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ABSTRACT. The maximum principle for hyperbolic inversive distance circle packings on poly-
hedral surfaces is established, which unifies and generalizes existing maximum principles for
various types of circle packings in the literature. As an application of this principle, a discrete
Schwarz-Ahlfors lemma is established. Furthermore, an infinite rigidity theorem for weighted
Delaunay triangulations of the Poincaré disk is proved, which generalizes He’s hyperbolic rigid-
ity result [11].

1. INTRODUCTION

1.1. Background. Research on circle packing is thriving in the field of discrete geometry,
with its origins in Thurston’s work on three-dimensional hyperbolic geometry. Thurston [18]
introduced Thurston’s circle packings with non-obtuse intersection angles, and established
their existence and rigidity, known as the famous Koebe-Andreev-Thurston theorem. Later,
Ge-Hua-Zhou [5] generalized this theorem to the case of obtuse angles. Inversive distance
circle packings, proposed by Bowers-Stephenson [3], are natural generalizations of Thurston’s
circle packings. Unlike Thurston’s circle packings, adjacent circles in inversive distance circle
packings can be disjoint, with their relative positions quantified by the inversive distance, a
generalization of the intersection angle. Bowers-Stephenson [3] further conjectured that inver-
sive distance circle packings are rigid. For non-negative inversive distances, Guo [8] proved
the local rigidity, while Luo [12] established the global rigidity. Subsequently, Xu [19, 20]
extended these results to inversive distances greater than −1, thereby completely resolving the
Bowers-Stephenson’s rigidity conjecture. Most recently, Bobenko-Lutz [1, 2] established the
existence of inversive distance circle packings with inversive distances greater than 1. Notably,
all the aforementioned works focus on compact surfaces with Euclidean and hyperbolic back-
ground geometry, i.e., surfaces with a finite number of vertices. A natural research direction is
to generalize these results to non-compact surfaces.

The first result on the infinite rigidity of circle packings was presented by Rodin-Sullivan
[16], who proved the infinite rigidity of tangential circle packings with a hexagonal combi-
natorial structure on the complex plane C. Building on their work, He [9] provided a sim-
plified proof using Schottky groups. Subsequently, Schramm [17] developed a more general
combinatorial method, establishing the infinite rigidity of tangential circle packings (without
the hexagonal combinatorial constraint) on both the complex plane C and the Poincaré disk
D = {z ∈ C | |z| < 1}. A more direct proof of Schramm’s rigidity result, adopting a sim-
ilar approach, can be found in [10]. Using network theory from computer science, He [11]
extended these rigidity results from tangential circle packings to Thurston’s circle packings.
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Inspired by Luo-Sun-Wu’s recent work [13] on Luo’s vertex scaling, Luo-Xu-Zhang [14] es-
tablished the infinite rigidity of Euclidean inversive distance circle packings (with inversive
distances in (−1

2
, 1] or [0,+∞)) on the hexagonal Euclidean plane C, thus generalizing Rodin-

Sullivan’s classic result (where the inversive distance is 1). In this paper, we establish the
infinite rigidity of hyperbolic inversive distance circle packings in the Poincaré disk D, which
generalizes He’s hyperbolic rigidity result [11].

1.2. Main results. Let (S, T ) be a triangulated surface (possibly with boundary) with a tri-
angulation T = {V,E, F}, where V , E, and F denote the sets of vertices, edges, and faces,
respectively. For notation, a vertex, an edge, and a face of T are denoted by vi, vivj , and
△vivjvk, respectively.

A piecewise hyperbolic metric (PH metric for short) on (S, T ) is a function l : E →
(0,+∞) that induces a non-degenerate hyperbolic triangle on each face △vivjvk of T , where
the edge lengths are lij , lik, and ljk (with lij = l(vivj)). For a PH metric l : E → (0,+∞) on
(S, T ), the combinatorial curvature is a map K : V → (−∞, 2π), which assigns to an interior
vertex vi ∈ V the value 2π minus the sum of angles of triangles at vi, and to a boundary vertex
vi ∈ V the value π minus the sum of angles at vi.

Definition 1.1. Let (S, T , η) be a weighted triangulated surface with the weight η : E →
(−1,+∞) satisfying ηij = ηji for all vivj ∈ E. A PH metric l : E → (0,+∞) on (S, T , η) is
called a hyperbolic inversive distance circle packing metric, if there exists a function r : V →
(0,+∞) such that for every edge vivj ∈ E, the edge length lij satisfies

(1) cosh lij = cosh ri cosh rj + ηij sinh ri sinh rj.

The map r : V → (0,+∞) is referred to as a hyperbolic inversive distance circle packing
on (S, T , η). Thurston’s circle packing [18] is a special case of such inversive distance circle
packing, corresponding to weights η ∈ [0, 1]. Specifically, the weight ηij in (1) denotes the
hyperbolic inversive distance between the two hyperbolic circles centered at vi and vj with
radii ri and rj respectively.

For a weight function η : E → (−1,+∞), we impose the following structure condition:

(2) ηij + ηjkηik ≥ 0, ηjk + ηijηik ≥ 0, ηik + ηijηjk ≥ 0

for every triangle △vivjvk. This condition is necessary, as the inversive distance circle packing
loses rigidity when the structure condition is omitted. For further details, we refer the reader
to [19, 20].

A weight function η : E → (−1,+∞) on the triangulated surface (S, T ) is called regular
if there exists no pair of triangles △v1v2v3 and △v1v2v4 satisfying

η12 = 1, η13 = −η23, η14 = −η24.

For example, setting η12 = 1 and η13 = η23 = η14 = η24 = 0 yields exactly the exceptional
case described in He [11], as illustrated in Figure 1.

Let Pn be an n-sided star-shaped polygon whose boundary vertices v1, . . . , vn are cyclically
ordered with vn+1 = v1. Let v0 be an interior point of Pn, which induces a triangulation T of
Pn composed of triangles △v0vivi+1 for i = 1, . . . , n. See Figure 2.

We have the following hyperbolic maximal principle.
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v1

v2

v3 v4

FIGURE 1. The configuration of the four circles.

v0
vi

vi−1

vi+1

FIGURE 2. A star triangulation of a polygon.

Theorem 1.2. Let η be a regular weight on (Pn, T ) satisfying the structure condition (2) with
η : E → (−1, 1] or η : E → [0,+∞). Let r and r̄ be two weighted Delaunay hyperbolic
inversive distance circle packings on (Pn, T , η), with all corresponding circles contained in the
Poincaré disk D. Define u = ln tanh r

2
and ū = ln tanh r̄

2
, and let wi = ūi − ui for each vertex

vi ∈ V (T ). Then the following statements hold:
(i): If the combinatorial curvatures at the interior vertex v0 satisfy K0(r) ≥ K0(r̄) and w0 > 0,

then
w0 < max

i∈{1,2,...,n}
wi.

(ii): If the combinatorial curvatures at the interior vertex v0 satisfy K0(r) ≤ K0(r̄) and w0 < 0,
then

w0 > min
i∈{1,2,...,n}

wi.

Here the weighted Delaunay condition is defined in Subsection 2.3.

Remark 1.3. The case where η : E → [0,+∞) has been established in [15]. Here, we use
a unified approach to prove it. Moreover, Theorem 1.2 generalizes the hyperbolic maximum
principle given in Lemma 2.2 of He [11]. Notably, our result does not require Pn to be embed-
ded in the hyperbolic plane D, a condition that is equivalent to K0(r) ≡ K0(r̄) ≡ 0.

By combining the definition w = ū − u with the relation between u and r, Theorem 1.2
yields the following discrete Schwarz-Ahlfors lemma directly.

Theorem 1.4 (Discrete Schwarz-Ahlfors lemma). Let η be a regular weight on (M, T ) satis-
fying the structure condition (2) with η : E → (−1, 1] or η : E → [0,+∞), where M ⊆ D
is a compact set with non-empty boundary. Let r and r̄ be two weighted Delaunay hyperbolic
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inversive distance circle packings on (M, T , η), with all corresponding circles contained in D.
Then the following statements hold:
(a): If the combinatorial curvatures K(r) ≥ K(r̄) for all interior vertices, and r ≥ r̄ holds for

every boundary vertex, then r ≥ r̄ holds for all vertices.
(b): If the combinatorial curvatures K(r) ≤ K(r̄) for all interior vertices, and r ≤ r̄ holds for

every boundary vertex, then r ≤ r̄ holds for all vertices.

We refer the reader to [15] for the rationale for Theorem 1.4 being termed the Discrete
Schwarz-Ahlfors Lemma.

When the compact subset M in Theorem 1.4 is replaced with the Poincaré disk D, the trian-
gulation T is required to be an infinite but locally finite triangulation. We have the following
infinitely rigidity result.

Theorem 1.5 (Rigidity theorem). Let η be a regular weight on (D, T ) satisfying the structure
condition (2) with η : E → (−1, 1] or η : E → [0,+∞). Let r and r̄ be two weighted
Delaunay hyperbolic inversive distance circle packings on (D, T , η), with all corresponding
circles contained in D. If the combinatorial curvatures K(r) ≡ K(r̄) ≡ 0 for all interior
vertices, then r̄ = r.

Remark 1.6. Theorem 1.5 generalizes He’s classical result [11] on the infinite rigidity of
Thurston’s hyperbolic circle packings, which corresponds to weights η ∈ [0, 1].

1.3. Organization of the paper. In Section 2, we first recall the definition of Euclidean inver-
sive distance circle packings. Next, we elaborate the relationship between Euclidean inversive
distance and hyperbolic inversive distance. We then review the weighted Delaunay condition
in both Euclidean and hyperbolic inversive distance circle packings. Subsequently, we use
the Euclidean maximum principle to prove the hyperbolic maximum principle and the discrete
Schwarz-Ahlfors lemma. In Section 3, we establish Theorem 1.5.

Acknowledgment
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toral Program for Innovative Talents under grant no. BX20250068.

2. HYPERBOLIC MAXIMAL PRINCIPLE AND DISCRETE SCHWARZ-AHLFORS LEMMA

The proof of Theorem 1.2 relies on the Euclidean maximum principle. To this end, we first
demonstrate that the PE metric and the PH metric can induce each other. Since a circle in the
Poincaré disk can be regarded as both a Euclidean and a hyperbolic circle, we further clarify
the relationship between the Euclidean inversive distance and the hyperbolic inversive distance,
which are in fact identical. Notably, the weighted Delaunay condition is invariant under the
mutual induction between the PE metric and the PH metric. With these premises established,
we can then apply the Euclidean maximum principle to prove Theorem 1.2.

2.1. Euclidean inversive distance circle packings. A piecewise Euclidean metric (PE metric
for short) on (S, T ) is a function L : E → R>0 that induces a non-degenerate Euclidean
triangle on each face △vivjvk of T , where the edge lengths are Lij, Lik, and Ljk (with Lij =
L(vivj)). A PE metric L : E → (0,+∞) on (S, T , η) is called a Euclidean inversive distance
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circle packing metric, if there exists a function R : V → (0,+∞) such that for every edge
vivj ∈ E, the edge length Lij satisfies

(3) Lij =
√
R2

i +R2
j + 2ηijRiRj.

The map R : V → (0,+∞) is referred to as a Euclidean inversive distance circle packing on
(S, T , η). Specifically, the weight ηij in (3) denotes the Euclidean inversive distance between
the two Euclidean circles centered at vi and vj with radii Ri and Rj respectively.

2.2. Inversive distance. From the edge length formula (3), the Euclidean inversive distance
η(C1, C2) between two Euclidean circles C1 and C2 (with radii R1 and R2 respectively) is
given by

(4) η(C1, C2) =
L2
12 −R2

1 −R2
2

2R1R2

,

where L12 is the Euclidean distance between the centers of C1 and C2. If C1 and C2 intersect
at an angle ϕ, then η(C1, C2) = cosϕ. For disjoint C1 and C2, η(C1, C2) equals the hyper-
bolic distance between hyperbolic planes in the upper half-space model of three-dimensional
hyperbolic space H3, where these hyperbolic planes are realized as upper hemispheres passing
through C1 and C2 respectively. For more details, we refer the reader to [4].

Analogously, from the edge length formula (1), the hyperbolic inversive distance η(c1, c2)
between two hyperbolic circles c1 and c2 (with radii r1 and r2 respectively) is given by

(5) η(c1, c2) =
cosh l12 − cosh r1 cosh r2

sinh r1 sinh r2
,

where l12 is the hyperbolic distance between the centers of c1 and c2. If c1 and c2 intersect at
an angle ϕ, then η(c1, c2) = cosϕ.

The Euclidean inversive distance in (4) and the hyperbolic inversive distance in (5) are re-
lated via stereographic projection. Specifically, we regard the unit sphere as a model of the
hyperbolic plane H2 and the complex plane C as the ideal boundary of three-dimensional hy-
perbolic space H3. Taking (0, 0,−1) as the projection center, stereographic projection maps
hyperbolic circles c1 and c2 on H2 to Euclidean circles C1 and C2 on C, respectively. Notably,
both Euclidean and hyperbolic inversive distances can be expressed via the cross ratio (as de-
tailed in [4]). Since stereographic projection preserves the cross ratio, the hyperbolic inversive
distance between c1 and c2 equals the Euclidean inversive distance between their images C1

and C2, i.e., η(c1, c2) = η(C1, C2). Furthermore, the isometry from the upper half-space model
of H3 to the Poincaré disk D preserves this correspondence. Hence, for any two circles C1 and
C2 in D, their Euclidean inversive distance coincides with their hyperbolic inversive distance.
We may thus directly identify hyperbolic inversive distance with Euclidean inversive distance.

For any Euclidean inversive distance circle packing R in the weighted triangulation (D, T , η)
of the Poincaré disk, the radius function R at each vertex corresponds to the radius of a Eu-
clidean circle centered at that vertex. These Euclidean circles can also be interpreted as a
hyperbolic circle packing in D. Here, the vertices of the circle packing serve as the hyperbolic
centers of the Euclidean circles. Two hyperbolic circles are adjacent if and only if their corre-
sponding Euclidean circles are adjacent, which ensures their combinatorial structure matches
T . The hyperbolic radius function r is defined accordingly. Notably, the inversive distance
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is invariant under this correspondence. Furthermore, if the edge lengths of each triangle sat-
isfy the strict triangle inequality (ensuring non-degenerate triangles), the Euclidean inversive
distance circle packing naturally induces a hyperbolic inversive distance circle packing.

2.3. Weighted Delaunay condition. Let △v1v2v3 be a non-degenerate Euclidean triangle in
C that is isometric to a face of the weighted triangulation (S, T , η). Each vertex vi is associated
with a circle of radius Ri centered at vi, referred to as a vertex-circle. There exists a unique
geometric center c123 with equal power distances to vertices v1, v2, v3 (see [6, Proposition 7]).
Here, the power distance from a point p to vertex vi is defined as πi(p) = |p− vi|2−R2

i , where
|p − vi| denotes the Euclidean distance between p and vi. The circle centered at c123 with
radius

√
πi(c123) is called the face-circle of △v1v2v3, denoted C123. Note that πi(c123) may be

non-positive, in which case the face-circle is virtual, a situation that arises when η12, η13, η23 ∈
(−1, 1]. If the face-circle is real (i.e., not virtual), it is easy to verify that it is orthogonal to
each vertex-circle.

Let hij,k denote the signed distance from the geometric center c123 to the edge vivj . This
distance is positive if c123 lies on the same side of the line vivj as △v1v2v3, negative if on the
opposite side, and zero if c123 lies exactly on the line vivj . For two adjacent non-degenerate
Euclidean triangles △v1v2v3 and △v1v2v4 sharing the common edge v1v2, this edge is called
weighted Delaunay in the PE metric if

(6) h12,3 + h12,4 ≥ 0.

If the face-circle C123 is a virtual circle, then (6) holds automatically. This conclusion follows
directly from combining the specific expression of hij,k (given in [8, 19, 20]) with (2). In
contrast, when the face-circle C123 is non-virtual, the weighted Delaunay condition (6) admits
a geometric interpretation. For the edge v1v2 in the PE metric, it is weighted Delaunay if
and only if the vertex-circle centered at v4 either does not intersect C123, or intersects it at an
exterior angle of at most π

2
.

A triangulation T is called weighted Delaunay with respect to the PE metric if every interior
edge is a weighted Delaunay edge. For simplicity, we refer to the Euclidean inversive distance
circle packing R satisfying this condition as weighted Delaunay.

The definition of the weighted Delaunay condition in the hyperbolic case parallels its Eu-
clidean counterpart. For a non-degenerate hyperbolic triangle △v1v2v3 induced by the radius
function r via (1), there exists a geometric center c123 analogous to its Euclidean counterpart
(see Glickenstein-Thomas [7] for details). Notably, this geometric center c123 may lie outside
the hyperbolic plane. By projecting c123 onto the edges of the triangle △v1v2v3, the signed
distance hij,k from c123 to the edge vivj can be defined in a similar manner. Explicit expres-
sions for hij,k in the hyperbolic setting are provided in [7, 19, 20]. For an edge v1v2 shared
by two non-degenerate hyperbolic triangles △v1v2v3 and △v1v2v4 (both induced by r via (1)),
the edge is called weighted Delaunay in the PH metric if

h12,3 + h12,4 ≥ 0.

As in the Euclidean case, if the face-circle C123 is virtual, this condition is automatically sat-
isfied. For non-virtual face-circles, the weighted Delaunay condition admits an analogous
face-circle characterization: the edge v1v2 in the PH metric is weighted Delaunay if and only
if the vertex-circle centered at v4 either does not intersect C123, or intersects it at an exterior
angle of at most π

2
.
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Note that in the Poincaré disk D, the intersection angles of hyperbolic circles coincide with
those in the Euclidean background geometry. Additionally, a hyperbolic circle coincides with
a Euclidean circle as a set, though their centers may not coincide. Hence, an edge is weighted
Delaunay with respect to the PH metric if and only if it is weighted Delaunay with respect to
the induced PE metric.

2.4. Euclidean maximum principle. A Euclidean triangle △v1v2v3 with edge lengths L12, L13, L23

is called a generalized triangle if its edge lengths satisfy the triangle inequality:

L12 ≤ L23 + L13, L23 ≤ L12 + L13, L13 ≤ L12 + L23,

and the corresponding radius function R is referred to as a generalized Euclidean inversive
distance circle packing. If all triangles in the weighted triangulation (S, T , η) are generalized
triangles, we call R a generalized Euclidean inversive distance circle packing on (S, T , η). In
particular, a generalized triangle △v1v2v3 is called degenerate if Lij = Lik + Lkj for some
permutation (i, j, k) of {1, 2, 3}.

Note that (6) applies only to non-degenerate Euclidean triangles. Luo-Xu-Zhang [14] ex-
tended the definition of the weighted Delaunay condition to generalized Euclidean triangles,
and this extended version is used to prove the Euclidean maximum principle below.

Theorem 2.1 ([14], Theorem 3.1). Let T be a star triangulation of Pn with boundary vertices
v1, . . . , vn and a unique interior vertex v0. Let η be a regular weight defined on the edges of
T satisfying (2) with η : E → (−1, 1] or η : E → [0,+∞). Suppose R and R̄ are two
generalized Euclidean inversive distance circle packings on (Pn, T , η) satisfying

(a): R and R̄ are weighted Delaunay,
(b): the combinatorial curvatures K0(R) and K0(R̄) at the vertex v0 satisfy K0(R) ≤ K0(R̄),
(c): max

{
Ri

R̄i
| i = 1, 2, . . . , n

}
≤ R0

R̄0
.

Then there exists a constant c > 0 such that R = cR̄.

Theorem 2.1 is a general theorem, as it holds for all generalized triangles. In fact, we only
require it to hold for non-degenerate triangles. This is because when the PE metric and PH
metric are mutually converted, the triangles involved are non-degenerate.

2.5. Hyperbolic maximum principle and discrete Schwarz-Ahlfors lemma. Let C0 and
C1 be two circles contained in the Poincaré disk D. Then C0 and C1 can be regarded both
as Euclidean circles and hyperbolic circles, but the corresponding centers and radii in these
two cases are usually different. Let R0 and R1 be their Euclidean radii, and let r0 and r1 be
their hyperbolic radii. For the convenience of subsequent proofs, we may assume, without loss
of generality, via a suitable Möbius transformation that C0 is centered at the origin and C1 is
centered on the positive real axis. For any λ ∈ (0, 1), let λC0 and λC1 be the images of C0

and C1 under the similarity transformation f(z) = λz on the complex plane C, respectively.
Clearly, λC0 and λC1 are still contained in D. Let rλ0 and rλ1 be the hyperbolic radii of λC0 and
λC1, respectively.

Lemma 2.2. Let C0, C1, λC0, and λC1 be the circles defined above. The following statements
hold:

(i): r1 is a strictly increasing function of R1.
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(ii): For any 0 < λ < 1, we have

(7)
tanh(rλ1/2)

tanh(rλ0/2)
<

tanh(r1/2)

tanh(r0/2)
.

Proof. (i) Let l01 be the hyperbolic length of the edge from v1 to the origin. By (1), we have

cosh l01 = cosh r0 cosh r1 + η01 sinh r0 sinh r1.

It follows that

R1 =
1

2
(tanh

l01 + r1
2

− tanh
l01 − r1

2
)

=
sinh r1

cosh l01 + cosh r1

=
1

(cosh r0 + 1) coth r1 + η01 sinh r0
.

This implies r1 is a strictly increasing function of R1.
(ii) Let z denote the intersection point of C0 with the positive real axis. Then 0 < z < 1.

Let x, y denote the intersection points of C1 with the real axis, where |x| < y < 1. Note that x
may be negative. See Figure 3.

O zx y

C0

C1

FIGURE 3. The circles C0 and C1 with η01 ∈ (−1, 0).

Consider the function

f(λ) =
tanh(rλ1/2)

tanh(r1/2)
− tanh(rλ0/2)

tanh(r0/2)
.

Note that f(0) = f(1) = 0. To obtain (7), it suffices to show f(λ) < 0 for 0 < λ < 1. We will
explicitly compute f(λ) as follows.

In the Poincaré disk, the hyperbolic distance d(a, b) of any two point a and b is defined by

(8) sinh
d(a, b)

2
=

|a− b|√
(1− |a|2)(1− |b|2)

.

For the circles C0 and λC0, we have

sinh
r0
2

=
z√

1− z2
and sinh

rλ0
2

=
λz√

1− (λz)2
.
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This implies that

(9) tanh
r0
2

= z and tanh
rλ0
2

= λz.

Thus

(10)
tanh(rλ0/2)

tanh(r0/2)
= λ.

For the circles C1 and λC1, we have

sinh r1 =
y − x

√
1− x2

√
1− y2

and sinh rλ1 =
λ(y − x)√

1− (λx)2
√
1− (λy)2

.

This implies that

(11)

tanh
r1
2

=
sinh r1

1 + cosh r1
=

y − x√
(y − x)2 + (1− x2)(1− y2) +

√
(1− x2)(1− y2)

=
y − x

1− xy +
√

(1− x2)(1− y2)
.

Similarly,

tanh
rλ1
2

=
λ(y − x)

1− λ2xy +
√

(1− (λx)2)(1− (λy)2)
.

Thus

(12)
tanh(rλ1/2)

tanh(r1/2)
=

λ(1− xy +
√
(1− x2)(1− y2))

1− λ2xy +
√

(1− (λx)2)(1− (λy)2)
.

Combining (10) and (12), we obtain

f(λ) =
λ(1− xy +

√
(1− x2)(1− y2))

1− λ2xy +
√

(1− (λx)2)(1− (λy)2)
− λ.

Define Q1 = (λ2 − 1)xy and Q2 =
√

(1− (λx)2)(1− (λy)2) −
√

(1− x2)(1− y2). Rear-
ranging the expression for f(λ) gives

f(λ) =
λ

1− λ2xy +
√

(1− (λx)2)(1− (λy)2)
(Q1 −Q2).

To complete the argument, it suffices to show Q1 < Q2 for 0 < λ < 1. First, we rationalize
Q2 by multiplying numerator and denominator by the conjugate of the numerator:

(13)

Q2 =
(1− λ2x2)(1− λ2y2)− (1− x2)(1− y2)√
(1− λ2x2)(1− λ2y2) +

√
(1− x2)(1− y2)

=
(1− λ2)[x2 + y2 − (1 + λ2)x2y2]√

(1− λ2x2)(1− λ2y2) +
√

(1− x2)(1− y2)
.

Since |x| < y < 1, we consider two cases depending on the sign of xy:
Case 1: xy ≥ 0. Note that x2 + y2 > 2xy ≥ 2x2y2 ≥ (1 + λ2)x2y2. The denominator of

Q2 is clearly positive, so Q2 > 0. Clearly, Q1 ≤ 0. Hence Q1 < Q2.
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Case 2: xy < 0. Substituting x2 + y2 > −2xy into the numerator of (13) yields

Q2 >
−(1− λ2)xy[2 + (1 + λ2)xy]√

(1− λ2x2)(1− λ2y2) +
√

(1− x2)(1− y2)
.

Next, we bound the denominator from above by substituting x2 + y2 > −2xy into the square
roots: √

(1− λ2x2)(1− λ2y2) +
√

(1− x2)(1− y2)

=
√

1− λ2(x2 + y2) + λ4x2y2 +
√

1− (x2 + y2) + x2y2

< 1 + λ2xy + 1 + xy

= 2 + (1 + λ2)xy.

Then
Q2 > −(1− λ2)xy = Q1

Combining both cases, we conclude Q1 < Q2 for all 0 < λ < 1. This completes the proof.
Q.E.D.

Using Lemma 2.2, we can prove the following theorem.

Theorem 2.3. Let η be a regular weight on (Pn, T ) satisfying the structure condition (2) with
η : E → (−1, 1] or η : E → [0,+∞). Suppose r and r̄ are two weighted Delaunay hyperbolic
inversive distance circle packings on (Pn, T , η) satisfying

(i) the combinatorial curvatures K0(r) and K0(r̄) at the vertex v0 satisfy K0(r) ≥ K0(r̄),
(ii) all circles corresponding to r and r̄ are contained in D.

Define u = ln tanh r
2

and ū = ln tanh r̄
2
, and let wi = ūi−ui for each vertex vi ∈ V (T ). Then

the maximum value of w, i.e., maxi∈{0,1,··· ,n} wi = maxi∈{0,1,··· ,n}(ūi − ui), if > 0, is never
achieved at v0.

Proof. We prove this theorem by contradiction. Assume that

w0 = ū0 − u0 = max
vi∼v0

(ūi − ui) > 0.

By Möbius transformations, we may assume that v0 is the origin. Set

λ =
eu0

eū0
< 1.

By applying the similarity transformation z → λz on the plane, we obtain a hyperbolic label
ūλ induced by ū. By Lemma 2.2 (ii), for any vi ∼ v0, we have ūλ

i − ūλ
0 < ūi − ū0. From our

assumption that ū0 − u0 ≥ ūi − ui, it follows that

(14) u0 − ui ≤ ū0 − ūi < ūλ
0 − ūλ

i .

A hyperbolic circle in D is also a Euclidean circle. Let Rv denote the Euclidean radius of the
circle corresponding to vertex v. By (9), we have

(15) eū
λ
0 = tanh

r̄λ0
2

= R̄λ
0 = λR̄0 = λ tanh

r̄0
2

= λeū0 .

By our choice of λ, this implies eū
λ
0 = eu0 , so ūλ

0 = u0. From (14), we further get ui > ūλ
i .

Hence, r̄λ0 = r0 and ri > r̄λi . Then R0 = R̄λ
0 , and Ri > R̄λ

i by Lemma 2.2 (i). Note that Rv

and Rλ
v both satisfy the weighted Delaunay condition.

In a 1-ring neighborhood of v0, it holds that R0 = R̄λ
0 and Ri > R̄λ

i for all vi ∼ v0.
This implies that the maximum of R̄λ

i /Ri is attained at the interior vertex v0. Note that the
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hyperbolic angle at the origin of a hyperbolic triangle coincides with the Euclidean angle at
the origin of its corresponding Euclidean triangle. Consequently, the hyperbolic combinato-
rial curvature at v0 equals the Euclidean combinatorial curvature at v0. By our assumption,
K0(R) ≥ K0(R̄). Since Euclidean angles are invariant under similarity transformations, it fol-
lows that K0(R̄) = K0(R̄

λ). Therefore, K0(R) ≥ K0(R̄
λ). By Theorem 2.1, R̄λ

i /Ri = R̄λ
0/R0

for all vi ∼ v0. Hence, Ri = R̄λ
i . This contradicts Ri > R̄λ

i , completing the proof. Q.E.D.

Proof of Theorem 1.2: Part (i) follows directly from Theorem 2.3. We derive Part (ii) by
substituting w0 with −w0 in Part (i). This substitution is valid due to the assumption K0(r) ≤
K0(r̄). Q.E.D.

As an application of Theorem 2.3, we obtain the following discrete Schwarz-Ahlfors lemma.

Theorem 2.4 (Discrete Schwarz-Ahlfors lemma). Let η be a regular weight on (M, T ) satis-
fying the structure condition (2) with η : E → (−1, 1] or η : E → [0,+∞), where M ⊆ D
is a compact set with non-empty boundary. Let r and r̄ be two weighted Delaunay hyperbolic
inversive distance circle packings on (M, T , η), with all corresponding circles contained in D.
Then the following statements hold:

(i): If the combinatorial curvatures K(r) ≥ K(r̄) for all interior vertices, and w ≤ 0 holds for
every boundary vertex, then w ≤ 0 holds for all vertices.

(ii): If the combinatorial curvatures K(r) ≤ K(r̄) for all interior vertices, and w ≥ 0 holds
for every boundary vertex, then w ≥ 0 holds for all vertices.

Proof. Part (i) follows directly from Theorem 1.2 (i). We prove it by contradiction. Suppose
there exists an interior vertex vi with wi > 0. Then w attains its maximum at some interior
vertex. We may assume without loss of generality that wi = maxj wj > 0. By applying
Theorem 1.2 (i) to the 1-ring neighborhood of vi, we deduce that there exists a vertex vj ∼ vi
with wj > wi. This contradicts the maximality of wi. Part (ii) follows analogously from
Theorem 1.2 (ii) by a similar argument. Q.E.D.

Theorem 1.4 is a direct corollary of Theorem 2.4. Also, we have the following result related
to the rigidity of hyperbolic inversive distance circle packings.

Corollary 2.5. Under the same conditions as in Theorem 2.4, if K(r) ≡ K(r̄) for all interior
vertices, and w ≡ 0 holds for every boundary vertex, then w ≡ 0 holds for all vertices.

Remark 2.6. An alternative approach to proving Corollary 2.5 involves constructing convex
energy functions, as described in [19, 20]. Furthermore, when using this method to establish
rigidity, there is no need to assume that the two PH metrics r and r̄ are weighted Delaunay. For
further details, we refer the reader to [19, 20].

3. INFINITE RIGIDITY OF HYPERBOLIC INVERSIVE DISTANCE CIRCLE PACKINGS

In the previous section, we assume that all circles are contained in the Poincaré disk D. In
this section, we remove this constraint, where the circles may intersect ∂D or even lie outside
it, and further generalize Theorem 2.3 and Theorem 2.4.

In Subsection 2.2, we have shown that the Euclidean inversive distance and hyperbolic in-
versive distance between any two circles contained in D are equal. As a natural generalization,
we extend the notion of hyperbolic circles to include Euclidean circles that intersect ∂D or
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lie outside D. For simplicity, we refer to these as “generalized hyperbolic circles”. The hy-
perbolic inversive distance for generalized hyperbolic circles is defined as their corresponding
Euclidean inversive distance.

Definition 3.1. Given a vertex v and its corresponding circle Cv, we define its generalized
hyperbolic radius ρv as follows:

(i) If Cv is contained in D, then ρv = tanh rv
2

, where rv is the hyperbolic radii of Cv;
(ii) If Cv intersects ∂D or lies outside D, let ηv denote the Euclidean inversive distance

between Cv and ∂D (the unit circle). Then

(16) ηv =
L2
v −R2

v − 1

2Rv

,

where Rv is the Euclidean radius of Cv, and Lv is the Euclidean distance between the
Euclidean center of Cv and the origin. In this case, ρv is defined as ∞ηv+1, where the
exponent is non-negative as ηv ∈ [−1,+∞). Specifically, ηv = −1 corresponds to Cv

being internally tangent to ∂D.
We adopt the convention that for any β ≥ α ≥ 0 and any positive real number a, ∞β ≥ ∞α >
a and a/∞α = 0.

Let C0 be a circle centered at the origin and contained in D, and let C1 be a generalized
hyperbolic circle adjacent to C0 with their inversive distance η01 ∈ (−1,+∞). Let R0 and
R1 be their Euclidean radii, and let ρ0 and ρ1 be their generalized hyperbolic radii. For any
λ ∈ (0, 1), let λC0 and λC1 be the images of C0 and C1 under the similarity transformation
f(z) = λz on the complex plane C, respectively. Clearly, λC0 remains contained in D. Assume
that λC1 is also contained in D. Let ρλ0 and ρλ1 be the generalized hyperbolic radii of λC0 and
λC1, respectively.

Lemma 3.2. Let C0, C1, λC0, and λC1 be the circles defined above. The following statements
hold:
(i): ρ1 is a strictly increasing function of R1.
(ii): For any 0 < λ < 1, we have

(17)
ρλ1
ρλ0

<
ρ1
ρ0

.

Proof. (i) If C1 is contained in D, then the conclusion follows directly from Lemma 2.2 (i).
When C1 gradually expands from the interior of D to being internally tangent to ∂D, it is
straightforward to see that ρ1 increases in this case. Now suppose C1 is not contained in D.
Let L be the Euclidean distance between the Euclidean center of C1 and the origin. By (3), it
follows that L2 = R2

0 +R2
1 + 2η01R0R1. By (16), we have

η1 =
R2

0 + 2R0R1η01 − 1

2R1

=
R2

0 − 1

2R1

+R0η01.

This implies η1 is a strictly increasing function of R1. Hence, ρ1 = ∞η1+1 is strictly increasing
in R1.

(ii) If C1 is contained in D, then the conclusion follows directly from Lemma 2.2 (ii). Oth-
erwise, the conclusion follows from the convention specified in Definition 3.1. Q.E.D.

The following theorem generalizes Theorem 2.3.
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Theorem 3.3. Let η be a regular weight on (Pn, T ) satisfying the structure condition (2) with
η : E → (−1, 1] or η : E → [0,+∞). Suppose r and r̄ are two weighted Delaunay hyperbolic
inversive distance circle packings on (Pn, T , η) satisfying

(i) the combinatorial curvatures K0(r) and K0(r̄) at the vertex v0 satisfy K0(r) ≥ K0(r̄),
(ii) all circles corresponding to r have non-empty intersection with D, and all circles cor-

responding to r̄ are contained in D.
Set

ewv =
ρ̄v
ρv

,

where ρv and ρ̄v denote the generalized hyperbolic radii corresponding to rv and r̄v, respec-
tively. Then the maximum of w, if > 0, is never achieved at v0.

Proof. We prove this theorem by contradiction. Assume there exists an interior vertex v0 such
that

ew0 =
ρ̄0
ρ0

= max
vi∼v0

ρ̄i
ρi

> 1.

Then ρ0 must be a real number. Otherwise, ρ̄0 > ρ0 would imply ρ̄0 is not real, which contra-
dicts the assumption that all circles corresponding to r̄ are contained in D.

By Möbius transformations, we map v0 to the origin. Since both ρ0 and ρ̄0 are real, their
corresponding circles are contained in D. Set

λ =
ρ0
ρ̄0

< 1.

Applying the similarity transformation z → λz on the plane, we obtain the generalized hyper-
bolic radii ρ̄λ induced by ρ̄. By Lemma 3.2 (ii), for any vi ∼ v0, we have

ρ̄λi
ρ̄λ0

<
ρ̄i
ρ̄0

≤ ρi
ρ0

.

By (15), it follows that ρ̄λ0 = λρ̄0 = ρ0. This further implies ρ̄λi < ρi.
Let Rv denote the Euclidean radius of the circle corresponding to vertex v. Then ρ̄λ0 = ρ0

implies R̄λ
0 = R0, and by Lemma 3.2 (i), ρ̄λi < ρi implies R̄λ

i < Ri. The rest of the proof is the
same as that of Theorem 2.3, so we omit it here. Q.E.D.

As a direct corollary of Theorem 3.3, we obtain the following discrete Schwarz-Ahlfors
lemma.

Theorem 3.4 (Discrete Schwarz-Ahlfors lemma). Let η be a regular weight on (M, T ) satis-
fying the structure condition (2) with η : E → (−1, 1] or η : E → [0,+∞), where M ⊆ D
is a compact set with non-empty boundary. Let r and r̄ be two weighted Delaunay hyper-
bolic inversive distance circle packings on (M, T , η), where all circles corresponding to r̄ are
contained in D. Denote wv = ln ρ̄v

ρv
, where ρv and ρ̄v are the generalized hyperbolic radii cor-

responding to rv and r̄v, respectively. If the combinatorial curvatures K(r) ≥ K(r̄) for all
interior vertices, and w ≤ 0 holds for every boundary vertex, then w ≤ 0 holds for all vertices.

Proof of Theorem 1.5: We prove this theorem by contradiction. Suppose there exists a vertex
v0 ∈ V (T ) such that r0 < r̄0, which is equivalent to ρ0 < ρ̄0. Here ρv and ρ̄v are the
generalized hyperbolic radii corresponding to rv and r̄v, respectively.

There exists a constant µ = 1+ϵ > 1 such that the inversive distance circle packing (T , µr),
obtained by scaling (T , r) under the similarity transformation z 7→ µz, satisfies

(18) ρµ0 < ρ̄0,
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and remains weighted Delaunay.
Let (T1, µr) be the sub-circle packing of (T , µr), consisting of all circles contained in D

together with those in their 1-ring neighborhoods that are not contained in D, i.e., either inter-
secting ∂D or lying outside D. Here, T1 denotes the corresponding triangulation. Since T is
locally finite, T1 is also locally finite. For each boundary vertex vB ∈ V (T1), the corresponding
circle in (T1, µr) intersects ∂D or lies outside D, so ρµB > ρ̄B.

Applying Theorem 3.4 to (T1, µr) and (T , r̄), we have ρµv > ρ̄v for all v ∈ V (T1). Since v0 ∈
V (T1) by the definition of T1, this implies ρµ0 ≥ ρ̄0, which contradicts (18). This completes the
proof. Q.E.D.
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