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GENERALIZED CURVATURES OF CURVES IN R*

LEE-PENG TEO

ABSTRACT. For a curve v : I — R"™ of order n — 1, we prove that the generalized cur-
vatures kK1, ..., knp—1 can be expressed in terms of the leading principal minors of the matrix
A(t)TA(t), where A(t) is the n x n matrix whose i-th column is 4(¥)(¢). This gives an effi-
cient algorithm to calculate the curvatures.

1. INTRODUCTION

A parametrized curve in R" is a smooth function ~ : I — R" defined on an open interval /,
such that 4/(¢) # 0 for all ¢ € I. The image of - is a one-dimensional Riemannian manifold
with metric induced by the Euclidean metric of R".

If v : I — R" is a parametrized curve such that the vectors v (¢), ...,y 1 (t) are linearly
independent, we say that the curve has order n — 1. For such a curve, one can define the Frenet
frame {T(t),Ny(t),...,N,,_1(t)} for each ¢t € I using the Gram-Schmidt process and the
generalized cross product. The matrix

F— [T(t) [Nyt |- | Nn_l(t)}

is an orthogonal matrix with determinant 1. The Frenet-Serret formulas say that with respect to
the arclength parameter s,

dT

— =rN
ds 1iN1,
dN
—1 = —IilT + KQNQ,
ds
dN,,_
2 = _5n72Nn73 + /fnlenflu
ds
dNn—l
= —Kp-1N,_2.
s 1 2
The numbers «1, ..., k,_1 are the generalized curvatures of the curve.

In the classical case where n = 3, k1 = k and ko = T are respectively the curvature and the
torsion of the curve. The fundamental theorem of the local theory of curves asserts that x and
7 uniquely determine the curve up to a direct isometry of R3.
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Given a space curve v : I — R? in any parametrization, the curvature x and the torsion 7
can be computed by the formulas

IIH

_ I x
[edl¥

/ X 7 n
7 Lo ali ,”72) L1)
Iy > 4"l
In this work, we establish an efficient algorithmn to compute the generalized curvatures
K1,...,HKn_1 of a parametrized curve v : I — R™ of order n — 1 in terms of v/ (¢), ..., v™(¢t),
generalizing the formulas (1.1) to higher dimensions. Let A (t) be the matrix

AW = YO [ |y
For 1 < ¢ < n, define M;(t) as the 7 x i matrix
(Y1)~ (t)) (Y1), (t))
Mz(t) = : . : )
O, A @) - D), @)

which consists of the first i rows and first s columns of the matrix B(t) = A(¢)T A(t). We show

thatfor1 <:<n-—1,

det My () det M;_(%)
[l (6)] det ML (£))*

From this, we can obtain «;(t) using the fact that for 1 < ¢ < n — 2, k() is positive. For

i =n — 1, k,_1(t) has the same sign as det A(t), and (det A(¢))* = det M, (¢).

K; (t)2

(1.2)

2. PRELIMINARIES

First, we give a brief revision of the linear algebra on the Euclidean space R", fixing the
notations. A vector v in R" is denoted as

U1
v =(v1,...,0p) or v =
Un
In terms of the standard unit vectors ey, ...,e,, v = vie; + -+ + v,e,. fu = (uy,...,u,)
and v = (vy, ..., v,) are two vectors in R", their Euclidean inner product is

n
(u,v) = Zum =u'v=viu
i=1

The norm of the vector v is defined as

VIl =/ {v,v).

A basis {vy,...,v,} of R" is said to be positively oriented if

det[vl‘---‘vn} > 0.
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Given a linearly independent set {v1, ..., v, } in R”, the Gram-Schidmt process produces an
orthonormal set {uy, ..., u,} such that for 1 < j <,
span{uy, ..., u;} = span{vy,...,Vv;}.

If R;; = (u;,v;, then R = [R, ;] is an upper triangular matrix with positive diagonal entries,
and
ol ] = fu ] R

Classically, the cross product is defined for two vectors in R3. It can be generalized in the
following way.

Definition 2.1 (Generalized Cross Product). For n > 2, the generalized cross product of n — 1
vectors in R" is a (n — 1)-linear map &2 : (R")"' — R". Given n — 1 vectors v; =

(v15,V2,5,---,Unj), 1 < j < n— 1, their cross product & (vy, ..., v,_1) is the vector
V11 ... Uip—1 €1
€1
V21 ... UVap—1 €2
P(vi,...,Vpq)=det vy || v g | | =det | | "
e, ’
Un1 .- Upn-—1 (S
In the determinant, eq, ..., e, are treated as formal symbols. The components of the cross
product #(vy,...,v,_1) along eq, ..., e, are obtained by computing this determinant using

column expansion with respect to the last column.

By the properties of determinants, the (n — 1)-linear map &2 : (R")"~! — R is an alternat-
ing linear mapping. Namely, if o is a permutation of the set {1,2,...,n — 1}, then

P (Va(l), Vo(2)s- - ,Vg(n_l)) =sgn(o) P (v, ..., Va_1).

When n = 3, #(u, v) is just the ordinary cross product of u and v.

The generalized cross product has certain properties whose proofs are straightforward gen-
eralizations of those for the n = 3 case.

Proposition 2.2. Let n > 2 and let vy, ..., v,,_1 be vectors in R". Then the generalized cross
product #(vy,...,v, 1) is zero if and only if the set {vy,..., v, 1} is linearly dependent.
Proposition 2.3. Let n > 2, and let vy,...,v,_;, Vv, be vectors in R". Assume that v; =

(14, .-+, Uy ) for 1 < j <mn.Then

(P(Vi,... V1), V) = det [vl ‘ ‘ Vo1 ‘ vn] = det [Ui,j] )
Proposition 2.3 gives the following important properties of cross product.

Corollary 2.4. Letn > 2. If vy, ..., v, _; are vectors in R", the cross product Z(vy,...,V,_1)
is orthogonal to each of the vectors vy, ... v, _1.
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Corollary 2.5. Letn > 2,andlet vy, ..., v, 1 be vectors in R". Denoteby w = Z(vy,..., v, 1)

their cross product. If {vy,...,v,_1} is a linearly independent set, then {vy,...,v,_ 1, w} is
a positively oriented basis of R".

For the norm of the vector #(vy,...,v,_1), we first prove the following general formula.
Proposition 2.6. Let n > 2. If {uy,...,u, 1} and {vq,...,v,_1} are two sets of vectors in
R™, let

u=Z(uy,...,u, 1), v=2PVi,..., V1)

Then

(i, vi) o (u,vio)
(u,v) = det [<ui,vj>] = det

<un717 V1> e <un717 Vn71>

Proof. If v. = 0, then (u,v) = 0. Proposition 2.2 says that {vy,...,v,_1} is a linearly
dependent set. Therefore, there exists a nonzero vector ¢ = (c1,...,¢,_1) € R™~! such that

cvi+ -+ cpm1vy1 = 0.

Then

(ag,vy) -+ (ug,vp_1) 1 (up,c1vy 4+ 4 Cpo1Vip_1)

(Wp—1,v1) -+ (Wpe1, V1) | [Cnaa (Up—1,01V1 4+ 4 Cp1Vin—1)

This implies that the matrix [(ui, v;)| is singular. Hence,

(u,v) =0 = det [(ui,vj)}

holds. If v # 0, then (v, v) > 0. By Proposition 2.3,

(u,v)(v,v) = det [ul ‘ ‘ u, 1 ‘ V}T [Vl ‘ ‘ V-1 ‘ V}
(ui,vi) - (ug, vper) (uy, v)
= det
(W1, vi) e (W1, Vie1) (W, v)
(vivy) - (v,vu_q) (v,v)

By Corollary 2.4, v is orthogonal to vy, ..., v, ;. Therefore,

(v,vi) == (v,Vv,_1) = 0.
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Thus,
<111, V1> ce (111, Vn71> <u17 V>
(u,v)(v,v) = det
<un—17 V1> o <un—17 Vn—1> <un—17 V>
0 e 0 (v,v)
(111,V1> <111,Vn—1>
= (v, v)det
<un—1a V1> Tt <un—17 Vn—1>
Since (v, v) > 0, we find that
<1117V1> <111>Vn—1>
(u,v) = det
<un717 V1> T <un717 Vn71>

i

Taking u; = v; for 1 < j < n — 1 in Proposition 2.6, we obtain the norm of the vector

gZ(Vl, Ce ,anl).

Corollary 2.7. Letn > 2,and let vy, ..., v, _1 be vectors in R™. The cross product Z(vy,...,v,_1)
1s a vector in R™ with norm

12 (v, .. V)| = 1 /det [<vi,vj>].
From this, we obtain the following.

Corollary 2.8. Let n > 2, and let {uy, ..., u,_} be an orthonormal set in R". If
u, = y(ula e 7un71)7

then {uy,...,u,_1,u,} is a positively oriented orthonormal basis of R".

Next, we discuss the Euclidean geometry of curves in R™. Some standard textbooks in this
topic are [Ger62, K1i78, dC16, Tap16, GAS06, K15, Spi79a, Spi79b].

A parametrized curve in R" is a smooth function v : I — R" defined on an open interval /
with 4/(t) # O forall t € I. Fixed a t;, € I, then the arclength function s : I — R defined by

S(t) = / I (7) ldr

is a strictly increasing smooth function. If 7 : J — R™ is the function defined as

Y=vo0s,

then v : J — R™ is a reparametrization of 7y : I — R” by arc-length. We usually use s instead
of t as the parameter for a curve 7 : J — R” that is parametrized by arclength.
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Definition 2.9 (The Canonical Matrix). Let v : I — R" be a parametrized curve. The canoni-
cal matrix of «v at ¢ € I is defined to be the n x n matrix

AW = [y 7@ | [0

If ¥ : J — R™is a reparametrization of v : I — R", there exists a strictly increasing
diffeomorphism ¢ : J — I such that

3(t) = v(¢(1))-
In particular, ¢'(¢) > 0 for all ¢ € .J. We have the following.

Proposition 2.10. Let v : [ — R" be a parametrized curve. Assume that v : J — R”
is a reparametrization of v : I — R" such that 4(t) = ~(¢(t)) for a strictly increasing
diffeomorphism ¢ : J — I. Then for 1 < j < n, there exist smooth functions U; ;(t),
1 <7 < j such that

with U; ;(¢) = ¢/(t)?. In other words, if

A = |y®) [y O | [ ¥ and K@) = [F@) | 7@ ] |70

are the canonical matrices of 7(¢) and 7(t), there is an upper triangular matrix U(¢) = [U; ()]
with diagonal entries U; ;(t) = ¢/(¢)7, 1 < j < n, such that

A(t) = A(o()U(t).
The regularity order of a curve is defined in the following way.

Definition 2.11 (The Regularity Order of a Curve). Given a curve v : [ — R", if k is a positive
integer such that for all t € I, {+'(t),...,v®(¢)} is a linearly independent set, we say that the
curve v : I — R" is regular of order k.

By definition, for any ¢t € I, +/(t) is a nonzero vector. Thus, {~/(¢) } is a linearly independent
set. Hence, a curve 7y : I — R"™ must be regular of order 1. If a curve is regular of order k, then
1<k <n.

Now we define the Frenet frame for a curve.

Definition 2.12 (The Frenet Frame). Let n > 2, and let v : I — R" be a curve in R" that has
order n — 1. For any ¢t € I, the Frenet frame {T'(¢), Ny(¢),...,N,_1(¢)} is an orthonormal
set, where the vectors T'(¢),Ny(t),..., N, _»(t) are obtained by applying the Gram-Schmidt
process to the linearly independent set {~/(t), ..., ¥V (¢)}, and the vector N,,_; (¢) is defined
by the cross product
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The frame matrix F(¢) is defined as the n x n matrix

F(t) = [T() | Nu@) [ - | Nuoa(n)]

By Corollary 2.8, for any ¢ € I, the Frenet frame {T(¢), Ny (¢),...,N,_1(¢)} is a positively
oriented orthonormal basis of R™. Equivalently, the frame matrix F(¢) is an orthogonal matrix
with determinant 1. The algorithm of the Gram-Schmidt process and the definition of the
generalized cross product show that each of the vectors T'(¢), Ny(¢),...,N,_(¢) is a smooth
function of ¢.

Our definition differs from some literatures which only consider curves of order n in R".
They define the Frenet frames as the orthonormal set obtained by applying the Gram-Schmidt
process to the set {¥/(¢),~¥"(t),...,¥™(t)}. The definition we use here produces the same
vectors T(t), ..., N,,_o(t), and produces the vector N,,_;(¢) that might differ by a sign.

One can show that the Frenet frame is independent of parametrizations.

Given a curve 7y : I — R" of order n — 1, let A(t) and F(¢) be respectively the canonical
matrix and the frame matrix of . Then there exists an n x n matrix R(t) = [R; ;(¢)] such that

Since the first n— 1 column vectors of F(¢) are obtained by applying the Gram-Schmidt process
to the first n — 1 column vectors of A(t), R(t) is an upper triangular matrix. Moreover, for
1 < j < n— 1, the diagonal entry R; () is positive.

Since F(t) is an orthogonal matrix and R.(¢) is an upper triangular matrix, A(t) = F(¢)R(?)
gives a QR-decomposition of the matrix A(¢). This explains our choice of the notation for
R(t).

Now we define the generalized curvatures x;, 1 < <n — 1.

Definition 2.13 (Generalized Curvatures). Let v : I — R" be an arclength parametrized curve
of order n — 1. For s € I, let {T(s),Ny(s),...,N,_1(s)} be the Frenet frame of the curve at
~(s). The first curvature k1 (s) is defined as

k1(s) = (T'(s),Ny(s)). (2.1)
For 2 < i < n — 1, the i-th curvature ;(s) is defined as
ki(s) = (Nj_1(s), Ni(s)). 2.2)
If a curve is not parametrized by arclength, we define the generalized curvatures by its ar-
clength reparametrization.

The Frenet-Serret formulas is a set of equations that express the derivatives of T'(s), Ny (s),
..» N,,_1(s) with respect to s in terms of T(s), Ny(s), ..., N,,_1(s).
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Theorem 2.14 (Frenet-Serret Formulas). Let v : I — R" be a curve of order n — 1 that is
parametrized by arclength. For s € I, let {T(s),Ny(s),...,N,_1(s)} be the Frenet frame at
~(s), and let k;(s), 1 <1i < n — 1 be the generalized curvatures. Then

T — kN
ds R1iN7g,
dN
— =~ T + KNy,
ds
dN; .
ds] = —kjNj_1 + Kj 11 Njq, 2<j7<n-—2
dNn—l
= —FKp_1N,_o.
ds Rn—1 2
In terms of the frame matrix F(s) = [T(s) ‘ N (s) ‘ ‘ Nn_1(8)], these Frenet-Serret for-
mulas can be written as
dF
) p(gcrs)
where C(s) is the anti-symmetric matrix
0 —ri(s) 0 e 0 0 |
K1(s) 0 —Ro(s) -~ 0 0
0 Ka(s 0 e 0 0
cw=| 0 ™ S
0 0 0 0 —Kn_1(8)
|0 0 0 Kn—1(s) 0 |

3. GENERALIZED CURVATURES

For a curve v : I — R" of order n — 1, we have defined its generalized curvatures
Ki,...,Rkn—1. Whenn = 3, k1 is the curvature k, ks is the torsion 7. For general n, it has been
proved that the curvatures sy, . . ., k,_o are positive-valued (see for example, [Glu66, Glu67]).
Here we prove this fact in a slightly different way, without the need to define the excess vectors
as in [Glu66]. We first prove the following theorem.

Theorem 3.1. Given that v : I — R" is an aclength parametrized curve of order n — 1, let
Ki,...,kKn—1 be the generalized curvatures of v : I — R”. Denote by A(s) and F(s) the
canonical matrix and the frame matrix of . Let R(s) = [R; ;(s)] be the n x n upper triangular
matrix so that A(s) = F(s)R(s). Then Ry (s) = 1, and for 2 < j < n, the j-th diagonal
entry R, ;(s) of R(s) is given by

j—1

Rj(s) = [ mils) = mi(s)mals) -~ mjma(s)-

i=1
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Proof. By definition, for 1 < j < n, we have
J

Y9 (s) = Ry ;(s)T(s) + Z Rij(s)N;_1(s). 3.1)

In particular,
Since T(s) = «/(s), we find that

For2 < j <mn, (3.1) gives

R ;i(s) = (v9(s),Nj_1(s)).
Using the fact that v'(s) = T(s), we have

Rya(s) = (v"(s), Ni(s)) = (T'(s), Ni(s)) = wi(s).

Now given 2 < 57 < n — 1, assume that we have shown that

Rj’j(S) = Kl(S) ce . Iij_l(S). (32)
Differentiating (3.1) with respect to s, we have

J

AU+ (5) = )+ Z R, )+ Rij(s)T'(s) + Y Rij(s)Nj_(s).

i=2
It follows that

Rjs1jmi(s) = (U (s), Ny(s))

= B (s (T’ +ZRu J(NG_1(5), N;(s)).

Since j > 2, (T'(s), N;(s)) = 0. On the other hand, (N;_l(s), Nj(s)) =0for2 <i<j—1
Therefore,
Rjrj+1(s) = Rj;(s) (NG (s), Nj(s)) = Rj;(s)r;(s).
By the inductive hypothesis (3.2), we conclude that
Rjt111(s) = ra(s) .. mjm1(s)r;(s).

This completes the proof by induction. U

An immediate consequence of Theorem 3.1 is the following result proved in [Glu66].

Corollary 3.2. Given that v : I — R" is an aclength parametrized curve of order n — 1, let
K1,...,Kn_1 be the generalized curvatures of v : I — R™. Denote by A(s) and F(s) the
canonical matrix and the frame matrix of . Let R(s) = [R; ;(s)] be the n x n upper triangular
matrix so that A(s) = F(s)R(s). Thenfor1 <i<n—1,

Ki(s) = R”“—“(s)

Roals) (3.3)

Since R, ;(s) > 0for 1 < j < n — 1, we obtain the following immediately.
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Theorem 3.3. Letn > 3, and let v : [ — R" be a parametrized curve of order n — 1. Then the
generalized curvatures k1, . . ., k,_o are positive-valued.

Remark 3.4. It can be shown that R;(s) is the norm of the excess vector F;(s) defined in
[Glu66]. Hence, the formula (3.3) is essentially Theorem 3.1 in [Glu66].

For the sign of the generalized curvature ~,,_;, we have the following.

Theorem 3.5. Given that v : I — R" is a parametrized curve of order n — 1, let A(t) be the
canonical matrix of =, and let x,,_1(t) be the (n — 1)-th generalized curvature of the curve at
~(t). Then k,_1(t) has the same sign as det A(¢). In particular, s, _1(t) = 0 if and only if
{~'(t),...,¥™(t)} is a linearly dependent set.

Proof. 1t is sufficient to prove this theorem under the assumption that v : I — R" is an
arclength parametrization. Let F(s) be the frame matrix of -y, and let R(s) be the n x n upper
triangular matrix such that

Since det F(s) = 1,

det A(s) = det R(s) = [ [ Rii(s).
=1
Since R;;(s) > 0for1 <i <n — 1, det A(s) has the same sign as R,, ,(s). By Theorem 3.1,

Ryun(s) = ki1(s) ... Kn—a(s)kn—1(s).

By Theorem 3.3, x;(s) > 0if 1 < i < n — 2. Hence, R, ,(s) has the same sign as ,_1(s).
This implies that x,,_1(s) has the same sign as det A(s). In particular, x,,_;(s) = 0 if and only
if det A(s) = 0, if and only if {7'(s),...,¥™ (s)} is a linearly dependent set. O

To find the generalized curvatures of a curve v : I — R" of order n — 1 that is parametrized
by arclength, we can apply the Gram-Schmidt process to the set {/(s),...,¥™ 1 (s)}. In the
process, we can compute the coefficients R, ;(s) = (v (s),N;_1(s)) for2 <i < mn — 1. The
coefficient R, ,,(s) = (7™ (s), N,,_1(s)) can then be computed using the fact that

ﬁ R;; = det A(s).

=1

This allows us to compute the generalized curvatures x1(s), . .., k,_1(s) using Corollary 3.2.

Although in principle one can always reparametrize a curve v : I — R" by arclength, this
is by no means a simple task. It is desirable to have formulas for the generalized curvatures
of a parametrized curve v : I — R" of order n — 1 purely in terms of v/(¢),...,~¥™(t),
generalizing the n = 3 formulas

_ @) xy"@ o) = ) xy"(t), (1))
B O R N OO E

(3.4)
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Note that

To shed further lights, note that
) BR40N
(det [ [v"@) [ v(0)]) = det | 5"@T | [v&) | v (1) | 4" ®)]
)T
(

Y (), 4"(1) (Y1), ~"(1))
(y'(t), 7" (1))
(Y"(t),~" (1))

be its canonical matrix,

= det | {(v"(%),

Motivated by this, for any parametrized curve v : [ — R", let A(t
and consider the matrix

B(t) = A(t)TA(t).
The (i, j)-component of B(t) is

Bij(t) = (v (1), 4V(1)).
For 1 < < mn,let M,;(t) be the 7 X 7 matrix
YO, Y)Y 0,700)
M;(t) = : : ;
YOO,y (1) - (YO), @)
which consists of the first ¢ rows and first ¢ columns of B(¢). The determinant of M, () is called

the i-th leading principal minor of B(%).

Our main result is that the generalized curvatures x,(t), ..., k,—1(t) can be expressed in
terms of the determinants of M, (¢). If v : [ — R lisacurve ofordern—1,for1 <i <n-—1,
since {7/(t),...,~'(t)} is a linearly independent set. This implies that the matrix

M) = [y(0) | [400)] [v() ] [400)

is positive definite, and so det M;(¢) > 0. In fact, det M, (¢) is the square of the volume of the
parallelepiped spanned by v/ (), ..., v (t).

Theorem 3.6. Let n > 2. Given a parametrized curve 7y : I — R” of order n — 1, let A(¢) be
its canonical matrix, and let kq (%), ..., k,_1(t) be the generalized curvatures. For 1 < i < n,
denote by M (¢) the matrix
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Then forn > 3,

\/det M2<t)
t — .
)=
for2 <:<n-—2,

() = V/det My () det My (£)
S @l detMy(t)

and forn > 2,

B det A(t) .
0 = e, (o Y M0

Proof. Let s : I — J be an arclength function of v : / — R". Then

s'(t) = ' (DI

Let v : J — R™ be the arclength reparametrization of v : [ — R™ so that

v(t) =(s(t)).

Denote by ;&(s) the canonical matrix of 4(s). By Proposition 2.10, there exists an upper
triangular matrix U(t) = [U; ;(¢)] with diagonal entries U; ;(t) = s'(£)7, 1 < j < n, such that
A(t) = A(s(t)U(t).

Let {T(t),Ny(s),...,N,_1(t)} be the Frenet frame at v(t) = F(s(t)), and let F(t) = F(s(¢))

be the corresponding frame matrix. Then there are upper triangular matrices R(t) = [R; ;(t)]
and R(s) = [R; ;(s)] such that

It follows that
R(t) = R(s(t))U(?).
Since the matrices R(s) and U(¢) are upper triangular, we find that for 1 < j < n,
Rjj(t) = Ry (s(t)Us5(t) = Ry(s(t))s(t).
When j = 1, Theorem 3.1 says that El,l(s) = 1. Therefore, we have
Rl,l (t) = S/(t).

For 1 <7 <n — 1, Corollary 3.2 says that

— 1 Riirs
Hz(t) — R'Ltly'l'f‘l(s(t)) — - Rl‘i‘lﬂ"l‘l (t) ) (35)
Rii(s(t)) $'(t)  Rii(t)
Now consider the matrix B(¢) = A(¢)TA(t). Since A(t) = F(t)R(t) and F(t) is an orthogo-
nal matrix, we have

B(t) = R()"F(t)"F(t)R(t) = R(t)"R(t).

For fixed 1 <7 < n, we partition the matrix R(¢) into 4 blocks
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such that V; ; is an ¢ x i matrix. Since R(t) is upper triangular, V; (¢) is an upper triangular
matrix and V;, 3(¢) = 0 is the zero matrix. Therefore,

| va®wT] o Vii(t) | Via(t)
BlH) = [ Via(t)" ‘ Via(t)" ] [ 0 ‘ Via(t) ] ’

and we obtain
M, (t) = Via ()T Vi (t).
It follows that
det M;(t) = (det V1 (1))
By definition, V; ;(¢) is an upper triangular ¢ x ¢ matrix with diagonal entries Ry (%), ..., R;;(1).
Hence,

i 2
det M;(t) = (H Rj,j(t)> -
j=1
This gives
det M (t) = R1,1<t)2 = s'(1)?,

andforl <i<n-1,

det M;14(¢)
Riprim(t)? = —— 3.6
+1,+1( ) det Ml(t> ( )
Using the fact that s'(t) = ||v/(¢)]], (3.5) and (3.6) give
o (1)? = 1 Rop(t)? 1 detMy(t)  det My(t)
1 S8 Ria(t)? V(@O det Ma(t)  [[v/(£)11°
Theorem 3.3 says that if n > 3, x,(¢) > 0. Hence, if n > 3,
\/det Mg(t)
Ri(t) = Y——r .
1 Iy (@)1
If2<:<n-—1,(3.5)and (3.6) give
1 det M (t) det My (¢
/il(t>2 € +1( ) € 1( ) (3.7)

4G [det M;(t)]
If 2 < ¢ < n — 2, Theorem 3.3 says that ;(¢) > 0. Therefore, when 2 < i < n — 2,

/{;-( ) o \/det Mz—l—l(t) det Mz—l(t)
S ()] det Mi(2)

Finally, we notice that
det M,,(t) = det B(t) = (det A(t))>.
Therefore, (3.7) gives

1 [det A(t)]* det M, _o(t)
Iy @12 [det My (£)]?
By Theorem 3.5, x,,_1(t) has the same sign as det A(¢). It follows that

B det A(t) .
) = o den, g VO M2

Rn—1 (t>2
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Note that since det M (t) = ||v/(¢)]|?, if n > 4, we can simplify x5 (¢) to
det M3(t
ka(t) = 6—3().
det M2 (t)
If n = 3, we have the classical formula

~det A(?)
() = T ML

A disguised form of the results in Theorem 3.6 have been obtained in [Ger62, Glu66, Gut11],
where +/det M (t) is written as the volume of the parallelepiped spanned by v/ (t), ..., v®(t).
In fact, if {vy,...,v,} is a linearly independent set in R™, {uy, ..., u,} is the orthonormal set
obtained by applying the Gram-Schmidt process to {vy, ..., v, }, and

R;; = (u;,v;),

then [RZ-J] is an upper triangular matrix with positive diagonal entries R;;, 1 < j < r. More-

over, forl1 < j <r,
j—1

j
vj =Y Rijui= Y Riju+ Rjju,
i=1 =1

This implies that

j—1
Wi =v; — Y (u,v;)u = Rjju;.
i=1
Since w; is the component of v; perpendicular to the subspace spanned by vi,...,v;_;, we

find that the volume of the parallelepiped spanned by vy,..., v, is

[wall - Iwell = Biy--- Ry

Theorem 3.6 provides an efficient way to compute the generalized curvatures of a curve
~ : I — R™ under any parametrization. One first computes the canonical matrix A (¢), and then
the matrix B(t) = A ()7 A(t). From this, one can extract the matrices M, (¢) and compute the
curvatures x1(t), . .., £,_1(t) using their determinants and the formulas given in Theorem 3.6.
In the process, there is no need to apply the Gram-Schmidt algorithm.

As an example, let us consider the curve in R* given by ~ : R — R4,
~(t) = (¢, 12,13, 14).

Using any computer algebra that can perform symbolic computation, we can easily find that
the canonical matrix of v : I — R* s

1 0 0 0
262 0 0
32 6t 6 0
483 1212 24t 24
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It follows that

14482 4+ 9t* + 1665 4t + 1813 + 485 182 +96t*  96t3
At + 183 + 481> 4+ 362 4 144t 36t + 288t3  288¢2
18¢2 + 96t 36t + 288¢t3 36 + 576t2 576t
96t 28812 576t 576

B(t) = A(t)TA(t) =

From this, we obtain the first 3 leading principal minors of B(¢), and the determinant of A (t)
as

det M () = 1+ 4% + 9t* + 16t° = ||v/(1)[%,

det My(t) = 4 + 36t* + 180" + 256¢° + 144¢°,

det M3(t) = 144 + 2304¢* + 5184t* + 2304¢°,
det A(t) = 288.

By Theorem 3.6, the generalized curvatures x1(t), ko(t), k3(t) are given by

(1) = V/det My(t) _ A+ 36 + IS0F + 2560 + 14475
Iy @)1I° (1+ 412 + 9t4 + 165)2
) = V/det My(t) /144 + 2304” + 51847 + 230419
det Mp(t) 4+ 36> + 180t* + 256¢6 + 144¢%
det A(t)/det My(t)
0 = T der Ma 1)

B 288 \/4 + 36t2 4 180¢* + 25616 + 1444
144 + 230442 + 5184t + 230416 14 412 + 9t + 161

4. GENERALIZATIONS

In this section, we consider the general case of a curve 7 : I — R"™ which does not necessary
have order n — 1.

Given a curve 7y : [ — R”, we define the canonical matrix A(t) and consider the matrix
B(t) = A(t)T A(t). One can then compute det A(t) and the leading principal minors of B(t)
given by

det M;(t) = det : - :
YOO, A @) - A0, 4D@)
For 1 <4 < n, define the set I; as

Since det M;(t) is a continuous function, /; must be a closed subset of /. Note that ¢t € I; if
and only if the set {+/(t),..., " (¢)} is linearly dependent. Hence, I; = (), and

11C]2C"'CInC].
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Since {~/(t), ...,~™*Y(t)} must be a linearly dependent set, we extrapolate and define I,,,; =
1.

For any 1 < k < n, the curve has order k if and only if I, = .

Since I} = 0 and I,,,; = I, there exists 1 < r < n such that I,,; = I and I, # I, then
I =1 \ I, is an open nonempty subset of real numbers. It can be written as a disjoint union of
countably many open intervals. We can restrict the curve = to each of these open intervals and
consider them separately. Thus, it is sufficient to consider a curve v : I — R" so that for all
t€ L, (t),...,v"(t) are linearly independent, but v'(t),...,~™(t), ¥+ (t) are linearly
dependent.

If r = n — 1 or r = n, we can define the Frenet frame as before.

If 1 <r < n— 2, we can still define the orthonormal set {T(¢),N;(¢),...,N,_1(¢)} by
applying the Gram-Schmidt process to the linearly independent set v/ (), . .., ~")(t). Then one
can define the curvatures 1 (t), ..., k,_2(t) as before. They are positive valued.

Since v'(t), ..., (t) are linearly independent, but v/ (), ..., v™(t), ¥+ (t) are linearly
dependent, we find that
~T V() € span{y'(t),..., ¥ (t)} = span{T(t), Ny (t),...,N,_1(t)}.
This implies that
N,_1(t) € span{~'(t),..., ¥ (1)},
and so
N, (t) € span{~/(t), ...,y (), " (1)} = span{T(t),Ns(t),..., N, 1 (t)}.

The Frenet-Serret formulas are

dT
. — kN
dS K1iN7,
dN
—— =~ T + £oNo,
ds
dN; .
15 —KiN;—1 + Kip1 N1, 2<i1<r—2,
S
dNrfl
= —Ky_1N,_o.
ds Kr—1 2

The formulas for x;(t), 1 <i < r — 1, given in Theorem 3.6, still hold.
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