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Abstract

Employing the most recent parametrization of the baryon-baryon interac-

tion of the Nijmegen group, we investigate, in the framework of the Brueckner–

Bethe–Goldstone many-body theory at zero temperature, the influence of neu-

trino trapping on the composition, equation of state, and structure of neutron

stars, relevant to describe the physical conditions of a neutron star immedi-

ately after birth (protoneutron star). We find that the presence of neutrinos

changes significantly the composition of matter delaying the appearance of

hyperons and making the equation of state stiffer. We explore the conse-

quences of neutrino trapping on the early evolution of a neutron star and on

the nature of the final compact remnant left by the supernova explosion.
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I. INTRODUCTION

Neutrinos play a crucial role in the physics of supernova explosions (Janka and Müller

1996) and in the early evolution of their compact stellar remnants (Burrows and Lattimer

1986, Janka and Müller 1995). During the collapse of the pre-supernova core, a large num-

ber of neutrinos is produced by electron capture process. Immediately following the core

bounce the radius of the newly formed neutron star shrinks from about 100 km to about

10 km. During this same period (up to about 1 second after core bounce) substantial matter

accretion occurs on the compact star (this accretion may eventualy led to the formation of

a black hole). As the newly formed neutron star contracts the neutrino mean free path λν

decreases, and above a critical value of the density (neutrino trapping density) λν becomes

smaller than the stellar radius. Under these physical conditions neutrinos are trapped in

the star, i.e., the neutrino diffusion time is of the order of a few tens of seconds. Neutrino

trapping has a strong influence on the overal stiffness of the equation of state (EoS) of dense

stellar matter. Thus, the physical conditions of the hot and lepton-rich newborn neutron

star (the so-called protoneutron star) differ substantially from those of the cold and delep-

tonized neutron star. Nevertheless, this stage nearly fulfills the conditions of hydrostatical

equilibrium (Burrows & Lattimer 1986).

The composition and the structure of protoneutron stars have been systematically in-

vestigated by Prakash et al. (1997) and by Strobel et al. (1999) using a large sample of

modern equations of state of dense stellar matter. The implications of the early evolution

of a protoneutron star on the concept of neutron star maximum mass have been studied by

the authors of Refs. (Bombaci 1996, Prakash et al. 1997, Strobel & Weigel 2001).

Due to the rapid increase of the nucleon chemical potentials with density, hyperons (Λ,

Σ−, Σ0, Σ+, Ξ− and Ξ0 particles) are expected to appear in the core of neutron stars,

as suggested in the pioneer work by Ambartsumyan and Saakyan (1960). Since then the

structrural properties of these hyperon stars have been studied by many researchers using a

variety of aproaches (see e.g., Pandharipande (1971), Glendenning (1985), Keil and Janka
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1994, Shaffner and Mishustin (1996), Prakash et al. (1997), Balberg and Gal (1997), Baldo

et al. (2000), Vidaña et al. (2000a)).

In contrast, all the previous studies of hyperonic matter with trapped neutrinos have

been done in the framework of a relativistic theoretical field model of nucleons and hyperons

interacting via meson exchange in a mean field approximation (Keil and Janka 1994, Prakash

et al. 1997). In the present work, we use a microscopic approach instead, which is based

on the Brueckner–Bethe–Goldstone (BBG) many body theory. In our calculations the basic

input is the baryon-baryon interaction for the complete baryon octet (n, p, Λ, Σ−, Σ0, Σ+, Ξ−

and Ξ0) developed recently by Stoks and Rijken (1999). Within this approach we compute

the EoS of hyperonic matter with trapped neutrinos and the corresponding properties of

newborn hyperon stars. A similar microscopic approach has been recently employed by

Baldo et al. (2000) and Vidaña et al. (2000a) to study cold and deleptonized hyperon stars.

The paper is organized in the following way. A brief review of the Brueckner–Hartree–

Fock (BHF) approximation of the BBG many-body theory at zero temperature extended

to the hyperonic sector is given in Sec. IIA. Equilibrium conditions and Eos of β-stable

matter are discussed in Sec. II B. Section III is devoted to the presentation and discussion

of the results. Finally, a short summary and the main conclusions of this work are drawn in

Sec. IV.

II. EQUATION OF STATE AND EQUILIBRIUM CONDITIONS

A. Many-body theory of hyperonic matter

Our calculation of the EoS of high density matter is based on the BHF approximation of

the BBG many-body theory at zero temperature extended to the hyperonic sector (Baldo

et al. 2000, Vidaña et al. 2000a). We start it by constructing all baryon-baryon (nucleon-

nucleon (NN), hyperon-nucleon (YN) and hyperon-hyperon (YY)) G-matrices, which de-

scribe in an effective way the interactions between baryons in the presence of a surrounding
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hadronic medium. They are formally obtained by solving the well known Bethe–Goldstone

equation, written schematically as

G(ω)B1B2,B3B4
= VB1B2,B3B4

+
∑

B5B6

VB1B2,B5B6

QB5B6

ω − EB5
− EB6

+ iη
G(ω)B5B6,B3B4

.
(1)

In the expression above the first (last) two subindices indicate the initial (final) two-

baryon states compatible with a given value S of the strangeness (NN for S = 0, YN for

S = −1,−2, and YY for S = −2,−3,−4), V is the bare baryon-baryon interaction, Q is the

Pauli operator which allows only intermediate two-body states compatible with the Pauli

principle, and ω is the so-called starting energy.

The single-particle energy of a baryon Bi is given by (we use units in which h̄ = 1, c = 1)

EBi
= MBi

+
k2

2MBi

+ UBi
(k) , (2)

where MBi
denotes the rest mass of the baryon, and the single-particle potential energy

UBi
(k) represents the averaged field “felt” by the baryon due to its interaction with the

other baryons of the medium. In the BHF approximation UBi
(k) is given by

UBi
(k) = Re

∑

Bj

∑

k′≤kFBj

〈

~k~k′

∣

∣

∣GBiBj ,BiBj
(ω = EBi

+ EBj
)
∣

∣

∣

~k~k′
〉

, (3)

where a sum over all the Fermi seas of the different baryon species is performed, and the

matrix elements are properly antisymmetrized when baryons Bi and Bj belong to the same

isomultiplet. We note that the so-called discontinuous prescription for the single-particle

energy (i.e., EBi
= MBi

+ k2/2MBi
for k > kFBi

) has been adopted to solve the Bethe–

Goldstone equation. The present calculations have been carried out by using the most

recent parametrization of the bare baryon-baryon potential for the complete baryon octet

as defined by Stoks and Rijken (1999). This potential model, which aims at describing all

interaction channels with strangeness from S = 0 to S = −4, is based on SU(3) extensions

of the Nijmegen nucleon-nucleon and hyperon-nucleon potentials (Rijken et al. 1998).

Once a self-consistent solution of Eqs. (1)–(3) is achieved, the baryonic energy density

εb can be evaluated in the BHF approximation according to the following expression:
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εb = 2
∑

Bi

∫ kFBi

0

d3k

(2π)3

(

MBi
+

k2

2MBi

+
1

2
UN

Bi
(k) +

1

2
UY

Bi
(k)

)

, (4)

where we have split, according to Eq. (3) the baryon single-particle potential UBi
into a

contribution, UN
Bi

, coming from the interaction of the baryon Bi with all the nucleons of the

system, and a contrinution, UY
Bi

, coming from the interaction with the hyperons.

It is well known that non-relativistic many-body calculations, based on purely two-body

forces, fail to reproduce the empirical saturation point for symmetric nuclear matter and

the binding energy and radius of light nuclei. The remedy to the previous deficiency is to

introduce three-body forces (TBF) between nucleons. In hyperonic matter the repulsion

induced at high densities by nucleon three-body forces enhances substancially the hyperon

population which in turn induces a strong softening of the EoS (Schulze et al. 1998, Baldo

et al. 2000).

In order to include the effects of TBF between nucleons in our computational scheme,

we have replaced the nucleonic contribution to the baryonic energy density εb (Eq. 4), i.e.,

εNN ≡ 2
∑

N

∫ kFN

0

d3k

(2π)3

(

MN +
k2

2MN

+
1

2
UN

N (k)

)

, (5)

by the analytic parametrization developed by Heiselberg and Hjorth-Jensen (1999)

εNN = ρN

(

MN + E0u
u − 2 − δ

1 + uδ
+ S0u

γ(1 − 2Yp)
2

)

. (6)

Here u = ρN/ρ0 is the ratio of the nucleonic density to nuclear saturation density (ρ0 = 0.16

fm−3) and Yp = ρp/ρN is the proton fraction. This approach parametrizes the nucleon

energy density obtained from the variational calculation using the Argonne V18 nucleon-

nucleon interaction with three-body forces and relativistic boost corrections of Akmal et al.

(1998). The best fit of this simple functional is obtained for E0 = 15.8 MeV, S0 = 32 MeV,

γ = 0.6 and δ = 0.2 (see Ref. Heiselberg and Hjorth-Jensen 1999 for more details). The

hyperonic contributions to εb have been, however, calculated as described above within the

BHF approximation employing the baryon-baryon interaction model NSC97e of Stoks and

Rijken (1999).
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B. Equilibrium conditions and EoS of β-stable matter

The concentrations of the different constituents in the stellar interior are determined

by the requirements of electric charge neutrality and equilibrium under weak interaction

processes (“chemical” equilibrium)

B1 → B2 + ℓ + νℓ , B2 + ℓ → B1 + νℓ (7)

where B1 and B2 are baryons, and ℓ is a lepton (e− or µ−) and νℓ (νℓ) is the associated

neutrino (antineutrino). For stellar matter with trapped neutrinos, these two requirements

imply that the relations

∑

i

ρ
(+)
Bi

+
∑

ℓ

ρ
(+)
ℓ =

∑

i

ρ
(−)
Bi

+
∑

ℓ

ρ
(−)
ℓ (8)

µi = µn − qi(µℓ − µνℓ
) , (9)

are satisfied. Above, ρBi
(ρℓ) denotes the baryon (lepton) number density and the super-

scripts (±) on ρBi
(ρℓ) signify positive or negative electric charge. The symbol µi refers to

the chemical potential of baryon of the species i, and qi is its charge. The chemical potential

of the neutron is denoted by µn, and the chemical potential of the neutrino νℓ is denoted by

µνℓ
. Because neutrinos are trapped in the star, the lepton number per baryon YLℓ of each

lepton flavor must be conserved on dynamical time scales

YLe = Ye + Yνe
, YLµ = Yµ + Yνµ

. (10)

Gravitational collapse calculations of the core of massive stars indicate that at the onset of

trapping the electron lepton fraction YLe = Ye + Yνe
≈ 0.4. In addition, as the trapping in

supernova occurs when the collapsing core reaches densities where no muons exist, we can

impose YLµ = Yµ + Yνµ
= 0.

For matter where nucleons and hyperons are the relevant hadronic degrees of freedom

the chemical equilibrium conditions can be explicitly written as

µΞ− = µΣ− = µn + µe − µνe
,
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µΛ = µΞ0 = µΣ0 = µn,

µΣ+ = µp = µn − µe + µνe
,

µµ − µνµ
= µe − µνe

. (11)

In the case of neutrino-free matter (relevant to describe the cold and deleptonized neutron

star) the new equilibrium conditions can be obtained by the previous equations simply by

taking µνe
= µνµ

= 0.

For a given value of the total baryon number density

ρb =
∑

i

ρBi
(12)

the composition of stellar matter, i.e., the baryonic (YBi
= ρBi

/ρb) and leptonic (Yℓi
=

ρℓi
/ρb) fractions of each constituent species, is obtained by solving Eqs. (8), (10) and (11).

We will refer to this status of the stellar matter as β-stable matter.

The chemical potentials of the different particles are the fundamental ingredients when

solving the equilibrium conditions summarized in Eq. (11). In the BHF approximation the

chemical potentials of the baryons are taken to be equal to the value of the single-particle

energy at the Fermi momentum,

µBi
= EBi

(kFBi
) = MBi

+
k2

FBi

2MBi

+ UN
Bi

(kFBi
) + UY

Bi
(kFBi

) . (13)

In order to be consistent with our calculation of the baryonic energy density (see the discus-

sion above in connection to the role of nucleon TBF for the saturation properties of nuclear

matter), in the case of nucleons, we replace in the chemical potentials given by Eq. (13)

the nucleonic BHF contribution µN
N ≡ MN + k2

FN
/2MN + UN

N (kFN
) by µN

N = ∂εNN/∂ρN .

Here εNN denotes the parametrization of the nucleonic energy density contribution due to

Heiselberg and Hjorth-Jensen (1999) (see Eq. (6)). For the hyperons, however, we keep

the prescription of Eq. (13). The chemical potentials of leptons are calculated using the

expressions for non-interacting relativistic fermions which are well known from textbooks.

Once the composition of β-stable matter is determined we can compute the total energy

density ε = εb + εℓ, the baryonic pressure using the thermodynamic relation
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Pb = ρb

∂εb

∂ρb

− εb , (14)

and finally the total pressure P = Pb + Pℓ. Once again the leptonic contributions to the

energy density and pressure are those of a relativistic free Fremi gas.

III. RESULTS

The composition of β-stable stellar matter calculated as described in the previous section,

is shown in Fig. 1 as a function of the total baryon number density. The upper panel of

the figure exhibits the results for neutrino-trapped matter (with YLe = 0.4 and YLµ = 0),

whereas the lower panel shows the composition of neutrino-free matter. To begin with, let

us comment our results for the composition of neutrino-free matter in connection to the role

of the hyperon-nucleon and hyperon-hyperon interactions (see Ref. Vidaña et al. 2000a, for

a more detailed discussion). Firstly, note that although the Λ hyperon is about 80 MeV

less massive than the Σ− one, the latter appears at a lower baryon number density. The

reason is that the process e− + n → Σ− + νe removes both an energetic neutron and an

energetic electron, whereas the weak strangeness non-conserving decay of a neutron into a

Λ, being neutral, removes only an energetic neutron. Since the electron chemical potential

in matter is larger than the mass difference MΣ−−MΛ, the condition for the onset of the Σ−,

µn +µe = µΣ−, is fulfilled at lower densities than the corresponding one for the appeareance

of the Λ, µn = µΛ. Furthermore, as soon as the Σ− appears it becomes energetically more

favorable for the system to keep charge neutrality with Σ− hyperons than with leptons,

therefore the lepton concentrations begin to fall. The onset of Λ formation takes place at

higher baryon number density as soon as the chemical potential of the neutron equals that

of the Λ. No other hyperons appear at baryon number densities below ρb = 1.2 fm−3 within

our many-body approach.

Having in mind these results as a reference, let us now consider the effect of neutrino

trapping. As it can be seen from the upper panel of Fig. 1 the composition of matter is

significantly altered when neutrinos are trapped. The first thing to notice is that trapping
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keeps the electron concentration high so that matter is more proton rich in comparison with

the case in which neutrinos have diffused out. Notice in addition that muons are not present,

and the onset of hyperon formation is changed. The appearance of the Σ− hyperon is now

governed by µΣ− = µn + µe − µνe
, whereas in the neutrino-free case the condition to be

fulfilled was µΣ− = µn + µe. Due to the fact that µe − µνe
is much smaller than µe, the

appearance of the Σ− occurs at a higher baryon number density (ρb ≈ 0.50 fm−3), and the

amount of Σ−’s is smaller. This, in turn, implies less Σ−n pairs. Since the Σ−n interaction

is attractive in this model (see, e.g., Fig. 7 of Ref. Vidaña et al. 2000b) the chemical

potential of the neutrons becomes less attractive. As a consequence, the Λ and Σ0 (which in

neutrino-free matter was not present) hyperons appear at a lower densities (ρb ≈ 0.57 fm−3

and ρb ≈ 1.02 fm−3, respectively). Finally, the neutrino fraction, which initially decreases

with baryon number density in order to keep YLe constant, begins to increase as soon as

Σ−’s are present on the system due to the formation of this baryon through the process

e− + n → Σ− + νe.

Let us now examine the effect of neutrino trapping on the EoS for β-stable neutron star

matter. We show in Fig. 2 the results for the total energy density ε versus the baryon number

density (left panel) and the total pressure as a function of ε (right panel). The dashed lines

represent the results for neutrino-trapped matter whereas the solid lines show the result for

neutrino-free matter. As we can see the EoS for neutrino-trapped matter is stiffer than that

for neutrino-free matter. This result is a consequence of the different composition of stellar

matter in the two cases illustrated in Fig. 1. In addition, it is interesting to note that, even

in those regions where nucleons are the only relevant baryonic degrees of freedom (i.e., up to

ρb ∼ 0.50 fm−3), the EoS for neutrino-trapped matter is stiffer than the one for neutrino-free

matter. In fact, the extra leptonic pressure caused by neutrino-trapping is greater than the

decrease in pressure of nucleons induced by the reduction of the nuclear symmetry energy in

the proton rich matter with trapped neutrinos (compare the the proton abundances in the

upper and lower panel of Fig. 1 for ρb < 0.50 fm−3) (Chiapparini et al. 1996, Prakash et al.

1997) . This can be seen in Fig. 3 where we plot the baryonic (left panel) and leptonic (right
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panel) contributions to the total pressure for neutrino-free (solid lines) and neutrino-trapped

(dashed lines) matter.

Finally, let us consider the effect of neutrino trapping on the properties of neutron stars.

To this end, we have solved the well known Tolman–Oppenheimer–Volkov equations for the

structure of non-rotating stellar configurations in general relativity. To describe the stellar

crust we used the equations of state by Feynman–Metropolis–Teller (Feynman et al. 1949),

Baym–Pethick–Sutherland (Baym et al. 1971) and Negele-Vautherin (1973). In Fig. 4 we

show the resulting stellar equilibrium sequences. In the left panel we plot the gravitational

mass MG in units of the solar mass (M⊙ = 1.989 × 1033 g) as a function of the central

energy density, while in the right panel MG is plotted as a function of the stellar radius R.

Dashed (solid) lines represent the results for neutrino-trapped (neutrino-free) matter. The

properties of the maximum mass configurations are summarized in Table I. In agreement

with previous studies we find that the maximum mass supported by neutrino-trapped EoS

is larger than the corresponding one supported by neutrino-free matter EoS. The overall

effect of neutrino trapping on the maximum mass configuration is opposite in the case of

matter in which the only baryonic degrees of freedom considered are nucleons (Bombaci

1996, Prakash et al. 1997). In the latter case, the lost of leptonic pressure when neutrinos

are diffused out of the star is smaller than the gain in baryonic pressure arising from the

nuclear symmetry energy due to the decrease in the number of protons. As a consequence,

in nucleonic β-stable matter, the maximum mass supported by neutrino-free matter is larger

than the corresponding one supported by neutrino-trapped matter, as it is shown by our

present results reported in the right panel of Fig. 5.

A very important implication of neutrino trapping in dense matter with hyperons is

the possibility of having metastable neutron stars and a delayed formation of a “low-mass”

(M = 1 – 2 M⊙) black hole. This is illustrated in Fig. 5 where we show the gravitational

mass of the star as a function of its baryonic mass MB, which is taken as the total number

of baryons in the star times the average nucleon mass. If hyperons are present (left panel),

then deleptonization lowers the range of gravitational masses that can be supported by the
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EoS from about 1.59M⊙ to about 1.28M⊙ (see dotted horizontal lines in the figure). Since

most of the matter accretion on the forming neutron star happens in the very early stages

after birth (t < 1 s), with a good approximation, the neutron star baryonic mass stays

constant during the evolution from the initial protoneutron star configuration to the final

neutrino-free configuration. Then, within our EoS model, protoneutron stars which at birth

have a gravitational mass between 1.28 – 1.59 M⊙ (a baryonic mass between 1.40 – 1.72

M⊙) will be stabilized by neutrino trapping effects long enough to carry out nucleosynthesis

accompayning a type-II supernova explosion. After neutrinos leave the star, the EoS is

softened and it can not support anymore the star against its own gravity. Thus the newborn

neutron star collapses to a black hole (Keil and Janka 1994, Bombaci 1996, Prakash et al.

1997). A similar qualitative behaviour is expected also in the case in which dense matter

contains a Bose–Einstein condensate of negative kaons (Brown & Bethe 1994, Prakash et

al. 1997). On the other hand, if only nucleons are considered to be the relevant baryonic

degrees of freedom (right panel), no metastability occurs and a black hole is unlikely to be

formed during the deleptonization since the gravitational mass increases during this stage

which happens at constant baryonic mass. If a black hole were to form from a star with

only nucleons, it is much more likely to form during the post-bounce accretion stage.

To end this section, we show in Fig. 6 the differences of the internal composition as a

function of the radial coordinate of a protoneutron star (upper panel) and the corresponding

deleptonized neutron star (lower panel) for a constant value, MB = 1.34M⊙, of the stellar

baryonic mass. The central energy density of the protoneutron star is not high enough to

allow for the presence of hyperons and only nucleons, electrons and neutrinos are present

in the stellar core. This star has a gravitational mass MG = 1.28M⊙. Nevertheless, as

soon as neutrinos diffuse out of the star, pressure decreases, gravity compresses matter,

energy density increases and hyperons appear in the star interior. The gravitational mass

of the final neutrino-free star is MG = 1.23M⊙. The difference between the initial and final

gravitational masses corresponds to the energy which is carried out by neutrinos when they

escape from the star. In the present case (i.e., assuming MB = 1.34M⊙) this energy is about
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9× 1052 erg. In addition, due to the increase of the central energy density, the stellar radius

decreases.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated within the framework of the Brueckner–Hartree-Fock

approximation the effects of neutrino trapping on the properties of β-stable neutron star

matter including nucleonic and hyperonic degrees of freedom.

We have found that the presence of neutrinos changes significantly the compositon of

matter with respect to the neutrino-free case: matter becomes more proton rich, muons are

not present, and the appearance of hyperons is moved to higher densities. In additon, the

number of strange particles is on average smaller and the EoS stiffer in comparison with the

neutrino-free case.

We have found that the value of the maximun mass of hyperon stars decreases as soon as

neutrinos diffuse out of the star, contrary to what happens when the only baryonic degrees

of freedom considered are nucleons.

Using the microscopic EoS developed in the present work we have found that stars having

at birth a gravitational mass between 1.28 – 1.59 M⊙ are metastable, in other words these

stellar configurations remain only stable for several seconds (the neutrino trapping time),

collapsing afterwards into low-mass black holes.
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TABLES

TABLE I. Neutron star properties of the maximum mass configuration for the two scenarios

considered: neutrino-trapped and neutrino-free matter. εc denotes the central energy density, ρbc

the corresponding central baryon number density, MG the gravitational mass, MB the baryonic

mass, R the radius of the star, RY the radius of the hyperonic core, and ∆Rcrust the thickness of

the star crust.

Scenario εc ρbc
MG MB R RY ∆Rcrust

[×1015 g/cm3] [fm−3] [M⊙] [M⊙] [km] [km] [km]

Neutrino-trapped 2.30 1.066 1.595 1.724 11.14 6.32 0.66

Neutrino-free 3.19 1.537 1.283 1.406 9.86 7.60 0.70
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FIGURES

FIG. 1. Compositon of β-stable hyperonic matter as a function of the baryon number density.

Upper panel show results for the neutrino-trapped case (with YLe = 0.4 and YLµ = 0), whereas

those for neutrino-free matter are reported in the lower one.

FIG. 2. Total energy density ε as a function of the baryon number density ρb (left panel) and

total pressure as a function of ε (right panel) for β-stable neutron star matter. Solid lines in

both panels show results for neutrino-free matter, whereas results for the neutrino-trapped case

correspond to dashed lines.

FIG. 3. Baryonic (left panel) and leptonic (right panel) contributions to the total pressure P as

a function of the total energy density density ε for the two scenarios considered: neutrino-free (solid

lines) and neutrino-trapped (dashed lines) matter. The baryon number density corresponding to

the maximum energy density plotted is ρb ∼ 0.3 fm−1, at which the only relevant hadronic degrees

of freedom are nucleons.

FIG. 4. Gravitational mass as a function of the central energy density (left panel) and ra-

dius (right panel) of the star for the two scenarios considered: neutrino-free (solid lines) and

neutrino-trapped matter (dashed lines).

FIG. 5. Gravitational mass as a function of the baryonic mass for the two scenarios considered:

neutrino-free (solid lines) and neutrino-trapped matter (dashed lines). Left panel shows results for

matter containing nucleons and hyperons as baryonic degrees of freedom, whereas results containing

only nucleons are reported on the right one. Dotted lines on the left panel show the window of

metastability in the gravitational and baryonic masses.

FIG. 6. Internal composition as a function of the radial coordinate of a hyperon star of constant

baryonic mass (MB = 1.34M⊙) as it evolves from the initial neutrino-trapped (upper panel) to the

final neutrino-free (lower panel) configuration. Symbol R indicates the radius of the star, RH the

end of the hadronic core and the beginning of the crust and RY the end of the hyperonic core.
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