这是indexloc提供的服务,不要输入任何密码
Skip to main content

Showing 1–5 of 5 results for author: Põder, S

Searching in archive cs. Search in all archives.
.
  1. arXiv:2507.06261  [pdf, ps, other

    cs.CL cs.AI

    Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities

    Authors: Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric Chu , et al. (3284 additional authors not shown)

    Abstract: In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal unde… ▽ More

    Submitted 22 July, 2025; v1 submitted 7 July, 2025; originally announced July 2025.

    Comments: 72 pages, 17 figures

  2. arXiv:2503.19786  [pdf, other

    cs.CL cs.AI

    Gemma 3 Technical Report

    Authors: Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin , et al. (191 additional authors not shown)

    Abstract: We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achie… ▽ More

    Submitted 25 March, 2025; originally announced March 2025.

  3. arXiv:2403.05530  [pdf, other

    cs.CL cs.AI

    Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

    Authors: Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love , et al. (1112 additional authors not shown)

    Abstract: In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February… ▽ More

    Submitted 16 December, 2024; v1 submitted 8 March, 2024; originally announced March 2024.

  4. arXiv:2312.11805  [pdf, other

    cs.CL cs.AI cs.CV

    Gemini: A Family of Highly Capable Multimodal Models

    Authors: Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Melvin Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Timothy Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul R. Barham, Tom Hennigan, Benjamin Lee , et al. (1326 additional authors not shown)

    Abstract: This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr… ▽ More

    Submitted 9 May, 2025; v1 submitted 18 December, 2023; originally announced December 2023.

  5. arXiv:2203.08161  [pdf, other

    astro-ph.GA astro-ph.IM cs.LG physics.data-an stat.ML

    Sensitivity Estimation for Dark Matter Subhalos in Synthetic Gaia DR2 using Deep Learning

    Authors: Abdullah Bazarov, María Benito, Gert Hütsi, Rain Kipper, Joosep Pata, Sven Põder

    Abstract: The abundance of dark matter (DM) subhalos orbiting a host galaxy is a generic prediction of the cosmological framework, and is a promising way to constrain the nature of DM. In this paper, we investigate the use of machine learning-based tools to quantify the magnitude of phase-space perturbations caused by the passage of DM subhalos. A simple binary classifier and an anomaly detection model are… ▽ More

    Submitted 8 November, 2022; v1 submitted 15 March, 2022; originally announced March 2022.

    Comments: 13 pages, 8 figures, 1 table. Accepted for publication in Astronomy and Computing