
GENERALIZED CURVATURES OF CURVES IN RnRnRn

LEE-PENG TEO

ABSTRACT. For a curve γ : I → Rn of order n − 1, we prove that the generalized cur-
vatures κ1, . . . , κn−1 can be expressed in terms of the leading principal minors of the matrix
A(t)TA(t), where A(t) is the n × n matrix whose i-th column is γ(i)(t). This gives an effi-
cient algorithm to calculate the curvatures.

1. INTRODUCTION

A parametrized curve in Rn is a smooth function γ : I → Rn defined on an open interval I ,
such that γ ′(t) ̸= 0 for all t ∈ I . The image of γ is a one-dimensional Riemannian manifold
with metric induced by the Euclidean metric of Rn.

If γ : I → Rn is a parametrized curve such that the vectors γ ′(t), . . . ,γ(n−1)(t) are linearly
independent, we say that the curve has order n− 1. For such a curve, one can define the Frenet
frame {T(t),N1(t), . . . ,Nn−1(t)} for each t ∈ I using the Gram-Schmidt process and the
generalized cross product. The matrix

F =
[
T(t) N1(t) · · · Nn−1(t)

]
is an orthogonal matrix with determinant 1. The Frenet-Serret formulas say that with respect to
the arclength parameter s,

dT

ds
= κ1N1,

dN1

ds
= −κ1T+ κ2N2,

...

dNn−2

ds
= −κn−2Nn−3 + κn−1Nn−1,

dNn−1

ds
= −κn−1Nn−2.

The numbers κ1, . . . , κn−1 are the generalized curvatures of the curve.

In the classical case where n = 3, κ1 = κ and κ2 = τ are respectively the curvature and the
torsion of the curve. The fundamental theorem of the local theory of curves asserts that κ and
τ uniquely determine the curve up to a direct isometry of R3.
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Given a space curve γ : I → R3 in any parametrization, the curvature κ and the torsion τ

can be computed by the formulas

κ =
∥γ ′ × γ ′′∥
∥γ ′∥3

, τ =
⟨γ ′ × γ ′′,γ ′′′⟩
∥γ ′ × γ ′′∥2

. (1.1)

In this work, we establish an efficient algorithmn to compute the generalized curvatures
κ1, . . . , κn−1 of a parametrized curve γ : I → Rn of order n− 1 in terms of γ ′(t), . . . ,γ(n)(t),
generalizing the formulas (1.1) to higher dimensions. Let A(t) be the matrix

A(t) =
[
γ ′(t) γ ′′(t) · · · γ(n)(t)

]
.

For 1 ≤ i ≤ n, define Mi(t) as the i× i matrix

Mi(t) =

 ⟨γ ′(t),γ ′(t)⟩ · · · ⟨γ ′(t),γ(i)(t)⟩
... . . . ...

⟨γ(i)(t),γ ′(t)⟩ · · · ⟨γ(i)(t),γ(i)(t)⟩

 ,

which consists of the first i rows and first i columns of the matrix B(t) = A(t)TA(t). We show
that for 1 ≤ i ≤ n− 1,

κi(t)
2 =

detMi+1(t) detMi−1(t)

[∥γ ′(t)∥ detMi(t)]
2 . (1.2)

From this, we can obtain κi(t) using the fact that for 1 ≤ i ≤ n − 2, κi(t) is positive. For
i = n− 1, κn−1(t) has the same sign as detA(t), and (detA(t))2 = detMn(t).

2. PRELIMINARIES

First, we give a brief revision of the linear algebra on the Euclidean space Rn, fixing the
notations. A vector v in Rn is denoted as

v = (v1, . . . , vn) or v =

v1...
vn

 .

In terms of the standard unit vectors e1, . . . , en, v = v1e1 + · · · + vnen. If u = (u1, . . . , un)

and v = (v1, . . . , vn) are two vectors in Rn, their Euclidean inner product is

⟨u,v⟩ =
n∑

i=1

uivi = uTv = vTu.

The norm of the vector v is defined as

∥v∥ =
√
⟨v,v⟩.

A basis {v1, . . . ,vn} of Rn is said to be positively oriented if

det
[
v1 · · · vn

]
> 0.
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Given a linearly independent set {v1, . . . ,vr} in Rn, the Gram-Schidmt process produces an
orthonormal set {u1, . . . ,ur} such that for 1 ≤ j ≤ r,

span{u1, . . . ,uj} = span{v1, . . . ,vj}.

If Ri,j = ⟨ui,vj , then R = [Ri,j] is an upper triangular matrix with positive diagonal entries,
and [

v1 · · · vr

]
=
[
u1 · · · ur

]
R.

Classically, the cross product is defined for two vectors in R3. It can be generalized in the
following way.

Definition 2.1 (Generalized Cross Product). For n ≥ 2, the generalized cross product of n− 1

vectors in Rn is a (n − 1)-linear map P : (Rn)n−1 → Rn. Given n − 1 vectors vj =

(v1,j, v2,j, . . . , vn,j), 1 ≤ j ≤ n− 1, their cross product P(v1, . . . ,vn−1) is the vector

P(v1, . . . ,vn−1) = det

v1 · · · vn−1

e1
...
en

 = det


v1,1 . . . v1,n−1 e1
v2,1 . . . v2,n−1 e2

... . . . ...
...

vn,1 . . . vn,n−1 en

 .

In the determinant, e1, . . . , en are treated as formal symbols. The components of the cross
product P(v1, . . . ,vn−1) along e1, . . . , en are obtained by computing this determinant using
column expansion with respect to the last column.

By the properties of determinants, the (n− 1)-linear map P : (Rn)n−1 → Rn is an alternat-
ing linear mapping. Namely, if σ is a permutation of the set {1, 2, . . . , n− 1}, then

P
(
vσ(1),vσ(2), . . . ,vσ(n−1)

)
= sgn(σ)P(v1, . . . ,vn−1).

When n = 3, P(u,v) is just the ordinary cross product of u and v.

The generalized cross product has certain properties whose proofs are straightforward gen-
eralizations of those for the n = 3 case.

Proposition 2.2. Let n ≥ 2 and let v1, . . ., vn−1 be vectors in Rn. Then the generalized cross
product P(v1, . . . ,vn−1) is zero if and only if the set {v1, . . . ,vn−1} is linearly dependent.

Proposition 2.3. Let n ≥ 2, and let v1, . . . ,vn−1,vn be vectors in Rn. Assume that vj =

(v1,j, . . . , vn,j) for 1 ≤ j ≤ n. Then

⟨P(v1, . . . ,vn−1),vn⟩ = det
[
v1 · · · vn−1 vn

]
= det

[
vi,j

]
.

Proposition 2.3 gives the following important properties of cross product.

Corollary 2.4. Let n ≥ 2. If v1, . . . ,vn−1 are vectors in Rn, the cross product P(v1, . . . ,vn−1)

is orthogonal to each of the vectors v1, . . .vn−1.
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Corollary 2.5. Let n ≥ 2, and let v1, . . . ,vn−1 be vectors in Rn. Denote by w = P(v1, . . . ,vn−1)

their cross product. If {v1, . . . ,vn−1} is a linearly independent set, then {v1, . . . ,vn−1,w} is
a positively oriented basis of Rn.

For the norm of the vector P(v1, . . . ,vn−1), we first prove the following general formula.

Proposition 2.6. Let n ≥ 2. If {u1, . . . ,un−1} and {v1, . . . ,vn−1} are two sets of vectors in
Rn, let

u = P(u1, . . . ,un−1), v = P(v1, . . . ,vn−1).

Then

⟨u,v⟩ = det
[
⟨ui,vj⟩

]
= det

 ⟨u1,v1⟩ · · · ⟨u1,vn−1⟩
... . . . ...

⟨un−1,v1⟩ · · · ⟨un−1,vn−1⟩

 .

Proof. If v = 0, then ⟨u,v⟩ = 0. Proposition 2.2 says that {v1, . . . ,vn−1} is a linearly
dependent set. Therefore, there exists a nonzero vector c = (c1, . . . , cn−1) ∈ Rn−1 such that

c1v1 + · · ·+ cn−1vn−1 = 0.

Then ⟨u1,v1⟩ · · · ⟨u1,vn−1⟩
... . . . ...

⟨un−1,v1⟩ · · · ⟨un−1,vn−1⟩


 c1

...
cn−1

 =

 ⟨u1, c1v1 + · · ·+ cn−1vn−1⟩
...

⟨un−1, c1v1 + · · ·+ cn−1vn−1⟩

 = 0.

This implies that the matrix
[
⟨ui,vj⟩

]
is singular. Hence,

⟨u,v⟩ = 0 = det
[
⟨ui,vj⟩

]
holds. If v ̸= 0, then ⟨v,v⟩ > 0. By Proposition 2.3,

⟨u,v⟩⟨v,v⟩ = det
[
u1 · · · un−1 v

]T [
v1 · · · vn−1 v

]

= det


⟨u1,v1⟩ · · · ⟨u1,vn−1⟩ ⟨u1,v⟩

... . . . ...
...

⟨un−1,v1⟩ · · · ⟨un−1,vn−1⟩ ⟨un−1,v⟩
⟨v,v1⟩ · · · ⟨v,vn−1⟩ ⟨v,v⟩

 .

By Corollary 2.4, v is orthogonal to v1, . . . ,vn−1. Therefore,

⟨v,v1⟩ = · · · = ⟨v,vn−1⟩ = 0.
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Thus,

⟨u,v⟩⟨v,v⟩ = det


⟨u1,v1⟩ · · · ⟨u1,vn−1⟩ ⟨u1,v⟩

... . . . ...
...

⟨un−1,v1⟩ · · · ⟨un−1,vn−1⟩ ⟨un−1,v⟩
0 · · · 0 ⟨v,v⟩



= ⟨v,v⟩ det

 ⟨u1,v1⟩ · · · ⟨u1,vn−1⟩
... . . . ...

⟨un−1,v1⟩ · · · ⟨un−1,vn−1⟩

 .

Since ⟨v,v⟩ > 0, we find that

⟨u,v⟩ = det

 ⟨u1,v1⟩ · · · ⟨u1,vn−1⟩
... . . . ...

⟨un−1,v1⟩ · · · ⟨un−1,vn−1⟩

 .

□

Taking uj = vj for 1 ≤ j ≤ n − 1 in Proposition 2.6, we obtain the norm of the vector
P(v1, . . . ,vn−1).

Corollary 2.7. Let n ≥ 2, and let v1, . . . ,vn−1 be vectors in Rn. The cross product P(v1, . . . ,vn−1)

is a vector in Rn with norm

∥P(v1, . . . ,vn−1)∥ =

√
det
[
⟨vi,vj⟩

]
.

From this, we obtain the following.

Corollary 2.8. Let n ≥ 2, and let {u1, . . . ,un−1} be an orthonormal set in Rn. If

un = P(u1, . . . ,un−1),

then {u1, . . . ,un−1,un} is a positively oriented orthonormal basis of Rn.

Next, we discuss the Euclidean geometry of curves in Rn. Some standard textbooks in this
topic are [Ger62, Kli78, dC16, Tap16, GAS06, K1̈5, Spi79a, Spi79b].

A parametrized curve in Rn is a smooth function γ : I → Rn defined on an open interval I
with γ ′(t) ̸= 0 for all t ∈ I . Fixed a t0 ∈ I , then the arclength function s : I → R defined by

s(t) =

∫ t

t0

∥γ ′(τ)∥dτ

is a strictly increasing smooth function. If γ̃ : J → Rn is the function defined as

γ̃ = γ ◦ s−1,

then γ̃ : J → Rn is a reparametrization of γ : I → Rn by arc-length. We usually use s instead
of t as the parameter for a curve γ̃ : J → Rn that is parametrized by arclength.
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Definition 2.9 (The Canonical Matrix). Let γ : I → Rn be a parametrized curve. The canoni-
cal matrix of γ at t ∈ I is defined to be the n× n matrix

A(t) =
[
γ ′(t) γ ′′(t) · · · γ(n)(t)

]
.

If γ̃ : J → Rn is a reparametrization of γ : I → Rn, there exists a strictly increasing
diffeomorphism ϕ : J → I such that

γ̃(t) = γ(ϕ(t)).

In particular, ϕ′(t) > 0 for all t ∈ J . We have the following.

Proposition 2.10. Let γ : I → Rn be a parametrized curve. Assume that γ̃ : J → Rn

is a reparametrization of γ : I → Rn such that γ̃(t) = γ(ϕ(t)) for a strictly increasing
diffeomorphism ϕ : J → I . Then for 1 ≤ j ≤ n, there exist smooth functions Ui,j(t),
1 ≤ i ≤ j such that

γ̃(j)(t) =

j∑
i=1

Ui,j(t)γ
(i)(ϕ(t)),

with Uj,j(t) = ϕ′(t)j . In other words, if

A(t) =
[
γ ′(t) γ ′′(t) · · · γ(n)(t)

]
and Ã(t) =

[
γ̃ ′(t) γ̃ ′′(t) · · · γ̃(n)(t)

]
are the canonical matrices of γ(t) and γ̃(t), there is an upper triangular matrix U(t) = [Ui,j(t)]

with diagonal entries Uj,j(t) = ϕ′(t)j , 1 ≤ j ≤ n, such that

Ã(t) = A(ϕ(t))U(t).

The regularity order of a curve is defined in the following way.

Definition 2.11 (The Regularity Order of a Curve). Given a curve γ : I → Rn, if k is a positive
integer such that for all t ∈ I , {γ ′(t), . . . ,γ(k)(t)} is a linearly independent set, we say that the
curve γ : I → Rn is regular of order k.

By definition, for any t ∈ I , γ ′(t) is a nonzero vector. Thus, {γ ′(t)} is a linearly independent
set. Hence, a curve γ : I → Rn must be regular of order 1. If a curve is regular of order k, then
1 ≤ k ≤ n.

Now we define the Frenet frame for a curve.

Definition 2.12 (The Frenet Frame). Let n ≥ 2, and let γ : I → Rn be a curve in Rn that has
order n − 1. For any t ∈ I , the Frenet frame {T(t),N1(t), . . . ,Nn−1(t)} is an orthonormal
set, where the vectors T(t),N1(t), . . . ,Nn−2(t) are obtained by applying the Gram-Schmidt
process to the linearly independent set {γ ′(t), . . . ,γ(n−1)(t)}, and the vector Nn−1(t) is defined
by the cross product

Nn−1(t) = P (T(t),N1(t), . . . ,Nn−2(t)) .
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The frame matrix F(t) is defined as the n× n matrix

F(t) =
[
T(t) N1(t) · · · Nn−1(t)

]
.

By Corollary 2.8, for any t ∈ I , the Frenet frame {T(t),N1(t), . . . ,Nn−1(t)} is a positively
oriented orthonormal basis of Rn. Equivalently, the frame matrix F(t) is an orthogonal matrix
with determinant 1. The algorithm of the Gram-Schmidt process and the definition of the
generalized cross product show that each of the vectors T(t),N1(t), . . . ,Nn−1(t) is a smooth
function of t.

Our definition differs from some literatures which only consider curves of order n in Rn.
They define the Frenet frames as the orthonormal set obtained by applying the Gram-Schmidt
process to the set {γ ′(t),γ ′′(t), . . . ,γ(n)(t)}. The definition we use here produces the same
vectors T(t), . . ., Nn−2(t), and produces the vector Nn−1(t) that might differ by a sign.

One can show that the Frenet frame is independent of parametrizations.

Given a curve γ : I → Rn of order n − 1, let A(t) and F(t) be respectively the canonical
matrix and the frame matrix of γ. Then there exists an n× n matrix R(t) = [Ri,j(t)] such that

A(t) = F(t)R(t).

Since the first n−1 column vectors of F(t) are obtained by applying the Gram-Schmidt process
to the first n − 1 column vectors of A(t), R(t) is an upper triangular matrix. Moreover, for
1 ≤ j ≤ n− 1, the diagonal entry Rj,j(t) is positive.

Since F(t) is an orthogonal matrix and R(t) is an upper triangular matrix, A(t) = F(t)R(t)

gives a QR-decomposition of the matrix A(t). This explains our choice of the notation for
R(t).

Now we define the generalized curvatures κi, 1 ≤ i ≤ n− 1.

Definition 2.13 (Generalized Curvatures). Let γ : I → Rn be an arclength parametrized curve
of order n− 1. For s ∈ I , let {T(s),N1(s), . . . ,Nn−1(s)} be the Frenet frame of the curve at
γ(s). The first curvature κ1(s) is defined as

κ1(s) = ⟨T′(s),N1(s)⟩. (2.1)

For 2 ≤ i ≤ n− 1, the i-th curvature κi(s) is defined as

κi(s) = ⟨N′
i−1(s),Ni(s)⟩. (2.2)

If a curve is not parametrized by arclength, we define the generalized curvatures by its ar-
clength reparametrization.

The Frenet-Serret formulas is a set of equations that express the derivatives of T(s), N1(s),
. . ., Nn−1(s) with respect to s in terms of T(s), N1(s), . . ., Nn−1(s).
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Theorem 2.14 (Frenet-Serret Formulas). Let γ : I → Rn be a curve of order n − 1 that is
parametrized by arclength. For s ∈ I , let {T(s),N1(s), . . . ,Nn−1(s)} be the Frenet frame at
γ(s), and let κi(s), 1 ≤ i ≤ n− 1 be the generalized curvatures. Then

dT

ds
= κ1N1,

dN1

ds
= −κ1T+ κ2N2,

...

dNj

ds
= −κjNj−1 + κj+1Nj+1, 2 ≤ j ≤ n− 2,

...

dNn−1

ds
= −κn−1Nn−2.

In terms of the frame matrix F(s) =
[
T(s) N1(s) · · · Nn−1(s)

]
, these Frenet-Serret for-

mulas can be written as
dF(s)

ds
= F(s)C(s),

where C(s) is the anti-symmetric matrix

C(s) =



0 −κ1(s) 0 · · · 0 0

κ1(s) 0 −κ2(s) · · · 0 0

0 κ2(s) 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 −κn−1(s)

0 0 0 · · · κn−1(s) 0


.

3. GENERALIZED CURVATURES

For a curve γ : I → Rn of order n − 1, we have defined its generalized curvatures
κ1, . . . , κn−1. When n = 3, κ1 is the curvature κ, κ2 is the torsion τ . For general n, it has been
proved that the curvatures κ1, . . . , κn−2 are positive-valued (see for example, [Glu66, Glu67]).
Here we prove this fact in a slightly different way, without the need to define the excess vectors
as in [Glu66]. We first prove the following theorem.

Theorem 3.1. Given that γ : I → Rn is an aclength parametrized curve of order n − 1, let
κ1, . . . , κn−1 be the generalized curvatures of γ : I → Rn. Denote by A(s) and F(s) the
canonical matrix and the frame matrix of γ. Let R(s) = [Ri,j(s)] be the n×n upper triangular
matrix so that A(s) = F(s)R(s). Then R1,1(s) = 1, and for 2 ≤ j ≤ n, the j-th diagonal
entry Rj,j(s) of R(s) is given by

Rj,j(s) =

j−1∏
i=1

κi(s) = κ1(s)κ2(s) · · ·κj−1(s).
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Proof. By definition, for 1 ≤ j ≤ n, we have

γ(j)(s) = R1,j(s)T(s) +

j∑
i=2

Ri,j(s)Ni−1(s). (3.1)

In particular,
γ ′(s) = R1,1(s)T(s).

Since T(s) = γ ′(s), we find that
R1,1(s) = 1.

For 2 ≤ j ≤ n, (3.1) gives
Rj,j(s) = ⟨γ(j)(s),Nj−1(s)⟩.

Using the fact that γ ′(s) = T(s), we have

R2,2(s) = ⟨γ ′′(s),N1(s)⟩ = ⟨T′(s),N1(s)⟩ = κ1(s).

Now given 2 ≤ j ≤ n− 1, assume that we have shown that

Rj,j(s) = κ1(s) . . . κj−1(s). (3.2)

Differentiating (3.1) with respect to s, we have

γ(j+1)(s) = R′
1,j(s)T(s) +

j∑
i=2

R′
i,j(s)Ni−1(s) +R1,j(s)T

′(s) +

j∑
i=2

Ri,j(s)N
′
i−1(s).

It follows that

Rj+1,j+1(s) = ⟨γ(j+1)(s),Nj(s)⟩

= R1,j(s)⟨T′(s),Nj(s)⟩+
j∑

i=2

Ri,j(s)⟨N′
i−1(s),Nj(s)⟩.

Since j ≥ 2, ⟨T′(s),Nj(s)⟩ = 0. On the other hand, ⟨N′
i−1(s),Nj(s)⟩ = 0 for 2 ≤ i ≤ j − 1.

Therefore,
Rj+1,j+1(s) = Rj,j(s)⟨N′

j−1(s),Nj(s)⟩ = Rj,j(s)κj(s).

By the inductive hypothesis (3.2), we conclude that

Rj+1,j+1(s) = κ1(s) . . . κj−1(s)κj(s).

This completes the proof by induction. □

An immediate consequence of Theorem 3.1 is the following result proved in [Glu66].

Corollary 3.2. Given that γ : I → Rn is an aclength parametrized curve of order n − 1, let
κ1, . . . , κn−1 be the generalized curvatures of γ : I → Rn. Denote by A(s) and F(s) the
canonical matrix and the frame matrix of γ. Let R(s) = [Ri,j(s)] be the n×n upper triangular
matrix so that A(s) = F(s)R(s). Then for 1 ≤ i ≤ n− 1,

κi(s) =
Ri+1,i+1(s)

Ri,i(s)
. (3.3)

Since Rj,j(s) > 0 for 1 ≤ j ≤ n− 1, we obtain the following immediately.
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Theorem 3.3. Let n ≥ 3, and let γ : I → Rn be a parametrized curve of order n− 1. Then the
generalized curvatures κ1, . . . , κn−2 are positive-valued.

Remark 3.4. It can be shown that Ri(s) is the norm of the excess vector Ei(s) defined in
[Glu66]. Hence, the formula (3.3) is essentially Theorem 3.1 in [Glu66].

For the sign of the generalized curvature κn−1, we have the following.

Theorem 3.5. Given that γ : I → Rn is a parametrized curve of order n − 1, let A(t) be the
canonical matrix of γ, and let κn−1(t) be the (n − 1)-th generalized curvature of the curve at
γ(t). Then κn−1(t) has the same sign as detA(t). In particular, κn−1(t) = 0 if and only if
{γ ′(t), . . . ,γ(n)(t)} is a linearly dependent set.

Proof. It is sufficient to prove this theorem under the assumption that γ : I → Rn is an
arclength parametrization. Let F(s) be the frame matrix of γ, and let R(s) be the n× n upper
triangular matrix such that

A(s) = F(s)R(s).

Since detF(s) = 1,

detA(s) = detR(s) =
n∏

i=1

Ri,i(s).

Since Ri,i(s) > 0 for 1 ≤ i ≤ n− 1, detA(s) has the same sign as Rn,n(s). By Theorem 3.1,

Rn,n(s) = κ1(s) . . . κn−2(s)κn−1(s).

By Theorem 3.3, κi(s) > 0 if 1 ≤ i ≤ n − 2. Hence, Rn,n(s) has the same sign as κn−1(s).
This implies that κn−1(s) has the same sign as detA(s). In particular, κn−1(s) = 0 if and only
if detA(s) = 0, if and only if {γ ′(s), . . . ,γ(n)(s)} is a linearly dependent set. □

To find the generalized curvatures of a curve γ : I → Rn of order n− 1 that is parametrized
by arclength, we can apply the Gram-Schmidt process to the set {γ ′(s), . . . ,γ(n−1)(s)}. In the
process, we can compute the coefficients Ri,i(s) = ⟨γ(i)(s),Ni−1(s)⟩ for 2 ≤ i ≤ n − 1. The
coefficient Rn,n(s) = ⟨γ(n)(s),Nn−1(s)⟩ can then be computed using the fact that

n∏
i=1

Ri,i = detA(s).

This allows us to compute the generalized curvatures κ1(s), . . . , κn−1(s) using Corollary 3.2.

Although in principle one can always reparametrize a curve γ : I → Rn by arclength, this
is by no means a simple task. It is desirable to have formulas for the generalized curvatures
of a parametrized curve γ : I → Rn of order n − 1 purely in terms of γ ′(t), . . . ,γ(n)(t),
generalizing the n = 3 formulas

κ1(t) =
∥γ ′(t)× γ ′′(t)∥

∥γ ′(t)∥3
, κ2(t) =

⟨γ ′(t)× γ ′′(t),γ ′′′(t)⟩
∥γ ′(t)× γ ′′(t)∥2

. (3.4)
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Note that

∥γ ′(t)× γ ′′(t)∥2 = det

[
⟨γ ′(t),γ ′(t)⟩ ⟨γ ′(t),γ ′′(t)⟩
⟨γ ′′(t),γ ′(t)⟩ ⟨γ ′′(t),γ ′′(t)⟩

]
,

⟨γ ′(t)× γ ′′(t),γ ′′′(t)⟩ = det
[
γ ′(t) γ ′′(t) γ ′′′(t)

]
.

To shed further lights, note that

(
det
[
γ ′(t) γ ′′(t) γ ′′′(t)

])2
= det

 γ ′(t)T

γ ′′(t)T

γ ′′′(t)T

[γ ′(t) γ ′′(t) γ ′′′(t)
]

= det

 ⟨γ ′(t),γ ′(t)⟩ ⟨γ ′(t),γ ′′(t)⟩ ⟨γ ′(t),γ ′′′(t)⟩
⟨γ ′′(t),γ ′(t)⟩ ⟨γ ′′(t),γ ′′(t)⟩ ⟨γ ′′(t),γ ′′′(t)⟩
⟨γ ′′′(t),γ ′(t)⟩ ⟨γ ′′′(t),γ ′′(t)⟩ ⟨γ ′′′(t),γ ′′′(t)⟩

 .

Motivated by this, for any parametrized curve γ : I → Rn, let A(t) be its canonical matrix,
and consider the matrix

B(t) = A(t)TA(t).

The (i, j)-component of B(t) is

Bi,j(t) = ⟨γ(i)(t),γ(j)(t)⟩.

For 1 ≤ i ≤ n, let Mi(t) be the i× i matrix

Mi(t) =

 ⟨γ ′(t),γ ′(t)⟩ · · · ⟨γ ′(t),γ(i)(t)⟩
... . . . ...

⟨γ(i)(t),γ ′(t)⟩ · · · ⟨γ(i)(t),γ(i)(t)⟩

 ,

which consists of the first i rows and first i columns of B(t). The determinant of Mi(t) is called
the i-th leading principal minor of B(t).

Our main result is that the generalized curvatures κ1(t), . . ., κn−1(t) can be expressed in
terms of the determinants of Mi(t). If γ : I → Rn−1 is a curve of order n−1, for 1 ≤ i ≤ n−1,
since {γ ′(t), . . . ,γi(t)} is a linearly independent set. This implies that the matrix

Mi(t) =
[
γ ′(t) · · · γ(i)(t)

]T [
γ ′(t) · · · γ(i)(t)

]
is positive definite, and so detMi(t) > 0. In fact, detMi(t) is the square of the volume of the
parallelepiped spanned by γ ′(t), . . . ,γ(i)(t).

Theorem 3.6. Let n ≥ 2. Given a parametrized curve γ : I → Rn of order n− 1, let A(t) be
its canonical matrix, and let κ1(t), . . . , κn−1(t) be the generalized curvatures. For 1 ≤ i ≤ n,
denote by Mi(t) the matrix

Mi(t) =

 ⟨γ ′(t),γ ′(t)⟩ · · · ⟨γ ′(t),γ(i)(t)⟩
... . . . ...

⟨γ(i)(t),γ ′(t)⟩ · · · ⟨γ(i)(t),γ(i)(t)⟩

 .
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Then for n ≥ 3,

κ1(t) =

√
detM2(t)

∥γ′(t)∥3
;

for 2 ≤ i ≤ n− 2,

κi(t) =

√
detMi+1(t) detMi−1(t)

∥γ ′(t)∥ detMi(t)
;

and for n ≥ 2,

κn−1(t) =
detA(t)

∥γ ′(t)∥ detMn−1(t)

√
detMn−2(t).

Proof. Let s : I → J be an arclength function of γ : I → Rn. Then

s′(t) = ∥γ ′(t)∥.

Let γ̃ : J → Rn be the arclength reparametrization of γ : I → Rn so that

γ(t) = γ̃(s(t)).

Denote by Ã(s) the canonical matrix of γ̃(s). By Proposition 2.10, there exists an upper
triangular matrix U(t) = [Ui,j(t)] with diagonal entries Uj,j(t) = s′(t)j , 1 ≤ j ≤ n, such that

A(t) = Ã(s(t))U(t).

Let {T(t),N1(s), . . . ,Nn−1(t)} be the Frenet frame at γ(t) = γ̃(s(t)), and let F(t) = F̃(s(t))

be the corresponding frame matrix. Then there are upper triangular matrices R(t) = [Ri,j(t)]

and R̃(s) = [R̃i,j(s)] such that

A(t) = F(t)R(t) and Ã(s) = F̃(s)R̃(s).

It follows that
R(t) = R̃(s(t))U(t).

Since the matrices R̃(s) and U(t) are upper triangular, we find that for 1 ≤ j ≤ n,

Rj,j(t) = R̃j,j(s(t))Uj,j(t) = R̃j,j(s(t))s
′(t)j.

When j = 1, Theorem 3.1 says that R̃1,1(s) = 1. Therefore, we have

R1,1(t) = s′(t).

For 1 ≤ i ≤ n− 1, Corollary 3.2 says that

κi(t) =
R̃i+1,i+1(s(t))

R̃i,i(s(t))
=

1

s′(t)

Ri+1,i+1(t)

Ri,i(t)
. (3.5)

Now consider the matrix B(t) = A(t)TA(t). Since A(t) = F(t)R(t) and F(t) is an orthogo-
nal matrix, we have

B(t) = R(t)TF(t)TF(t)R(t) = R(t)TR(t).

For fixed 1 ≤ i ≤ n, we partition the matrix R(t) into 4 blocks

R(t) =

[
Vi,1(t) Vi,2(t)

Vi,3(t) Vi,4(t)

]
,
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such that Vi,1 is an i × i matrix. Since R(t) is upper triangular, Vi,1(t) is an upper triangular
matrix and Vi,3(t) = 0 is the zero matrix. Therefore,

B(t) =

[
Vi,1(t)

T 0

Vi,2(t)
T Vi,4(t)

T

][
Vi,1(t) Vi,2(t)

0 Vi,4(t)

]
,

and we obtain
Mi(t) = Vi,1(t)

TVi,1(t).

It follows that
detMi(t) = (detVi,1(t))

2 .

By definition, Vi,1(t) is an upper triangular i×i matrix with diagonal entries R1,1(t), . . . , Ri,i(t).
Hence,

detMi(t) =

(
i∏

j=1

Rj,j(t)

)2

.

This gives
detM1(t) = R1,1(t)

2 = s′(t)2,

and for 1 ≤ i ≤ n− 1,

Ri+1,i+1(t)
2 =

detMi+1(t)

detMi(t)
. (3.6)

Using the fact that s′(t) = ∥γ ′(t)∥, (3.5) and (3.6) give

κ1(t)
2 =

1

s′(t)2
R2,2(t)

2

R1,1(t)2
=

1

∥γ ′(t)∥4
detM2(t)

detM1(t)
=

detM2(t)

∥γ ′(t)∥6
.

Theorem 3.3 says that if n ≥ 3, κ1(t) > 0. Hence, if n ≥ 3,

κ1(t) =

√
detM2(t)

∥γ ′(t)∥3
.

If 2 ≤ i ≤ n− 1, (3.5) and (3.6) give

κi(t)
2 =

1

∥γ ′(t)∥2
detMi+1(t) detMi−1(t)

[detMi(t)]2
. (3.7)

If 2 ≤ i ≤ n− 2, Theorem 3.3 says that κi(t) > 0. Therefore, when 2 ≤ i ≤ n− 2,

κi(t) =

√
detMi+1(t) detMi−1(t)

∥γ ′(t)∥ detMi(t)
.

Finally, we notice that
detMn(t) = detB(t) = (detA(t))2 .

Therefore, (3.7) gives

κn−1(t)
2 =

1

∥γ ′(t)∥2
[detA(t)]2 detMn−2(t)

[detMn−1(t)]2
.

By Theorem 3.5, κn−1(t) has the same sign as detA(t). It follows that

κn−1(t) =
detA(t)

∥γ ′(t)∥ detMn−1(t)

√
detMn−2(t).

□
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Note that since detM1(t) = ∥γ ′(t)∥2, if n ≥ 4, we can simplify κ2(t) to

κ2(t) =

√
detM3(t)

detM2(t)
.

If n = 3, we have the classical formula

κ2(t) =
detA(t)

detM2(t)
.

A disguised form of the results in Theorem 3.6 have been obtained in [Ger62, Glu66, Gut11],
where

√
detMi(t) is written as the volume of the parallelepiped spanned by γ ′(t), . . . ,γ(i)(t).

In fact, if {v1, . . . ,vr} is a linearly independent set in Rn, {u1, . . . ,ur} is the orthonormal set
obtained by applying the Gram-Schmidt process to {v1, . . . ,vr}, and

Ri,j = ⟨ui,vj⟩,

then [Ri,j] is an upper triangular matrix with positive diagonal entries Rj,j , 1 ≤ j ≤ r. More-
over, for 1 ≤ j ≤ r,

vj =

j∑
i=1

Ri,jui =

j−1∑
i=1

Ri,jui +Rj,juj.

This implies that

wj = vj −
j−1∑
i=1

⟨ui,vj⟩ui = Rj,juj.

Since wj is the component of vj perpendicular to the subspace spanned by v1, . . . ,vj−1, we
find that the volume of the parallelepiped spanned by v1, . . . ,vr is

∥w1∥ · · · ∥wr∥ = R1,1 · · ·Rr,r.

Theorem 3.6 provides an efficient way to compute the generalized curvatures of a curve
γ : I → Rn under any parametrization. One first computes the canonical matrix A(t), and then
the matrix B(t) = A(t)TA(t). From this, one can extract the matrices Mi(t) and compute the
curvatures κ1(t), . . . , κn−1(t) using their determinants and the formulas given in Theorem 3.6.
In the process, there is no need to apply the Gram-Schmidt algorithm.

As an example, let us consider the curve in R4 given by γ : R → R4,

γ(t) = (t, t2, t3, t4).

Using any computer algebra that can perform symbolic computation, we can easily find that
the canonical matrix of γ : I → R4 is

A(t) =


1 0 0 0

2t 2 0 0

3t2 6t 6 0

4t3 12t2 24t 24

 .
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It follows that

B(t) = A(t)TA(t) =


1 + 4t2 + 9t4 + 16t6 4t+ 18t3 + 48t5 18t2 + 96t4 96t3

4t+ 18t3 + 48t5 4 + 36t2 + 144t4 36t+ 288t3 288t2

18t2 + 96t4 36t+ 288t3 36 + 576t2 576t

96t3 288t2 576t 576

 .

From this, we obtain the first 3 leading principal minors of B(t), and the determinant of A(t)

as

detM1(t) = 1 + 4t2 + 9t4 + 16t6 = ∥γ ′(t)∥2,

detM2(t) = 4 + 36t2 + 180t4 + 256t6 + 144t8,

detM3(t) = 144 + 2304t2 + 5184t4 + 2304t6,

detA(t) = 288.

By Theorem 3.6, the generalized curvatures κ1(t), κ2(t), κ3(t) are given by

κ1(t) =

√
detM2(t)

∥γ ′(t)∥3
=

√
4 + 36t2 + 180t4 + 256t6 + 144t8

(1 + 4t2 + 9t4 + 16t6)
3
2

,

κ2(t) =

√
detM3(t)

detM2(t)
=

√
144 + 2304t2 + 5184t4 + 2304t6

4 + 36t2 + 180t4 + 256t6 + 144t8
,

κ3(t) =
detA(t)

√
detM2(t)

∥γ ′(t)∥ detM3(t)

=
288

144 + 2304t2 + 5184t4 + 2304t6

√
4 + 36t2 + 180t4 + 256t6 + 144t8

1 + 4t2 + 9t4 + 16t6
.

4. GENERALIZATIONS

In this section, we consider the general case of a curve γ : I → Rn which does not necessary
have order n− 1.

Given a curve γ : I → Rn, we define the canonical matrix A(t) and consider the matrix
B(t) = A(t)TA(t). One can then compute detA(t) and the leading principal minors of B(t)

given by

detMi(t) = det

 ⟨γ ′(t),γ ′(t)⟩ · · · ⟨γ ′(t),γ(i)(t)⟩
... . . . ...

⟨γ(i)(t),γ ′(t)⟩ · · · ⟨γ(i)(t),γ(i)(t)⟩

 , 1 ≤ i ≤ n.

For 1 ≤ i ≤ n, define the set Ii as

Ii = {t ∈ I| detMi(t) = 0} .

Since detMi(t) is a continuous function, Ii must be a closed subset of I . Note that t ∈ Ii if
and only if the set {γ ′(t), . . . ,γ(i)(t)} is linearly dependent. Hence, I1 = ∅, and

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ I.
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Since {γ ′(t), . . . ,γ(n+1)(t)} must be a linearly dependent set, we extrapolate and define In+1 =

I .

For any 1 ≤ k ≤ n, the curve has order k if and only if Ik = ∅.

Since I1 = ∅ and In+1 = I , there exists 1 ≤ r ≤ n such that Ir+1 = I and Ir ̸= I , then
Ĩr = I \ Ir is an open nonempty subset of real numbers. It can be written as a disjoint union of
countably many open intervals. We can restrict the curve γ to each of these open intervals and
consider them separately. Thus, it is sufficient to consider a curve γ : I → Rn so that for all
t ∈ I , γ ′(t), . . . ,γ(r)(t) are linearly independent, but γ ′(t), . . . ,γ(r)(t),γ(r+1)(t) are linearly
dependent.

If r = n− 1 or r = n, we can define the Frenet frame as before.

If 1 ≤ r ≤ n − 2, we can still define the orthonormal set {T(t),N1(t), . . . ,Nr−1(t)} by
applying the Gram-Schmidt process to the linearly independent set γ ′(t), . . . ,γ(r)(t). Then one
can define the curvatures κ1(t), . . . , κr−2(t) as before. They are positive valued.

Since γ ′(t), . . . ,γ(r)(t) are linearly independent, but γ ′(t), . . . ,γ(r)(t),γ(r+1)(t) are linearly
dependent, we find that

γ(r+1)(t) ∈ span{γ ′(t), . . . ,γ(r)(t)} = span{T(t),N1(t), . . . ,Nr−1(t)}.

This implies that
Nr−1(t) ∈ span{γ ′(t), . . . ,γ(r)(t)},

and so

N′
r−1(t) ∈ span{γ ′(t), . . . ,γ(r)(t),γ(r+1)(t)} = span{T(t),N1(t), . . . ,Nr−1(t)}.

The Frenet-Serret formulas are
dT

ds
= κ1N1,

dN1

ds
= −κ1T+ κ2N2,

dNi

ds
= −κiNi−1 + κi+1Ni+1, 2 ≤ i ≤ r − 2,

dNr−1

ds
= −κr−1Nr−2.

The formulas for κi(t), 1 ≤ i ≤ r − 1, given in Theorem 3.6, still hold.

REFERENCES

[dC16] Manfredo P. do Carmo, Differential geometry of curves & surfaces, second ed., Dover Publications,
Inc., Mineola, NY, 2016.

[GAS06] Alfred Gray, Elsa Abbena, and Simon Salamon, Modern differential geometry of curves and surfaces
with Mathematica®, third ed., Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton,
FL, 2006.

[Ger62] Johan C. H. Gerretsen, Lectures on tensor calculus and differential geometry, P. Noordhoff N. V.,
Groningen, 1962.



GENERALIZED CURVATURES OF CURVES IN Rn 17

[Glu66] Herman Gluck, Higher curvatures of curves in Euclidean space, Amer. Math. Monthly 73 (1966), 699–
704.

[Glu67] Herman Gluck, Higher curvatures of curves in Euclidean space II, Amer. Math. Monthly 74 (1967),
1049–1056.

[Gut11] Eugene Gutkin, Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds, J.
Geom. Phys. 61 (2011), no. 11, 2147–2161.

[K1̈5] Wolfgang Kühnel, Differential geometry, third ed., Student Mathematical Library, vol. 77, American
Mathematical Society, Providence, RI, 2015.

[Kli78] Wilhelm Klingenberg, A course in differential geometry, Graduate Texts in Mathematics, vol. Vol. 51,
Springer-Verlag, New York-Heidelberg, 1978, Translated from the German by David Hoffman.

[Spi79a] Michael Spivak, A comprehensive introduction to differential geometry. Vol. II, second ed., Publish or
Perish, Inc., Wilmington, DE, 1979.

[Spi79b] , A comprehensive introduction to differential geometry. Vol. IV, second ed., Publish or Perish,
Inc., Wilmington, DE, 1979.

[Tap16] Kristopher Tapp, Differential geometry of curves and surfaces, Undergraduate Texts in Mathematics,
Springer, [Cham], 2016.

DEPARTMENT OF MATHEMATICS, XIAMEN UNIVERSITY MALAYSIA, JALAN SUNSURIA, BANDAR SUN-
SURIA, 43900, SEPANG, SELANGOR, MALAYSIA.

Email address: lpteo@xmu.edu.my


	1. Introduction
	2. Preliminaries
	3. Generalized Curvatures
	4. Generalizations
	References

