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CONJUGACY CLASSES IN LOOP GROUPS AND

G-BUNDLES ON ELLIPTIC CURVES

VLADIMIR BARANOVSKY AND VICTOR GINZBURG

1. Introduction

Let C[[z]] be the ring of formal power series and C((z)) the field of formal
Laurent power series, the field of fractions of C[[z]]. Given an algebraic group
G over Z, we will write G((z)) for the group of C((z))-rational points of G,
thought of as a formal “loop group”, and a(z) for an element of G((z)). Let
q be a fixed non-zero complex number. Define a “gauge-action” of G((z))
on itself by the formula

g(z) : a(z) 7→ ga = g(q · z)−1 · a(z) · g(z) (1.1)

We are concerned with the problem of classifying the orbits of the gauge-
action on G((z)). If q = 1 the gauge action becomes the conjugation action
and the problem reduces to the classification of conjugacy classes in G((z)).

In this paper we will be interested in the case |q| < 1. Let G[[z]] ⊂ G((z))
be the subgroup of C[[z]]-points of G. Call an element of G((z)) integral if
it is conjugate to an element of G[[z]] under the gauge-action.

Introduce the elleptic curve E = C∗/qZ. Our main result is the following

Theorem 1.2. Let G be a connected split semisimple group over Z.
Then there is a natural bijection between the set of the gauge-conjugacy
classes in G((z)) consisting of integral elements and the set of isomorphism
classes of semi-stable holomorphic principal G-bundles on E.

We also have an analogous result for G = GLn, although it is not a
semisimple group:

Theorem 1.2′. There is a natural bijection between the set of the gauge-
conjugacy classes in GLn((z)) consisting of integral elements and the set of
isomorphism classes of degree zero semi-stable holomorphic rank n vector
bundles on E.

The main reason we are interested in the above results is that gauge-
conjugacy classes in G((z)) may be interpreted as ordinary conjugacy classes
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in a larger group. Specifically, the group C∗ acts on C((z)) by field auto-
morphisms rescaling the variable z, i.e., t ∈ C∗ acts by a(z) 7→ a(t · z). This
gives a C∗-action on the group G((z)) called “rotation of the loop”. Write
C∗ ⋉G((z)) for the corresponding semidirect product. It is easy to see that,
for any q ∈ C∗, conjugating an element (q, a(z)) ∈ C∗ ⋉ G((z)) does not
affect the first coordinate q. Furthermore, for a fixed q, the second projec-
tion (q, a(z)) 7→ a(z) gives a bijection between ordinary conjugacy classes in
C∗ ⋉ G((z)) with first coordinate q and gauge-conjugacy classes in G((z)).
We note further that the group C∗ ⋉ G((z)) is the quotient of an affine
Kac-Moody group modulo its center (since we do not take central extension
of G((z))). Thus, gauge-conjugacy classes in G((z)) is essentially the same
thing as ordinary conjugacy classes in a Kac-Moody group.

We arrived at theorem 1.2 while trying to find an algebraic version of
the following unpublished analytic result due to Looijenga (cf. [EFK]). Let
G be a complex Lie group, G(C∗)hol the group of all holomorphic maps
a : C∗ 7→ G, and let q be a fixed non-zero complex number such that |q| < 1.
Then Looijenga showed that

Proposition 1.3. There is a natural bijection between the set of all

gauge-congugacy classes in G(C∗)hol and the set of isomorphism classes of
arbitrary holomorphic G-bundles on E.

Proof. Observe that the pull-back via the projection π : C∗ → C∗/qZ = E
establishes an equivalence between the category of G-bundles on E and the
category of qZ-equivariant holomorphic G-bundles on C∗. We associate to
a ∈ G(C∗)hol the trivial holomorphic G-bundle C∗ × G → C∗ on C∗ with
qZ-equivariant structure given by the action q : (z, g) 7→ (q · z, a(z) · g) .
The corresponding G-bundle on E will be referred to as the G-bundle with
multiplier a. It is easy to see that two G-bundles on E associated to two
different multipliers are isomorphic if and only if the multipliers are gauge-
conjugate. Conversely, it is known that any holomorphic G-bundle on C∗ is
trivial. The action of the element q on such a trivial bundle has to be of the
form q : (z, g) 7→ (q · z, a(z) · g) , where a : C∗ → G is a holomorphic map
(changing trivialization has the effect of replacing a by a gauge-conjugate
map). Hence, every qZ-equivariant holomorphic G-bundle on C∗ can be
obtained via the above construction. �

Although motivation for theorem 1.2 came from loop groups, the result
itself is most adequately understood in the framework of q-difference equa-
tions. To explain this assume, for simplicity, that G = GLn, see theorem
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1.2′. Given q ∈ C∗ and a(z) ∈ GLn((z)), we consider a difference equations

x(q · z) = a(z) · x(z) , (1.4)

where x(z) ∈ Cn((z)) is the unknown Cn-valued formal power series. It is
clear that if x(z) is a solution to (1.4) and g(z) ∈ GLn((z)), then x̃(z) :=
g(z)x(z) ∈ Cn((z)) is a solution to a similar equation with a(z) being re-
placed by ã(z) = g(q · z) · a(z) · g(z)−1 , a gauge-conjugate loop. Therefore
classification of equations (1.4) modulo transformations x(z) 7→ x̃(z) reduces
to the classification of the gauge-cojugacy classes in GLn((z)).

Equation (1.4) should be regarded as a q-analogue of the first order
differential equation

z
dx

dz
= a(z) · x(z) , (1.5)

and gauge-conjugation (1.1) should be regarded as a q-analogue of the gauge
transformation: a(z) 7→ g(z)·a(z)·g(z)−1+z dgdz g(z)

−1 . It is well-known that
the classification of gauge equivalence classes of equations like (1.5) depends
in an essential way on the type of functions a and g one is considering. If one
puts himself into analytic framework, then a and g are taken to be elements
of gln(C

∗)hol and GLn(C
∗)hol, respectively. It is well-known and easy to

prove that in this case the differential equation is completely determined (up
to equivalence) by the monodromy of its fundamental solution. Thus, there
is a natural bijection between the set of equivalence classes of differential
equations of type (1.5) and the set of conjugacy classes in G. This is a
differential equation analogue of proposition 1.3.

The situation changes drastically if gln(C
∗)hol and GLn(C

∗)hol are re-
placed by formal loops gln((z)) and GLn((z)), respectively. The classical
theory says that for the equation to be determined by its monodromy it
should have regular singularity at z = 0. This is a differential analogue of
the “integrality” condition in theorem 1.2′. Thus, the G-bundle in theorems
1.2 should be thought of as a q-analogue of the monodromy of a differential
equation.

Acknowledgements. We are greatful to R. Bezrukavnikov for helpful
discussions.

2. From loop groups to G-bundles on E .

The ring homomorphism C[[z]] → C , f 7→ f(0) induces, for any alge-
braic group H, a natural group homomorphism H[[z]] → H. Let H1[[z]]
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denote the kernel of this homomorphism, a “congruence subgroup”. We use
the notation H[z] and H[z, z−1] for the groups of C[z]- and C[z, z−1]-points
of H, respectively. Thus, H[z] ⊂ H[[z]] and H[z, z−1] ⊂ H((z)) . Elements
of H[z, z−1] will be referred to as polynomial loops.

From now on we fix a split connected semisimple group G over Z and q ∈
C∗ such that |q| < 1. Abusing the notation, we writeG for the corresponding
complex group, and let g denote its Lie algebra.

Our proof of theorem 1.2 consists of several steps. We first assign a G-
bundle on E to an integral element a ∈ G((z)). The naive idea of using a as
a multiplier (cf. proof of proposition 1.3) can not be applied here directly,
for a is only a formal looop, hence, does not give a holomorphic map in
general. To overcome this difficulty, we prove the following result.

Proposition 2.1. For any integral a ∈ G((z)), there exists a Borel
subgroup B ⊂ G with unipotent radical U , such that a is gauge-conjugate to
a polynomial loop of the form a0 · a1(z) where a0 ∈ B and a1 ∈ U [z].

To prove the proposition we need some preparations. Recall that for a
semisimple element s ∈ G, the adjoint action of s on g has a weight space
decomposition g =

⊕
λ gλ where gλ is the eigenspace corresponding to an

eigenvalue λ ∈ C∗.

Let a(z) = a0 · a1(z) ∈ G[[z]], where a0 ∈ G is a constant loop and
a1(z) ∈ G1[[z]]. Write ass0 ∈ G for the the semisimple part in the Jordan
decomposition of a0, and let g =

⊕
λ gλ be the weight space decomposition

with respect to the adjoint action of ass0 .

Definition. The element a(z) = a0 · a1(z) is called aligned if it can be
written as a product a0 exp(x1z) exp(x2z

2) · . . . , where xi ∈ gqi .

Note that the product above is finite and gives an element of G[z]. Hence
any aligned element is a polynomial loop.

Lemma 2.2. For any a ∈ G[[z]], one can find g ∈ G1[[z]] such that ga is
aligned.

Proof. Following [BV,pp.31, 68], we will construct a sequence of elements
xi ∈ g and yi ∈ gqi as follows. Note that the exponential map gives a

bijection z · g[[z]]
∼

−→ G1[[z]]. Therefore we can write a in the form a =
a0 exp(a1z) exp(a′z2) where a1 ∈ g and a′ ∈ g[[z]].
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Since the operator (q · Ada−1

0

− Id) is invertible on
⊕

λ6=q gλ, there are

uniquely defined elements x1 ∈
⊕

λ6=q gλ and y1 ∈ gq such that

(q ·Ada−1

0

− Id)(x1) + a1 = y1 .

We next find y2. To that end, set g1 = exp(x1z). Then the above equa-
tion implies that g1a = a0 exp(y1z) exp(a2z

2) exp(a′z3) , where a2 ∈ g and
a′ ∈ g[[z]]. Hence there exist uniquely determined elements x2 ∈

⊕
λ6=q2 gλ

and y2 ∈ gq2 such that

(q2 · Ada−1

0

− Id)(x2) + a2 = y2 .

Set g2 = exp(x2z
2) exp(x1z). Then the above equation insures that g2a =

a0 exp(y1z) exp(y2z
2) exp(a3z

3) exp(a′′z4) , where a3 ∈ g and a′′ ∈ g[[z]].
Iterating this process we construct the sequence {xi ∈ g , i = 1, 2, . . .}, such
that setting gk := exp(xkz

k) exp(xk−1z
k−1) . . . exp(x1z) we get

gka = a0 · exp(y1z) exp(y2z
2) . . . exp(ykz

k) exp(yzk+1) (2.3)

where yi ∈ gqi and y ∈ g[[z]]. Then the product g := lim gk = . . . exp(xkz
k)·

exp(xk−1z
k−1)·. . .·exp(x1z) stabilizes since gqk = 0 for all k >> 0. Equation

(2.3) shows that ga is aligned. �

Proof of proposition 2.1. Choose a maximal torus T ⊂ G containing
ass0 . LetR ⊂ Hom(T,C∗) be the set of roots of (G,T ). The subset consisting
of the roots γ ∈ R such that |γ(ass0 )| ≤ 1 defines a parabolic P ⊂ G. Then,
for any i > 0, the subspace gqi is contained in the nilradical of LieP , for
|q| < 1.

Further, we may choose a Borel subgroup B ⊂ P that contains the
unipotent part of a0. Let U denote the unipotent radical of B. Then the
element exp(y1z) exp(y2z

2) . . . exp(ykz
k) constructed in the proof of lemma

2.2 belongs to U [z], and the proposition follows. �

Lemma 2.5.Let B and B̃ be two Borel subgroups with unipotent radicals
U , Ũ . Let a = a0 · a1 , (a0 ∈ B , a1 ∈ U1[z]) , and ã = ã0 · ã1 , (ã0 ∈ B , ã1 ∈
U1[z]) , be two polynomial loops. Then any element g ∈ G((z)) such that
ga = ã is a Laurent polynomial loop, i.e., g ∈ G[z, z−1].

Proof. Multiplying g by an element of G we may assume that B = B̃.

Further, we find a faithful rational representation ρ : G→ SLn(C) such
that B is the inverse image of the subgroup of upper triangular matrices
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in SLn(C). Thus, applying ρ, we are reduced to proving the lemma in the
case G = SLn(C) and B = upper triangular matrices. Thus, from now on,
a and ã are are assumed to be upper triangular polynomial matrices. Set
M = max(deg a,deg ã) , the maximum of the degrees of the corresponding
matrix-valued polynomials. Note that, by assumption, the diagonal entries
aii and ãii of the matrices a and ã are independent of z.

Let ga = ã. We can write g(z) =
∑

k≥k0
g(k)zk , where g(k) are complex

n×n-matrices. Computing the bottom left corner matrix entry of each side
of the equation g(qz)a(z) = ã(z)g(z) yields:

g(k)n,1 · (q
ka1,1 − ãn,n) = 0 .

It follows, since the diagonal entries of a, ã are nonzero, that there exists
N >> 0 such that for all k ≥ N , we have g(k)n,1 = 0. Using this, we now
compute the two matrix entries standing on (n − 1) × 1 and n × 2 places
of each side of the equation g(qz)a(z) = ã(z)g(z). We find that, for any
k ≥ N +M :

g(k)n−1,1 · (q
ka1,1 − ãn−1,n−1) = 0 , g(k)n,2 · (q

ka2,2 − ãn,n) = 0 .

We deduce, as before, that there exists N2 >> 0 such that for all k ≥ N2,
we have g(k)n−1,1 = g(k)n,2 = 0.

Continuing the process of computing the entries of each side of the equa-
tion g(qz)a(z) = ã(z)g(z) along the diagonals (moving from bottom left
corner to top right corner) we prove by descending induction on (i− j) that
g(k)i,j = 0, for all k ≫ 0. �

We define a map from integral gauge-conjugacy classes in G((z)) to G-
bundles on the elliptic curve E = C∗/qZ as follows. Given an integral element
a ∈ G((z)), we find (proposition 2.1) an aligned element f ∈ G((z)) which
is gauge-conjugate to a. The loopf being polynomial, it gives a well-defined
holomorphic map f : C∗ → G. Hence, we can associate to f the holomorphic
G-bundle on E with multiplier f , see proof of proposition 1.3. If f ′ is another
aligned element which is gauge-conjugate to a, then by lemma 2.5, f and
f ′ are gauge-conjugate to each other via a Laurent polynomial, hence via a
holomorphic, loop. It follows that the G-bundles with multipliers f and f ′

are isomorphic. Thus, we have associated to a a well-defined isomorphism
class of G-bundles on E .
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3. Going to a finite covering.

Recall that for any positive integer m the field imbedding C((z)) →֒
C((w)) , z 7→ wm , makes C((w)) a Galois extension of C((z)) with the Ga-
lois group Z/mZ. From now on we will write z1/m instead of w, so that
(z1/m)m = z, and the generator of the Galois group acts as ω : z1/m 7→
e2πi/mz1/m . Let G((z1/m)) denote the group of C((z))-rational points of G.
We view G((z)) as the subgroup of ω-fixed points in G((z1/m)). We will
sometimes write a = a(z1/m) for an element of G((z1/m)).

Further, we fix τ in the upper half-plane, Imτ > 0, such that q = e2πiτ .
The automorphism f(z) 7→ f(q · z) of the field C((z)) can be extended to an
automorphism of C((z1/m)) via the assignment z1/m 7→ e2πi·τ/mz1/m. This
gives rise to a gauge-action g : a 7→ ga on G((z1/m)) that extends the one on
G((z)).

Definition. An element s ∈ G is said to be reduced if, for any finite
dimensional rational representation ρ : G → GL(V ), and any eigenvalue λ
of the operator ρ(s) we have λk = ql, (for some k, l ∈ Z \ {0}) =⇒ λ = 1 .

View G as the subgroup of “constant loops” in G((z1/m)).

Theorem 3.1. Let a(z) ∈ G[[z]] be an aligned element. Then one can
find a positive integer m and g ∈ G((z1/m)) such that ga is a constant loop
and moreover the element ga ∈ G is reduced.

Remark 3.2. One can show that the element a(z) ∈ SL2((z)) given

by the matrix

(
q1/2 z

0 q−1/2

)
is not gauge-conjugate to a constant loop

within the group SL2((z)). This explains the significance of taking g to be
in G(z1/m) in the theorem above. �

To prove the theorem, we fix a maximal torus T ⊂ G, and let X∗(T ) =
Homalg(T,C

∗) and X∗(T ) = Homalg(C
∗, T ) denote the weight and co-

weight lattices, respectively. We first prove

Lemma 3.2. For any s ∈ T there exists φ ∈ X∗(T ) and an integer m 6= 0
such that the following holds:

(i) s = φ(e2πi·τ/m) · sred where sred is reduced;

(ii) Let α ∈ X∗(T ). If α(s) = ql for some l ∈ Z, then α(φ)/m = l and
α(sred) = 1.

Proof of Lemma. In C∗ consider the subgroup

Γ = {z ∈ C∗ | ∃ k, l ∈ Z such that zk = ql} .
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Let L be the subgroup of the weights α ∈ X∗(T ) such that α(s) ∈ Γ.
Clearly, if α ∈ X∗(T ) and m · α ∈ Γ for some integer m 6= 0, then α ∈ Γ.
Hence, by the well known structure theorem about subgroups in Zn we
deduce that L splits off as a direct summand in X∗(T ). Therefore, there is
another lattice Lred ⊂ X∗(T ) such that X∗(T ) = L⊕Lred. This direct sum
decomposition of lattices must be induced by a direct product decomposition
T = T1×Tred, where T1 and Tred are subtori in T such that X∗(T1) = L and
X∗(Tred) = Lred. Thus, we have s = s1 ·s

′
red, where s1 ∈ T1 and s′red ∈ Tred.

For any α ∈ X∗(T ), we have by construction α(s1) ∈ Γ. Furthermore,
α(s) ∈ Γ implies α ∈ L, hence α(Tred) = 1. Therefore, for α ∈ X∗(T ) such
that α(s′red) ∈ Γ we have α(s1 · s

′
red) ∈ Γ, hence α ∈ L, hence α(s′red) = 1.

Thus, s′red is reduced.

View the groups X∗(T1) and X∗(T1) as lattices in Lie(T1)
∗ and Lie(T1),

respectively, so that X∗(T1) is the kernel of the exponential map.

Write s1 = exp(h), where h ∈ Lie (T1). Since α(s1) ∈ Γ for any α ∈
X∗(T ) and elements of Γ have the form z = e2πi(τ ·r+r

′) , r, r′ ∈ Q , it follows
that α(h) ∈ Q ·τ+Q . Hence, h ∈ τ ·Q⊗ZX∗(T1)+Q⊗ZX∗(T1) . Therefore,
there exist φ,ψ ∈ X∗(T1) and an integer m such that h = τ

mφ+ 1
mψ . Thus,

s1 = exp(h) = ǫ · φ(e2πi·τ/m) , where ǫ = ψ(e2πi/m) is an element of order
m. We put sred = ǫ · s′red. Clearly, sred is reduced, and s = s1 · s′red =
φ(e2πi·τ/m) · sred.

To prove part (ii), let α ∈ X∗(T ) be such that α(s) = ql for some l ∈ Z.
Then α ∈ L, hence α(s′red) = 1. Furthermore, the equation

e2πi·τ ·l = ql = α(s) = e2πi·τ ·α(φ)/m+2πi·α(ψ)/m

yields τ · (l − α(φ)/m) + α(ψ)/m ∈ Z . It follows, since α(φ) and α(ψ) are
integers, that l = α(φ)/m and α(ψ)/m ∈ Z. Hence α(ǫ) = α(ψ(e2πi/m) = 1 .
Thus, α(sred) = α(ǫ) · α(s′red) = 1 , and (ii) follows. �

Proof of theorem 3.1. We choose the Borel subgroup B = T · U as
constructed in the proof of proposition 2.1. Put b = LieB. Thus we have
a(z) = a0 exp(x1z) exp(x2z

2)·. . .·exp(xkz
k), where ass0 ∈ T and xi ∈ gqi ⊂ b ,

where gqi stands for the qi-eigenspace of Ad ass0 .

Applying lemma 3.2 to s = ass0 , we find an integer m and an algebraic
group homomorphism φ : C∗ → T such that ass0 = φ(e2πi·τ/m) · sred .

For any integer i ≥ 1 we can write xi =
∑

α xα, where α is a positive
root of (G,T ) such that α(ass0 ) = qi and xα is a non-zero root vector cor-
responding to α. For such an α part (ii) of lemma 3.2 yields α(φ(z1/m)) =
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zα(φ)/m) = zi . We set g = φ(z1/m) , a well-defined element of the group
G((z1/m)). Then, we obtain

(Ad g)(xα) = α(φ(z1/m)) · xα = zi · xα .

It follows that a similar equation holds for xi instead of xα. From this we
deduce

g−1 · exp(xiz
i) · g = exp(xi) . (3.2.1)

Further, let u be the unipotent part of the Jordan decomposition of a0.
Write u = exp(y) and y =

∑
α yα, where yα are root vectors. Since ass0

commutes with y, we deduce similarly, using lemma 3.2(ii), that α(φ) = 0
for any root α such that yα 6= 0. It follows that g−1 · u · g = u. From this
and (3.2.1) we obtain

ga = φ(e2πi·τ/mz1/m)−1 · ass0 · u · exp(x1z) exp(x2z
2) · . . . · exp(xkz

k) · φ(z1/m)

= φ(e2πi·τ/m)−1 · ass0 · u · exp(x1) · exp(x2) . . . exp(xk) .

Using lemma 3.2(i) we see that φ(e2πi·τ/m)−1 ·ass0 ·u = sred ·u. This element
is reduced, and the theorem follows. �

Lemma 3.3. Let s ∈ G be reduced. Then any element g ∈ G((z)) such
that gs = s is a constant loop.

Proof. Consider the adjoint representation ρ : G → GL(g). We choose
a basis in g such that ρ(s) is an upper-triangular matrix. Given g such
that gs = s, we write ρ(g) =

∑
k≥k0

g(k)zk , where g(k) are complex n× n-
matrices. The same proccess as in the proof of lemma 2.5 gives equations of
the type

g(k)m,n · (qksn,n − sm,m) = 0 , k ∈ Z .

Since s is reduced, this implies g(k)m,n = 0 for all k 6= 0. Hence the image of
g in GL(g)(z) is constant. It follows that g is itself constant, for the kernel
of the adjoint representation G→ GL(g) is finite. ✷

Corollary 3.4. Let a ∈ G[[z]] be aligned and s ∈ G be reduced. Assume
g ∈ G((z1/m)) is such that ga = s. Then g ∈ G[z1/m, z−1/m] is a Laurant
polynomial loop in z1/m. Furthermore, θ = g(e2πi·τ/mz1/m)g(z1/m)−1 is a
constant loop, and θm = 1.

Proof. The first claim follows from lemmas 2.2 and 2.5. To prove the
second claim, recall the Galois automorphism ω : f(z1/m) 7→ f(e2πi·τ/mz1/m)
on C((z1/m)). We apply the induced automorphism of G((z1/m)) to the
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equation ga = s. The RHS being independent of z, and a being fixed by ω,
we get ωga = s. This equation together with the original one, ga = s, yield
θs = s where θ = g(e2πi·τ/mz1/m)g(z1/m)−1 . Hence, θ is a constant loop,
by lemma 3.3. Further, applying the automorphism ω to the first equation
below we get a sequence of equations

θ = (ωg) · g−1 , θ = (ω2g) · (ωg)−1 , . . . , θ = (ωmg) · (ωm−1g)−1 .

Since ωm = Id, taking the product of all these equations yields θm = 1. �

We fix two generators, an “a-cycle” and a “b-cycle”, of the fundamental
group π1(E) as follows. a-cycle is defined to be the image of a generator of
π1(C

∗) = Z under the imbedding π1(C
∗) →֒ π1(E) induced by the projection

C∗ → C∗/qZ = E . The b-cycle is the image of the segment [1, q] ⊂ C∗ under
the projection.

Given an integer m 6= 0, set mE = C∗/q
Z

m , and let mπ :m E → E , z 7→
zm be the natural projection. Thus mE is an elliptic curve and the map
mπ is an m-sheeted Galois covering with the Galois group Z/mZ acting as
monodromy around the a-cycle.

Proposition 3.5. Let a ∈ G[z] be an aligned element and P the prin-
cipal G-bundle on E with multiplier a. Then

(i) The bundle mπ∗P is isomorphic to the holomorphic G-bundle on mE
with a reduced constant multiplier s ∈ G;

(ii) Let ∇̃ be the holomorphic connection on mπ∗P transported via the
isomorphism (i) from the trivial connection d on the trivial bundle. Then ∇̃
descends to a well-defined holomorphic connection ∇ on P . The latter has
finite monodromy around a-cycle and a reduced monodromy around b-cycle.

Proof. By theorem 3.1 there exists an element g ∈ G(z1/m) such that ga =
s is a constant loop where s ∈ G is reduced. By corollary 3.4, g = g(z1/m)
is a Laurent polynomial in z1/m. Hence, g may be viewed as a well-defined
G-valued regular function on the m-fold covering of C∗. Let P be the G-
bundle on E with multiplier a. It follows that the pull-back, mπ∗P , has a
multiplier which is gauge-conjugate to s. This proves part (i).

To prove (ii), recall that any G-bundle with a constant multiplier s has
a natural flat holomorphic connection which is given (in the trivialization
on C∗ corresponding to s) by the deRham differential d. We transport this
connection to mπ∗P via the isomorphism given by the loop g. The connection
∇̃ = g−1 ◦ d ◦ g thus obtained descends to to a connection on P if and only
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if it is invariant under the Galois action of Z/mZ. But by corollary 3.4 we
have ωg = θ · g, hence we get

ω(∇̃) = (θ · g)−1 ◦ d ◦ (θ · g) = g−1 · (θ−1 ◦ d ◦ θ) · g = g−1 ◦ d ◦ g = ∇̃ ,

since θ commutes with d.

To compute the monodromy, note that g−1 is a flat section of the connec-
tion ∇̃. Hence the monodromy of ∇̃ around b-cycle equals g(e2πi·τ/mz1/m)g(z1/m)−1

= θ . Since the covering mπ :(m) E → E has no monodromy around b-cycle
and has finite monodromy around a-cycle, it follows that ∇ also has mon-
odromy θ around b-cycle and has finite monodromy around a-cycle. �

Given a finite dimensional rational G-module V , write V
P

for the asso-
ciated vector bundle on E corresponding to a principal G-bundle P .

Lemma 3.6. Let P be the G-bundle with an aligned multiplier, and ∇
the connection on P constructed in proposition 3.5. Then, for any rational
representation φ : G→ GL(V ), every holomorphic section of the associated
vector bundle V

P
is flat with respect to the induced connection on V

P
.

Proof. Since ∇ was obtained from a connection ∇̃ on mπ∗P , the claim
is equivalent to a similar claim for the vector bundle mπ∗V

P
. This vector

bundle is isomorphic to the vector bundle V on mE with multiplier φ(s),
so that the connection ∇̃ is isomorphic to the trivial connection d. Thus,
proving the claim amounts to showing that any holomorphic section of the
vector bundle V with multiplier φ(s) is constant.

To that end, write the matrix φ(s) in Jordan form φ(s) =
⊕

i J(λi, ni) ,
where J(λi, ni) is the (ni×ni) Jordan block with eigenvalue λi. This gives the
corresponding vector bundle decomposition V =

⊕
iVi where Vi is the vector

bundle with multiplier J(λi, ni). If Li denotes the line bundle with multiplier
λi, then there is a canonical vector bundle imbedding Li →֒ Vi. Furthermore,
one can prove (using, e.g., the Fourier-Mukai transform) that the imbedding
induces an isomorphism Γ(mE , Li)

∼
→ Γ(mE , Vi) of the spaces of global

sections. Hence, any holomorphic section of Vi comes from a holomorphic
section of Li. But Li is a degree zero line bundle, hence has a non-zero
section only if it is the trivial bundle, i.e if λi = qm. Observe now that
λi is an eigen-value of the matrix φ(s). Since s ∈ G is reduced, equation
λi = qm implies λi = 1. But then the only holomorphic section of Li is
a constant section. The latter is annihilated by the deRham differential d,
and the lemma is proved. �
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Proposition 3.7. Let a, a1 ∈ G((z)) be two aligned elements. If the
G-bundle on E with multiplier a is isomorphic to the G-bundle on E with
multiplier a1, then a is gauge-conjugate to a1 via a polynomial loop.

Proof. By theorem 3.1, there exist an integer m ≥ 1 and elements g, g1 ∈
G((z1/m)) such that

ga = s , g1a1 = s1 where s, s1 ∈ G are reduced. (3.7.1)

Let ∇, ∇1 be the holomorphic connections on the G-bundles on E with
multipliers a and a1, respectively, constructed in proposition 3.5. The mon-
odromies of the connections around a-cycle, are equal to s and s1, respec-
tively, and the monodromies around b-cycle are are equal to θ and θ1, re-
spectively. By proposition 3.5 we have θm = θm1 = 1 . If the G-bundles
with multipliers a and a1 are isomorphic, then we may view ∇1 as another
holomorphic connection on the G-bundle P with multiplier a.

Since the cotagent bundle on E is trivial the difference X = ∇1 − ∇
may be viewed as a holomorphic section of the adjoint bundle g

P
. Since

s is reduced the section X is flat with respect to ∇, by lemma 3.6. Let
p : Ẽ → E be a universal cover of E . The bundle p∗P on Ẽ has a horisontal
holomorphic section. This section gives a trivialization of p∗P such that, in
the induced trivialization of p∗g

P
, the pull-back p∗X is a constant element

x ∈ g. Observe that in general, any element y ∈ g gives rise in this way to a
flat multivalued section of g

P
, and the monodromy of this section around a-

and b-cycles is equal to Adθ(y) and Ads(y), respectively. It follows, since X
is a single-valued flat section of g

P
without monodromy, that x commutes

with both θ and s. Hence, equation ∇1 = ∇+X shows that the monodromy
of the connection ∇1 is given by the formulas

θ1 = exp(x) · θ , s1 = exp(τx) · s . (3.7.2)

From these formulas and the equations θm1 = θm = 1 we deduce exp(m ·x) =
1. Thus, we may find a maximal torus T containing θ, θ1 and φ ∈ X∗(T ),
such that x = φ/m (cf. proof of lemma 3.2).

Clearly, φ(z1/m) is a well defined element of G((z1/m)), and from the
first formula in (7.3.2) we deduce φ(e2πi·τ/mz1/m) · s ·φ(z−1/m) = s1 . Recall
the notation of (7.3.1), and put f(z1/m) = g1(z

1/m)−1 · φ(z1/m) · g(z1/m) ∈
G((z1/m)) . We claim that f ∈ G((z)). To prove this, it suffices to show that

12



f(e2πi·τ/mz1/m) = f(z1/m). The latter follows from the chain of equalities:

f(e2πi·τ/mz1/m) = g−1
1 (e2πi·τ/mz1/m) · φ(e2πi·τ/mz1/m) · g(e2πi·τ/mz1/m) =

g−1
1 (z1/m) · θ−1

1 · exp(x) · φ(z1/m) · θ · g(z1/m) =

g−1
1 (z1/m) · θ−1

1 · exp(x) · θ · φ(z1/m) · g(z1/m) =

g−1
1 (z1/m) · φ(z1/m) · g(z1/m) = f(z1/m) .

Finally, using (7.3.1) we calculate

fa = g−1

1
·φ·ga = g−1

1
·φs = g−1

1 s1 = a1 .

Thus, a and a1 are gauge-conjugate by an element of G((z)). Lemma 2.5
completes the proof. �

4. Semistable G-bundles and holomorphic connections.

Recall that G is a complex connected semisimple group. For the def-
inition and properties of semistable holomorphic G-bundles on an elliptic
curve we refer to [R] and [RR].

Proposition 4.1. A holomorphic principal G-bundle over an elliptic
curve is semistable if and only if it has a holomorphic connection (necessarily
flat).

Proof. The “if” part is a corollary of the main result of [B]. The “only if”
part follows from theorem 4.2 below. �

Theorem 4.2. For any semistable G-bundle P on E, there exists a
holomorphic connection on P with finite order monodromy around a-cycle
such that, for any rational G-module V , every holomorphic section of the
associated vector bundle V

P
is flat with respect to the induced connection

on V
P
.

Proof. We choose and fix a faithful rational representation G → GL(V ).
By a theorem of Ramanan and Ramanathan [RR], semistability of P im-
plies semistability of V

P
. By the classification of semistable vector bundles

on E , due to Atiyah [A], any semistable vector bundle is isomorphic to the
vector bundle with a constant multiplier. Hence, the bundle V

P
has con-

stant multiplier a ∈ GL(V ). View a as an element of the semisimple group
PGL = PGL(V ), and let Pa be the principal PGL-bundle with the constant
multiplier a. By construction, the PGL(V )-bundle Pa is induced from the
G-bundle P via the composition G→ GL(V ) → PGL(V ) .
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We may regard the element a ∈ PGL as a constant aligned loop in
PGL((z)). Applying proposition 3.5, we see that there is an integer m 6=
1 and a reduced element s ∈ PGL such that the bundle mπ∗P on mE is
isomorphic to the PGL-bundle on mE with multiplier s ∈ PGL. Let ∇ be
the connection on Pa constructed in proposition 3.5.

We claim that the connection ∇ on Pa arises from a holomorphic con-
nection on the G-bundle P via the composite homomorphism ρ : G →
GL(V ) → PGL(V ) . Note that this composition has finite kernel, so that
the induced canonical map i : P → Pa is an immersion. Let TPa be the tan-
gent bundle on Pa. Our claim is equivalent to saying that the distribution
in TPa formed by the horisontal subspaces of the connection ∇ is tangent
to the immersed submanifold i(P ) ⊂ Pa. Observe that the canonical map
i : P → Pa gives rise to a holomorphic section ν : E = P/G → Pa/ρ(G).
The horisontal distribution is tangent to i(P ) if and only if ν is a horisontal
section.

To show the latter, we apply Chevalley’s theorem [S, Theorem 5.1.3] to
the algebraic subgroup ρ(G) ⊂ PGL. The theorem says that we can find
a rational representation φ : PGL → GL(E) and a 1-dimensional subspace
l ⊂ E such that ρ(G) = {g ∈ PGL | φ(g)(l) = l}. Notice, that since G is
semisimple, it stabilises a vector l ∈ l. Hence, the assignment g 7→ g(l) gives
rise to an imbedding PGL/ρ(G) →֒ E. Now let E

Pa
be the associated vector

bundle corresponding to E, equiped with the connectioned induced by ∇.
The imbedding PGL/ρ(G) →֒ E gives rise to an imbedding Pa/ρ(G) →֒ E

Pa

compatible with the connections. To show that ν is horisontal, it suffices
to show that its image under the above imbedding is a flat section. But
this image is a holomorphic section of E

Pa
. By lemma 3.6, any holomorphic

section of the vector bundle E
Pa

is flat with respect to the connection on
E

Pa
induced by ∇. This proves that ν is horisontal, so that the horisontal

distribution on TPa is tangent to i(P ) and the connection ∇ comes from a
holomorphic G-connection on P .

Observe further that the connection ∇ on Pa has finite monodromy
around a-cycle. The map i : P → Pa being an immersion with finite fibers,
it follows that the G-connection on P also has finite monodromy around
a-cycle.

Finally, it remains to show that there exists a holomorphic connection
on P with finite order monodromy around a-cycle such that, for any rational
G-module V , every holomorphic section of the associated vector bundle V

P

is flat with respect to the induced connection on V
P
. We do not claim that
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the connection we have constructed has this property. Instead we proceed
as follows. We first use the connection that we have constructed above to
prove that any semistable G-bundle on E is isomorphic to a G-bundle with
an aligned multiplier. This will be done in the proof of theorem 4.3 below.
We can then apply proposition 3.5(ii) and lemma 3.6 to get a connection on
P with all the required properties. �

Theorem 4.3. A G-bundle on E is semistable if and only if it is iso-
morphic to the G-bundle with an aligned multiplier a ∈ G(z).

Proof. By proposition 3.5(ii), any G-bundle P with an aligned multiplier
has a holomorphic connection. Then, the “if” part of proposition 4.1 (due
to Biswas) implies that P is semistable.

Conversely, let P be a semistable G-bundle. By theorem 4.2, we can
equip P with a holomorphic connection that has monodromies θ, b ∈ G
around the a- and the b-cycle respectively, such that θm = 1 for some integer
m ≥ 1. Observe that the elements θ and b commute, for π1(E) is an abelian
group. Hence there is a maximal torus T ⊂ G such that θ, bss ∈ T . As in
the proof of proposition 2.1, we choose a Borel subgroup B ⊃ T such that
b ∈ B and |α(bss)| ≤ 1 for any positive (with respect to B) root α.

Further, since θm = 1 there exists φ ∈ X∗(T ) such that θ = φ(e2πi/m) .
Let g = φ(z1/m)−1, a well-defined polynomial loop in G((z1/m)). We put
a =g b ∈ G((z1/m)). We have g(e2πi/mz1/m) = θ−1g(z1/m) . Since θ com-
mutes with b, we deduce that a(e2πi/mz1/m) = a(z1/m). It follows that a is
fixed by the Galois group, hence, a ∈ G((z)).

Let U be the unipotent radical of B. We have b = bss · u where u ∈ U .
Hence, the condition |α(bss)| ≤ 1 for any positive root α, insures that a =
gb = bss · a1 where a1 ∈ U1[[z]]. Moreover, since g is a polynomial loop
we have a1 ∈ U1[z]. By proposition 1.3, the element a is gauge-conjugate
in G((z)) to an aligned element a′. Using lemma 2.5 and the fact that
a ∈ B · U [z], we see that a is gauge-conjugate to a′ via a polynomial loop.
Thus, there is an element f ∈ G[z1/m, z−1/m] such that

fa′ = b , f(e2πi/mz1/m)f(z1/m)−1 = θ .

These equations show (see proof of proposition 3.5) that the G-bundle P ′

with multiplier a′ has a holomorphic connection with the monodromies θ
and b ∈ G around a- and b-cycle, respectively. Thus P and P ′ are two
G-bundles with connections that have the same monodromy. Since a holo-
morphic G-bundle with connection is determined, up to isomorphism, by
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the monodromy representation, we deduce that P ≃ P ′, and the theorem
follows. �

Proof of theorem 1.2. Proposition 3.5 shows that the G-bundle as-
sociated to any integral gauge-conjugacy class in G((z)) via the procedure
described at the end of §2 has a holomorphic connection, hence is semistable,
due to proposition 4.1. Theorem 4.3 insures that the map {integral gauge-
conjugacy classes} −→ { isomorphism classes of semistable G-bundles } is
surjective. Injectivity of the map follows from proposition 3.7. �
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