
Marcin Chochowski,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro,
Jan Kautz,
Pavlo Molchanov
Abstract:
Large language models (LLMs) targeting different deployment scales and sizes are currently produced by training each variant from scratch; this is extremely compute-intensive. In this paper, we investigate if pruning an existing LLM and then re-training it with a fraction (<3%) of the original training data can be a suitable alternative to repeated, full retraining. To this end, we develop a set o…
▽ More
Large language models (LLMs) targeting different deployment scales and sizes are currently produced by training each variant from scratch; this is extremely compute-intensive. In this paper, we investigate if pruning an existing LLM and then re-training it with a fraction (<3%) of the original training data can be a suitable alternative to repeated, full retraining. To this end, we develop a set of practical and effective compression best practices for LLMs that combine depth, width, attention and MLP pruning with knowledge distillation-based retraining; we arrive at these best practices through a detailed empirical exploration of pruning strategies for each axis, methods to combine axes, distillation strategies, and search techniques for arriving at optimal compressed architectures. We use this guide to compress the Nemotron-4 family of LLMs by a factor of 2-4x, and compare their performance to similarly-sized models on a variety of language modeling tasks. Deriving 8B and 4B models from an already pretrained 15B model using our approach requires up to 40x fewer training tokens per model compared to training from scratch; this results in compute cost savings of 1.8x for training the full model family (15B, 8B, and 4B). Minitron models exhibit up to a 16% improvement in MMLU scores compared to training from scratch, perform comparably to other community models such as Mistral 7B, Gemma 7B and Llama-3 8B, and outperform state-of-the-art compression techniques from the literature. We have open-sourced Minitron model weights on Huggingface, with corresponding supplementary material including example code available on GitHub.
△ Less
Submitted 4 November, 2024; v1 submitted 19 July, 2024;
originally announced July 2024.
-
ChatQA 2: Bridging the Gap to Proprietary LLMs in Long Context and RAG Capabilities
Authors:
Peng Xu,
Wei Ping,
Xianchao Wu,
Chejian Xu,
Zihan Liu,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
In this work, we introduce ChatQA 2, an Llama 3.0-based model with a 128K context window, designed to bridge the gap between open-source LLMs and leading proprietary models (e.g., GPT-4-Turbo-2024-04-09) in long context understanding and retrieval-augmented generation (RAG) capabilities. These two capabilities are complementary to each other and essential for LLMs to process large volumes of infor…
▽ More
In this work, we introduce ChatQA 2, an Llama 3.0-based model with a 128K context window, designed to bridge the gap between open-source LLMs and leading proprietary models (e.g., GPT-4-Turbo-2024-04-09) in long context understanding and retrieval-augmented generation (RAG) capabilities. These two capabilities are complementary to each other and essential for LLMs to process large volumes of information that cannot fit into a single prompt. We present a detailed continued training recipe to extend the context window of Llama3-70B-base from 8K to 128K tokens, along with a three-stage instruction tuning process to enhance the model's instruction-following, RAG performance, and long-context understanding capabilities. Our results demonstrate that the Llama3-ChatQA-2-70B model outperforms most existing state-of-the-art models, including GPT-4-Turbo-2024-04-09, Qwen2-72B-Instruct, and Llama3.1-70B-Instruct, on ultra-long tasks beyond 100K tokens, as well as on the RAG benchmark using only a 4K context window, showing the strong long context capability across varying sequence lengths. We further provide extensive comparisons between direct long-context and RAG solutions using the same state-of-the-art long-context LLMs. Interestingly, we find that the performance of strong long-context LLMs using RAG improves when retrieving a larger number of chunks. With a large set of top-k chunks, RAG consistently outperforms direct long-context solution using the same state-of-the-art long-context models (e.g., Llama3-ChatQA-2-70B and Qwen2-72B-Instruct) on both 32K and 128K benchmarks. We open-source the model weights, training data, and the evaluation setup for the for the community: https://chatqa2-project.github.io/
△ Less
Submitted 14 February, 2025; v1 submitted 19 July, 2024;
originally announced July 2024.
-
Reuse, Don't Retrain: A Recipe for Continued Pretraining of Language Models
Authors:
Jupinder Parmar,
Sanjev Satheesh,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
As language models have scaled both their number of parameters and pretraining dataset sizes, the computational cost for pretraining has become intractable except for the most well-resourced teams. This increasing cost makes it ever more important to be able to reuse a model after it has completed pretraining; allowing for a model's abilities to further improve without needing to train from scratc…
▽ More
As language models have scaled both their number of parameters and pretraining dataset sizes, the computational cost for pretraining has become intractable except for the most well-resourced teams. This increasing cost makes it ever more important to be able to reuse a model after it has completed pretraining; allowing for a model's abilities to further improve without needing to train from scratch. In this work, we detail a set of guidelines that cover how to design efficacious data distributions and learning rate schedules for continued pretraining of language models. When applying these findings within a continued pretraining run on top of a well-trained 15B parameter model, we show an improvement of 9\% in average model accuracy compared to the baseline of continued training on the pretraining set. The resulting recipe provides a practical starting point with which to begin developing language models through reuse rather than retraining.
△ Less
Submitted 9 July, 2024;
originally announced July 2024.
-
Data, Data Everywhere: A Guide for Pretraining Dataset Construction
Authors:
Jupinder Parmar,
Shrimai Prabhumoye,
Joseph Jennings,
Bo Liu,
Aastha Jhunjhunwala,
Zhilin Wang,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
The impressive capabilities of recent language models can be largely attributed to the multi-trillion token pretraining datasets that they are trained on. However, model developers fail to disclose their construction methodology which has lead to a lack of open information on how to develop effective pretraining sets. To address this issue, we perform the first systematic study across the entire p…
▽ More
The impressive capabilities of recent language models can be largely attributed to the multi-trillion token pretraining datasets that they are trained on. However, model developers fail to disclose their construction methodology which has lead to a lack of open information on how to develop effective pretraining sets. To address this issue, we perform the first systematic study across the entire pipeline of pretraining set construction. First, we run ablations on existing techniques for pretraining set development to identify which methods translate to the largest gains in model accuracy on downstream evaluations. Then, we categorize the most widely used data source, web crawl snapshots, across the attributes of toxicity, quality, type of speech, and domain. Finally, we show how such attribute information can be used to further refine and improve the quality of a pretraining set. These findings constitute an actionable set of steps that practitioners can use to develop high quality pretraining sets.
△ Less
Submitted 19 October, 2024; v1 submitted 8 July, 2024;
originally announced July 2024.
-
RankRAG: Unifying Context Ranking with Retrieval-Augmented Generation in LLMs
Authors:
Yue Yu,
Wei Ping,
Zihan Liu,
Boxin Wang,
Jiaxuan You,
Chao Zhang,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction o…
▽ More
Large language models (LLMs) typically utilize the top-k contexts from a retriever in retrieval-augmented generation (RAG). In this work, we propose a novel instruction fine-tuning framework RankRAG, which instruction-tunes a single LLM for the dual purpose of context ranking and answer generation in RAG. In particular, the instruction-tuned LLMs work surprisingly well by adding a small fraction of ranking data into the training blend, and outperform existing expert ranking models, including the same LLM exclusively fine-tuned on a large amount of ranking data. For generation, we compare our model with many strong baselines, including GPT-4-0613, GPT-4-turbo-2024-0409, and ChatQA-1.5, an open-sourced model with the state-of-the-art performance on RAG benchmarks. Specifically, our Llama3-RankRAG significantly outperforms Llama3-ChatQA-1.5 and GPT-4 models on nine knowledge-intensive benchmarks. In addition, it also performs comparably to GPT-4 on five RAG benchmarks in the biomedical domain without instruction fine-tuning on biomedical data, demonstrating its superb capability for generalization to new domains.
△ Less
Submitted 2 July, 2024;
originally announced July 2024.
-
Nemotron-4 340B Technical Report
Authors:
Nvidia,
:,
Bo Adler,
Niket Agarwal,
Ashwath Aithal,
Dong H. Anh,
Pallab Bhattacharya,
Annika Brundyn,
Jared Casper,
Bryan Catanzaro,
Sharon Clay,
Jonathan Cohen,
Sirshak Das,
Ayush Dattagupta,
Olivier Delalleau,
Leon Derczynski,
Yi Dong,
Daniel Egert,
Ellie Evans,
Aleksander Ficek,
Denys Fridman,
Shaona Ghosh,
Boris Ginsburg,
Igor Gitman,
Tomasz Grzegorzek
, et al. (58 additional authors not shown)
Abstract:
We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4-340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distribution, modification, and use of the models and its outputs. These models perform competitively to open access models on a wide range of evaluation be…
▽ More
We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4-340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distribution, modification, and use of the models and its outputs. These models perform competitively to open access models on a wide range of evaluation benchmarks, and were sized to fit on a single DGX H100 with 8 GPUs when deployed in FP8 precision. We believe that the community can benefit from these models in various research studies and commercial applications, especially for generating synthetic data to train smaller language models. Notably, over 98% of data used in our model alignment process is synthetically generated, showcasing the effectiveness of these models in generating synthetic data. To further support open research and facilitate model development, we are also open-sourcing the synthetic data generation pipeline used in our model alignment process.
△ Less
Submitted 6 August, 2024; v1 submitted 17 June, 2024;
originally announced June 2024.
-
An Empirical Study of Mamba-based Language Models
Authors:
Roger Waleffe,
Wonmin Byeon,
Duncan Riach,
Brandon Norick,
Vijay Korthikanti,
Tri Dao,
Albert Gu,
Ali Hatamizadeh,
Sudhakar Singh,
Deepak Narayanan,
Garvit Kulshreshtha,
Vartika Singh,
Jared Casper,
Jan Kautz,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Selective state-space models (SSMs) like Mamba overcome some of the shortcomings of Transformers, such as quadratic computational complexity with sequence length and large inference-time memory requirements from the key-value cache. Moreover, recent studies have shown that SSMs can match or exceed the language modeling capabilities of Transformers, making them an attractive alternative. In a contr…
▽ More
Selective state-space models (SSMs) like Mamba overcome some of the shortcomings of Transformers, such as quadratic computational complexity with sequence length and large inference-time memory requirements from the key-value cache. Moreover, recent studies have shown that SSMs can match or exceed the language modeling capabilities of Transformers, making them an attractive alternative. In a controlled setting (e.g., same data), however, studies so far have only presented small scale experiments comparing SSMs to Transformers. To understand the strengths and weaknesses of these architectures at larger scales, we present a direct comparison between 8B-parameter Mamba, Mamba-2, and Transformer models trained on the same datasets of up to 3.5T tokens. We also compare these models to a hybrid architecture consisting of 43% Mamba-2, 7% attention, and 50% MLP layers (Mamba-2-Hybrid). Using a diverse set of tasks, we answer the question of whether Mamba models can match Transformers at larger training budgets. Our results show that while pure SSMs match or exceed Transformers on many tasks, they lag behind Transformers on tasks which require strong copying or in-context learning abilities (e.g., 5-shot MMLU, Phonebook) or long-context reasoning. In contrast, we find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks we evaluated (+2.65 points on average) and is predicted to be up to 8x faster when generating tokens at inference time. To validate long-context capabilities, we provide additional experiments evaluating variants of the Mamba-2-Hybrid and Transformer extended to support 16K, 32K, and 128K sequences. On an additional 23 long-context tasks, the hybrid model continues to closely match or exceed the Transformer on average. To enable further study, we release the checkpoints as well as the code used to train our models as part of NVIDIA's Megatron-LM project.
△ Less
Submitted 12 June, 2024;
originally announced June 2024.
-
NV-Embed: Improved Techniques for Training LLMs as Generalist Embedding Models
Authors:
Chankyu Lee,
Rajarshi Roy,
Mengyao Xu,
Jonathan Raiman,
Mohammad Shoeybi,
Bryan Catanzaro,
Wei Ping
Abstract:
Decoder-only LLM-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce NV-Embed, incorporating architectural designs, training procedures, and curated datasets to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its…
▽ More
Decoder-only LLM-based embedding models are beginning to outperform BERT or T5-based embedding models in general-purpose text embedding tasks, including dense vector-based retrieval. In this work, we introduce NV-Embed, incorporating architectural designs, training procedures, and curated datasets to significantly enhance the performance of LLM as a versatile embedding model, while maintaining its simplicity and reproducibility. For model architecture, we propose a latent attention layer to obtain pooled embeddings, which consistently improves retrieval and downstream task accuracy compared to mean pooling or using the last <EOS> token embedding from LLMs. To enhance representation learning, we remove the causal attention mask of LLMs during contrastive training. For training algorithm, we introduce a two-stage contrastive instruction-tuning method. It first applies contrastive training with instructions on retrieval datasets, utilizing in-batch negatives and curated hard negative examples. At stage-2, it blends various non-retrieval into instruction tuning, which not only enhances non-retrieval task accuracy but also improves retrieval performance. For training data, we utilize the hard-negative mining, synthetic data generation and existing public available datasets to boost the performance of embedding model. By combining these techniques, our NV-Embed-v1 and NV-Embed-v2 models obtained the No.1 position on the MTEB leaderboard (as of May 24 and August 30, 2024, respectively) across 56 tasks, demonstrating the sustained effectiveness of the proposed methods over time. It also achieved the highest scores in the Long Doc section and the second-highest scores in the QA section of the AIR Benchmark, which covers a range of out-of-domain information retrieval topics beyond those in MTEB. We further provide the analysis of model compression techniques for generalist embedding models.
△ Less
Submitted 24 February, 2025; v1 submitted 27 May, 2024;
originally announced May 2024.
-
Nemotron-4 15B Technical Report
Authors:
Jupinder Parmar,
Shrimai Prabhumoye,
Joseph Jennings,
Mostofa Patwary,
Sandeep Subramanian,
Dan Su,
Chen Zhu,
Deepak Narayanan,
Aastha Jhunjhunwala,
Ayush Dattagupta,
Vibhu Jawa,
Jiwei Liu,
Ameya Mahabaleshwarkar,
Osvald Nitski,
Annika Brundyn,
James Maki,
Miguel Martinez,
Jiaxuan You,
John Kamalu,
Patrick LeGresley,
Denys Fridman,
Jared Casper,
Ashwath Aithal,
Oleksii Kuchaiev,
Mohammad Shoeybi
, et al. (2 additional authors not shown)
Abstract:
We introduce Nemotron-4 15B, a 15-billion-parameter large multilingual language model trained on 8 trillion text tokens. Nemotron-4 15B demonstrates strong performance when assessed on English, multilingual, and coding tasks: it outperforms all existing similarly-sized open models on 4 out of 7 downstream evaluation areas and achieves competitive performance to the leading open models in the remai…
▽ More
We introduce Nemotron-4 15B, a 15-billion-parameter large multilingual language model trained on 8 trillion text tokens. Nemotron-4 15B demonstrates strong performance when assessed on English, multilingual, and coding tasks: it outperforms all existing similarly-sized open models on 4 out of 7 downstream evaluation areas and achieves competitive performance to the leading open models in the remaining ones. Specifically, Nemotron-4 15B exhibits the best multilingual capabilities of all similarly-sized models, even outperforming models over four times larger and those explicitly specialized for multilingual tasks.
△ Less
Submitted 27 February, 2024; v1 submitted 26 February, 2024;
originally announced February 2024.
-
ODIN: Disentangled Reward Mitigates Hacking in RLHF
Authors:
Lichang Chen,
Chen Zhu,
Davit Soselia,
Jiuhai Chen,
Tianyi Zhou,
Tom Goldstein,
Heng Huang,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
In this work, we study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback (RLHF) on LLMs. A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators to achieve high scores. The same issue also holds for some reward models in RL. To address the challenges in both training and e…
▽ More
In this work, we study the issue of reward hacking on the response length, a challenge emerging in Reinforcement Learning from Human Feedback (RLHF) on LLMs. A well-formatted, verbose but less helpful response from the LLMs can often deceive LLMs or even human evaluators to achieve high scores. The same issue also holds for some reward models in RL. To address the challenges in both training and evaluation, we establish a more reliable evaluation protocol for comparing different training configurations, which inspects the trade-off between LLM evaluation score and response length obtained by varying training hyperparameters. Based on this evaluation, we conduct large-scale studies, where the results shed insights into the efficacy of hyperparameters and tricks used in RL on mitigating length bias. We further propose to improve the reward model by jointly training two linear heads on shared feature representations to predict the rewards, one trained to correlate with length, and the other trained to decorrelate with length and therefore focus more on the actual content. We then discard the length head in RL to prevent reward hacking on length. Experiments demonstrate that our approach almost eliminates the reward correlation with length, and improves the obtained policy by a significant margin.
△ Less
Submitted 11 February, 2024;
originally announced February 2024.
-
ChatQA: Surpassing GPT-4 on Conversational QA and RAG
Authors:
Zihan Liu,
Wei Ping,
Rajarshi Roy,
Peng Xu,
Chankyu Lee,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
In this work, we introduce ChatQA, a suite of models that outperform GPT-4 on retrieval-augmented generation (RAG) and conversational question answering (QA). To enhance generation, we propose a two-stage instruction tuning method that significantly boosts the performance of RAG. For effective retrieval, we introduce a dense retriever optimized for conversational QA, which yields results comparabl…
▽ More
In this work, we introduce ChatQA, a suite of models that outperform GPT-4 on retrieval-augmented generation (RAG) and conversational question answering (QA). To enhance generation, we propose a two-stage instruction tuning method that significantly boosts the performance of RAG. For effective retrieval, we introduce a dense retriever optimized for conversational QA, which yields results comparable to the alternative state-of-the-art query rewriting models, while substantially reducing deployment costs. We also present the ChatRAG Bench, which encompasses ten datasets covering comprehensive evaluations on RAG, table-related QA, arithmetic calculations, and scenarios involving unanswerable questions. Our ChatQA-1.0-70B (score: 54.14), built on Llama2, a weaker foundation model than GPT-4, can slightly outperform GPT-4-0613 (score: 53.90) and GPT-4-Turbo-2024-04-09 (score: 54.03) on the ChatRAG Bench, without relying on any synthetic data from OpenAI GPT models. Notably, the Llama3-ChatQA-1.5-70B model surpasses the accuracy of GPT-4-Turbo-2024-04-09, achieving a 4.4% improvement. To advance research in this field, we open-sourced the model weights, instruction tuning data, ChatRAG Bench, and retriever for the community: https://chatqa-project.github.io/.
△ Less
Submitted 29 October, 2024; v1 submitted 18 January, 2024;
originally announced January 2024.
-
VILA: On Pre-training for Visual Language Models
Authors:
Ji Lin,
Hongxu Yin,
Wei Ping,
Yao Lu,
Pavlo Molchanov,
Andrew Tao,
Huizi Mao,
Jan Kautz,
Mohammad Shoeybi,
Song Han
Abstract:
Visual language models (VLMs) rapidly progressed with the recent success of large language models. There have been growing efforts on visual instruction tuning to extend the LLM with visual inputs, but lacks an in-depth study of the visual language pre-training process, where the model learns to perform joint modeling on both modalities. In this work, we examine the design options for VLM pre-trai…
▽ More
Visual language models (VLMs) rapidly progressed with the recent success of large language models. There have been growing efforts on visual instruction tuning to extend the LLM with visual inputs, but lacks an in-depth study of the visual language pre-training process, where the model learns to perform joint modeling on both modalities. In this work, we examine the design options for VLM pre-training by augmenting LLM towards VLM through step-by-step controllable comparisons. We introduce three main findings: (1) freezing LLMs during pre-training can achieve decent zero-shot performance, but lack in-context learning capability, which requires unfreezing the LLM; (2) interleaved pre-training data is beneficial whereas image-text pairs alone are not optimal; (3) re-blending text-only instruction data to image-text data during instruction fine-tuning not only remedies the degradation of text-only tasks, but also boosts VLM task accuracy. With an enhanced pre-training recipe we build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models, e.g., LLaVA-1.5, across main benchmarks without bells and whistles. Multi-modal pre-training also helps unveil appealing properties of VILA, including multi-image reasoning, enhanced in-context learning, and better world knowledge.
△ Less
Submitted 16 May, 2024; v1 submitted 12 December, 2023;
originally announced December 2023.
-
InstructRetro: Instruction Tuning post Retrieval-Augmented Pretraining
Authors:
Boxin Wang,
Wei Ping,
Lawrence McAfee,
Peng Xu,
Bo Li,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Pretraining auto-regressive large language models~(LLMs) with retrieval demonstrates better perplexity and factual accuracy by leveraging external databases. However, the size of existing pretrained retrieval-augmented LLM is still limited (e.g., Retro has 7.5B parameters), which limits the effectiveness of instruction tuning and zero-shot generalization. In this work, we introduce Retro 48B, the…
▽ More
Pretraining auto-regressive large language models~(LLMs) with retrieval demonstrates better perplexity and factual accuracy by leveraging external databases. However, the size of existing pretrained retrieval-augmented LLM is still limited (e.g., Retro has 7.5B parameters), which limits the effectiveness of instruction tuning and zero-shot generalization. In this work, we introduce Retro 48B, the largest LLM pretrained with retrieval. Specifically, we continue to pretrain a 43B GPT model on additional 100 billion tokens using the Retro augmentation method by retrieving from 1.2 trillion tokens. Notably, the obtained foundation model, Retro 48B, largely outperforms the counterpart GPT 43B trained on 1.2T tokens in terms of perplexity with only 2.58% additional GPU hours, demonstrating the significant scaling potential of the method. After instruction tuning on Retro, InstructRetro demonstrates significant improvement over the instruction tuned GPT on a wide range of zero-shot tasks. Specifically, the average improvement of InstructRetro is 7% over its GPT counterpart across 8 short-form QA and reading comprehension tasks, 10% over GPT across 4 challenging long-form QA tasks, and 16% over GPT across 3 summarization tasks. Surprisingly, we find that one can ablate the encoder from InstructRetro architecture and directly use its decoder backbone, while achieving comparable results. Our results highlight the promising direction to obtain a better GPT decoder through continued pretraining with retrieval before instruction tuning. Our code and checkpoints are publicly available at: https://huggingface.co/nvidia/retro-48b-instruct-4k.
△ Less
Submitted 29 May, 2024; v1 submitted 11 October, 2023;
originally announced October 2023.
-
Retrieval meets Long Context Large Language Models
Authors:
Peng Xu,
Wei Ping,
Xianchao Wu,
Lawrence McAfee,
Chen Zhu,
Zihan Liu,
Sandeep Subramanian,
Evelina Bakhturina,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Extending the context window of large language models (LLMs) is getting popular recently, while the solution of augmenting LLMs with retrieval has existed for years. The natural questions are: i) Retrieval-augmentation versus long context window, which one is better for downstream tasks? ii) Can both methods be combined to get the best of both worlds? In this work, we answer these questions by stu…
▽ More
Extending the context window of large language models (LLMs) is getting popular recently, while the solution of augmenting LLMs with retrieval has existed for years. The natural questions are: i) Retrieval-augmentation versus long context window, which one is better for downstream tasks? ii) Can both methods be combined to get the best of both worlds? In this work, we answer these questions by studying both solutions using two state-of-the-art pretrained LLMs, i.e., a proprietary 43B GPT and Llama2-70B. Perhaps surprisingly, we find that LLM with 4K context window using simple retrieval-augmentation at generation can achieve comparable performance to finetuned LLM with 16K context window via positional interpolation on long context tasks, while taking much less computation. More importantly, we demonstrate that retrieval can significantly improve the performance of LLMs regardless of their extended context window sizes. Our best model, retrieval-augmented Llama2-70B with 32K context window, outperforms GPT-3.5-turbo-16k and Davinci003 in terms of average score on nine long context tasks including question answering, query-based summarization, and in-context few-shot learning tasks. It also outperforms its non-retrieval Llama2-70B-32k baseline by a margin, while being much faster at generation. Our study provides general insights on the choice of retrieval-augmentation versus long context extension of LLM for practitioners.
△ Less
Submitted 23 January, 2024; v1 submitted 4 October, 2023;
originally announced October 2023.
-
RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models
Authors:
Jie Huang,
Wei Ping,
Peng Xu,
Mohammad Shoeybi,
Kevin Chen-Chuan Chang,
Bryan Catanzaro
Abstract:
In this paper, we investigate the in-context learning ability of retrieval-augmented encoder-decoder language models. We first conduct a comprehensive analysis of existing models and identify their limitations in in-context learning, primarily due to a mismatch between pretraining and inference, as well as a restricted context length. To address these issues, we propose RAVEN, a model that combine…
▽ More
In this paper, we investigate the in-context learning ability of retrieval-augmented encoder-decoder language models. We first conduct a comprehensive analysis of existing models and identify their limitations in in-context learning, primarily due to a mismatch between pretraining and inference, as well as a restricted context length. To address these issues, we propose RAVEN, a model that combines retrieval-augmented masked language modeling and prefix language modeling. We further introduce Fusion-in-Context Learning to enhance the few-shot performance by enabling the model to leverage more in-context examples without requiring additional training. Through extensive experiments, we demonstrate that our simple yet effective design significantly improves performance, achieving results comparable to the most advanced language models in certain scenarios, despite having substantially fewer parameters. Our work underscores the potential of retrieval-augmented encoder-decoder language models for in-context learning and encourages further research in this direction.
△ Less
Submitted 19 August, 2024; v1 submitted 15 August, 2023;
originally announced August 2023.
-
Shall We Pretrain Autoregressive Language Models with Retrieval? A Comprehensive Study
Authors:
Boxin Wang,
Wei Ping,
Peng Xu,
Lawrence McAfee,
Zihan Liu,
Mohammad Shoeybi,
Yi Dong,
Oleksii Kuchaiev,
Bo Li,
Chaowei Xiao,
Anima Anandkumar,
Bryan Catanzaro
Abstract:
Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RET…
▽ More
Large decoder-only language models (LMs) can be largely improved in terms of perplexity by retrieval (e.g., RETRO), but its impact on text generation quality and downstream task accuracy is unclear. Thus, it is still an open question: shall we pretrain large autoregressive LMs with retrieval? To answer it, we perform a comprehensive study on a scalable pre-trained retrieval-augmented LM (i.e., RETRO) compared with standard GPT and retrieval-augmented GPT incorporated at fine-tuning or inference stages. We first provide the recipe to reproduce RETRO up to 9.5B parameters while retrieving a text corpus with 330B tokens. Based on that, we have the following novel findings: i) RETRO outperforms GPT on text generation with much less degeneration (i.e., repetition), moderately higher factual accuracy, and slightly lower toxicity with a nontoxic retrieval database. ii) On the LM Evaluation Harness benchmark, RETRO largely outperforms GPT on knowledge-intensive tasks, but is on par with GPT on other tasks. Furthermore, we introduce a simple variant of the model, RETRO++, which largely improves open-domain QA results of original RETRO (e.g., EM score +8.6 on Natural Question) and significantly outperforms retrieval-augmented GPT in both fine-tuning and zero-shot evaluation settings. Our findings highlight the promising direction of pretraining autoregressive LMs with retrieval as future foundation models. We release our code and model at: https://github.com/NVIDIA/Megatron-LM/blob/main/tools/retro/README.md
△ Less
Submitted 20 December, 2023; v1 submitted 13 April, 2023;
originally announced April 2023.
-
Adding Instructions during Pretraining: Effective Way of Controlling Toxicity in Language Models
Authors:
Shrimai Prabhumoye,
Mostofa Patwary,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Pretrained large language models have become indispensable for solving various natural language processing (NLP) tasks. However, safely deploying them in real world applications is challenging because they generate toxic content. To address this challenge, we propose two novel pretraining data augmentation strategies that significantly reduce model toxicity without compromising its utility. Our tw…
▽ More
Pretrained large language models have become indispensable for solving various natural language processing (NLP) tasks. However, safely deploying them in real world applications is challenging because they generate toxic content. To address this challenge, we propose two novel pretraining data augmentation strategies that significantly reduce model toxicity without compromising its utility. Our two strategies are: (1) MEDA: adds raw toxicity score as meta-data to the pretraining samples, and (2) INST: adds instructions to those samples indicating their toxicity. Our results indicate that our best performing strategy (INST) substantially reduces the toxicity probability up to 61% while preserving the accuracy on five benchmark NLP tasks as well as improving AUC scores on four bias detection tasks by 1.3%. We also demonstrate the generalizability of our techniques by scaling the number of training samples and the number of model parameters.
△ Less
Submitted 14 February, 2023;
originally announced February 2023.
-
Re-ViLM: Retrieval-Augmented Visual Language Model for Zero and Few-Shot Image Captioning
Authors:
Zhuolin Yang,
Wei Ping,
Zihan Liu,
Vijay Korthikanti,
Weili Nie,
De-An Huang,
Linxi Fan,
Zhiding Yu,
Shiyi Lan,
Bo Li,
Ming-Yu Liu,
Yuke Zhu,
Mohammad Shoeybi,
Bryan Catanzaro,
Chaowei Xiao,
Anima Anandkumar
Abstract:
Augmenting pretrained language models (LMs) with a vision encoder (e.g., Flamingo) has obtained the state-of-the-art results in image-to-text generation. However, these models store all the knowledge within their parameters, thus often requiring enormous model parameters to model the abundant visual concepts and very rich textual descriptions. Additionally, they are inefficient in incorporating ne…
▽ More
Augmenting pretrained language models (LMs) with a vision encoder (e.g., Flamingo) has obtained the state-of-the-art results in image-to-text generation. However, these models store all the knowledge within their parameters, thus often requiring enormous model parameters to model the abundant visual concepts and very rich textual descriptions. Additionally, they are inefficient in incorporating new data, requiring a computational-expensive fine-tuning process. In this work, we introduce a Retrieval-augmented Visual Language Model, Re-ViLM, built upon the Flamingo, that supports retrieving the relevant knowledge from the external database for zero and in-context few-shot image-to-text generations. By storing certain knowledge explicitly in the external database, our approach reduces the number of model parameters and can easily accommodate new data during evaluation by simply updating the database. We also construct an interleaved image and text data that facilitates in-context few-shot learning capabilities. We demonstrate that Re-ViLM significantly boosts performance for image-to-text generation tasks, especially for zero-shot and few-shot generation in out-of-domain settings with 4 times less parameters compared with baseline methods.
△ Less
Submitted 22 October, 2023; v1 submitted 9 February, 2023;
originally announced February 2023.
-
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Authors:
BigScience Workshop,
:,
Teven Le Scao,
Angela Fan,
Christopher Akiki,
Ellie Pavlick,
Suzana Ilić,
Daniel Hesslow,
Roman Castagné,
Alexandra Sasha Luccioni,
François Yvon,
Matthias Gallé,
Jonathan Tow,
Alexander M. Rush,
Stella Biderman,
Albert Webson,
Pawan Sasanka Ammanamanchi,
Thomas Wang,
Benoît Sagot,
Niklas Muennighoff,
Albert Villanova del Moral,
Olatunji Ruwase,
Rachel Bawden,
Stas Bekman,
Angelina McMillan-Major
, et al. (369 additional authors not shown)
Abstract:
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access…
▽ More
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
△ Less
Submitted 27 June, 2023; v1 submitted 9 November, 2022;
originally announced November 2022.
-
Evaluating Parameter Efficient Learning for Generation
Authors:
Peng Xu,
Mostofa Patwary,
Shrimai Prabhumoye,
Virginia Adams,
Ryan J. Prenger,
Wei Ping,
Nayeon Lee,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Parameter efficient learning methods (PERMs) have recently gained significant attention as they provide an efficient way for pre-trained language models (PLMs) to adapt to a downstream task. However, these conclusions are mostly drawn from in-domain evaluations over the full training set. In this paper, we present comparisons between PERMs and finetuning from three new perspectives: (1) the effect…
▽ More
Parameter efficient learning methods (PERMs) have recently gained significant attention as they provide an efficient way for pre-trained language models (PLMs) to adapt to a downstream task. However, these conclusions are mostly drawn from in-domain evaluations over the full training set. In this paper, we present comparisons between PERMs and finetuning from three new perspectives: (1) the effect of sample and model size to in-domain evaluations, (2) generalization to unseen domains and new datasets, and (3) the faithfulness of generations. Our results show that for in-domain settings (a) there is a cross point of sample size for which PERMs will perform better than finetuning when training with fewer samples, and (b) larger PLMs have larger cross points. For cross-domain and cross-dataset cases, we show that (a) Adapter (Houlsby et al., 2019) performs the best amongst all the PERMs studied here, and (b) it outperforms finetuning if the task dataset is below a certain size. We also compare the faithfulness of generations and show that PERMs can achieve better faithfulness score than finetuning, especially for small training set, by as much as 6%. Finally, we apply Adapter to MT-NLG 530b (Smith et al., 2022) and achieve new state-of-the-art results on Xsum (Narayan et al., 2018) for all ROUGE scores (ROUGE-1 49.17, ROUGE-2 27.20, ROUGE-L 40.98).
△ Less
Submitted 24 October, 2022;
originally announced October 2022.
-
Context Generation Improves Open Domain Question Answering
Authors:
Dan Su,
Mostofa Patwary,
Shrimai Prabhumoye,
Peng Xu,
Ryan Prenger,
Mohammad Shoeybi,
Pascale Fung,
Anima Anandkumar,
Bryan Catanzaro
Abstract:
Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this issue, we propose a two-stage, closed-book QA fra…
▽ More
Closed-book question answering (QA) requires a model to directly answer an open-domain question without access to any external knowledge. Prior work on closed-book QA either directly finetunes or prompts a pretrained language model (LM) to leverage the stored knowledge. However, they do not fully exploit the parameterized knowledge. To address this issue, we propose a two-stage, closed-book QA framework which employs a coarse-to-fine approach to extract relevant knowledge and answer a question. Our approach first generates a related context for a given question by prompting a pretrained LM. We then prompt the same LM for answer prediction using the generated context and the question. Additionally, to eliminate failure caused by context uncertainty, we marginalize over generated contexts. Experimental results on three QA benchmarks show that our method significantly outperforms previous closed-book QA methods (e.g. exact matching 68.6% vs. 55.3%), and is on par with open-book methods that exploit external knowledge sources (e.g. 68.6% vs. 68.0%). Our method is able to better exploit the stored knowledge in pretrained LMs without adding extra learnable parameters or needing finetuning, and paves the way for hybrid models that integrate pretrained LMs with external knowledge.
△ Less
Submitted 27 April, 2023; v1 submitted 12 October, 2022;
originally announced October 2022.
-
Prompt Compression and Contrastive Conditioning for Controllability and Toxicity Reduction in Language Models
Authors:
David Wingate,
Mohammad Shoeybi,
Taylor Sorensen
Abstract:
We explore the idea of compressing the prompts used to condition language models, and show that compressed prompts can retain a substantive amount of information about the original prompt. For severely compressed prompts, while fine-grained information is lost, abstract information and general sentiments can be retained with surprisingly few parameters, which can be useful in the context of decode…
▽ More
We explore the idea of compressing the prompts used to condition language models, and show that compressed prompts can retain a substantive amount of information about the original prompt. For severely compressed prompts, while fine-grained information is lost, abstract information and general sentiments can be retained with surprisingly few parameters, which can be useful in the context of decode-time algorithms for controllability and toxicity reduction. We explore contrastive conditioning to steer language model generation towards desirable text and away from undesirable text, and find that some complex prompts can be effectively compressed into a single token to guide generation. We also show that compressed prompts are largely compositional, and can be constructed such that they can be used to control independent aspects of generated text.
△ Less
Submitted 6 October, 2022;
originally announced October 2022.
-
FP8 Formats for Deep Learning
Authors:
Paulius Micikevicius,
Dusan Stosic,
Neil Burgess,
Marius Cornea,
Pradeep Dubey,
Richard Grisenthwaite,
Sangwon Ha,
Alexander Heinecke,
Patrick Judd,
John Kamalu,
Naveen Mellempudi,
Stuart Oberman,
Mohammad Shoeybi,
Michael Siu,
Hao Wu
Abstract:
FP8 is a natural progression for accelerating deep learning training inference beyond the 16-bit formats common in modern processors. In this paper we propose an 8-bit floating point (FP8) binary interchange format consisting of two encodings - E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit exponent and 2-bit mantissa). While E5M2 follows IEEE 754 conventions for representatio of special…
▽ More
FP8 is a natural progression for accelerating deep learning training inference beyond the 16-bit formats common in modern processors. In this paper we propose an 8-bit floating point (FP8) binary interchange format consisting of two encodings - E4M3 (4-bit exponent and 3-bit mantissa) and E5M2 (5-bit exponent and 2-bit mantissa). While E5M2 follows IEEE 754 conventions for representatio of special values, E4M3's dynamic range is extended by not representing infinities and having only one mantissa bit-pattern for NaNs. We demonstrate the efficacy of the FP8 format on a variety of image and language tasks, effectively matching the result quality achieved by 16-bit training sessions. Our study covers the main modern neural network architectures - CNNs, RNNs, and Transformer-based models, leaving all the hyperparameters unchanged from the 16-bit baseline training sessions. Our training experiments include large, up to 175B parameter, language models. We also examine FP8 post-training-quantization of language models trained using 16-bit formats that resisted fixed point int8 quantization.
△ Less
Submitted 29 September, 2022; v1 submitted 12 September, 2022;
originally announced September 2022.
-
Factuality Enhanced Language Models for Open-Ended Text Generation
Authors:
Nayeon Lee,
Wei Ping,
Peng Xu,
Mostofa Patwary,
Pascale Fung,
Mohammad Shoeybi,
Bryan Catanzaro
Abstract:
Pretrained language models (LMs) are susceptible to generate text with nonfactual information. In this work, we measure and improve the factual accuracy of large-scale LMs for open-ended text generation. We design the FactualityPrompts test set and metrics to measure the factuality of LM generations. Based on that, we study the factual accuracy of LMs with parameter sizes ranging from 126M to 530B…
▽ More
Pretrained language models (LMs) are susceptible to generate text with nonfactual information. In this work, we measure and improve the factual accuracy of large-scale LMs for open-ended text generation. We design the FactualityPrompts test set and metrics to measure the factuality of LM generations. Based on that, we study the factual accuracy of LMs with parameter sizes ranging from 126M to 530B. Interestingly, we find that larger LMs are more factual than smaller ones, although a previous study suggests that larger LMs can be less truthful in terms of misconceptions. In addition, popular sampling algorithms (e.g., top-p) in open-ended text generation can harm the factuality due to the ''uniform randomness'' introduced at every sampling step. We propose the factual-nucleus sampling algorithm that dynamically adapts the randomness to improve the factuality of generation while maintaining quality. Furthermore, we analyze the inefficiencies of the standard training method in learning correct associations between entities from factual text corpus (e.g., Wikipedia). We propose a factuality-enhanced training method that uses TopicPrefix for better awareness of facts and sentence completion as the training objective, which can vastly reduce the factual errors. We release our code and FactualityPrompts benchmark at: https://github.com/nayeon7lee/FactualityPrompt.
△ Less
Submitted 2 March, 2023; v1 submitted 9 June, 2022;
originally announced June 2022.