-
Towards physician-centered oversight of conversational diagnostic AI
Authors:
Elahe Vedadi,
David Barrett,
Natalie Harris,
Ellery Wulczyn,
Shashir Reddy,
Roma Ruparel,
Mike Schaekermann,
Tim Strother,
Ryutaro Tanno,
Yash Sharma,
Jihyeon Lee,
Cían Hughes,
Dylan Slack,
Anil Palepu,
Jan Freyberg,
Khaled Saab,
Valentin Liévin,
Wei-Hung Weng,
Tao Tu,
Yun Liu,
Nenad Tomasev,
Kavita Kulkarni,
S. Sara Mahdavi,
Kelvin Guu,
Joëlle Barral
, et al. (10 additional authors not shown)
Abstract:
Recent work has demonstrated the promise of conversational AI systems for diagnostic dialogue. However, real-world assurance of patient safety means that providing individual diagnoses and treatment plans is considered a regulated activity by licensed professionals. Furthermore, physicians commonly oversee other team members in such activities, including nurse practitioners (NPs) or physician assi…
▽ More
Recent work has demonstrated the promise of conversational AI systems for diagnostic dialogue. However, real-world assurance of patient safety means that providing individual diagnoses and treatment plans is considered a regulated activity by licensed professionals. Furthermore, physicians commonly oversee other team members in such activities, including nurse practitioners (NPs) or physician assistants/associates (PAs). Inspired by this, we propose a framework for effective, asynchronous oversight of the Articulate Medical Intelligence Explorer (AMIE) AI system. We propose guardrailed-AMIE (g-AMIE), a multi-agent system that performs history taking within guardrails, abstaining from individualized medical advice. Afterwards, g-AMIE conveys assessments to an overseeing primary care physician (PCP) in a clinician cockpit interface. The PCP provides oversight and retains accountability of the clinical decision. This effectively decouples oversight from intake and can thus happen asynchronously. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) of text consultations with asynchronous oversight, we compared g-AMIE to NPs/PAs or a group of PCPs under the same guardrails. Across 60 scenarios, g-AMIE outperformed both groups in performing high-quality intake, summarizing cases, and proposing diagnoses and management plans for the overseeing PCP to review. This resulted in higher quality composite decisions. PCP oversight of g-AMIE was also more time-efficient than standalone PCP consultations in prior work. While our study does not replicate existing clinical practices and likely underestimates clinicians' capabilities, our results demonstrate the promise of asynchronous oversight as a feasible paradigm for diagnostic AI systems to operate under expert human oversight for enhancing real-world care.
△ Less
Submitted 21 July, 2025;
originally announced July 2025.
-
Gemini 2.5: Pushing the Frontier with Advanced Reasoning, Multimodality, Long Context, and Next Generation Agentic Capabilities
Authors:
Gheorghe Comanici,
Eric Bieber,
Mike Schaekermann,
Ice Pasupat,
Noveen Sachdeva,
Inderjit Dhillon,
Marcel Blistein,
Ori Ram,
Dan Zhang,
Evan Rosen,
Luke Marris,
Sam Petulla,
Colin Gaffney,
Asaf Aharoni,
Nathan Lintz,
Tiago Cardal Pais,
Henrik Jacobsson,
Idan Szpektor,
Nan-Jiang Jiang,
Krishna Haridasan,
Ahmed Omran,
Nikunj Saunshi,
Dara Bahri,
Gaurav Mishra,
Eric Chu
, et al. (3284 additional authors not shown)
Abstract:
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal unde…
▽ More
In this report, we introduce the Gemini 2.X model family: Gemini 2.5 Pro and Gemini 2.5 Flash, as well as our earlier Gemini 2.0 Flash and Flash-Lite models. Gemini 2.5 Pro is our most capable model yet, achieving SoTA performance on frontier coding and reasoning benchmarks. In addition to its incredible coding and reasoning skills, Gemini 2.5 Pro is a thinking model that excels at multimodal understanding and it is now able to process up to 3 hours of video content. Its unique combination of long context, multimodal and reasoning capabilities can be combined to unlock new agentic workflows. Gemini 2.5 Flash provides excellent reasoning abilities at a fraction of the compute and latency requirements and Gemini 2.0 Flash and Flash-Lite provide high performance at low latency and cost. Taken together, the Gemini 2.X model generation spans the full Pareto frontier of model capability vs cost, allowing users to explore the boundaries of what is possible with complex agentic problem solving.
△ Less
Submitted 22 July, 2025; v1 submitted 7 July, 2025;
originally announced July 2025.
-
Advancing Conversational Diagnostic AI with Multimodal Reasoning
Authors:
Khaled Saab,
Jan Freyberg,
Chunjong Park,
Tim Strother,
Yong Cheng,
Wei-Hung Weng,
David G. T. Barrett,
David Stutz,
Nenad Tomasev,
Anil Palepu,
Valentin Liévin,
Yash Sharma,
Roma Ruparel,
Abdullah Ahmed,
Elahe Vedadi,
Kimberly Kanada,
Cian Hughes,
Yun Liu,
Geoff Brown,
Yang Gao,
Sean Li,
S. Sara Mahdavi,
James Manyika,
Katherine Chou,
Yossi Matias
, et al. (11 additional authors not shown)
Abstract:
Large Language Models (LLMs) have demonstrated great potential for conducting diagnostic conversations but evaluation has been largely limited to language-only interactions, deviating from the real-world requirements of remote care delivery. Instant messaging platforms permit clinicians and patients to upload and discuss multimodal medical artifacts seamlessly in medical consultation, but the abil…
▽ More
Large Language Models (LLMs) have demonstrated great potential for conducting diagnostic conversations but evaluation has been largely limited to language-only interactions, deviating from the real-world requirements of remote care delivery. Instant messaging platforms permit clinicians and patients to upload and discuss multimodal medical artifacts seamlessly in medical consultation, but the ability of LLMs to reason over such data while preserving other attributes of competent diagnostic conversation remains unknown. Here we advance the conversational diagnosis and management performance of the Articulate Medical Intelligence Explorer (AMIE) through a new capability to gather and interpret multimodal data, and reason about this precisely during consultations. Leveraging Gemini 2.0 Flash, our system implements a state-aware dialogue framework, where conversation flow is dynamically controlled by intermediate model outputs reflecting patient states and evolving diagnoses. Follow-up questions are strategically directed by uncertainty in such patient states, leading to a more structured multimodal history-taking process that emulates experienced clinicians. We compared AMIE to primary care physicians (PCPs) in a randomized, blinded, OSCE-style study of chat-based consultations with patient actors. We constructed 105 evaluation scenarios using artifacts like smartphone skin photos, ECGs, and PDFs of clinical documents across diverse conditions and demographics. Our rubric assessed multimodal capabilities and other clinically meaningful axes like history-taking, diagnostic accuracy, management reasoning, communication, and empathy. Specialist evaluation showed AMIE to be superior to PCPs on 7/9 multimodal and 29/32 non-multimodal axes (including diagnostic accuracy). The results show clear progress in multimodal conversational diagnostic AI, but real-world translation needs further research.
△ Less
Submitted 6 May, 2025;
originally announced May 2025.
-
Artificial Intelligence Index Report 2025
Authors:
Nestor Maslej,
Loredana Fattorini,
Raymond Perrault,
Yolanda Gil,
Vanessa Parli,
Njenga Kariuki,
Emily Capstick,
Anka Reuel,
Erik Brynjolfsson,
John Etchemendy,
Katrina Ligett,
Terah Lyons,
James Manyika,
Juan Carlos Niebles,
Yoav Shoham,
Russell Wald,
Tobi Walsh,
Armin Hamrah,
Lapo Santarlasci,
Julia Betts Lotufo,
Alexandra Rome,
Andrew Shi,
Sukrut Oak
Abstract:
Welcome to the eighth edition of the AI Index report. The 2025 Index is our most comprehensive to date and arrives at an important moment, as AI's influence across society, the economy, and global governance continues to intensify. New in this year's report are in-depth analyses of the evolving landscape of AI hardware, novel estimates of inference costs, and new analyses of AI publication and pat…
▽ More
Welcome to the eighth edition of the AI Index report. The 2025 Index is our most comprehensive to date and arrives at an important moment, as AI's influence across society, the economy, and global governance continues to intensify. New in this year's report are in-depth analyses of the evolving landscape of AI hardware, novel estimates of inference costs, and new analyses of AI publication and patenting trends. We also introduce fresh data on corporate adoption of responsible AI practices, along with expanded coverage of AI's growing role in science and medicine. Since its founding in 2017 as an offshoot of the One Hundred Year Study of Artificial Intelligence, the AI Index has been committed to equipping policymakers, journalists, executives, researchers, and the public with accurate, rigorously validated, and globally sourced data. Our mission has always been to help these stakeholders make better-informed decisions about the development and deployment of AI. In a world where AI is discussed everywhere - from boardrooms to kitchen tables - this mission has never been more essential. The AI Index continues to lead in tracking and interpreting the most critical trends shaping the field - from the shifting geopolitical landscape and the rapid evolution of underlying technologies, to AI's expanding role in business, policymaking, and public life. Longitudinal tracking remains at the heart of our mission. In a domain advancing at breakneck speed, the Index provides essential context - helping us understand where AI stands today, how it got here, and where it may be headed next. Recognized globally as one of the most authoritative resources on artificial intelligence, the AI Index has been cited in major media outlets such as The New York Times, Bloomberg, and The Guardian; referenced in hundreds of academic papers; and used by policymakers and government agencies around the world.
△ Less
Submitted 2 July, 2025; v1 submitted 7 April, 2025;
originally announced April 2025.
-
Towards Conversational AI for Disease Management
Authors:
Anil Palepu,
Valentin Liévin,
Wei-Hung Weng,
Khaled Saab,
David Stutz,
Yong Cheng,
Kavita Kulkarni,
S. Sara Mahdavi,
Joëlle Barral,
Dale R. Webster,
Katherine Chou,
Avinatan Hassidim,
Yossi Matias,
James Manyika,
Ryutaro Tanno,
Vivek Natarajan,
Adam Rodman,
Tao Tu,
Alan Karthikesalingam,
Mike Schaekermann
Abstract:
While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic syste…
▽ More
While large language models (LLMs) have shown promise in diagnostic dialogue, their capabilities for effective management reasoning - including disease progression, therapeutic response, and safe medication prescription - remain under-explored. We advance the previously demonstrated diagnostic capabilities of the Articulate Medical Intelligence Explorer (AMIE) through a new LLM-based agentic system optimised for clinical management and dialogue, incorporating reasoning over the evolution of disease and multiple patient visit encounters, response to therapy, and professional competence in medication prescription. To ground its reasoning in authoritative clinical knowledge, AMIE leverages Gemini's long-context capabilities, combining in-context retrieval with structured reasoning to align its output with relevant and up-to-date clinical practice guidelines and drug formularies. In a randomized, blinded virtual Objective Structured Clinical Examination (OSCE) study, AMIE was compared to 21 primary care physicians (PCPs) across 100 multi-visit case scenarios designed to reflect UK NICE Guidance and BMJ Best Practice guidelines. AMIE was non-inferior to PCPs in management reasoning as assessed by specialist physicians and scored better in both preciseness of treatments and investigations, and in its alignment with and grounding of management plans in clinical guidelines. To benchmark medication reasoning, we developed RxQA, a multiple-choice question benchmark derived from two national drug formularies (US, UK) and validated by board-certified pharmacists. While AMIE and PCPs both benefited from the ability to access external drug information, AMIE outperformed PCPs on higher difficulty questions. While further research would be needed before real-world translation, AMIE's strong performance across evaluations marks a significant step towards conversational AI as a tool in disease management.
△ Less
Submitted 8 March, 2025;
originally announced March 2025.
-
Knowing When to Ask -- Bridging Large Language Models and Data
Authors:
Prashanth Radhakrishnan,
Jennifer Chen,
Bo Xu,
Prem Ramaswami,
Hannah Pho,
Adriana Olmos,
James Manyika,
R. V. Guha
Abstract:
Large Language Models (LLMs) are prone to generating factually incorrect information when responding to queries that involve numerical and statistical data or other timely facts. In this paper, we present an approach for enhancing the accuracy of LLMs by integrating them with Data Commons, a vast, open-source repository of public statistics from trusted organizations like the United Nations (UN),…
▽ More
Large Language Models (LLMs) are prone to generating factually incorrect information when responding to queries that involve numerical and statistical data or other timely facts. In this paper, we present an approach for enhancing the accuracy of LLMs by integrating them with Data Commons, a vast, open-source repository of public statistics from trusted organizations like the United Nations (UN), Center for Disease Control and Prevention (CDC) and global census bureaus. We explore two primary methods: Retrieval Interleaved Generation (RIG), where the LLM is trained to produce natural language queries to retrieve data from Data Commons, and Retrieval Augmented Generation (RAG), where relevant data tables are fetched from Data Commons and used to augment the LLM's prompt. We evaluate these methods on a diverse set of queries, demonstrating their effectiveness in improving the factual accuracy of LLM outputs. Our work represents an early step towards building more trustworthy and reliable LLMs that are grounded in verifiable statistical data and capable of complex factual reasoning.
△ Less
Submitted 10 September, 2024;
originally announced September 2024.
-
AI in Action: Accelerating Progress Towards the Sustainable Development Goals
Authors:
Brigitte Hoyer Gosselink,
Kate Brandt,
Marian Croak,
Karen DeSalvo,
Ben Gomes,
Lila Ibrahim,
Maggie Johnson,
Yossi Matias,
Ruth Porat,
Kent Walker,
James Manyika
Abstract:
Advances in Artificial Intelligence (AI) are helping tackle a growing number of societal challenges, demonstrating technology's increasing capability to address complex issues, including those outlined in the United Nations (UN) Sustainable Development Goals (SDGs). Despite global efforts, 80 percent of SDG targets have deviated, stalled, or regressed, and only 15 percent are on track as of 2023,…
▽ More
Advances in Artificial Intelligence (AI) are helping tackle a growing number of societal challenges, demonstrating technology's increasing capability to address complex issues, including those outlined in the United Nations (UN) Sustainable Development Goals (SDGs). Despite global efforts, 80 percent of SDG targets have deviated, stalled, or regressed, and only 15 percent are on track as of 2023, illustrating the urgency of accelerating efforts to meet the goals by 2030. We draw on Google's internal and collaborative research, technical work, and social impact initiatives to show AI's potential to accelerate action on the SDGs and make substantive progress to help address humanity's most pressing challenges. The paper highlights AI capabilities (including computer vision, generative AI, natural language processing, and multimodal AI) and showcases how AI is altering how we approach problem-solving across all 17 SDGs through use cases, with a spotlight on AI-powered innovation in health, education, and climate. We then offer insights on AI development and deployment to drive bold and responsible innovation, enhance impact, close the accessibility gap, and ensure that everyone, everywhere, can benefit from AI.
△ Less
Submitted 2 July, 2024;
originally announced July 2024.
-
Artificial Intelligence Index Report 2024
Authors:
Nestor Maslej,
Loredana Fattorini,
Raymond Perrault,
Vanessa Parli,
Anka Reuel,
Erik Brynjolfsson,
John Etchemendy,
Katrina Ligett,
Terah Lyons,
James Manyika,
Juan Carlos Niebles,
Yoav Shoham,
Russell Wald,
Jack Clark
Abstract:
The 2024 Index is our most comprehensive to date and arrives at an important moment when AI's influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ev…
▽ More
The 2024 Index is our most comprehensive to date and arrives at an important moment when AI's influence on society has never been more pronounced. This year, we have broadened our scope to more extensively cover essential trends such as technical advancements in AI, public perceptions of the technology, and the geopolitical dynamics surrounding its development. Featuring more original data than ever before, this edition introduces new estimates on AI training costs, detailed analyses of the responsible AI landscape, and an entirely new chapter dedicated to AI's impact on science and medicine. The AI Index report tracks, collates, distills, and visualizes data related to artificial intelligence (AI). Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The AI Index is recognized globally as one of the most credible and authoritative sources for data and insights on artificial intelligence. Previous editions have been cited in major newspapers, including the The New York Times, Bloomberg, and The Guardian, have amassed hundreds of academic citations, and been referenced by high-level policymakers in the United States, the United Kingdom, and the European Union, among other places. This year's edition surpasses all previous ones in size, scale, and scope, reflecting the growing significance that AI is coming to hold in all of our lives.
△ Less
Submitted 29 May, 2024;
originally announced May 2024.
-
Capabilities of Gemini Models in Medicine
Authors:
Khaled Saab,
Tao Tu,
Wei-Hung Weng,
Ryutaro Tanno,
David Stutz,
Ellery Wulczyn,
Fan Zhang,
Tim Strother,
Chunjong Park,
Elahe Vedadi,
Juanma Zambrano Chaves,
Szu-Yeu Hu,
Mike Schaekermann,
Aishwarya Kamath,
Yong Cheng,
David G. T. Barrett,
Cathy Cheung,
Basil Mustafa,
Anil Palepu,
Daniel McDuff,
Le Hou,
Tomer Golany,
Luyang Liu,
Jean-baptiste Alayrac,
Neil Houlsby
, et al. (42 additional authors not shown)
Abstract:
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-G…
▽ More
Excellence in a wide variety of medical applications poses considerable challenges for AI, requiring advanced reasoning, access to up-to-date medical knowledge and understanding of complex multimodal data. Gemini models, with strong general capabilities in multimodal and long-context reasoning, offer exciting possibilities in medicine. Building on these core strengths of Gemini, we introduce Med-Gemini, a family of highly capable multimodal models that are specialized in medicine with the ability to seamlessly use web search, and that can be efficiently tailored to novel modalities using custom encoders. We evaluate Med-Gemini on 14 medical benchmarks, establishing new state-of-the-art (SoTA) performance on 10 of them, and surpass the GPT-4 model family on every benchmark where a direct comparison is viable, often by a wide margin. On the popular MedQA (USMLE) benchmark, our best-performing Med-Gemini model achieves SoTA performance of 91.1% accuracy, using a novel uncertainty-guided search strategy. On 7 multimodal benchmarks including NEJM Image Challenges and MMMU (health & medicine), Med-Gemini improves over GPT-4V by an average relative margin of 44.5%. We demonstrate the effectiveness of Med-Gemini's long-context capabilities through SoTA performance on a needle-in-a-haystack retrieval task from long de-identified health records and medical video question answering, surpassing prior bespoke methods using only in-context learning. Finally, Med-Gemini's performance suggests real-world utility by surpassing human experts on tasks such as medical text summarization, alongside demonstrations of promising potential for multimodal medical dialogue, medical research and education. Taken together, our results offer compelling evidence for Med-Gemini's potential, although further rigorous evaluation will be crucial before real-world deployment in this safety-critical domain.
△ Less
Submitted 1 May, 2024; v1 submitted 29 April, 2024;
originally announced April 2024.
-
The Ethics of Advanced AI Assistants
Authors:
Iason Gabriel,
Arianna Manzini,
Geoff Keeling,
Lisa Anne Hendricks,
Verena Rieser,
Hasan Iqbal,
Nenad Tomašev,
Ira Ktena,
Zachary Kenton,
Mikel Rodriguez,
Seliem El-Sayed,
Sasha Brown,
Canfer Akbulut,
Andrew Trask,
Edward Hughes,
A. Stevie Bergman,
Renee Shelby,
Nahema Marchal,
Conor Griffin,
Juan Mateos-Garcia,
Laura Weidinger,
Winnie Street,
Benjamin Lange,
Alex Ingerman,
Alison Lentz
, et al. (32 additional authors not shown)
Abstract:
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants. We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user, across one or more domains, in line with the user's expectations. The paper starts by considering the technology itself, pro…
▽ More
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants. We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user, across one or more domains, in line with the user's expectations. The paper starts by considering the technology itself, providing an overview of AI assistants, their technical foundations and potential range of applications. It then explores questions around AI value alignment, well-being, safety and malicious uses. Extending the circle of inquiry further, we next consider the relationship between advanced AI assistants and individual users in more detail, exploring topics such as manipulation and persuasion, anthropomorphism, appropriate relationships, trust and privacy. With this analysis in place, we consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants. Finally, we conclude by providing a range of recommendations for researchers, developers, policymakers and public stakeholders.
△ Less
Submitted 28 April, 2024; v1 submitted 24 April, 2024;
originally announced April 2024.
-
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
Authors:
Gemini Team,
Petko Georgiev,
Ving Ian Lei,
Ryan Burnell,
Libin Bai,
Anmol Gulati,
Garrett Tanzer,
Damien Vincent,
Zhufeng Pan,
Shibo Wang,
Soroosh Mariooryad,
Yifan Ding,
Xinyang Geng,
Fred Alcober,
Roy Frostig,
Mark Omernick,
Lexi Walker,
Cosmin Paduraru,
Christina Sorokin,
Andrea Tacchetti,
Colin Gaffney,
Samira Daruki,
Olcan Sercinoglu,
Zach Gleicher,
Juliette Love
, et al. (1112 additional authors not shown)
Abstract:
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February…
▽ More
In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.
△ Less
Submitted 16 December, 2024; v1 submitted 8 March, 2024;
originally announced March 2024.
-
Gemini: A Family of Highly Capable Multimodal Models
Authors:
Gemini Team,
Rohan Anil,
Sebastian Borgeaud,
Jean-Baptiste Alayrac,
Jiahui Yu,
Radu Soricut,
Johan Schalkwyk,
Andrew M. Dai,
Anja Hauth,
Katie Millican,
David Silver,
Melvin Johnson,
Ioannis Antonoglou,
Julian Schrittwieser,
Amelia Glaese,
Jilin Chen,
Emily Pitler,
Timothy Lillicrap,
Angeliki Lazaridou,
Orhan Firat,
James Molloy,
Michael Isard,
Paul R. Barham,
Tom Hennigan,
Benjamin Lee
, et al. (1326 additional authors not shown)
Abstract:
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultr…
▽ More
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of the Gemini family in cross-modal reasoning and language understanding will enable a wide variety of use cases. We discuss our approach toward post-training and deploying Gemini models responsibly to users through services including Gemini, Gemini Advanced, Google AI Studio, and Cloud Vertex AI.
△ Less
Submitted 9 May, 2025; v1 submitted 18 December, 2023;
originally announced December 2023.
-
Artificial Intelligence Index Report 2023
Authors:
Nestor Maslej,
Loredana Fattorini,
Erik Brynjolfsson,
John Etchemendy,
Katrina Ligett,
Terah Lyons,
James Manyika,
Helen Ngo,
Juan Carlos Niebles,
Vanessa Parli,
Yoav Shoham,
Russell Wald,
Jack Clark,
Raymond Perrault
Abstract:
Welcome to the sixth edition of the AI Index Report. This year, the report introduces more original data than any previous edition, including a new chapter on AI public opinion, a more thorough technical performance chapter, original analysis about large language and multimodal models, detailed trends in global AI legislation records, a study of the environmental impact of AI systems, and more. Th…
▽ More
Welcome to the sixth edition of the AI Index Report. This year, the report introduces more original data than any previous edition, including a new chapter on AI public opinion, a more thorough technical performance chapter, original analysis about large language and multimodal models, detailed trends in global AI legislation records, a study of the environmental impact of AI systems, and more. The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report aims to be the world's most credible and authoritative source for data and insights about AI.
△ Less
Submitted 5 October, 2023;
originally announced October 2023.
-
Data Commons
Authors:
Ramanathan V. Guha,
Prashanth Radhakrishnan,
Bo Xu,
Wei Sun,
Carolyn Au,
Ajai Tirumali,
Muhammad J. Amjad,
Samantha Piekos,
Natalie Diaz,
Jennifer Chen,
Julia Wu,
Prem Ramaswami,
James Manyika
Abstract:
Publicly available data from open sources (e.g., United States Census Bureau (Census), World Health Organization (WHO), Intergovernmental Panel on Climate Change (IPCC)) are vital resources for policy makers, students and researchers across different disciplines. Combining data from different sources requires the user to reconcile the differences in schemas, formats, assumptions, and more. This da…
▽ More
Publicly available data from open sources (e.g., United States Census Bureau (Census), World Health Organization (WHO), Intergovernmental Panel on Climate Change (IPCC)) are vital resources for policy makers, students and researchers across different disciplines. Combining data from different sources requires the user to reconcile the differences in schemas, formats, assumptions, and more. This data wrangling is time consuming, tedious and needs to be repeated by every user of the data. Our goal with Data Commons (DC) is to help make public data accessible and useful to those who want to understand this data and use it to solve societal challenges and opportunities. We do the data processing and make the processed data widely available via standard schemas and Cloud APIs. Data Commons is a distributed network of sites that publish data in a common schema and interoperate using the Data Commons APIs. Data from different Data Commons can be joined easily. The aggregate of these Data Commons can be viewed as a single Knowledge Graph. This Knowledge Graph can then be searched over using Natural Language questions utilizing advances in Large Language Models. This paper describes the architecture of Data Commons, some of the major deployments and highlights directions for future work.
△ Less
Submitted 7 September, 2023;
originally announced September 2023.
-
The AI Index 2022 Annual Report
Authors:
Daniel Zhang,
Nestor Maslej,
Erik Brynjolfsson,
John Etchemendy,
Terah Lyons,
James Manyika,
Helen Ngo,
Juan Carlos Niebles,
Michael Sellitto,
Ellie Sakhaee,
Yoav Shoham,
Jack Clark,
Raymond Perrault
Abstract:
Welcome to the fifth edition of the AI Index Report! The latest edition includes data from a broad set of academic, private, and nonprofit organizations as well as more self-collected data and original analysis than any previous editions, including an expanded technical performance chapter, a new survey of robotics researchers around the world, data on global AI legislation records in 25 countries…
▽ More
Welcome to the fifth edition of the AI Index Report! The latest edition includes data from a broad set of academic, private, and nonprofit organizations as well as more self-collected data and original analysis than any previous editions, including an expanded technical performance chapter, a new survey of robotics researchers around the world, data on global AI legislation records in 25 countries, and a new chapter with an in-depth analysis of technical AI ethics metrics.
The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report aims to be the world's most credible and authoritative source for data and insights about AI.
△ Less
Submitted 2 May, 2022;
originally announced May 2022.
-
The AI Index 2021 Annual Report
Authors:
Daniel Zhang,
Saurabh Mishra,
Erik Brynjolfsson,
John Etchemendy,
Deep Ganguli,
Barbara Grosz,
Terah Lyons,
James Manyika,
Juan Carlos Niebles,
Michael Sellitto,
Yoav Shoham,
Jack Clark,
Raymond Perrault
Abstract:
Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artif…
▽ More
Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.
△ Less
Submitted 8 March, 2021;
originally announced March 2021.