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Abstract

Employing the most recent parametrization of the baryon-baryon interac-
tion of the Nijmegen group, we investigate, in the framework of the Brueckner—
Bethe—Goldstone many-body theory at zero temperature, the influence of neu-
trino trapping on the composition, equation of state, and structure of neutron
stars, relevant to describe the physical conditions of a neutron star immedi-
ately after birth (protoneutron star). We find that the presence of neutrinos
changes significantly the composition of matter delaying the appearance of
hyperons and making the equation of state stiffer. We explore the conse-
quences of neutrino trapping on the early evolution of a neutron star and on
the nature of the final compact remnant left by the supernova explosion.
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I. INTRODUCTION

Neutrinos play a crucial role in the physics of supernova explosions (Janka and Miiller
1996) and in the early evolution of their compact stellar remnants (Burrows and Lattimer
1986, Janka and Miiller 1995). During the collapse of the pre-supernova core, a large num-
ber of neutrinos is produced by electron capture process. Immediately following the core
bounce the radius of the newly formed neutron star shrinks from about 100 km to about
10 km. During this same period (up to about 1 second after core bounce) substantial matter
accretion occurs on the compact star (this accretion may eventualy led to the formation of
a black hole). As the newly formed neutron star contracts the neutrino mean free path \,
decreases, and above a critical value of the density (neutrino trapping density) A\, becomes
smaller than the stellar radius. Under these physical conditions neutrinos are trapped in
the star, i.e., the neutrino diffusion time is of the order of a few tens of seconds. Neutrino
trapping has a strong influence on the overal stiffness of the equation of state (EoS) of dense
stellar matter. Thus, the physical conditions of the hot and lepton-rich newborn neutron
star (the so-called protoneutron star) differ substantially from those of the cold and delep-
tonized neutron star. Nevertheless, this stage nearly fulfills the conditions of hydrostatical
equilibrium (Burrows & Lattimer 1986).

The composition and the structure of protoneutron stars have been systematically in-
vestigated by Prakash et al. (1997) and by Strobel et al. (1999) using a large sample of
modern equations of state of dense stellar matter. The implications of the early evolution
of a protoneutron star on the concept of neutron star maximum mass have been studied by
the authors of Refs. (Bombaci 1996, Prakash et al. 1997, Strobel & Weigel 2001).

Due to the rapid increase of the nucleon chemical potentials with density, hyperons (A,
¥, X0 ¥F =7 and =° particles) are expected to appear in the core of neutron stars,
as suggested in the pioneer work by Ambartsumyan and Saakyan (1960). Since then the
structrural properties of these hyperon stars have been studied by many researchers using a

variety of aproaches (see e.g., Pandharipande (1971), Glendenning (1985), Keil and Janka



1994, Shaffner and Mishustin (1996), Prakash et al. (1997), Balberg and Gal (1997), Baldo
et al. (2000), Vidana et al. (2000a)).

In contrast, all the previous studies of hyperonic matter with trapped neutrinos have
been done in the framework of a relativistic theoretical field model of nucleons and hyperons
interacting via meson exchange in a mean field approximation (Keil and Janka 1994, Prakash
et al. 1997). In the present work, we use a microscopic approach instead, which is based
on the Brueckner-Bethe—Goldstone (BBG) many body theory. In our calculations the basic
input is the baryon-baryon interaction for the complete baryon octet (n, p, A, ¥, X9 ¥+ =~
and Z°%) developed recently by Stoks and Rijken (1999). Within this approach we compute
the EoS of hyperonic matter with trapped neutrinos and the corresponding properties of
newborn hyperon stars. A similar microscopic approach has been recently employed by
Baldo et al. (2000) and Vidana et al. (2000a) to study cold and deleptonized hyperon stars.

The paper is organized in the following way. A brief review of the Brueckner-Hartree—
Fock (BHF) approximation of the BBG many-body theory at zero temperature extended
to the hyperonic sector is given in Sec. [1A. Equilibrium conditions and Eos of 3-stable
matter are discussed in Sec. [I'B. Section [II is devoted to the presentation and discussion
of the results. Finally, a short summary and the main conclusions of this work are drawn in
Sec. V.

II. EQUATION OF STATE AND EQUILIBRIUM CONDITIONS
A. Many-body theory of hyperonic matter

Our calculation of the EoS of high density matter is based on the BHF approximation of
the BBG many-body theory at zero temperature extended to the hyperonic sector (Baldo
et al. 2000, Vidana et al. 2000a). We start it by constructing all baryon-baryon (nucleon-
nucleon (NN), hyperon-nucleon (YN) and hyperon-hyperon (YY)) G-matrices, which de-

scribe in an effective way the interactions between baryons in the presence of a surrounding



hadronic medium. They are formally obtained by solving the well known Bethe-Goldstone

equation, written schematically as
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In the expression above the first (last) two subindices indicate the initial (final) two-
baryon states compatible with a given value S of the strangeness (NN for S = 0, YN for
S=—-1,-2,and YY for S = —2, -3, —4), V is the bare baryon-baryon interaction, @ is the
Pauli operator which allows only intermediate two-body states compatible with the Pauli
principle, and w is the so-called starting energy.

The single-particle energy of a baryon B; is given by (we use units in which A =1, ¢ = 1)

/{32
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where Mp, denotes the rest mass of the baryon, and the single-particle potential energy
Ug, (k) represents the averaged field “felt” by the baryon due to its interaction with the

other baryons of the medium. In the BHF approximation Ug, (k) is given by
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where a sum over all the Fermi seas of the different baryon species is performed, and the
matrix elements are properly antisymmetrized when baryons B; and B; belong to the same
isomultiplet. We note that the so-called discontinuous prescription for the single-particle
energy (i.e., Ep, = Mp, + k?/2Mp, for k > kp, ) has been adopted to solve the Bethe-
Goldstone equation. The present calculations have been carried out by using the most
recent parametrization of the bare baryon-baryon potential for the complete baryon octet
as defined by Stoks and Rijken (1999). This potential model, which aims at describing all
interaction channels with strangeness from S = 0 to S = —4, is based on SU(3) extensions
of the Nijmegen nucleon-nucleon and hyperon-nucleon potentials (Rijken et al. 1998).
Once a self-consistent solution of Eqgs. (I)-(B) is achieved, the baryonic energy density

€y can be evaluated in the BHF approximation according to the following expression:
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where we have split, according to Eq. (8) the baryon single-particle potential Ug, into a
contribution, U gi, coming from the interaction of the baryon B; with all the nucleons of the
system, and a contrinution, Ué_, coming from the interaction with the hyperons.

It is well known that non-relativistic many-body calculations, based on purely two-body
forces, fail to reproduce the empirical saturation point for symmetric nuclear matter and
the binding energy and radius of light nuclei. The remedy to the previous deficiency is to
introduce three-body forces (TBF) between nucleons. In hyperonic matter the repulsion
induced at high densities by nucleon three-body forces enhances substancially the hyperon
population which in turn induces a strong softening of the EoS (Schulze et al. 1998, Baldo
et al. 2000).

In order to include the effects of TBF between nucleons in our computational scheme,

we have replaced the nucleonic contribution to the baryonic energy density ¢, (Eq. 4), i.e.,
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by the analytic parametrization developed by Heiselberg and Hjorth-Jensen (1999)

u—2—20
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Here u = py/po is the ratio of the nucleonic density to nuclear saturation density (pg = 0.16
fm=3) and Y, = p,/py is the proton fraction. This approach parametrizes the nucleon
energy density obtained from the variational calculation using the Argonne Vig nucleon-
nucleon interaction with three-body forces and relativistic boost corrections of Akmal et al.
(1998). The best fit of this simple functional is obtained for Ey = 15.8 MeV, Sy = 32 MeV,
v = 0.6 and § = 0.2 (see Ref. Heiselberg and Hjorth-Jensen 1999 for more details). The
hyperonic contributions to €, have been, however, calculated as described above within the
BHF approximation employing the baryon-baryon interaction model NSC97e of Stoks and
Rijken (1999).



B. Equilibrium conditions and EoS of §-stable matter

The concentrations of the different constituents in the stellar interior are determined
by the requirements of electric charge neutrality and equilibrium under weak interaction

processes (“chemical” equilibrium)
By — By +{+71y, By + {0 — By + vy (7)

where B; and Bj are baryons, and /¢ is a lepton (e~ or p~) and v, (7,) is the associated
neutrino (antineutrino). For stellar matter with trapped neutrinos, these two requirements

imply that the relations
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are satisfied. Above, pp, (p¢) denotes the baryon (lepton) number density and the super-
scripts (£) on pp, (pe) signify positive or negative electric charge. The symbol p; refers to
the chemical potential of baryon of the species 7, and ¢; is its charge. The chemical potential
of the neutron is denoted by ,, and the chemical potential of the neutrino v, is denoted by
ity,. Because neutrinos are trapped in the star, the lepton number per baryon Y7, of each

lepton flavor must be conserved on dynamical time scales

Yie=Y.+Y, Y, =Y, +Y,

vy

(10)

e ?

Gravitational collapse calculations of the core of massive stars indicate that at the onset of
trapping the electron lepton fraction Y. = Y. + Y, ~ 0.4. In addition, as the trapping in
supernova occurs when the collapsing core reaches densities where no muons exist, we can
impose Y, =Y, +Y,, =0.

For matter where nucleons and hyperons are the relevant hadronic degrees of freedom

the chemical equilibrium conditions can be explicitly written as

H=- = px- = fn T+ fe = My,
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Ha = Hzo0 = Uxo = U,
Mt = Hp = Pn — He T My,
My — Hyy = He — Hue - (11)

In the case of neutrino-free matter (relevant to describe the cold and deleptonized neutron
star) the new equilibrium conditions can be obtained by the previous equations simply by
taking 1, = pt,, = 0.

For a given value of the total baryon number density

Po =2 PB, (12)

the composition of stellar matter, i.e., the baryonic (Yg, = pp,/pp) and leptonic (Y, =
pe./py) fractions of each constituent species, is obtained by solving Eqgs. (&), (10) and (11)).
We will refer to this status of the stellar matter as J-stable matter.

The chemical potentials of the different particles are the fundamental ingredients when
solving the equilibrium conditions summarized in Eq. (11;). In the BHF approximation the
chemical potentials of the baryons are taken to be equal to the value of the single-particle
energy at the Fermi momentum,

2
K,

2 Mg,

KB; = EBi(kFBi) = MBi + + Ug(kFBl) + Ué(kFBl) : (13)

In order to be consistent with our calculation of the baryonic energy density (see the discus-
sion above in connection to the role of nucleon TBF for the saturation properties of nuclear
matter), in the case of nucleons, we replace in the chemical potentials given by Eq. (13)
the nucleonic BHF contribution py = My + k3, /2My + UY (kpy) by py = Oenn/Opn.
Here ey denotes the parametrization of the nucleonic energy density contribution due to
Heiselberg and Hjorth-Jensen (1999) (see Eq. (8)). For the hyperons, however, we keep
the prescription of Eq. (13). The chemical potentials of leptons are calculated using the
expressions for non-interacting relativistic fermions which are well known from textbooks.
Once the composition of 3-stable matter is determined we can compute the total energy

density € = g, + €4, the baryonic pressure using the thermodynamic relation
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and finally the total pressure P = P, + P,. Once again the leptonic contributions to the

energy density and pressure are those of a relativistic free Fremi gas.

I1I. RESULTS

The composition of 3-stable stellar matter calculated as described in the previous section,
is shown in Fig. 1} as a function of the total baryon number density. The upper panel of
the figure exhibits the results for neutrino-trapped matter (with Yz, = 0.4 and Y7, = 0),
whereas the lower panel shows the composition of neutrino-free matter. To begin with, let
us comment our results for the composition of neutrino-free matter in connection to the role
of the hyperon-nucleon and hyperon-hyperon interactions (see Ref. Vidana et al. 2000a, for
a more detailed discussion). Firstly, note that although the A hyperon is about 80 MeV
less massive than the >~ one, the latter appears at a lower baryon number density. The
reason is that the process e +n — ¥~ 4 v, removes both an energetic neutron and an
energetic electron, whereas the weak strangeness non-conserving decay of a neutron into a
A, being neutral, removes only an energetic neutron. Since the electron chemical potential
in matter is larger than the mass difference My- — My, the condition for the onset of the X7,
n + fte = px—, is fulfilled at lower densities than the corresponding one for the appeareance
of the A, p, = pp. Furthermore, as soon as the X7 appears it becomes energetically more
favorable for the system to keep charge neutrality with ¥~ hyperons than with leptons,
therefore the lepton concentrations begin to fall. The onset of A formation takes place at
higher baryon number density as soon as the chemical potential of the neutron equals that
of the A. No other hyperons appear at baryon number densities below p, = 1.2 fm =2 within
our many-body approach.

Having in mind these results as a reference, let us now consider the effect of neutrino
trapping. As it can be seen from the upper panel of Fig. I} the composition of matter is

significantly altered when neutrinos are trapped. The first thing to notice is that trapping



keeps the electron concentration high so that matter is more proton rich in comparison with
the case in which neutrinos have diffused out. Notice in addition that muons are not present,
and the onset of hyperon formation is changed. The appearance of the ¥~ hyperon is now
governed by ps- = p, + pe — fhy,, whereas in the neutrino-free case the condition to be
fulfilled was px- = p,, + pte. Due to the fact that g, — p,, is much smaller than g, the
appearance of the ¥~ occurs at a higher baryon number density (p, ~ 0.50 fm~3), and the
amount of 37 ’s is smaller. This, in turn, implies less X7 n pairs. Since the ¥>7n interaction
is attractive in this model (see, e.g., Fig. 7 of Ref. Vidana et al. 2000b) the chemical
potential of the neutrons becomes less attractive. As a consequence, the A and X° (which in
neutrino-free matter was not present) hyperons appear at a lower densities (p, &~ 0.57 fm=3
and p, ~ 1.02 fm~3, respectively). Finally, the neutrino fraction, which initially decreases
with baryon number density in order to keep Y. constant, begins to increase as soon as
37 ’s are present on the system due to the formation of this baryon through the process
e +n—X" +u,.

Let us now examine the effect of neutrino trapping on the EoS for g-stable neutron star
matter. We show in Fig. 2 the results for the total energy density € versus the baryon number
density (left panel) and the total pressure as a function of £ (right panel). The dashed lines
represent the results for neutrino-trapped matter whereas the solid lines show the result for
neutrino-free matter. As we can see the EoS for neutrino-trapped matter is stiffer than that
for neutrino-free matter. This result is a consequence of the different composition of stellar
matter in the two cases illustrated in Fig. .. In addition, it is interesting to note that, even
in those regions where nucleons are the only relevant baryonic degrees of freedom (i.e., up to
oy ~ 0.50 fm=3), the EoS for neutrino-trapped matter is stiffer than the one for neutrino-free
matter. In fact, the extra leptonic pressure caused by neutrino-trapping is greater than the
decrease in pressure of nucleons induced by the reduction of the nuclear symmetry energy in
the proton rich matter with trapped neutrinos (compare the the proton abundances in the
upper and lower panel of Fig. 1 for p, < 0.50 fm~?) (Chiapparini et al. 1996, Prakash et al.

1997) . This can be seen in Fig. 8 where we plot the baryonic (left panel) and leptonic (right

9



panel) contributions to the total pressure for neutrino-free (solid lines) and neutrino-trapped
(dashed lines) matter.

Finally, let us consider the effect of neutrino trapping on the properties of neutron stars.
To this end, we have solved the well known Tolman—Oppenheimer—Volkov equations for the
structure of non-rotating stellar configurations in general relativity. To describe the stellar
crust we used the equations of state by Feynman—Metropolis—Teller (Feynman et al. 1949),
Baym-Pethick—Sutherland (Baym et al. 1971) and Negele-Vautherin (1973). In Fig. 4 we
show the resulting stellar equilibrium sequences. In the left panel we plot the gravitational
mass Mg in units of the solar mass (M, = 1.989 x 103 g) as a function of the central
energy density, while in the right panel Mg is plotted as a function of the stellar radius R.
Dashed (solid) lines represent the results for neutrino-trapped (neutrino-free) matter. The
properties of the maximum mass configurations are summarized in Table . In agreement
with previous studies we find that the maximum mass supported by neutrino-trapped EoS
is larger than the corresponding one supported by neutrino-free matter EoS. The overall
effect of neutrino trapping on the maximum mass configuration is opposite in the case of
matter in which the only baryonic degrees of freedom considered are nucleons (Bombaci
1996, Prakash et al. 1997). In the latter case, the lost of leptonic pressure when neutrinos
are diffused out of the star is smaller than the gain in baryonic pressure arising from the
nuclear symmetry energy due to the decrease in the number of protons. As a consequence,
in nucleonic 3-stable matter, the maximum mass supported by neutrino-free matter is larger
than the corresponding one supported by neutrino-trapped matter, as it is shown by our
present results reported in the right panel of Fig. B.

A very important implication of neutrino trapping in dense matter with hyperons is
the possibility of having metastable neutron stars and a delayed formation of a “low-mass”
(M =1-2 M) black hole. This is illustrated in Fig. 5 where we show the gravitational
mass of the star as a function of its baryonic mass Mp, which is taken as the total number
of baryons in the star times the average nucleon mass. If hyperons are present (left panel),

then deleptonization lowers the range of gravitational masses that can be supported by the
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EoS from about 1.59M to about 1.28M, (see dotted horizontal lines in the figure). Since
most of the matter accretion on the forming neutron star happens in the very early stages
after birth (¢ < 1 s), with a good approximation, the neutron star baryonic mass stays
constant during the evolution from the initial protoneutron star configuration to the final
neutrino-free configuration. Then, within our EoS model, protoneutron stars which at birth
have a gravitational mass between 1.28 — 1.59 M, (a baryonic mass between 1.40 — 1.72
M) will be stabilized by neutrino trapping effects long enough to carry out nucleosynthesis
accompayning a type-II supernova explosion. After neutrinos leave the star, the EoS is
softened and it can not support anymore the star against its own gravity. Thus the newborn
neutron star collapses to a black hole (Keil and Janka 1994, Bombaci 1996, Prakash et al.
1997). A similar qualitative behaviour is expected also in the case in which dense matter
contains a Bose-Einstein condensate of negative kaons (Brown & Bethe 1994, Prakash et
al. 1997). On the other hand, if only nucleons are considered to be the relevant baryonic
degrees of freedom (right panel), no metastability occurs and a black hole is unlikely to be
formed during the deleptonization since the gravitational mass increases during this stage
which happens at constant baryonic mass. If a black hole were to form from a star with
only nucleons, it is much more likely to form during the post-bounce accretion stage.

To end this section, we show in Fig. & the differences of the internal composition as a
function of the radial coordinate of a protoneutron star (upper panel) and the corresponding
deleptonized neutron star (lower panel) for a constant value, Mp = 1.34M, of the stellar
baryonic mass. The central energy density of the protoneutron star is not high enough to
allow for the presence of hyperons and only nucleons, electrons and neutrinos are present
in the stellar core. This star has a gravitational mass Mg = 1.28M. Nevertheless, as
soon as neutrinos diffuse out of the star, pressure decreases, gravity compresses matter,
energy density increases and hyperons appear in the star interior. The gravitational mass
of the final neutrino-free star is Mg = 1.23M,. The difference between the initial and final
gravitational masses corresponds to the energy which is carried out by neutrinos when they

escape from the star. In the present case (i.e., assuming Mp = 1.34M,) this energy is about
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9 x 10°? erg. In addition, due to the increase of the central energy density, the stellar radius

decreases.

IV. SUMMARY AND CONCLUSIONS

In this paper we have investigated within the framework of the Brueckner—Hartree-Fock
approximation the effects of neutrino trapping on the properties of -stable neutron star
matter including nucleonic and hyperonic degrees of freedom.

We have found that the presence of neutrinos changes significantly the compositon of
matter with respect to the neutrino-free case: matter becomes more proton rich, muons are
not present, and the appearance of hyperons is moved to higher densities. In additon, the
number of strange particles is on average smaller and the EoS stiffer in comparison with the
neutrino-free case.

We have found that the value of the maximun mass of hyperon stars decreases as soon as
neutrinos diffuse out of the star, contrary to what happens when the only baryonic degrees
of freedom considered are nucleons.

Using the microscopic EoS developed in the present work we have found that stars having
at birth a gravitational mass between 1.28 — 1.59 M, are metastable, in other words these
stellar configurations remain only stable for several seconds (the neutrino trapping time),

collapsing afterwards into low-mass black holes.
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TABLES

TABLE I. Neutron star properties of the maximum mass configuration for the two scenarios
considered: neutrino-trapped and neutrino-free matter. . denotes the central energy density, pp,
the corresponding central baryon number density, Mg the gravitational mass, Mp the baryonic
mass, R the radius of the star, Ry the radius of the hyperonic core, and AR the thickness of

the star crust.

Scenario Ec Pb. Mg Mg R Ry AR st
[x10% g/em?®]  [fm™]  [Mg]  [Ms]  [km]  [km] [lem]
Neutrino-trapped 2.30 1.066 1.595 1.724 11.14 6.32 0.66
Neutrino-free 3.19 1.537 1.283 1.406 9.86 7.60 0.70
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FIGURES

FIG. 1. Compositon of B-stable hyperonic matter as a function of the baryon number density.
Upper panel show results for the neutrino-trapped case (with Yz, = 0.4 and Yy, = 0), whereas

those for neutrino-free matter are reported in the lower one.

FIG. 2. Total energy density ¢ as a function of the baryon number density p; (left panel) and
total pressure as a function of ¢ (right panel) for (-stable neutron star matter. Solid lines in
both panels show results for neutrino-free matter, whereas results for the neutrino-trapped case

correspond to dashed lines.

FIG. 3. Baryonic (left panel) and leptonic (right panel) contributions to the total pressure P as
a function of the total energy density density ¢ for the two scenarios considered: neutrino-free (solid
lines) and neutrino-trapped (dashed lines) matter. The baryon number density corresponding to
the maximum energy density plotted is p, ~ 0.3 fm~!, at which the only relevant hadronic degrees

of freedom are nucleons.

FIG. 4. Gravitational mass as a function of the central energy density (left panel) and ra-
dius (right panel) of the star for the two scenarios considered: neutrino-free (solid lines) and

neutrino-trapped matter (dashed lines).

FIG. 5. Gravitational mass as a function of the baryonic mass for the two scenarios considered:
neutrino-free (solid lines) and neutrino-trapped matter (dashed lines). Left panel shows results for
matter containing nucleons and hyperons as baryonic degrees of freedom, whereas results containing
only nucleons are reported on the right one. Dotted lines on the left panel show the window of

metastability in the gravitational and baryonic masses.

FIG. 6. Internal composition as a function of the radial coordinate of a hyperon star of constant
baryonic mass (Mp = 1.34Mg) as it evolves from the initial neutrino-trapped (upper panel) to the
final neutrino-free (lower panel) configuration. Symbol R indicates the radius of the star, Ry the

end of the hadronic core and the beginning of the crust and Ry the end of the hyperonic core.
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