-
Hierarchical Sparse Attention Framework for Computationally Efficient Classification of Biological Cells
Authors:
Elad Yoshai,
Dana Yagoda-Aharoni,
Eden Dotan,
Natan T. Shaked
Abstract:
We present SparseAttnNet, a new hierarchical attention-driven framework for efficient image classification that adaptively selects and processes only the most informative pixels from images. Traditional convolutional neural networks typically process the entire images regardless of information density, leading to computational inefficiency and potential focus on irrelevant features. Our approach l…
▽ More
We present SparseAttnNet, a new hierarchical attention-driven framework for efficient image classification that adaptively selects and processes only the most informative pixels from images. Traditional convolutional neural networks typically process the entire images regardless of information density, leading to computational inefficiency and potential focus on irrelevant features. Our approach leverages a dynamic selection mechanism that uses coarse attention distilled by fine multi-head attention from the downstream layers of the model, allowing the model to identify and extract the most salient k pixels, where k is adaptively learned during training based on loss convergence trends. Once the top-k pixels are selected, the model processes only these pixels, embedding them as words in a language model to capture their semantics, followed by multi-head attention to incorporate global context. For biological cell images, we demonstrate that SparseAttnNet can process approximately 15% of the pixels instead of the full image. Applied to cell classification tasks using white blood cells images from the following modalities: optical path difference (OPD) images from digital holography for stain-free cells, images from motion-sensitive (event) camera from stain-free cells, and brightfield microscopy images of stained cells, For all three imaging modalities, SparseAttnNet achieves competitive accuracy while drastically reducing computational requirements in terms of both parameters and floating-point operations per second, compared to traditional CNNs and Vision Transformers. Since the model focuses on biologically relevant regions, it also offers improved explainability. The adaptive and lightweight nature of SparseAttnNet makes it ideal for deployment in resource-constrained and high-throughput settings, including imaging flow cytometry.
△ Less
Submitted 12 May, 2025;
originally announced May 2025.
-
Unveiling and Mitigating Adversarial Vulnerabilities in Iterative Optimizers
Authors:
Elad Sofer,
Tomer Shaked,
Caroline Chaux,
Nir Shlezinger
Abstract:
Machine learning (ML) models are often sensitive to carefully crafted yet seemingly unnoticeable perturbations. Such adversarial examples are considered to be a property of ML models, often associated with their black-box operation and sensitivity to features learned from data. This work examines the adversarial sensitivity of non-learned decision rules, and particularly of iterative optimizers. O…
▽ More
Machine learning (ML) models are often sensitive to carefully crafted yet seemingly unnoticeable perturbations. Such adversarial examples are considered to be a property of ML models, often associated with their black-box operation and sensitivity to features learned from data. This work examines the adversarial sensitivity of non-learned decision rules, and particularly of iterative optimizers. Our analysis is inspired by the recent developments in deep unfolding, which cast such optimizers as ML models. We show that non-learned iterative optimizers share the sensitivity to adversarial examples of ML models, and that attacking iterative optimizers effectively alters the optimization objective surface in a manner that modifies the minima sought. We then leverage the ability to cast iteration-limited optimizers as ML models to enhance robustness via adversarial training. For a class of proximal gradient optimizers, we rigorously prove how their learning affects adversarial sensitivity. We numerically back our findings, showing the vulnerability of various optimizers, as well as the robustness induced by unfolding and adversarial training.
△ Less
Submitted 26 April, 2025;
originally announced April 2025.
-
Enhancing frozen histological section images using permanent-section-guided deep learning with nuclei attention
Authors:
Elad Yoshai,
Gil Goldinger,
Miki Haifler,
Natan T. Shaked
Abstract:
In histological pathology, frozen sections are often used for rapid diagnosis during surgeries, as they can be produced within minutes. However, they suffer from artifacts and often lack crucial diagnostic details, particularly within the cell nuclei region. Permanent sections, on the other hand, contain more diagnostic detail but require a time-intensive preparation process. Here, we present a ge…
▽ More
In histological pathology, frozen sections are often used for rapid diagnosis during surgeries, as they can be produced within minutes. However, they suffer from artifacts and often lack crucial diagnostic details, particularly within the cell nuclei region. Permanent sections, on the other hand, contain more diagnostic detail but require a time-intensive preparation process. Here, we present a generative deep learning approach to enhance frozen section images by leveraging guidance from permanent sections. Our method places a strong emphasis on the nuclei region, which contains critical information in both frozen and permanent sections. Importantly, our approach avoids generating artificial data in blank regions, ensuring that the network only enhances existing features without introducing potentially unreliable information. We achieve this through a segmented attention network, incorporating nuclei-segmented images during training and adding an additional loss function to refine the nuclei details in the generated permanent images. We validated our method across various tissues, including kidney, breast, and colon. This approach significantly improves histological efficiency and diagnostic accuracy, enhancing frozen section images within seconds, and seamlessly integrating into existing laboratory workflows.
△ Less
Submitted 10 November, 2024;
originally announced November 2024.
-
Minimizing Embedding Distortion for Robust Out-of-Distribution Performance
Authors:
Tom Shaked,
Yuval Goldman,
Oran Shayer
Abstract:
Foundational models, trained on vast and diverse datasets, have demonstrated remarkable capabilities in generalizing across different domains and distributions for various zero-shot tasks. Our work addresses the challenge of retaining these powerful generalization capabilities when adapting foundational models to specific downstream tasks through fine-tuning. To this end, we introduce a novel appr…
▽ More
Foundational models, trained on vast and diverse datasets, have demonstrated remarkable capabilities in generalizing across different domains and distributions for various zero-shot tasks. Our work addresses the challenge of retaining these powerful generalization capabilities when adapting foundational models to specific downstream tasks through fine-tuning. To this end, we introduce a novel approach we call "similarity loss", which can be incorporated into the fine-tuning process of any task. By minimizing the distortion of fine-tuned embeddings from the pre-trained embeddings, our method strikes a balance between task-specific adaptation and preserving broad generalization abilities. We evaluate our approach on two diverse tasks: image classification on satellite imagery and face recognition, focusing on open-class and domain shift scenarios to assess out-of-distribution (OOD) performance. We demonstrate that this approach significantly improves OOD performance while maintaining strong in-distribution (ID) performance.
△ Less
Submitted 11 September, 2024;
originally announced September 2024.
-
The Llama 3 Herd of Models
Authors:
Aaron Grattafiori,
Abhimanyu Dubey,
Abhinav Jauhri,
Abhinav Pandey,
Abhishek Kadian,
Ahmad Al-Dahle,
Aiesha Letman,
Akhil Mathur,
Alan Schelten,
Alex Vaughan,
Amy Yang,
Angela Fan,
Anirudh Goyal,
Anthony Hartshorn,
Aobo Yang,
Archi Mitra,
Archie Sravankumar,
Artem Korenev,
Arthur Hinsvark,
Arun Rao,
Aston Zhang,
Aurelien Rodriguez,
Austen Gregerson,
Ava Spataru,
Baptiste Roziere
, et al. (536 additional authors not shown)
Abstract:
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical…
▽ More
Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
△ Less
Submitted 23 November, 2024; v1 submitted 31 July, 2024;
originally announced July 2024.
-
Super resolution of histopathological frozen sections via deep learning preserving tissue structure
Authors:
Elad Yoshai,
Gil Goldinger,
Miki Haifler,
Natan T. Shaked
Abstract:
Histopathology plays a pivotal role in medical diagnostics. In contrast to preparing permanent sections for histopathology, a time-consuming process, preparing frozen sections is significantly faster and can be performed during surgery, where the sample scanning time should be optimized. Super-resolution techniques allow imaging the sample in lower magnification and sparing scanning time. In this…
▽ More
Histopathology plays a pivotal role in medical diagnostics. In contrast to preparing permanent sections for histopathology, a time-consuming process, preparing frozen sections is significantly faster and can be performed during surgery, where the sample scanning time should be optimized. Super-resolution techniques allow imaging the sample in lower magnification and sparing scanning time. In this paper, we present a new approach to super resolution for histopathological frozen sections, with focus on achieving better distortion measures, rather than pursuing photorealistic images that may compromise critical diagnostic information. Our deep-learning architecture focuses on learning the error between interpolated images and real images, thereby it generates high-resolution images while preserving critical image details, reducing the risk of diagnostic misinterpretation. This is done by leveraging the loss functions in the frequency domain, assigning higher weights to the reconstruction of complex, high-frequency components. In comparison to existing methods, we obtained significant improvements in terms of Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), as well as indicated details that lost in the low-resolution frozen-section images, affecting the pathologist's clinical decisions. Our approach has a great potential in providing more-rapid frozen-section imaging, with less scanning, while preserving the high resolution in the imaged sample.
△ Less
Submitted 17 October, 2023;
originally announced October 2023.
-
Joint Privacy Enhancement and Quantization in Federated Learning
Authors:
Natalie Lang,
Elad Sofer,
Tomer Shaked,
Nir Shlezinger
Abstract:
Federated learning (FL) is an emerging paradigm for training machine learning models using possibly private data available at edge devices. The distributed operation of FL gives rise to challenges that are not encountered in centralized machine learning, including the need to preserve the privacy of the local datasets, and the communication load due to the repeated exchange of updated models. Thes…
▽ More
Federated learning (FL) is an emerging paradigm for training machine learning models using possibly private data available at edge devices. The distributed operation of FL gives rise to challenges that are not encountered in centralized machine learning, including the need to preserve the privacy of the local datasets, and the communication load due to the repeated exchange of updated models. These challenges are often tackled individually via techniques that induce some distortion on the updated models, e.g., local differential privacy (LDP) mechanisms and lossy compression. In this work we propose a method coined joint privacy enhancement and quantization (JoPEQ), which jointly implements lossy compression and privacy enhancement in FL settings. In particular, JoPEQ utilizes vector quantization based on random lattice, a universal compression technique whose byproduct distortion is statistically equivalent to additive noise. This distortion is leveraged to enhance privacy by augmenting the model updates with dedicated multivariate privacy preserving noise. We show that JoPEQ simultaneously quantizes data according to a required bit-rate while holding a desired privacy level, without notably affecting the utility of the learned model. This is shown via analytical LDP guarantees, distortion and convergence bounds derivation, and numerical studies. Finally, we empirically assert that JoPEQ demolishes common attacks known to exploit privacy leakage.
△ Less
Submitted 23 August, 2022;
originally announced August 2022.
-
TOP-GAN: Label-Free Cancer Cell Classification Using Deep Learning with a Small Training Set
Authors:
Moran Rubin,
Omer Stein,
Nir A. Turko,
Yoav Nygate,
Darina Roitshtain,
Lidor Karako,
Itay Barnea,
Raja Giryes,
Natan T. Shaked
Abstract:
We propose a new deep learning approach for medical imaging that copes with the problem of a small training set, the main bottleneck of deep learning, and apply it for classification of healthy and cancer cells acquired by quantitative phase imaging. The proposed method, called transferring of pre-trained generative adversarial network (TOP-GAN), is a hybridization between transfer learning and ge…
▽ More
We propose a new deep learning approach for medical imaging that copes with the problem of a small training set, the main bottleneck of deep learning, and apply it for classification of healthy and cancer cells acquired by quantitative phase imaging. The proposed method, called transferring of pre-trained generative adversarial network (TOP-GAN), is a hybridization between transfer learning and generative adversarial networks (GANs). Healthy cells and cancer cells of different metastatic potential have been imaged by low-coherence off-axis holography. After the acquisition, the optical path delay maps of the cells have been extracted and directly used as an input to the deep networks. In order to cope with the small number of classified images, we have used GANs to train a large number of unclassified images from another cell type (sperm cells). After this preliminary training, and after transforming the last layer of the network with new ones, we have designed an automatic classifier for the correct cell type (healthy/primary cancer/metastatic cancer) with 90-99% accuracy, although small training sets of down to several images have been used. These results are better in comparison to other classic methods that aim at coping with the same problem of a small training set. We believe that our approach makes the combination of holographic microscopy and deep learning networks more accessible to the medical field by enabling a rapid, automatic and accurate classification in stain-free imaging flow cytometry. Furthermore, our approach is expected to be applicable to many other medical image classification tasks, suffering from a small training set.
△ Less
Submitted 17 December, 2018;
originally announced December 2018.
-
Wide & Deep Learning for Recommender Systems
Authors:
Heng-Tze Cheng,
Levent Koc,
Jeremiah Harmsen,
Tal Shaked,
Tushar Chandra,
Hrishi Aradhye,
Glen Anderson,
Greg Corrado,
Wei Chai,
Mustafa Ispir,
Rohan Anil,
Zakaria Haque,
Lichan Hong,
Vihan Jain,
Xiaobing Liu,
Hemal Shah
Abstract:
Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable, while generalization requires more feature engineering effort. With less feature engineering, deep neural networks…
▽ More
Generalized linear models with nonlinear feature transformations are widely used for large-scale regression and classification problems with sparse inputs. Memorization of feature interactions through a wide set of cross-product feature transformations are effective and interpretable, while generalization requires more feature engineering effort. With less feature engineering, deep neural networks can generalize better to unseen feature combinations through low-dimensional dense embeddings learned for the sparse features. However, deep neural networks with embeddings can over-generalize and recommend less relevant items when the user-item interactions are sparse and high-rank. In this paper, we present Wide & Deep learning---jointly trained wide linear models and deep neural networks---to combine the benefits of memorization and generalization for recommender systems. We productionized and evaluated the system on Google Play, a commercial mobile app store with over one billion active users and over one million apps. Online experiment results show that Wide & Deep significantly increased app acquisitions compared with wide-only and deep-only models. We have also open-sourced our implementation in TensorFlow.
△ Less
Submitted 24 June, 2016;
originally announced June 2016.