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INFINITE RIGIDITY OF INVERSIVE DISTANCE CIRCLE PACKINGS IN THE
POINCARE DISK

YANWEN LUO, XU XU, CHAO ZHENG

ABSTRACT. The maximum principle for hyperbolic inversive distance circle packings on poly-
hedral surfaces is established, which unifies and generalizes existing maximum principles for
various types of circle packings in the literature. As an application of this principle, a discrete
Schwarz-Ahlfors lemma is established. Furthermore, an infinite rigidity theorem for weighted
Delaunay triangulations of the Poincaré disk is proved, which generalizes He’s hyperbolic rigid-
ity result [[L1].

1. INTRODUCTION

1.1. Background. Research on circle packing is thriving in the field of discrete geometry,
with its origins in Thurston’s work on three-dimensional hyperbolic geometry. Thurston [18]]
introduced Thurston’s circle packings with non-obtuse intersection angles, and established
their existence and rigidity, known as the famous Koebe-Andreev-Thurston theorem. Later,
Ge-Hua-Zhou [35]] generalized this theorem to the case of obtuse angles. Inversive distance
circle packings, proposed by Bowers-Stephenson [3], are natural generalizations of Thurston’s
circle packings. Unlike Thurston’s circle packings, adjacent circles in inversive distance circle
packings can be disjoint, with their relative positions quantified by the inversive distance, a
generalization of the intersection angle. Bowers-Stephenson [3] further conjectured that inver-
sive distance circle packings are rigid. For non-negative inversive distances, Guo [8] proved
the local rigidity, while Luo [[12] established the global rigidity. Subsequently, Xu [19, 20]
extended these results to inversive distances greater than —1, thereby completely resolving the
Bowers-Stephenson’s rigidity conjecture. Most recently, Bobenko-Lutz [1, 2] established the
existence of inversive distance circle packings with inversive distances greater than 1. Notably,
all the aforementioned works focus on compact surfaces with Euclidean and hyperbolic back-
ground geometry, i.e., surfaces with a finite number of vertices. A natural research direction is
to generalize these results to non-compact surfaces.

The first result on the infinite rigidity of circle packings was presented by Rodin-Sullivan
[L6]], who proved the infinite rigidity of tangential circle packings with a hexagonal combi-
natorial structure on the complex plane C. Building on their work, He [9] provided a sim-
plified proof using Schottky groups. Subsequently, Schramm [17] developed a more general
combinatorial method, establishing the infinite rigidity of tangential circle packings (without
the hexagonal combinatorial constraint) on both the complex plane C and the Poincaré disk
D = {z € C| |z] < 1}. A more direct proof of Schramm’s rigidity result, adopting a sim-
ilar approach, can be found in [10]. Using network theory from computer science, He [[11]
extended these rigidity results from tangential circle packings to Thurston’s circle packings.
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Inspired by Luo-Sun-Wu’s recent work [[13]] on Luo’s vertex scaling, Luo-Xu-Zhang [14] es-
tablished the infinite rigidity of Euclidean inversive distance circle packings (with inversive
distances in (—1, 1] or [0, +-00)) on the hexagonal Euclidean plane C, thus generalizing Rodin-
Sullivan’s classic result (where the inversive distance is 1). In this paper, we establish the
infinite rigidity of hyperbolic inversive distance circle packings in the Poincaré disk D, which
generalizes He’s hyperbolic rigidity result [[11].

1.2. Main results. Let (S,7) be a triangulated surface (possibly with boundary) with a tri-
angulation 7 = {V, E, F'}, where V, F, and F' denote the sets of vertices, edges, and faces,
respectively. For notation, a vertex, an edge, and a face of 7 are denoted by v;, v;v;, and
Av;v;vy, respectively.

A piecewise hyperbolic metric (PH metric for short) on (S,7) is a function [ : F —
(0, 400) that induces a non-degenerate hyperbolic triangle on each face Av;v;u; of T, where
the edge lengths are ;;, l;,, and [;;, (with [;; = [(v;v;)). For a PH metric [ : E — (0, 400) on
(S, T), the combinatorial curvature is a map K : V' — (—oo, 27), which assigns to an interior
vertex v; € V the value 27 minus the sum of angles of triangles at v;, and to a boundary vertex
v; € V the value ™ minus the sum of angles at v;.

Definition 1.1. Let (S,7,7n) be a weighted triangulated surface with the weight n : £ —
(—1, 400) satisfying n;; = n;; for all v;v; € E. APHmetric ! : E — (0,400) on (S,7,n) is
called a hyperbolic inversive distance circle packing metric, if there exists a function r : V' —
(0, 400) such that for every edge v;v; € E, the edge length [;; satisfies

(D) cosh l;; = coshr; coshr; + n;; sinh r; sinh ;.

The map r : V' — (0, +00) is referred to as a hyperbolic inversive distance circle packing
on (S,7,n). Thurston’s circle packing [[18] is a special case of such inversive distance circle
packing, corresponding to weights 1 € [0,1]. Specifically, the weight 7;; in denotes the
hyperbolic inversive distance between the two hyperbolic circles centered at v; and v; with
radii r; and r; respectively.

For a weight function n) : £ — (—1, +00), we impose the following structure condition:

2) Nij + NNk = 0, ik + 0N = 0, Mg + 1i5nj5 = 0

for every triangle Av;v;v,. This condition is necessary, as the inversive distance circle packing
loses rigidity when the structure condition is omitted. For further details, we refer the reader
to [19] 20].

A weight function ) : E — (—1,+00) on the triangulated surface (S, T) is called regular
if there exists no pair of triangles Avyvov3 and Awvyvyvy satisfying

me =1, Mz = —"3, Na=—"u.

For example, setting 710 = 1 and 113 = 123 = 114 = 124 = 0 yields exactly the exceptional
case described in He [11], as illustrated in Figure

Let P, be an n-sided star-shaped polygon whose boundary vertices vy, . . ., v, are cyclically
ordered with v,,,1 = v;. Let vy be an interior point of P,,, which induces a triangulation 7 of
P, composed of triangles Avgv;v;.1 fort =1,...,n. See Figure

We have the following hyperbolic maximal principle.
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FIGURE 1. The configuration of the four circles.

Vi+1

U

FIGURE 2. A star triangulation of a polygon.

Theorem 1.2. Let  be a regular weight on (P,, 7) satisfying the structure condition (2)) with
n:E — (=1,1]orn: E — [0,+00). Let r and 7 be two weighted Delaunay hyperbolic
inversive distance circle packings on (P, 7, 1), with all corresponding circles contained in the
Poincaré disk D. Define v = Intanh 3 and u = In tanh g, and let w; = u; — u; for each vertex
v; € V(T). Then the following statements hold:

(i): If the combinatorial curvatures at the interior vertex vy satisfy Ko(r) > Ko(7) and wy > 0,

then
wy < max w;.
ie{1,2,...n}
(ii): If the combinatorial curvatures at the interior vertex vy satisfy Ky(r) < Ko(7) and wy < 0,
then

we >  min  w;.
i€{1,2,...,n}

Here the weighted Delaunay condition is defined in Subsection[2.3]

Remark 1.3. The case where 7 : E — [0, +00) has been established in [15]. Here, we use
a unified approach to prove it. Moreover, Theorem generalizes the hyperbolic maximum
principle given in Lemma 2.2 of He [11]]. Notably, our result does not require P, to be embed-
ded in the hyperbolic plane D, a condition that is equivalent to Ky(r) = Ky(7) = 0.

By combining the definition w = @ — w with the relation between u and r, Theorem [I.2]
yields the following discrete Schwarz-Ahlfors lemma directly.

Theorem 1.4 (Discrete Schwarz-Ahlfors lemma). Let 1 be a regular weight on (M, T) satis-
fying the structure condition (2) withn : £ — (—=1,1jorn : E — [0,4+00), where M C D
is a compact set with non-empty boundary. Let r and 7 be two weighted Delaunay hyperbolic
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inversive distance circle packings on (M, T, ), with all corresponding circles contained in D.
Then the following statements hold:

(a): If the combinatorial curvatures K (r) > K (7) for all interior vertices, and r > 7 holds for
every boundary vertex, then » > 7 holds for all vertices.

(b): If the combinatorial curvatures K (r) < K () for all interior vertices, and r < 7 holds for
every boundary vertex, then » < 7 holds for all vertices.

We refer the reader to [15] for the rationale for Theorem [I.4] being termed the Discrete
Schwarz-Ahlfors Lemma.

When the compact subset M/ in Theorem [I.4]is replaced with the Poincaré disk D, the trian-
gulation 7 is required to be an infinite but locally finite triangulation. We have the following
infinitely rigidity result.

Theorem 1.5 (Rigidity theorem). Let 1) be a regular weight on (ID, 7") satisfying the structure
condition (2) withn : £ — (—1,1J orn : E — [0,400). Let r and 7 be two weighted
Delaunay hyperbolic inversive distance circle packings on (ID, 7, 7), with all corresponding
circles contained in D. If the combinatorial curvatures K (r) = K(r) = 0 for all interior
vertices, then 7 = 7.

Remark 1.6. Theorem generalizes He’s classical result [11] on the infinite rigidity of
Thurston’s hyperbolic circle packings, which corresponds to weights ) € [0, 1].

1.3. Organization of the paper. In Section |2} we first recall the definition of Euclidean inver-
sive distance circle packings. Next, we elaborate the relationship between Euclidean inversive
distance and hyperbolic inversive distance. We then review the weighted Delaunay condition
in both Euclidean and hyperbolic inversive distance circle packings. Subsequently, we use
the Euclidean maximum principle to prove the hyperbolic maximum principle and the discrete
Schwarz-Ahlfors lemma. In Section[3] we establish Theorem[1.5]
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2. HYPERBOLIC MAXIMAL PRINCIPLE AND DISCRETE SCHWARZ-AHLFORS LEMMA

The proof of Theorem [I.2]relies on the Euclidean maximum principle. To this end, we first
demonstrate that the PE metric and the PH metric can induce each other. Since a circle in the
Poincaré disk can be regarded as both a Euclidean and a hyperbolic circle, we further clarify
the relationship between the Euclidean inversive distance and the hyperbolic inversive distance,
which are in fact identical. Notably, the weighted Delaunay condition is invariant under the
mutual induction between the PE metric and the PH metric. With these premises established,
we can then apply the Euclidean maximum principle to prove Theorem 1.2}

2.1. Euclidean inversive distance circle packings. A piecewise Euclidean metric (PE metric
for short) on (S,7) is a function L : £ — R., that induces a non-degenerate Euclidean
triangle on each face Av;v;v;, of T, where the edge lengths are L;;, L;x, and L, (with L;; =
L(v;v;)). APE metric L : E — (0,400) on (5,7, n) is called a Euclidean inversive distance
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circle packing metric, if there exists a function R : V' — (0, +o0) such that for every edge
vv; € I, the edge length L;; satisfies

3) LU:Vﬁ§+B§+mM&R,

The map R : V — (0, +00) is referred to as a Euclidean inversive distance circle packing on
(S,T,n). Specifically, the weight 7;; in (3)) denotes the Euclidean inversive distance between
the two Euclidean circles centered at v; and v; with radii R; and R; respectively.

2.2. Inversive distance. From the edge length formula (3)), the Euclidean inversive distance
n(C1, Cs) between two Euclidean circles ', and Cy (with radii Ry and R, respectively) is
given by

LY, — Rl — Rj

(4) n(Cb C?) = 2R1R2 )

where L5 is the Euclidean distance between the centers of C'; and Cy. If C; and (5 intersect
at an angle ¢, then n(Cy, Cy) = cos ¢. For disjoint C; and Cs, 7(C1, Cs) equals the hyper-
bolic distance between hyperbolic planes in the upper half-space model of three-dimensional
hyperbolic space H?, where these hyperbolic planes are realized as upper hemispheres passing
through ' and (), respectively. For more details, we refer the reader to [4].

Analogously, from the edge length formula (1)), the hyperbolic inversive distance 7n(ci, c2)
between two hyperbolic circles ¢; and ¢, (with radii 7; and r5 respectively) is given by

cosh ly5 — coshry cosh ry

(5) 77(017 02) =

sinh r; sinh ry ’
where [y, is the hyperbolic distance between the centers of ¢; and co. If ¢; and ¢, intersect at
an angle ¢, then 7(cy, c2) = cos ¢.

The Euclidean inversive distance in (#)) and the hyperbolic inversive distance in (5] are re-
lated via stereographic projection. Specifically, we regard the unit sphere as a model of the
hyperbolic plane H? and the complex plane C as the ideal boundary of three-dimensional hy-
perbolic space H®. Taking (0,0, —1) as the projection center, stereographic projection maps
hyperbolic circles ¢; and ¢, on H? to Euclidean circles C and Cy on C, respectively. Notably,
both Euclidean and hyperbolic inversive distances can be expressed via the cross ratio (as de-
tailed in [4]). Since stereographic projection preserves the cross ratio, the hyperbolic inversive
distance between c; and ¢, equals the Euclidean inversive distance between their images C}
and Cy, i.e., 1)(c1, c2) = n(Cy, Cy). Furthermore, the isometry from the upper half-space model
of H? to the Poincaré disk ID preserves this correspondence. Hence, for any two circles C; and
Cs in D, their Euclidean inversive distance coincides with their hyperbolic inversive distance.
We may thus directly identify hyperbolic inversive distance with Euclidean inversive distance.

For any Euclidean inversive distance circle packing R in the weighted triangulation (D, 7", 1)
of the Poincaré disk, the radius function R at each vertex corresponds to the radius of a Eu-
clidean circle centered at that vertex. These Euclidean circles can also be interpreted as a
hyperbolic circle packing in D. Here, the vertices of the circle packing serve as the hyperbolic
centers of the Euclidean circles. Two hyperbolic circles are adjacent if and only if their corre-
sponding Euclidean circles are adjacent, which ensures their combinatorial structure matches
7. The hyperbolic radius function r is defined accordingly. Notably, the inversive distance
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is invariant under this correspondence. Furthermore, if the edge lengths of each triangle sat-
isfy the strict triangle inequality (ensuring non-degenerate triangles), the Euclidean inversive
distance circle packing naturally induces a hyperbolic inversive distance circle packing.

2.3. Weighted Delaunay condition. Let Avyvov3 be a non-degenerate Euclidean triangle in
C that is isometric to a face of the weighted triangulation (.5, 7, n). Each vertex v; is associated
with a circle of radius R; centered at v;, referred to as a vertex-circle. There exists a unique
geometric center cjo3 with equal power distances to vertices vq, vo, v3 (see [0, Proposition 7]).
Here, the power distance from a point p to vertex v; is defined as m;(p) = |p — v;|> — R?, where
|p — v;| denotes the Euclidean distance between p and v;. The circle centered at ci935 with
radius +/7;(c123) is called the face-circle of Awvjvyvs, denoted C'o3. Note that 7;(c103) may be
non-positive, in which case the face-circle is virtual, a situation that arises when 715, 713, 723 €
(—1,1]. If the face-circle is real (i.e., not virtual), it is easy to verify that it is orthogonal to
each vertex-circle.

Let h;;; denote the signed distance from the geometric center c;93 to the edge v;v;. This
distance is positive if cjo3 lies on the same side of the line v;v; as Av;vyvs, negative if on the
opposite side, and zero if ;23 lies exactly on the line v;v;. For two adjacent non-degenerate
Euclidean triangles Avjvov3 and Avjvov,4 sharing the common edge v vs, this edge is called
weighted Delaunay in the PE metric if

(6) hi23 + higa > 0.

If the face-circle (o3 is a virtual circle, then @ holds automatically. This conclusion follows
directly from combining the specific expression of h;;; (given in [8, [19, 20]) with (2). In
contrast, when the face-circle C'j23 is non-virtual, the weighted Delaunay condition (6] admits
a geometric interpretation. For the edge v,v, in the PE metric, it is weighted Delaunay if
and only if the vertex-circle centered at v, either does not intersect (o3, or intersects it at an
exterior angle of at most 7.

A triangulation 7 is called weighted Delaunay with respect to the PE metric if every interior
edge is a weighted Delaunay edge. For simplicity, we refer to the Euclidean inversive distance
circle packing R satisfying this condition as weighted Delaunay.

The definition of the weighted Delaunay condition in the hyperbolic case parallels its Eu-
clidean counterpart. For a non-degenerate hyperbolic triangle Av,v9v3 induced by the radius
function r via (1)), there exists a geometric center c;53 analogous to its Euclidean counterpart
(see Glickenstein-Thomas [7] for details). Notably, this geometric center c;»3 may lie outside
the hyperbolic plane. By projecting c123 onto the edges of the triangle Av,v9v3, the signed
distance h;;, from c;o3 to the edge v;v; can be defined in a similar manner. Explicit expres-
sions for h;; in the hyperbolic setting are provided in [7, 19, 20]. For an edge v;v, shared
by two non-degenerate hyperbolic triangles Av;vov3 and Avyvev, (both induced by r via (1)),
the edge is called weighted Delaunay in the PH metric if

hi23 + higg > 0.

As in the Euclidean case, if the face-circle (193 is virtual, this condition is automatically sat-
isfied. For non-virtual face-circles, the weighted Delaunay condition admits an analogous
face-circle characterization: the edge v;,v; in the PH metric is weighted Delaunay if and only
if the vertex-circle centered at v, either does not intersect C'j93, Or intersects it at an exterior
angle of at most 7.
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Note that in the Poincaré disk DD, the intersection angles of hyperbolic circles coincide with
those in the Euclidean background geometry. Additionally, a hyperbolic circle coincides with
a Euclidean circle as a set, though their centers may not coincide. Hence, an edge is weighted
Delaunay with respect to the PH metric if and only if it is weighted Delaunay with respect to
the induced PE metric.

2.4. Euclidean maximum principle. A Euclidean triangle Avyvyvs with edge lengths Lyo, Li3, Log
is called a generalized triangle if its edge lengths satisfy the triangle inequality:

Lio < Log+ L13, Loz < Lig+ Lyz, Lig < Lig + Loa,

and the corresponding radius function R is referred to as a generalized Euclidean inversive
distance circle packing. If all triangles in the weighted triangulation (.S, 7, ) are generalized
triangles, we call R a generalized Euclidean inversive distance circle packing on (S, 7, 7). In
particular, a generalized triangle Av,v,v3 is called degenerate if L;; = L;; + Ly; for some
permutation (7, j, k) of {1, 2, 3}.

Note that (6) applies only to non-degenerate Euclidean triangles. Luo-Xu-Zhang [14] ex-
tended the definition of the weighted Delaunay condition to generalized Euclidean triangles,
and this extended version is used to prove the Euclidean maximum principle below.

Theorem 2.1 ([14], Theorem 3.1). Let 7 be a star triangulation of P, with boundary vertices
vy, ..., 0, and a unique interior vertex vy. Let n be a regular weight defined on the edges of
T satisfying withn : E — (=1,1] orn : E — [0,+00). Suppose R and R are two
generalized Euclidean inversive distance circle packings on (P, T, n) satisfying

(a): R and R are weighted Delaunay, B B
(b): the combinatorial curvatures /y(R) and K, (R) at the vertex vy satisfy Ko(R) < Ky(R),

. R, |, _ R
(c): max{——_ 2—1,2,...,71} < }—%%.

R;

Then there exists a constant ¢ > 0 such that R = cR.

Theorem [2.1]is a general theorem, as it holds for all generalized triangles. In fact, we only
require it to hold for non-degenerate triangles. This is because when the PE metric and PH
metric are mutually converted, the triangles involved are non-degenerate.

2.5. Hyperbolic maximum principle and discrete Schwarz-Ahlfors lemma. Let C; and
C be two circles contained in the Poincaré disk ID. Then Cy and C; can be regarded both
as Euclidean circles and hyperbolic circles, but the corresponding centers and radii in these
two cases are usually different. Let Ry and 1?; be their Euclidean radii, and let 7y and r; be
their hyperbolic radii. For the convenience of subsequent proofs, we may assume, without loss
of generality, via a suitable Mobius transformation that Cj is centered at the origin and C is
centered on the positive real axis. For any A\ € (0,1), let \Cy and AC be the images of Cj
and C; under the similarity transformation f(z) = Az on the complex plane C, respectively.
Clearly, \Cy and \C| are still contained in . Let r) and 77 be the hyperbolic radii of A\Cjy and
AC1, respectively.

Lemma 2.2. Let Cy, C, A\Cy, and \C'; be the circles defined above. The following statements
hold:

(i): 7y is a strictly increasing function of R;.
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(ii): Forany 0 < A < 1, we have

tanh(ry/2)  tanh(r,/2)
tanh(r}/2) ~ tanh(rq/2)

Proof. (i) Let ly; be the hyperbolic length of the edge from v to the origin. By (1)), we have

(7

cosh lg; = cosh rg cosh ry + 191 sinh rg sinh 7.

It follows that

lor + 71 lop — 71

— tanh

R = %(tanh )

sinh rq

cosh lg; + coshry
1

(coshrg + 1) cothry + 11 sinh g

This implies 7; is a strictly increasing function of R;.

(ii) Let 2 denote the intersection point of C, with the positive real axis. Then 0 < z < 1.
Let x, y denote the intersection points of C with the real axis, where || < y < 1. Note that =
may be negative. See Figure 3]

FIGURE 3. The circles Cj and C; with 191 € (—1,0).

Consider the function
0 = tanh(r?/2)  tanh(ry/2)
~ tanh(r1/2)  tanh(rg/2)
Note that f(0) = f(1) = 0. To obtain (7)), it suffices to show f(A) < 0 for 0 < A < 1. We will

explicitly compute f(\) as follows.
In the Poincaré disk, the hyperbolic distance d(a, b) of any two point a and b is defined by

(8) sinh 420 _ la — Y|

2 V(I —=Ta?) (1 —=p]?)
For the circles Cy and A\Cy, we have

A
. To z . T Az
sinh— = ——— and sinh -2 =

2 " V- 2~ T (we
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This implies that
A

9 tanh% =z and tanh %0 = \z.
Thus
h(r)/2
(10) tan (ro/):/\.
tanh(ro/2)
For the circles C'; and A\C;, we have
. Yy—z . A My — )
sinhr, = and sinhry = )
VT2 /1 /1= ORI = (W)

This implies that

tanhﬂ _ sinh rq _ y—

2" Theoshn =P+ (- a1 — ) + /1 - )1 — )
(11) M
Tl /-0 )
Similarly,
A _
tanh o My — ) .
20 1= Ny + /(1 - (A2))(1 - (\y)?)

Thus
) tanh(r}/2) M1 —ay /(- )1 )

nh(r1/2) ~ 1 Aoy + /(- D)1~ Ow))
Combining (T0) and (T2)), we obtain
_ M1 —zy++/(1—22)(1 — y?)) B
o 1= X2y + /(1 - (A2)?)(1 - (\y)?)
Define Q1 = (A\* — D)ay and Q2 = /(1 — (Az)2)(1 — (\y)?) — /(1 — 22)(1 — ¢2). Rear-

ranging the expression for f(\) gives

f)

A
=Ny + /(- (a)?)(1 - (w)?)

To complete the argument, it suffices to show )1 < ) for 0 < A < 1. First, we rationalize
(> by multiplying numerator and denominator by the conjugate of the numerator:

(1= N2?)(1 = Ny?) — (1 —2?)(1 — )
V(= X2) (1= 22y2) + /(1 = 2?)(1 — y?)
(1= M)[2® +y* — (1 + X*)zy?
V= X2) (1= €22) + /(1 - 2?)(1 - ?)

Since |z| < y < 1, we consider two cases depending on the sign of zy:

Case 1: xy > 0. Note that 22 + y? > 22y > 22%y* > (1 + A\?)22y>. The denominator of
(- is clearly positive, so ()2 > 0. Clearly, (); < 0. Hence Q)1 < )s.

(@1 — Q).

Q2 =

(13)
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Case 2: xy < 0. Substituting 72 + y? > —2xy into the numerator of yields
Qs > —(1 = 2A)zy[2 + (1 + \)zy]
FT VA 2) + /1) )

Next, we bound the denominator from above by substituting 22 + y? > —2xy into the square

roots:
V(1= X22) (1= N2y2) + /(1 = 22)(1 — y?)
= /1 = X2(22 +92) + Ma2y2 + /1 — (22 + y2) + 22y2
<14+ Nay+1+ay
=2+ (1+ \)ay.
Then

Qs> —(1 = N)zy =
Combining both cases, we conclude )1 < (), for all 0 < A < 1. This completes the proof.
Q.E.D.

Using Lemma 2.2 we can prove the following theorem.

Theorem 2.3. Let 7 be a regular weight on (P, 7) satisfying the structure condition (2) with
n:E— (—=1,1orn: E — [0,400). Suppose r and 7 are two weighted Delaunay hyperbolic
inversive distance circle packings on (P,, T, n) satisfying

(i) the combinatorial curvatures K (r) and Ky (7) at the vertex vy satisfy Ko(r) > Ko(7),
(i1) all circles corresponding to 7 and 7 are contained in [D.

Define u = Intanh § and % = Intanh £, and let w; = @; — u; for each vertex v; € V(7). Then
the maximum value of w, i.e., maX;e(o1,... n} Wi = MaAXic(0,1,- n} (w; — u;), if > 0, is never
achieved at vy.
Proof. We prove this theorem by contradiction. Assume that
Wy = Uy — Up = max(ﬂi — ul) > 0.
V; YU

By Mobius transformations, we may assume that vy is the origin. Set
uo
evo
By applying the similarity transformation z — Az on the plane, we obtain a hyperbolic label
@ induced by @. By Lemma [2.2] (ii), for any v; ~ vy, we have @} — @) < @; — tp. From our
assumption that @y — ug > u; — u;, it follows that
(14) UO—Uigﬁo—ai<ﬂé—’a?.
A hyperbolic circle in D is also a Euclidean circle. Let 1, denote the Euclidean radius of the
circle corresponding to vertex v. By (9), we have
_>\ —
(15) ¢™ = tanh %0 = Ry = ARy = )\tanhr—zo = \e'0.
By our choice of A, this implies e = e, so uy = up. From , we further get u; > u?.
Hence, 7) = 7o and r; > 7. Then Ry = R}, and R; > R} by Lemma [2.2] (i). Note that R,
and R both satisfy the weighted Delaunay condition. - -
In a 1-ring neighborhood of vy, it holds that Ry = RS and R; > Rj for all v; ~ wvy.

This implies that the maximum of R}/R; is attained at the interior vertex vy. Note that the
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hyperbolic angle at the origin of a hyperbolic triangle coincides with the Euclidean angle at
the origin of its corresponding Euclidean triangle. Consequently, the hyperbolic combinato-
rial curvature at vy equals the Euclidean combinatorial curvature at vy. By our assumption,
Ko(R) > Ky(R). Since Euclidean angles are invariant under similarity transformations, it fol-
lows that Ko(R) = Ko(R*). Therefore, Ko(R) > Ko(R"). By Theorem[2.1} R}/ R, = R}/ R,

for all v; ~ vo. Hence, R; = R}. This contradicts R; > R}, completing the proof. Q.E.D.

Proof of Theorem [I.2; Part (i) follows directly from Theorem We derive Part (ii) by
substituting wq with —wy in Part (i). This substitution is valid due to the assumption Ky(r) <
Ko(7). Q.E.D.

As an application of Theorem[2.3] we obtain the following discrete Schwarz-Ahlfors lemma.

Theorem 2.4 (Discrete Schwarz-Ahlfors lemma). Let 1 be a regular weight on (M, T) satis-
fying the structure condition (2) withn : £ — (—=1,1jorn : E — [0,4+00), where M C D
is a compact set with non-empty boundary. Let r and 7 be two weighted Delaunay hyperbolic
inversive distance circle packings on (M, T, n), with all corresponding circles contained in D.
Then the following statements hold:

(i): If the combinatorial curvatures K (r) > K (7) for all interior vertices, and w < 0 holds for
every boundary vertex, then w < 0 holds for all vertices.

(ii): If the combinatorial curvatures K (r) < K(7) for all interior vertices, and w > 0 holds
for every boundary vertex, then w > 0 holds for all vertices.

Proof. Part (i) follows directly from Theorem [I.2] (i). We prove it by contradiction. Suppose
there exists an interior vertex v; with w; > 0. Then w attains its maximum at some interior
vertex. We may assume without loss of generality that w; = max; w; > 0. By applying
Theorem (1) to the 1-ring neighborhood of v;, we deduce that there exists a vertex v; ~ v;
with w; > w;. This contradicts the maximality of w;. Part (i1) follows analogously from
Theorem |1.2{(i1) by a similar argument. Q.E.D.

Theorem [I.4]is a direct corollary of Theorem Also, we have the following result related
to the rigidity of hyperbolic inversive distance circle packings.

Corollary 2.5. Under the same conditions as in Theorem [2.4] if K (r) = K (7) for all interior
vertices, and w = 0 holds for every boundary vertex, then w = 0 holds for all vertices.

Remark 2.6. An alternative approach to proving Corollary [2.5] involves constructing convex
energy functions, as described in [19} 20]. Furthermore, when using this method to establish
rigidity, there is no need to assume that the two PH metrics r and r are weighted Delaunay. For
further details, we refer the reader to [19, 20].

3. INFINITE RIGIDITY OF HYPERBOLIC INVERSIVE DISTANCE CIRCLE PACKINGS

In the previous section, we assume that all circles are contained in the Poincaré disk . In
this section, we remove this constraint, where the circles may intersect 0D or even lie outside
it, and further generalize Theorem and Theorem

In Subsection [2.2] we have shown that the Euclidean inversive distance and hyperbolic in-
versive distance between any two circles contained in D are equal. As a natural generalization,
we extend the notion of hyperbolic circles to include Euclidean circles that intersect JD or
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lie outside . For simplicity, we refer to these as “generalized hyperbolic circles”. The hy-
perbolic inversive distance for generalized hyperbolic circles is defined as their corresponding
Euclidean inversive distance.

Definition 3.1. Given a vertex v and its corresponding circle C',, we define its generalized
hyperbolic radius p, as follows:

(i) If C, is contained in D, then p, = tanh %, where r, is the hyperbolic radii of C.;
(i1) If C, intersects 0D or lies outside DD, let ), denote the Euclidean inversive distance
between C, and 0D (the unit circle). Then
CL2-R-1

16 _ e T M T 2
(16) s oR, ,

where R, is the Euclidean radius of C,, and L, is the Euclidean distance between the
Euclidean center of C, and the origin. In this case, p, is defined as oo "1, where the
exponent is non-negative as 7, € [—1, +o0). Specifically, 7, = —1 corresponds to C,
being internally tangent to OD.

We adopt the convention that for any 3 > « > 0 and any positive real number a, oo” > 0o® >
a and a/o0® = 0.

Let C be a circle centered at the origin and contained in 1D, and let C'; be a generalized
hyperbolic circle adjacent to Cy with their inversive distance 79; € (—1,+00). Let Ry and
R, be their Euclidean radii, and let py and p; be their generalized hyperbolic radii. For any
A € (0,1), let A\Cjy and AC} be the images of Cj and C; under the similarity transformation
f(2) = Az on the complex plane C, respectively. Clearly, ACj remains contained in D. Assume
that AC is also contained in . Let p) and p; be the generalized hyperbolic radii of A\Cj and
AC1, respectively.

Lemma 3.2. Let Cy, C', A\Cy, and \C'; be the circles defined above. The following statements
hold:

(i): p1 is a strictly increasing function of R;.
(ii): Forany 0 < A < 1, we have
A

(17) i n

Po  Po
Proof. (i) If C} is contained in D, then the conclusion follows directly from Lemma [2.2] (i).
When (' gradually expands from the interior of D to being internally tangent to 0D, it is
straightforward to see that p; increases in this case. Now suppose C' is not contained in D.
Let L be the Euclidean distance between the Euclidean center of C; and the origin. By (3), it
follows that L? = R2 + R? + 2n9; Ry R;. By , we have

. R% + 2R0R17701 —1 . R% -1
B 2R, 2R,
This implies 7; is a strictly increasing function of R;. Hence, p; = oo™ ! is strictly increasing
in Rl .

(ii) If C is contained in D, then the conclusion follows directly from Lemma [2.2] (ii). Oth-
erwise, the conclusion follows from the convention specified in Definition |3.1 Q.E.D.

™ + Ronoz.-

The following theorem generalizes Theorem [2.3]
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Theorem 3.3. Let 7 be a regular weight on (P, 7) satisfying the structure condition (2) with
n:E— (—=1,1orn: E— [0,400). Suppose r and 7 are two weighted Delaunay hyperbolic
inversive distance circle packings on (P,, T, n) satisfying

(i) the combinatorial curvatures K (r) and Ky (7) at the vertex vy satisfy Ko(r) > Ko(7),
(i1) all circles corresponding to r have non-empty intersection with D, and all circles cor-
responding to 7 are contained in ID.

Set _
wy _ P
pu’
where p, and p, denote the generalized hyperbolic radii corresponding to r, and 7,, respec-
tively. Then the maximum of w, if > 0, is never achieved at v.

e

Proof. We prove this theorem by contradiction. Assume there exists an interior vertex vy such
that

wo:@:maxﬁ>1.
Po  vi~vo p;
Then py must be a real number. Otherwise, py > po would imply py is not real, which contra-
dicts the assumption that all circles corresponding to * are contained in .
By Mobius transformations, we map v, to the origin. Since both py and p, are real, their

corresponding circles are contained in . Set

A= @ < 1.
Po
Applying the similarity transformation z — Az on the plane, we obtain the generalized hyper-
bolic radii p* induced by p. By Lemma (ii), for any v; ~ vy, we have

o

e

Do Bl P
Po Po Po

By (13),, it follows that ) = Ay = po. This further implies 57 < p;.

Let R, denote the Euclidean radius of the circle corresponding to vertex v. Then 5 = po
implies R) = Ry, and by Lemma[3.2](i), 5 < p; implies 2} < R;. The rest of the proof is the
same as that of Theorem [2.3] so we omit it here. Q.E.D.

As a direct corollary of Theorem we obtain the following discrete Schwarz-Ahlfors
lemma.

Theorem 3.4 (Discrete Schwarz-Ahlfors lemma). Let 1 be a regular weight on (M, T) satis-
fying the structure condition (2) with n : E — (—1,1]J orn : E — [0,400), where M C D
is a compact set with non-empty boundary. Let r and 7 be two weighted Delaunay hyper-
bolic inversive distance circle packings on (M, T, n), where all circles corresponding to 7 are
contained in . Denote w, = In %’ where p, and p, are the generalized hyperbolic radii cor-
responding to 7, and 7,, respectively. If the combinatorial curvatures K (r) > K (7) for all
interior vertices, and w < 0 holds for every boundary vertex, then w < 0 holds for all vertices.

Proof of Theorem 1.5 We prove this theorem by contradiction. Suppose there exists a vertex
vo € V(T) such that ry < 7o, which is equivalent to py < po. Here p, and p, are the
generalized hyperbolic radii corresponding to r, and 7, respectively.

There exists a constant t = 1+¢ > 1 such that the inversive distance circle packing (7, ur),
obtained by scaling (7, ) under the similarity transformation z — 2, satisfies

(18) Py < Po,
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and remains weighted Delaunay.

Let (7y, pur) be the sub-circle packing of (7, ur), consisting of all circles contained in D
together with those in their 1-ring neighborhoods that are not contained in D, i.e., either inter-
secting 0D or lying outside ID. Here, 7; denotes the corresponding triangulation. Since 7T is
locally finite, 7; is also locally finite. For each boundary vertex vg € V(7;), the corresponding
circle in (77, ur) intersects 9D or lies outside D, so p’5 > pp.

Applying Theorem[3.4]to (71, wr) and (T, 7), we have p# > p, forallv € V(7T7). Since vy €
V (T1) by the definition of 77, this implies pf > po, which contradicts . This completes the
proof. Q.E.D.
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