这是indexloc提供的服务,不要输入任何密码
Skip to main content

Showing 1–5 of 5 results for author: Orbay, J

Searching in archive cs. Search in all archives.
.
  1. arXiv:2507.06261  [pdf, ps, other

    cs.CL cs.AI

    Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities

    Authors: Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric Chu , et al. (3284 additional authors not shown)

    Abstract: In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal unde… ▽ More

    Submitted 22 July, 2025; v1 submitted 7 July, 2025; originally announced July 2025.

    Comments: 72 pages, 17 figures

  2. arXiv:2503.19786  [pdf, other

    cs.CL cs.AI

    Gemma 3 Technical Report

    Authors: Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean-bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin , et al. (191 additional authors not shown)

    Abstract: We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achie… ▽ More

    Submitted 25 March, 2025; originally announced March 2025.

  3. arXiv:2403.05530  [pdf, other

    cs.CL cs.AI

    Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

    Authors: Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, Soroosh Mariooryad, Yifan Ding, Xinyang Geng, Fred Alcober, Roy Frostig, Mark Omernick, Lexi Walker, Cosmin Paduraru, Christina Sorokin, Andrea Tacchetti, Colin Gaffney, Samira Daruki, Olcan Sercinoglu, Zach Gleicher, Juliette Love , et al. (1112 additional authors not shown)

    Abstract: In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February… ▽ More

    Submitted 16 December, 2024; v1 submitted 8 March, 2024; originally announced March 2024.

  4. arXiv:2403.03950  [pdf, other

    cs.LG cs.AI stat.ML

    Stop Regressing: Training Value Functions via Classification for Scalable Deep RL

    Authors: Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, Aviral Kumar, Rishabh Agarwal

    Abstract: Value functions are a central component of deep reinforcement learning (RL). These functions, parameterized by neural networks, are trained using a mean squared error regression objective to match bootstrapped target values. However, scaling value-based RL methods that use regression to large networks, such as high-capacity Transformers, has proven challenging. This difficulty is in stark contrast… ▽ More

    Submitted 6 March, 2024; originally announced March 2024.

  5. arXiv:2111.12872  [pdf, other

    cs.CV cs.CL

    Less is More: Generating Grounded Navigation Instructions from Landmarks

    Authors: Su Wang, Ceslee Montgomery, Jordi Orbay, Vighnesh Birodkar, Aleksandra Faust, Izzeddin Gur, Natasha Jaques, Austin Waters, Jason Baldridge, Peter Anderson

    Abstract: We study the automatic generation of navigation instructions from 360-degree images captured on indoor routes. Existing generators suffer from poor visual grounding, causing them to rely on language priors and hallucinate objects. Our MARKY-MT5 system addresses this by focusing on visual landmarks; it comprises a first stage landmark detector and a second stage generator -- a multimodal, multiling… ▽ More

    Submitted 4 April, 2022; v1 submitted 24 November, 2021; originally announced November 2021.

    Comments: CVPR 2022 Camera-ready