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Abstract

We give a rigorous solution of an optimisation problem of minimizing the expected delay caused by
encountering a red traffic light on a road journey. The problem incorporates simple constraints on maximum
speed, acceleration and braking rates, and depends on the assumed distribution of the remaining time until
the traffic light will turn green, after it is first noticed. We assume that this distribution has a bounded
and non-increasing density, which is natural since this holds for the law of the excess time in any stationary
renewal process. In two special cases, where this distribution is either Uniform or Exponential, we give a
complete characterisation of all possible combinations of phases of maximum acceleration, maximum speed,
maximum braking, following an Euler–Lagrange curve, and standing stationary at the traffic light, which
can make up an optimal solution. The key technique is to write the problem in terms of a two-dimensional
pressure integral, so that the problem becomes analogous to filling a tank with a given quantity of liquid.

Keywords: random traffic lights, Lipschitz control, constrained calculus of variations.

MSC2020 subject classification: 49K30, 49K45.

1 The problem
Imagine that you drive around a corner and spot a red traffic light in front of you, d > 0 metres away. At this
moment your velocity is v0. You are very law-abiding, so you will always avoid driving through a red traffic
light. Your car has a maximum acceleration rate α, which does not depend on your speed. It has a maximum
braking rate β, which also does not depend on your speed1. Fortunately for you, d ≥ v20/(2β), so if you brake
hard immediately away you can avoid passing the traffic signal on red. You are in a hurry and wish to arrive at
your destination as early as possible. The street has a speed limit vmax which you will of course avoid exceeding,
being law-abiding. No other vehicles are between you and the traffic light, but there is another driver close
behind you, so you cannot choose to reverse without causing a road-rage incident. That is to say, vmin = 0.
Your destination is a reasonably large distance L beyond the traffic light, and there are no further traffic lights
between the one traffic light that you can see and your destination. We assume that L ≥ v2max/(2α), so that
even if you have to stop at the traffic light you will have time to accelerate all the way to the speed limit vmax
before reaching your destination. (To keep things simple, suppose that it is acceptable to be travelling at speed
vmax at the moment you reach your destination, so that it functions like the finish line in a race.) We also
assume that once the light turns green it is guaranteed to stay green for long enough that you will certainly be
able to pass it during the green phase, by accelerating at rate α and then moving with velocity vmax. (As far
as our optimisation problem below is concerned, this is the same as assuming it will stay green forever once it
has turned green.)

How should you accelerate or brake, to minimise the expectation of your arrival time, without taking
any risk of breaking the law?

The answer depends on your belief about the distribution of the random time T remaining until the traffic light
turns green. Let us look at a few specific cases and a more general case.

1. The traffic light has a countdown display next to it which indicates T . This case is simple to solve and
we will not consider it further, but note that optimal solutions exist that can be decomposed into phases
where either the velocity is 0 or vmax, or the acceleration is α or −β. We will see that in a much more
general case the optimal solutions may also be decomposed into finitely many phases of these four types
and one further type, an Euler–Lagrange curve.

∗University of Bristol
1The assumptions that the maximum acceleration and maximum deceleration do not depend on the speed are unrealistic but

it is not clear to what extent our rigorous arguments could be modified to apply to velocity-dependent acceleration and braking
constraints.
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2. You are sure that the light will turn green before a finite time q > 0, and even if you travel as fast as
allowed by the constraints you cannot pass the traffic light before time q. This case is also trivial, so for
the rest of the paper we exclude it by assuming{

q ≤ (vmax − v0)/α and d < q(v0 + qα/2), or
q ≥ (vmax − v0)/α and d < (vmax − v0)(vmax + v0)/2α+ vmax(q − (vmax − v0)/α).

(1)

3. You believe that the time until the light turns green is a random variable with a uniform distribution, say
U([0, q]). This is consistent with a traffic light that always stays red for exactly q seconds, when we don’t
know how much of the red phase has elapsed when we first observe it.

4. You believe that the traffic light will turn green after an exponentially distributed time with mean 1/λ.
In this case there is no upper bound on T so we take q = ∞.

5. You believe that the lengths of the periods when the light is red are i.i.d. random variables with a
distribution that you know, but you don’t know how long the light has already been red when you first
observe it. In this case it is reasonable to model the remaining time until the light turns green as a random
variable distributed like the excess time (or residual time) until the next renewal epoch in a stationary
renewal process. Cases 3 and 4 are both special cases of this one.

In this paper we prove the existence of a unique optimal trajectory in case 5. We also work out the exact
optimal trajectory in cases 3 and 4.

1.1 Why our model is not fully realistic
In this paper we ignore your reaction times as a driver. We also ignore the discomfort that you may cause
to yourself or your passengers when you adjust your acceleration discontinuously. A more realistic analysis
than the one in this paper would place limits on the jerk (the time derivative of acceleration), and would
take into account the dependence of the maximum acceleration and braking rates on velocity. Such a realistic
optimisation problem could in general only be solved approximately, for example using a discretisation and
dynamic programming. Our main purpose in this paper is to give rigorous derivations of the unique optimal
solutions to the slightly less realistic problems that we have posed above in cases 3 and 4.

Another problem that is of interest is to optimise for energy consumption, or for some combination of energy
consumption and travel time. There are various possible objective functions, depending on whether we take
into account friction losses and regenerative braking, and the possibly nonlinear dependence of these on the
velocity and acceleration. Even in the simple scenario where acceleration is costed in proportion to the increase
in kinetic energy 1

2mv2, but no energy is recovered during braking, the energy cost even of a simple trajectory
which accelerates from v0 to a velocity vtop then brakes to velocity 0 is 1

2m(v2top − v20). To express this in
a Lagrangian integral, one would need a discontinuous term mvmax(0, v̇). This significantly complicates the
rigorous analysis, and we leave it for future work.

1.2 Analysis of the general case
Before we specialize to case 3 or case 4, we will first discuss the more general case 5. We can apply methods
from classical physics and variational calculus to derive the optimal approach trajectory to a red traffic light
that turns green at a random time T . We parametrize this path by the location x(t) at time t ≥ 0. Because of
the constraints on braking and acceleration, the function t 7→ x(t) must be continuously differentiable; in fact
ẋ = d

dtx(t) is Lipschitz. At the random moment when the light turns green, the car leaves the path t 7→ x(t),
accelerates at maximum acceleration α to its maximum permitted velocity vmax to reach its distant destination
L as quickly as possible. We assume T ≥ 0 a.s. Consider a stationary renewal process with i.i.d. interarrival
times Yi ≥ 0 with finite second moment and cumulative distribution function (CDF) Θ : [0,∞) → [0, 1]. Let
q = sup{t : Θ(t) < 1}. Note that q = ∞ if the interarrival times are unbounded. The remaining time until the
next arrival in a renewal process is called the residual time. In a stationary renewal process the residual time
has probability density given by (see [8, §3.9])

f(x) =
1

E(Y1)
[1−Θ(x)]. (2)

This shows that any density appearing this way must be bounded and non-increasing on [0, q). By assuming a
finite second moment of Yi, the mean associated with this density becomes finite.

Motivated by the above, we assume that the density for our random time T is indeed bounded:

0 ≤ f(x) ≤ K (3)
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and strictly positive and non-increasing on [0, q). The possible trajectories x will be functions defined on [0, q).
For example, if we let Θ(x) = 1(x ≥ q), then f is the density of the Uniform(0, q) distribution, recovering

Case 3 above. On the other hand, for a memoryless interarrival distribution, where the stationary renewal
process is a Poisson Process, equation (2) yields the density function of the Exponential distribution, i.e. Case
4 above.

We set the initial location x(0) = 0, the initial velocity ẋ(0) = v0 ≥ 0 and we assume that the light is at
distance d far enough so that if we brake as hard as possible we will not be forced to pass the traffic light before
it turns green. In the case where q ≥ v0/β, this means that d ≥ v2

0

2β . In the case where q < v0/β, we only need
to avoid passing the traffic light before time q, so we assume that d ≥ q(v0− qβ/2). We also insist that ẋ(t) ≥ 0
at all times t: reversing is not allowed. Since x(t) is the path followed before the light turns green, x(t) ≤ d for
all t ∈ [0, q). Hence the limit limt→q x(t) exists by the condition ẋ(t) ≥ 0, and satisfies limt→q x(t) ≤ d. Later
we will show that we can consider only trajectories such that limt→q x(t) = d.

At the random time T when the traffic light switches from red to green, the car is at location x(T ) and
travelling at velocity v(T ). From this moment, accelerating at rate α to reach full speed vmax and then travelling
at full speed to the destination requires time k(x(T ), v(T )), where

k(x, v) =
vmax − v

α
+
(
L− x− v + vmax

2
· vmax − v

α

)
· 1

vmax
=

1

2αvmax
(vmax − v)2 +

1

vmax
(L− x). (4)

That is, the absolute arrival time is T + k
(
x(T ), v(T )

)
.Next, we take the distribution of T into account to

calculate the expected time to reach our destination:

E
[
T + k

(
x(T ), ẋ(T )

)]
=

∫ q

0

[
t+ k

(
x(t), ẋ(t)

)]
· f(t) dt.

It is this quantity that we aim to minimise by picking the optimal trajectory x(t) subject to our constraints.

1.3 Related work
Many works consider variants of our problem. Perhaps the closest to our question is a question on MathOverflow
raised by Pálvölgyi [7]. This post poses the problem that we address in this paper but with no constraint on
the maximum braking rate, so effectively β = ∞ there. Carneiro gives the most important building blocks of
the optimal solution in a reply. These are the Euler–Lagrange curves of a certain action integral formulation
that we also use shortly in this article. Carneiro also mentions some of the boundary conditions that will be the
main objects of our study. We remark that this reply concerns the special cases of Uniform and Exponential
distributions, which are also the two special cases that we treat in detail.

The main contribution of our work is to incorporate the constraints on maximum velocity, acceleration and
deceleration. This turns out to be far from trivial, requiring us to go well beyond Carneiro’s observations. In
particular, in the Exponential case, we prove the existence of a critical velocity at which the optimal trajectory
suddenly switches to −β deceleration from an Euler–Lagrange phase, with a discontinuity in deceleration. When
we first encountered this phenomenon it came to us as a surprise.

There have been several other works published in peer-reviewed journals. Optimisations for energy consump-
tion, which we do not consider here, have been investigated by Katz [4] and Lawitzky, Wollherr, Buss [6]. The
former considers the Uniform distribution and analyses the probability of reaching the green or the red phases
of the lights, with obvious implications for the energy consumption. The latter work sets up a modified Bellman
equation for the problem and provides algorithms to solve it. Numerical results for various distributions follow.

Stochastic optimal control problems naturally lend themselves to dynamic programming methods for approx-
imating optimal solutions, see the books of Bertsekas [1, 2]. Here we take a different approach and rigorously
derive the explicit form of the optimal trajectory in the Exponential and Uniform cases. We use concepts of ac-
tion integrals from classical mechanics and intuition from statics of fluids. Connecting optimal control problems
to equations of motion in mechanics is not new, see for example Join, Delaleau and Fliess [3].

2 Action integral and Euler–Lagrange curves
Define the Lagrangian L by

L(x, v, t) =
[
t+ k(x, v)

]
· f(t). (5)

The expected time to reach the destination becomes a classical action integral:

S : =

∫ q

0

L
(
x(t), ẋ(t), t

)
dt. (6)
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Notice that up to this moment we have not incorporated our constraints 0 ≤ ẋ(t) ≤ vmax and −β ≤ ẍ(t) ≤ α
into the function k or the Lagrangian. We will solve the unconstrained variational problem first, then deal with
the constraints later.

We recap the idea behind deriving the Euler–Lagrange equations of motion. The principle of least action
in physics states that mechanical systems follow paths t 7→ x(t) that are critical points of an action functional
like (6) in the space of paths meeting endpoint constraints. If we forget about our restrictions 0 ≤ ẋ(t) ≤ vmax
and −β ≤ ẍ(t) ≤ α, then this is exactly what we are looking for in our stochastic control problem. The idea is
that perturbing an optimal path by adding a small variation ε · η(t) can only make the action larger, for any
choice of the function η. Hence, for any η, the modified action

Sε : =

∫ q

0

Lε

(
x(t), ẋ(t), t

)
dt =

∫ q

0

L
(
x(t) + εη(t), ẋ(t) + εη̇(t), t

)
dt

is minimal at ε = 0 for any η. Here we consider only an interval of time 0 ≤ a < b < q and assume that
η ≡ 0 outside (a, b). This will inform us about the unconstrained solution in this interval, for any boundary
conditions. We can use this solution in any interval where it actually satisfies our constraints. As explained in
[5], we arrive at the Euler–Lagrange equation

∂L
∂x

− d
dt

∂L
∂v

= 0.

Substituting in our Lagrangian, for t ∈ [0, q) we obtain

f(t) · ∂k
∂x

− d
dt

(
f(t) · ∂k

∂v

)
= 0

∂k

∂x
− ∂k

∂v
· d
dt

ln f(t)− d
dt

∂k

∂v
= 0

− 1

vmax
+

1

αvmax
(vmax − v) · d

dt
ln f(t) +

1

αvmax

d
dt

(vmax − v) = 0

that is,

ẍ+
d
dt

ln f(t) · ẋ− d
dt

ln f(t) · vmax + α = 0.

Writing v(t) = ẋ(t) we have the ODE for the function v = v(t)

v̇ +
d
dt

ln f(t) · v − d
dt

ln f(t) · vmax + α = 0. (7)

We will refer to solutions of this ODE as Euler–Lagrange curves, often represented by vE–L.

3 Existence of an optimal velocity profile
Before we specialise to the case of any particular distribution, we will show that under the general assumptions
stated so far there exists at least one optimal trajectory. First, we need to formalise the space of velocity
functions we are working with.

Definition 3.1 ((α, β)-Lipschitz Function). For any q ∈ (0,∞) ∪ {∞}, and constants α, β ≥ 0, a function
f : [0, q) → R is said to be (α, β)-Lipschitz when

−β (t2 − t1) ≤ f(t2)− f(t1) ≤ α (t2 − t1) ∀ 0 ≤ t1 ≤ t2 < q.

Every allowed velocity function t 7→ v(t) for our car is an (α, β)-Lipschitz function. A combination of this
condition, the bounds 0 ≤ v(t) ≤ vmax, and the total distance constraint gives us two spaces of functions to
work with:

Definition 3.2. We define two spaces of functions V and W as follows:

V =
{
v : [0, q) → [0, vmax]

∣∣∣ v(0) = v0 and v is (α, β)-Lipschitz with
∫ q

0

v(t) dt = d
}
.

W =
{
v : [0, q) → [0, vmax]

∣∣∣ v(0) = v0 and v is (α, β)-Lipschitz with
∫ q

0

v(t) dt ≤ d
}
.
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Notice that V ⊆ W . Our assumption that d is large enough that we can avoid passing the traffic light until
time q ensures that V and W are not empty. The action integral functional S given in equation (6) may be
rewritten in terms of v using x(t) =

∫ t

0
v(s)ds:

S(v) =

∫ q

0

L
(∫ t

0

v(s) ds, v(t), t
)

dt. (8)

We want to show that there exists some v∗ ∈ V such that

S(v∗) = min
v∈W

S(v).

In order to do this we define a metric D on W to make it into a compact metric space on which S is a continuous
functional. The metric D is defined using f and F , the probability density function and cumulative distribution
function of T , the residual time until the traffic light turns green. As motivated in the introduction by our
choice to obtain T via a stationary renewal process, we assume that f is a bounded non-increasing function.
We also assume that

E(T ) =
∫ q

0

1− F (t) dt < ∞,

which is equivalent to assuming that the interarrival times Yi have finite second moment.

Definition 3.3. Let ζ : [0, q) → (0, q) be given by ζ(t) = 1− F (t) + f(t). For g, h ∈ W , let

D(g, h) =

∫ q

0

|g(t)− h(t)| ζ(t)dt.

Note that ζ is non-increasing, and integrable:∫ q

0

ζ(t)dt = 1 + E(T ) < ∞.

Lemma 3.4. D is a metric on W and D–convergence is equivalent to locally uniform convergence on [0, q).

Proof. Since every g ∈ W is Lipschitz and hence continuous, D is indeed a metric on W . (If D(g, h) = 0 then
g = h a.e., hence g = h everywhere by continuity.) Define M := max{α, β}.
(i) D(gn, g) → 0 =⇒ gn → g locally uniformly. Fix 0 < κ < q and ϵ > 0. Suppose, towards a contradiction,
that

sup
t∈[0,κ]

|gn(t)− g(t)| ≥ ϵ

for infinitely many n. For each such n choose t0 ∈ [0, κ] with |gn(t0) − g(t0)| ≥ ϵ. By the (α, β)–Lipschitz
property of gn and g,

|gn(t)− g(t)| ≥ |gn(t0)− g(t0)| −M |t− t0| −M |t− t0| ≥ ϵ− 2M |t− t0|.

Let
δ = min

( ϵ

2M
,
κ

2

)
.

Then for all t ∈ [t0 − δ, t0 + δ] ∩ [0, κ] we have |gn(t) − g(t)| ≥ ϵ/2. Because ζ is non-increasing and t ≤ κ on
this set, ζ(t) ≥ ζ(κ). Hence, writing I := [t0 − δ, t0 + δ] ∩ [0, κ] and noting |I| ≥ δ, we obtain

D(gn, g) =

∫ q

0

|gn − g| ζ ≥
∫
I

ϵ

2
ζ(t)dt ≥ ϵ

2
ζ(κ) |I| ≥ ϵ

2
ζ(κ) δ > 0,

a contradiction to D(gn, g) → 0. Therefore supt∈[0,κ] |gn(t) − g(t)| → 0. Since κ > 0 was arbitrary, gn → g
locally uniformly.

(ii) gn → g locally uniformly =⇒ D(gn, g) → 0. Let ϵ > 0. Split the D–integral at some large R > 0:

D(gn, g) =

∫ R

0

|gn − g| ζ(t) dt︸ ︷︷ ︸
(A)

+

∫ q

R

|gn − g| ζ(t) dt︸ ︷︷ ︸
(B)

.

(A) Head estimate. By uniform convergence on [0, R], there exists N and δ > 0 such that for all n ≥ N ,
supt∈[0,R] |gn(t)− g(t)| < δ. Hence, for n ≥ N ,

(A) ≤ δ

∫ R

0

ζ(t)dt.
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Since
∫ R

0
ζ(t)dt < ∞, choose δ small enough that δ

∫ R

0
ζ(t)dt < ϵ/2.

(B) Tail estimate. Because 0 ≤ gn, g ≤ vmax, we have |gn − g| ≤ 2vmax, whence

(B) ≤ 2vmax

∫ ∞

R

ζ(t)dt.

By integrability of ζ, choose R so large that
∫ ∞

R

ζ(t)dt <
ϵ

4vmax
, yielding (B) < ϵ/2.

Combining (A) and (B), for this R and all n ≥ N we have D(gn, g) < ϵ. Hence D(gn, g) → 0.
This completes the proof of the equivalence between D–convergence and locally uniform convergence.

We now show some properties of the metric space (W,D) and the functional S that will be essential in
proving the uniqueness of an optimiser.

Lemma 3.5. The metric space (W,D) is compact.

Proof. Recall from Lemma 3.4 that the topology induced by the metric D is the topology of locally uniform
convergence on [0, q). In metric spaces, sequential compactness is equivalent to compactness. We will show
that (W,D) is sequentially compact; that is to say, every sequence of functions in W has a subsequence that
converges locally uniformly (and hence with respect to D) to a limit that lies in W . Any sequence (vn)

∞
n=1

of functions in W is uniformly bounded, since they take values in [0, vmax], and equicontinuous by the (α, β)-
Lipschitz condition. Hence on each compact interval [0, κ] (for κ < q), by the Arzelà–Ascoli theorem there
is a subsequence converging uniformly. So by a diagonal argument, there is a subsequence converging locally
uniformly on [0, q), to some function v : [0, q) → R. We must show that v ∈ W . The pointwise convergence
implies that v takes its values in the closed interval [0, vmax], and that v(0) = limn→∞ vn(0) = v0. It also implies
that for any 0 ≤ t1 ≤ t2 < q we have

v(t2)− v(t1) = lim
n→∞

(vn(t2)− vn(t1)) ≤ α(t2 − t1),

and
v(t2)− v(t1) = lim

n→∞
(vn(t2)− vn(t1)) ≥ −β(t2 − t1).

That is, v is (α, β)-Lipschitz. Finally, by Fatou’s lemma,∫ q

0

v(t) dt =
∫ q

0

lim
n→∞

vn(t) dt ≤ lim inf
n→∞

∫ q

0

vn(t) dt ≤ d,

since all the functions vn are non-negative measurable functions. Therefore v ∈ W as required.

Lemma 3.6. S is continuous on (W,D).

Proof. The function k(x, v) displayed in (4) is a polynomial in x and v, so it is bounded and Lipschitz on
[0, d]× [0, vmax]. That is to say, there exists a finite constant C such that for any two pairs of points (x, g) and
(y, h) in [0, d]× [0, vmax],

|k(x, g)− k(y, h)| ≤ C(|x− y|+ |g − h|).
Let xg(t) =

∫ t

0
g(s)ds and xh(t) =

∫ t

0
h(s) ds, and note that

|xg(t)− xh(t)| ≤
∫ t

0

|g(s)− h(s)| ds,

so ∫ q

0

|xg(t)− xh(t)|f(t)dt ≤
∫ q

0

∫ t

0

|g(s)− h(s)| ds f(t) dt

=

∫ q

0

|g(s)− h(s)|
∫ q

s

f(t)dt ds

=

∫ q

0

|g(s)− h(s)|(1− F (s)) ds.

Hence
|S(g)− S(h)| ≤

∫ q

0

|k(xg(t), g(t))− k(xh(t), h(t))| f(t) dt

≤
∫ q

0

C
(
|xg(t)− xh(t)|+ |g(t)− h(t)|

)
f(t) dt

≤ C

∫ q

0

|g(s)− h(s)|(1− F (s) + f(t)) ds

= C ·D(g, h).

Thus S is Lipschitz continuous (in particular continuous) on (W,D).
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We are now prepared to prove the existence an optimal velocity trajectory in V .

Theorem 3.7. For the functional S : W → R defined by (5) and (8), there exists at least one v∗ ∈ W that

minimises S, and in fact any minimiser satisfies
∫ q

0

v∗(t) dt = d, hence lies in V .

Proof. Since (W,D) is compact and S(v) is continuous, it follows from the Extreme Value Theorem that there
exists at least one minimiser of S in W . We will show that every minimiser in fact lies in V . Suppose (towards

a contradiction) that v∗ ∈ W minimises S but
∫ q

0

v∗(t) dt = d0 < d. We construct w ∈ W with
∫ q

0
w(t) dt < d,

w ≥ v∗, and w ̸≡ v∗ and then show that this contradicts the minimality of v.

(a) Constructing w in the case q = ∞. For a small ϵ > 0, set

w(t) = max
(
v∗(t), v∗(t(1− ϵ))

)
, y(t) = min

(
v∗(t), v∗(t(1− ϵ))

)
.

Note that w(t) ≥ v∗(t) and 0 ≤ w(t) ≤ vmax for every t ≥ 0, and since w is the pointwise maximum of
two (α, β)-Lipschitz functions, it is itself (α, β)-Lipschitz. By the change of variables s = t(1− ϵ),∫ ∞

0

v∗(t(1− ϵ)) dt =
1

1− ϵ

∫ ∞

0

v∗(s) ds =
d0

1− ϵ
.

Note 0 ≤ y ≤ v∗ and y(t) → v∗(t) pointwise as ϵ → 0, so by dominated convergence
∫
y(t) dt → d0. Hence∫ ∞

0

w(t) dt =
∫ ∞

0

v∗(t) dt+
∫ ∞

0

v∗(t(1− ϵ)) dt −
∫ ∞

0

y(t) dt =
(
1 + 1

1−ϵ

)
d0 −

∫ ∞

0

y(t) dt −−−→
ϵ→0

d0.

Thus for ϵ sufficiently small,
∫∞
0

w(t) dt < d, so w ∈ W . If there exists no t′ > 0 such that w(t′) > v∗(t′)
then we have v∗(t) ≥ v∗((1− ϵ)t) for all t > 0, but this implies∫ ∞

0

v∗(t) dt ≥
∫ ∞

0

v∗((1− ϵ)t) d(t) =
1

1− ϵ

∫ ∞

0

v∗(t) dt

which is only possible if v∗ ≡ 0, since we know 0 ≤
∫∞
0

v∗(t) dt ≤ d and v∗(t) ≥ 0 for all t. However, we
know v∗ ̸≡ 0 because that is the unique maximiser of S and since d > 0, W contains at least one non-zero
trajectory that is better. Hence there exists at least one t′ > 0 such that w(t′) > v∗(t′), and since v and
w are continuous there is a non-empty open set of such t′.

(b) Constructing w in the case q < ∞. Let v+ be trajectory starting at v+(0) = v0 which accelerates at rate
α until it reaches velocity vmax and then remains at vmax until time q. For a small ϵ > 0, define

w(t) = (1− ϵ)v∗(t) + ϵv+(t).

Then w(t) ≥ v∗(t) and 0 ≤ w(t) ≤ vmax for all t ∈ [0, q]. Moreover, w is (α, β)-Lipschitz since it is a
convex linear combination of (α, β)-Lipschitz functions. We have∫ q

0

w(t) dt = (1− ϵ)

∫ q

0

v∗(t) dt+ ϵ

∫ q

0

v+(t) dt

so for sufficiently small ϵ we have
∫ q

0
w(t) dt < d and hence w ∈ W . Because of our assumption that the

traffic light is near enough to make our problem non-trivial, (see equation (1)), v+ ̸∈ W , so v∗ ̸≡ v+.
Hence there exists a non-empty open set of times t′ ∈ [0, q) such that w(t′) > v∗(t′).

(c) Contradicting statement. At every time t ∈ [0, q), the car with velocity function w is both at least as fast
as the car with velocity function v, and at least as far forward; for a non-empty open set U of times t′

when w(t′) > v∗(t′), it is strictly further forward, and there is a positive probability that T ∈ U . Hence
a car following trajectory w has strictly smaller expected arrival time than a car following trajectory v,
contradicting the minimality of v.

Therefore
∫ q

0

v∗(t) dt = d, and v∗ ∈ V .

Now that we have have shown that there is at least one optimal trajectory v∗ in the general case of a bounded
non-increasing probability density function f , we can examine the structure of optimal trajectories.
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4 Finding an Optimal Trajectory
We now seek to minimise the action integral introduced in Section 2. Recall that the action is∫ q

0

(
t+

1

2αvmax
(vmax − ẋ)2 +

1

vmax
(L− x)

)
· f dt

subject to x(t) =
∫ t

0
v(s)ds for v ∈ W , i.e. ẋ = v. The Lagrangian can be reduced by removing constant terms

( L
vmax

+ vmax
2α ) ·f(t) and t ·f(t), since they do not affect minimisation of the integral. We also multiply the action

integral by the constant 2αvmax, so that our goal is now to minimise∫ q

0

(
ẋ2 − 2vmaxẋ− 2αx

)
· f dt.

We have already seen in Theorem 3.7 that every minimiser v∗ lies in V , so we now assume that
∫ q

0
ẋ(s) ds = d.

Hence we may choose an arbitrary constant B (effectively a Lagrange multiplier) and instead minimise∫ q

0

(
ẋ2 − 2vmaxẋ− 2αx

)
· f + 2Bẋdt.

Notice that with the cumulative density function F for the density f(t),∫ q

0

xf dt = x(q)F (q)− x(0)F (0)−
∫ q

0

ẋF dt = d−
∫ q

0

ẋF dt.

The constant d is irrelevant to the minimisation, so we remove it. Finally, our goal is to minimise the following
integral:

Ŝ =

∫ q

0

fv2 + 2(αF +B − vmaxf)v dt.

4.1 Pressure interpretation
Next, we define a new dummy variable C which allows us to write fẋ2 + 2(αF + B − vmaxf)ẋ as an integral.
Define the pressure,

PB(t, C) = −(vmax − C)f(t) + αF (t) +B (9)

and rewrite our action integral as ∫ q

0

∫ ẋ

0

PB(t, C)dC dt. (10)

Here we have divided by a factor of 2 but this does not change the minimisation. Note that the pressure is
bounded by

−vmaxK +B ≤ PB(t, C) ≤ α+B (11)

since 0 ≤ f ≤ K by (3) and 0 ≤ C ≤ vmax on the domain t ∈ [0, q). A small change dC in the variable C
is an infinitesimal unit of height and a change dt is a unit of width. Hence, dC dt can be thought of as an
infinitesimal element of two-dimensional volume of an imaginary liquid. The distance constraint imposed by a
Lagrange multiplier corresponds to having a fixed volume of liquid.

It makes sense to call PB(t, C) pressure because (potential) energy is the volume-integral of pressure. More-
over, we can now treat the Euler–Lagrange curves as natural isobar level lines of a filled container. The
constrained parts of any optimal solution curve (phases where the acceleration is α, the deceleration is β, or the
velocity is 0 or vmax) can be thought of as rigid plates that are pushed by the force acting from the pressurised
liquid within the tank. Unlike a regular tank of liquid, our liquid fills according to level lines prescribed by
Euler–Lagrange curves given by

vE–L(t) = vmax − B

f(t)
− α

F (t)

f(t)
. (12)

By varying the arbitrary constant B we obtain a family of Euler–Lagrange curves. The reader can verify that
these trajectories are indeed Euler–Lagrange curves by substituting vE–L into (7).

The Euler–Lagrange curves (12) are simply the isobar curves of the pressure PB(t, C), and it is clear why
this is so. Suppose the point

(
t0, v(t0)

)
is on an isobar curve v(t) of total volume d. We can set B so that

PB(t0, v(t0)) = 0, which also means that the pressure is zero along this isobar. Due to the volume constraint,
any other curve must go both above and below v(t) at different regions of t. As PB(t, C) is monotone in C,
the regions above v(t) contribute with positive values in the action integral, while the regions below, which are
missing liquid up to the isobar, are missing negative contributions. Hence this other curve would be better off
equalising between these two regions so it cannot be optimal.
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Lemma 4.1. Suppose v, v′ are distinct elements of V and vE–L is some Euler–Lagrange curve, as in (12).
Suppose that for every t ∈ [0, q), v′(t) lies in the closed interval with endpoints v(t) and vE–L(t). Then S(v′) <
S(v), so v is not an optimal trajectory.

Proof. Let I = {t ∈ [0, q) : v(t) < v′(t) ≤ vE–L(t)} and J = {t ∈ [0, q) : v(t) > v′(t) ≥ vE–L(t)}. Then
v(t) = v′(t) for all t outside I ∪ J , and due to the integral constraints

∫ q

0
v(t) dt = d =

∫ q

0
v′(t) dt we have∫

I
v′(t)− v(t) dt =

∫
J
v(t)− v′(t) dt.

Let p be the constant value of the pressure PB(t, vE–L(t)). Then for t ∈ I and v(t) ≤ C ≤ v′(t) we have
PB(t, C) < p, and for t ∈ J and v′(t) ≤ C ≤ v(t) we have PB(t, C) > p. Now

S(v′)− S(v) =

∫
I

∫ v′(t)

v(t)

PB(t, C) dC dt−
∫
J

∫ v(t)

v′(t)

PB(t, C) dC dt <
∫
I

∫ v′(t)

v(t)

p dC dt−
∫
J

∫ v(t)

v′(t)

p dC dt < 0.

4.2 Elements of the optimal trajectory
As we will see later, the acceleration and velocity constraints can move the solution away from Euler–Lagrange,
but the liquid analogy can guide our intuition in the process. Obviously, vmax restricts the height, while
the acceleration bounds restrict the slope of the liquid’s surface. These latter can be thought of as slanted,
but possibly moveable walls of the pool. As we now show, the optimal trajectory can only be formed from a
combination of segments of Euler–Lagrange curve, α acceleration, β deceleration and constant vmax or 0 velocity.

From now on we will assume that for any given B,

˙vE–L(t) + β =
ḟ(t) · (B + F (t))

f(t)2
− α+ β

is either

• positive for all 0 ≤ t < q, or

• negative for all 0 ≤ t < q, or

• changes sign once from positive to negative in the interval (0, q).

This will be relevant for examples where the slope of vE–L can become steeper than −β, and remains steeper
permanently, such as the Exponential case. However, if the slope later comes back to be less steep than −β,
then this causes complications that go beyond the scope of this paper.

There exist distributions F for which some Euler–Lagrange curves fail to be concave, and then there exists
a choice of β such that the assumption above does not hold. One such distribution has cumulative distribution
function

F (t) = c

(
2t− 1

p
ln

(
cosh

(
p(t− 1)

)
cosh(−p)

·
cosh

(
p(t− 2)

)
cosh(−2p)

))
for positive constants p and c, where c is chosen so that limt→∞ F (t) = 1.

Theorem 4.2. Any optimal trajectory v∗ ∈ V must be constituted solely of some combination of finitely many
segments of Euler–Lagrange curve, α acceleration, β deceleration and constant vmax or 0 velocity. In fact, the
phases of positive velocity must occur in one of the following seventeen orders. The boxed cases are those that
cannot occur if the Euler–Lagrange curves never have slope less than −β while they are positive.

• α, α⇝ β , α⇝ EL⇝ β , α⇝ vmax ⇝ EL⇝ β , α ⇝ EL, α ⇝ vmax ⇝ EL, α⇝ vmax ⇝ β ,
α⇝ vmax,

• β, β ⇝ EL⇝ β , β ⇝ EL,

• vmax ⇝ EL⇝ β , vmax ⇝ EL, vmax ⇝ β , vmax,

• EL⇝ β , EL.
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t

F (t)

f(t) = F ′(t)

vE–L(t)

Figure 1: Plot of F (t), its derivative f(t) = F ′(t), and the associated Euler–Lagrange curve vE–L(t).

If q = ∞, to satisfy the fixed volume condition d, then the cases α, α⇝ vmax and vmax are excluded, and every
optimal trajectory is followed by a phase of 0 velocity after it comes to a halt at the traffic light. If q < ∞, a
final phase of 0 velocity may or not be present, and if present it cannot follow an α or vmax phase.

We will prove this result over the course of this subsection. We approach the problem by eliminating
non-optimal curves until we are left with only those satisfying the statement of the above theorem.

Theorem 4.2 does not completely determine a unique optimal trajectory for given (generic) values of v0
and d, since it does not specify the times at which the transitions between the phases occur. For some of
the patterns, these transition times are always determined by the initial velocity and the distance constraint∫ q

0
v(t) dt = d. Omitting the final 0 phase if it present, these ten patterns are:

α⇝ β, α⇝ EL, α⇝ vmax ⇝ EL, α⇝ vmax ⇝ β, β, β ⇝ EL, vmax ⇝ EL, vmax ⇝ β, EL.

Among these are some patterns that can only occur when either v0 = vmax or an equation relating between v0
and d is satisfied. For example, the pattern β ⇝ 0 requires d = v20/2β, and the pattern EL⇝ 0 requires a more
complicated equation to be satisfied (since there is a unique Euler–Lagrange curve that has velocity v0 at time
0, and its integral from time 0 up to the time at which it reaches velocity 0 must equal d). Each of the other
patterns can only occur when v0 and d satisfy some (pattern-dependent) inequalities. Phase diagrams which
show which patterns are optimal for different regions in (v0, d)-space are discussed in detail in Section 5.2 and
Section 6.2.

For the remaining four patterns, those that include a phase of Euler–Lagrange motion that is not the first
phase and is followed by a phase of β deceleration, we will need to do further work (in Section 6.1) in order to
determine the optimal transition times. Again omitting the trailing 0 velocity phase, these patterns are:

α⇝ EL⇝ β, α⇝ vmax ⇝ EL⇝ β, β ⇝ EL⇝ β, vmax ⇝ EL⇝ β EL,⇝ β.

The overall idea of the proof of Theorem 4.2 is to analyse the trajectories in V for which it is not possible to use
Lemma 4.1 to show non-optimality. In applying that lemma, we have the freedom to choose any Euler–Lagrange
curve. A key step in our proof is Proposition 4.15, which says that if none of the possible Euler–Lagrange curves
allow us to make an integral-preserving perturbation of v ∈ V as in the statement of Lemma 4.1, then there
must exist a particular value p0 of the pressure for which v has a highly constrained structure on the set
{t ≥ 0 : PB(t, v(t)) > p0}, and a different highly constrained structure on the set {t : PB(t, v(t)) < p0}. We
finish by using this result to make a case-by-case analysis of the possible overall shapes of any optimal trajectory.

Definition 4.3. A trajectory v ∈ V is locally non-increasable at a point t ∈ (0, q) if there exists ϵ > 0 such
that on each of the intervals (t− ϵ, t] and [t, t+ ϵ), v is either a linear function with slope either α or −β or a
constant function with value vmax, and moreover the restriction of v to (t − ϵ, t + ϵ) is concave. Otherwise we
say v is locally increasable at t. If U ⊆ (0,∞) is an open set, we say v is locally non-increasable on U when for
every t ∈ U , v is locally non-increasable at t.

Definition 4.4. A trajectory v ∈ V is locally non-decreasable at a point t ∈ (0, q) if there exists ϵ > 0 such
that on each of the intervals (t− ϵ, t] and [t, t+ ϵ), v is either a linear function with slope either α or −β or a
constant function with value 0, and moreover the restriction of v to (t− ϵ, t+ ϵ) is convex. Otherwise we say v
is locally decreasable at t. If U ⊆ (0,∞) is an open set, we say v is locally non-decreasable on U when for every
t ∈ U , v is locally non-decreasable at t.
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il ir

v(il)

v(ir)
α

β

Case 1 (No interference from boundary conditions):
In this case the tent consists of just α acceleration
followed by β deceleration.

il ir

v(il)

v(ir)

α

vmax

Case 2 (vmax on the right): If v(ir) = vmax then
the tent is capped by a horizontal line of vmax and
has no β component.

il ir

v(il)

v(ir)

vmax

β Case 3 (vmax on the left): If v(il) = vmax then the
tent is capped by a horizontal line of vmax and has
no α component.

il ir

v(il)

v(ir)

α

vmax β
Case 4 (α⇝ vmax ⇝ β): When it is not possible to
take a trajectory of α ⇝ β between v(il) and v(ir)
without exceeding vmax, the tent must contain a flat
region at vmax between α and β.

Figure 2: The four possible shapes of positive tent

Definition 4.5. For an interval I = [il, ir] where 0 < il < ir < q, and a continuous function v : I → [0, vmax],
we say v is a positive tent on I if and only if there exist i1 and i2 such that il ≤ i1 ≤ i2 ≤ ir and

• on (il, i1), v has slope α,

• on (i1, i2), v has slope 0 and value vmax, and

• on (i2, ir), v has slope −β.

Lemma 4.6. For any 0 < il < ir < q and values vl, vr ∈ [0, vmax] such that −β ≤ vr−vl

ir−il
≤ α, there exists a

unique positive tent v : [il, ir] → [0, vmax] such that v(il) = vl and v(ir) = vr.

Proof. v is the pointwise supremum of the family of (α, β)-Lipschitz functions f : [il, ir] → [0, vmax] such that
f(il) = vl and f(ir) = vr. This family is non-empty because the affine linear function satisfying these boundary
conditions is (α, β)-Lipschitz.

Definition 4.7. Suppose 0 < il < ir ≤ q and let I = {x : il ≤ x ≤ ir}. We say that a continuous function
v : I → [0, vmax] is a negative tent on I if and only if there exist i1 and i2 such that il ≤ i1 ≤ i2 ≤ ir and

• on (il, i1), v has slope −β,

• on (i1, i2), v has slope 0 and value 0, and

• on (i2, ir), v has slope α.

Lemma 4.8. For any 0 < il < ir < q and values vl, vr ∈ [0, vmax] such that −β ≤ vr−vl

ir−il
≤ α, there exists a

unique negative tent v : (il, ir) → [0, vmax] such that v(il) = vl and v(ir) = vr.

Proof. v is the pointwise infimum of the family of (α, β)-Lipschitz functions f : [il, ir] → [0, vmax] such that
f(il) = vl and f(ir) = vr. This family is non-empty because the affine linear function satisfying these boundary
conditions is (α, β)-Lipschitz.
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il ir

v(il)

v(ir)
β

α

Case 1 (No interference from boundary conditions):
In this case the tent consists of just β deceleration
followed by α acceleration.

il ir

v(il)

v(ir)
β

0

Case 2 (0 on the right): If v(ir) = 0 then the tent
is capped by a horizontal line of v = 0 and has no
α component.

il ir

v(il)

v(ir)

0

α

Case 3 (0 on the left): If v(il) = 0 then the tent is
capped by a horizontal line of v = 0 and has no β
component.

il ir

v(il)

v(ir)β

0 α

Case 4 (α ⇝ 0 ⇝ β): When it is not possible to
take a trajectory of β ⇝ α between v(il) and v(ir)
without hitting v = 0, the tent must contain a flat
region at 0 between β and α.

Figure 3: The four possible shapes of negative tents

Lemma 4.9. If v is locally non-increasable on an interval I ⊆ (0, q) then the restriction of v to I is a positive
tent.

Proof. Consider an arbitrary closed sub-interval I. For every neighbourhood around some t ∈ I, v is concave
and hence v is concave on all of I. At each point, on each side, v is either linear with slope α or −β, or constant
at level vmax. Thus the one-sided slopes lie in {α, 0,−β}, with slope 0 occurring only on a plateau where
v ≡ vmax. Concavity implies one-sided slopes are non-increasing as we move to the right, and at each point the
left slope is no less than the right slope. Since allowed slopes are ordered α ≥ 0 ≥ −β and are non-increasing,
the slope can drop at most once from α to 0 and at most once from 0 to −β. Hence there exist i1 ≤ i2 such
that:

• on (iℓ, i1) the slope is α (so v is affine with slope α);

• on (i1, i2) the slope is 0, and v ≡ vmax;

• on (i2, ir) the slope is −β (so v is affine with slope −β).

Degenerate cases (i1 = iℓ, i2 = ir, or i1 = i2) are allowed. Therefore v|I is a positive tent.

Lemma 4.10. If v is not locally non-increasable on some non-empty open set U , then there exists a non-empty
closed interval I ⊆ U and an (α, β)-Lipschitz function v′ : [0, q) → [0, vmax] such that v′(t) = v(t) for all t /∈ I
and the restriction of v′ to I is a positive tent and v′(t) ≥ v(t) on I and for at least one t ∈ I, v′(t) > v(t).

Proof. Pick t0 ∈ U where v is not locally non-increasable. Pick a closed interval I = [il, ir] ⊂ U so that
t0 ∈ (il, ir). Then v|I is not a positive tent, since if it were a positive tent then v would be locally non-
increasable at t0. Let τ+ be the unique positive tent on I with τ+(il) = v(il) and τ+(ir) = v(ir), as described
in Lemma 4.6. By the supremum characterisation in Lemma 4.6, τ+ is the pointwise supremum of all (α, β)-
Lipschitz functions on I with these endpoint values; since v ∈ V is (α, β)-Lipschitz, we have v ≤ τ+ on I. If
v ≡ τ+ on I then v|I would be a positive tent, contradicting the choice of I; hence v < τ+ somewhere in (il, ir).
Define

v′(t) :=

{
τ+(t), t ∈ [il, ir],

v(t), t /∈ [il, ir].
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Then v′ is (α, β)-Lipschitz because both pieces are, and they agree at il, ir. Also, v′ takes values in [0, vmax],
equals v off I, and on I is a positive tent with v′ ≥ v and v′ > v somewhere in I.

Lemma 4.11. If v is locally non-decreasable on an interval I ⊆ (0, q) then the restriction of v to I is a negative
tent.

Proof. The proof of this lemma is almost identical to the proof of lemma 4.9, simply use convexity to show that
the restriction of v to I is a negative tent.

Lemma 4.12. If v is not locally non-decreasable on some non-empty open set U , then there exists a non-empty
closed interval I ⊆ U and an (α, β)-Lipschitz function v′ : [0, q) → [0, vmax] such that v′(t) = v(t) for all t /∈ I
and the restriction of v′ to I is a negative tent and v′(t) ≤ v(t) on I and for at least one t ∈ I, v′(t) < v(t).

Proof. The proof of this lemma is also very similar to that of lemma 4.10, one can follow the exact same
argument with negative tents instead of positive ones.

Lemma 4.13. Suppose we have a trajectory v ∈ V and an Euler–Lagrange curve vE–L such that there are two
non-empty open subintervals of (0, q), I = (il, ir) and J = (jl, jr), where v(t) < vE–L(t) in I and v(t) > vE–L(t)
in J . If v is neither locally non-increasable on I nor locally non-decreasable on J , then v is not optimal.

Proof. We will construct a perturbation v′ ∈ V of v, distinct from v, such that v(t) = v′(t) for t outside I ∪ J ,
v(t) ≤ v′(t) ≤ vE–L(t) for t ∈ I, and vE–L(t) ≤ v′(t) ≤ v(t) for t ∈ J . We will then apply Lemma 4.1.

As we did in the proofs of Lemmas 4.10 and 4.12, let τ+ be the unique positive tent on I such that
τ+(il) = v(il) and τ+(ir) = v(ir), and let τ− be the unique negative tent on J such that τ−(jl) = v(jl) and
τ−(ir) = v(ir). Define interpolation constants γI , γJ ∈ [0, 1], and define a perturbed trajectory v′ by

v′(t) = v(t) + 1(t ∈ I) · γI [τ+(t)− v(t)] + 1(t ∈ J ) · γJ [τ−(t)− v(t)].

The interpolation constants γI and γJ must now be chosen to ensure the integral of v′ is still equal to d. We
also choose these small enough such that 0 ≤ v′(t) ≤ vmax for all t ∈ (0, q) and it stays on the same side of vE–L
as the unperturbed v. This is possible because of the assumptions that v is neither locally non-increasable on I
nor locally non-decreasable on J and that v < vE–L on I and v > vE–L on J . We begin by setting the integral
of v′ equal to d:

d =

∫ q

0

v(t) + 1(t ∈ I) · γI [τ+(t)− v(t)] + 1(t ∈ J ) · γJ [τ−(t)− v(t)] dt.

The integral of v is just d since we know that v ∈ V , therefore

d = d+ γI

∫
I
[τ+(t)− v(t)] dt+ γJ

∫
J
[τ−(t)− v(t)] dt.

Hence we must choose the interpolation constants so that

γJ = γI ·
∫
I [τ

+(t)− v(t)] dt∫
J [v(t)− τ−(t)] dt

.

Therefore under these conditions v′ ∈ V .

v(t)

vE–L(t)

α

β β α

Figure 4: A candidate trajectory v(t) intersecting an Euler–Lagrange curve. Tents τ+ and τ− bring the
trajectory closer to the Euler–Lagrange curve. An interpolated curve between these tents and v(t) will have a
lower action integral.

Now we can apply Lemma 4.1 to see that v is not optimal.
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Suppose v ∈ V is an optimal trajectory. For any p ∈ R, let

Lp = { t ∈ (0, q) : PB(t, v(t)) < p },
Up = { t ∈ (0, q) : PB(t, v(t)) > p }.

Corollary 4.14. Suppose v ∈ V is an optimal trajectory. Then for all p ∈ R, either v is locally non-increasable
on Lp or v is locally non-decreasable on Up. If p is too large or small, then Up or Lp maybe be empty. For such
values of p this statement has no content since one of the sets will be empty.

Proof. This is a simple corollary of Lemma 4.13.

Proposition 4.15. There exists a pressure value p0 such that v is locally non-increasable on Lp0
and locally

non-decreasable on Up0
.

Proof. Let
A = { p : v is locally non-increasable on Lp },
B = { p : v is locally non-decreasable on Up }.

By Corollary 4.14, A ∪ B = R. For any p ∈ A, if p′ < p then Lp′ ⊆ Lp so p′ ∈ A. That is, A is a down-set.
Similarly, B is an up-set. We claim that A and B are closed sets. Indeed, suppose for a contradiction that A is
not closed; then A must be an interval of the form (−∞, p) for some p ∈ R. Then Lp =

⋃
p′<p Lp′ since for every

t ∈ Lp, we may choose p′ such that PB(t, v(t)) < p′ < p, then t ∈ Lp′ , and since v is locally non-decreasable
on Lp′ , we see that v is locally non-decreasable at t. Hence v is locally non-decreasable on Lp, which is to say
that p ∈ A, a contradiction. Similarly, B is closed. By definition, v is locally non-increasable on the empty set.
Recalling the pressure bounds (11), if we take p = −vmaxK +B then Lp = ∅, so −vmaxK +B ∈ A. That is, A
is non-empty. Similarly, B is non-empty, since α+B ∈ B.

It now follows that A ∩ B ̸= ∅. We may take any p0 ∈ A ∩ B, then v is locally non-increasable on Lp0 and
locally non-decreasable on Up0 , as required.

We can now combine these lemmas to show that the optimal trajectory must be one of the seventeen
choices outlined in Theorem 4.2. At this point we will define a useful new quantity vβ , the point at which the
deceleration on an Euler–Lagrange curve becomes greater than β, so that the optimal curve can no longer follow
Euler–Lagrange without violating boundary conditions.

Proof of Theorem 4.2. Let v∗ ∈ V be an optimal trajectory. Apply Proposition 4.15 to fix a pressure value
p0. Recall that Euler–Lagrange curves are the isobars of pressure and therefore have constant pressure value.
Proposition 4.15 implies that v∗ consists of segments of this particular Euler–Lagrange curve, or pieces below
this curve that are locally non-increasable, or pieces above that are locally non-decreasable. By lemmas 4.10
and 4.12, these pieces must be upper or lower tents, respectively. Notice though that any of these three choices
might be missing from v∗.

Therefore v∗ must be a concatenation of pieces from the finite set {α, β,E–L, vmax, 0}. (Here E–L stands for
Euler–Lagrange.) We will perform a case analysis to construct an exhaustive list of possible optimal trajectories.
We begin by supposing that the intersection between v∗ and the Euler–Lagrange curve of pressure p0 is non-
empty. This could happen via a positive length-segment of Euler–Lagrange curve or the optimal path just
crossing it in isolated points. In this latter case we consider such isolated points as length-zero segments. What
could possibly be attached to the left of such a segment? One option is that the leftmost point is simply the
start time 0, or there could be some more pieces of a different class of trajectory that come before this leftmost
point. If the piece of trajectory we add on the left is always greater than the Euler–Lagrange curve, then we
know it must be a negative tent by Lemma 4.12. Of the possible negative tents, only one could be added to the
leftmost point of a segment of Euler–Lagrange curve and remain greater than it, and that is just a single piece
of β deceleration. Now if the piece of trajectory we add on the left is less than the Euler–Lagrange curve, it
must be a positive tent by Lemma 4.10. Of the positive tents, if we wish to remain less than the Euler–Lagrange
curve, we can append either

• vmax, α⇝ vmax or just α, if the leftmost point of Euler–Lagrange is at velocity v > vβ , or

• any of the upper tents if the leftmost point is at velocity v ≤ vβ .

Now we proceed with the right side of the Euler–Lagrange segment. Firstly, we have the trivial case that there
are no adjoining trajectories and the Euler–Lagrange segment just ends at v = 0. If there is an adjoining
segment on the right, and that segment is greater than the Euler–Lagrange curve then it must be a negative
tent as before. To stay above the Euler–Lagrange curve, this negative tent can be either

• v = 0, if the velocity at this rightmost point is v ≥ vβ (i.e. vβ < 0), or
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• β ⇝ 0, if the velocity at this rightmost point is v < vβ . This is because here the Euler–Lagrange curve is
steeper than β deceleration.

By putting together these restrictions on a trajectory some simple case analysis produces the list in Theorem 4.2.

Before we move onto specific cases of distributions we will see that the Lagrange multiplier simply allowed
us to shift the pressure values by an arbitrary constant under certain conditions.

Lemma 4.16. Varying B shifts the Euler–Lagrange curves left and right if and only if the time for the light to
go green, T , has either the Uniform(0, q) or an Exponential distribution.

Proof. We write (12) as a function of t and B,

v = vBE–L(t, B) = vmax − B

f(t)
− α

F (t)

f(t)
.

Computing partial derivatives we have

∂v

∂B
= − 1

f(t)
,

∂v

∂t
=

Bḟ(t)− α
[
Ḟ (t)f(t)− F (t)ḟ(t)

]
f(t)2

.

By imposing the condition that ∂v
∂B ∝ ∂v

∂t and rewriting everything in terms of F (t) and its derivatives we arrive
at the following ODE:

cḞ = BF̈ − αḞ 2 + αFF̈ ,

where c is a constant. Setting y = Ḟ gives F̈ = y dy
dF , so that c = (B+αF ) dy

dF −αy. Solving the linear equation
yields

y = C1(B + αF )− c

α
.

Hence, Ḟ = DF + A, with D = αC1 and A = C1B − c
α . One option here is C1 = 0, in which case y = Ḟ is a

constant and we arrive at the Uniform distribution. Otherwise, the solution is F (t) = const. ·eDt− A
D . Applying

F (0) = 0 and F (t) → 1 as t → q gives

F (t) = 1− exp

(
c

B + α
t

)
,

c

B + α
< 0,

ensuring Ḟ ≥ 0, F̈ ≤ 0.

Motivated by this, we will now investigate the Uniform and Exponential distributions, which are clearly both
special cases of Lemma 4.16. The Euler–Lagrange curves are given by the following isobars for an Exponential
and Uniform Distribution:

vE–L(t) = vmax − B

f(t)
− α

F (t)

f(t)
=

vmax +
α

λ
−
(α+B

λ

)
eλt, for T ∼ Exp(λ),

vmax − αt− qB, for T ∼ U(0, q).
(13)

For these examples, varying B just pushes the Euler–Lagrange curve left or right, thanks to Lemma 4.16. In
other cases this could be more complicated. If the Euler–Lagrange curve starts at v0 = v(0) then

v0 = vmax − B

f(0)
, B = (vmax − v0)f(0)

so
vE–L(t) = vmax − (vmax − v0)

f(0)

f(t)
− α

F (t)

f(t)
= vmax − (vmax − v0)f(0) + αF (t)

f(t)
,

which is still non-increasing in t, since f is non-decreasing.

5 The Uniform Case
Let us now assume that T ∼ Uniform(0, q) for some q > 0, hence f(t) = 1

q on this interval. Then ODE (7)
simply reads v̇ = −α. That is, the Euler–Lagrange curves represent deceleration at constant rate α. When
β < α, this solution cannot be valid. However, this is unrealistic since all road vehicles can brake at least as fast
as they can accelerate. Hence we disregard this case and assume that deceleration at rate α is always possible.

There are many trajectories that finish with a phase of deceleration at rate α ending at time q, and we need
to pick one that satisfies x(0) = 0, ẋ = v where v ∈ V .
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5.1 Case analysis of trajectories
Since v̇ = −α ≥ −β on all Euler Lagrange curves, we know that the boxed trajectories in 4.2 are not valid for
the uniform case since Euler Lagrange curves are clearly never steeper than β. We also have a finite q in the
uniform case, so trajectories which do not end stationary are valid, such as α, α ⇝ vmax and constant vmax.
Recalling the notion of pressure introduced in Section 4.1, we can imagine a tank of water filling according to
level lines prescribed by shifted Euler Lagrange curves of the form v̇ = −α. We will use Figure 5 to inform our
case analysis of optimal trajectories. It is helpful to define four critical time points. Let t1 be the time that an
instant deceleration from v0 becomes stationary, v0

β . We then define t2 to be the time it takes to decelerate from
v0 to stationary on an Euler–Lagrange curve, v0

α . Next, t3 is defined as the time at which instant acceleration
from v0 at rate α reaches velocity vmax, vmax−v0

α . Finally, t4 is equal to t3 added to the time it takes to decelerate
from vmax to 0 at rate α, t3 + vmax

α . We know that t1 ≤ t2 ≤ t4 and t3 ≤ t4 always, but q can take take any
positive value. This leaves us with 15 possible orderings of the inequality once we include q, depending on
the values of α, β, v0 and vmax. We illustrate one of these cases in Figure 5. A complete case by case analysis
analysis here would be very cumbersome, so we instead treat a general method for finding the optimal solutions
in the uniform case. We have depicted Figure 5 at an angle so that the Euler–Lagrange lines are horizontal to
reinforce the intuition that finding an optimal solution is alike to filling a tank with water, where level lines are
lines of Euler–Lagrange. A simple method for finding the solution is as follows. First fix values of α, β, v0 and
q. We now know which order all of the time steps ti are in and can draw the relevant picture. All that remains
is to ‘fill’ the tank according to the Euler–Lagrange level lines. Fixing d tells us how much to fill the tank and
hence the optimal trajectory is the surface level of the water once the area is equal to d.

t1

t2
t3

t4
q

vmax

v0

t

v

Figure 5: A velocity–time diagram showing t1 ≤ t2 < t3 < t4 ≤ q. The green lines denote v̇ = −α isobars. The
blue line shows β deceleration, while the red lines illustrate potential optimal trajectories.
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5.2 Phase Diagrams - Uniform Case
It is now time to introduce our first phase diagram, we will use these plots throughout the following sections
to illustrate the possible different optimal trajectories depending on the values of v0 and d. The case of
t1 ≤ t2 ≤ t3 ≤ t4 ≤ q is depicted in Figure 6.
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α
− v20

2α
v0 = vmax

Figure 6: Phase-space diagram of v0 vs. d for t1 ≤ t2 ≤ t3 ≤ t4 ≤ q, with parameters α = 6, β = 20, and
vmax = 200. Units do not reflect realistic physical values.

6 The Exponential Case
In this section we analyse the case where Y ∼ Exp(λ), so that T ∼ Exp(λ), f(t) = λe−λt for t ≥ 0, and we have
q = ∞. The decision to solve this case is motivated by the memoryless property of the Exponential distribution,
which should simplify the problem, since it follows that the optimal acceleration can depend only on the current
position and velocity, and not the elapsed time. We have also seen in Lemma 4.16 that the Exponential
distributions have the special property that the Euler–Lagrange curves are translates of one another. The ODE
in (7) becomes

v̇ − λv = −α− λvmax.

A particular solution is v(t) = vmax + α
λ , while the homogeneous equation v̇ − λv = 0 has general solution

v(t) = −beλt. Combining these gives us a complete general solution of the unconstrained Euler–Lagrange
equation:

v(t) =
α

λ
+ vmax − beλt. (14)

Note that this is consistent with (13), where the constant b is written in terms of other constants as α+B
λ .

As a first iteration, we are interested in a solution that at time zero starts with 0 < v0 : = v(0) ≤ vmax. With
this initial condition we have the solution

v(t) = vmax +
α

λ
−
(
vmax − v0 +

α

λ

)
eλt. (15)

At time
t =

1

λ
ln
( λvmax + α

λvmax − λv0 + α

)
this velocity becomes zero, after which it turns negative, so this solution cannot be used beyond this time.

We can also integrate (15) to get the distance x(t) travelled by time t:

x(t) =

∫ t

0

v(r) dr =
(
vmax +

α

λ

)
t−

(vmax − v0
λ

+
α

λ2

)
·
(
eλt − 1

)
.

We can also now solve for vβ explicitly. By setting the derivative of the general solution to Euler–Lagrange
(14) equal to −β, we have that

v̇(t) = −λbeλt = −β.

Substituting this into (14) gives us

vβ = vmax +
α− β

λ
.
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6.1 When to slam the brakes?
We saw that, when vβ > 0, it is possible for an optimal trajectory to end with a segment of Euler–Lagrange
curve followed by β deceleration to come to a halt at the traffic light. But our analysis so far does not tell us
the optimal choice of the velocity vc at which to switch from E–L to β. We denote the time when this switch
happens by tc, and also define

A = vmax +
α

λ
. (16)

Theorem 6.1. Suppose that vβ > 0. If v∗ is an optimal trajectory that ends in E–L ⇝ β, then v∗ switches
from an Euler–Lagrange curve to β deceleration upon reaching a velocity v∗c that is the unique solution to the
equation F(vc) = 0 in the range vβ ≤ vc < vmax, where

F(vc) := −λ2

β
v2c +

λ

β
(β + λA)vc + (e−

λvc
β − 1)(β + λA). (17)

For certain parameter choices the unique solution of F(vc) = 0 with vc > vβ may in fact satisfy vc ≥ vmax,
in which case there is no optimal trajectory that ends in E–L⇝ β; instead the optimal trajectory must end in
vmax ⇝ β or in α⇝ β.

Because the Exponential Distribution is memoryless, the decision about when to switch optimally should
only depend on the current velocity and location (i.e. volume of ‘liquid’ past the current time); information
about the earlier part of the trajectory is irrelevant. In particular, for the analysis we may assume without loss
of generality that the Euler–Lagrange curve was preceded by a vmax phase, and that v0 = vmax. Therefore for
ease of calculation we will progress with the class of trajectories vmax ⇝ E–L ⇝ β. Recalling the form of (14)
the trajectory we have described can be written as

v(t) =


vmax, 0 ≤ t ≤ t0(tc),

A− (A− vc)e
−λ(tc−t), t0(tc) ≤ t ≤ tc,

vc − β(t− tc), tc ≤ t ≤ tc +
vc
β .

(18)

The notation t0(tc) conveys that t0 is simply a function of tc thanks to the equation

vmax = A− (A− vc)e
−λ(tc−t0). (19)

We divide the proof into two steps. The first step shows how (17) arises, and the second step shows existence
and uniqueness of a positive solution. We will call the action Sexp in this Exponential case (specialising (10)).

Proof: deriving (17). We have that

Sexp(tc, B) =

∫ t0

0

∫ vmax

0

PB(t, C) dC dt+
∫ tc

t0

∫ A−(A−vc)e
−λ(tc−t)

0

PB(t, C) dC dt

+

∫ tc+vc/β

tc

∫ vc−β(t−tc)

0

PB(t, C) dC dt.

The constant B is arbitrary, but we need to optimise our vmax ⇝ E–L ⇝ β trajectory in the set V . The
constant volume d restriction means that, unless v′(tc) = −β, changing tc will also cause a translation of
the Euler-Lagrange curve, modifying the value of t0. Naturally, vc is also sensitive to this change. Below we
implicitly differentiate with respect to tc, with the understanding that t0 and vc all change to keep the trajectory
in V , meeting the constraint that the total distance equals d. We will use the notation ′ to denote the derivative
with respect to tc. To find an optimal tc we set S′

exp = 0. (Later we will also check the signs of the derivatives
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with respect to tc at the endpoints of the allowed range for tc, namely where vc = vβ or vc = vmax.)

0 = S′
exp =

t′0

∫ vmax

0

PB(t0, C) dC (T1)

+

∫ A−(A−vc)e
−λ(tc−tc)

0

PB(tc, C) dC (T2)

− t′0

∫ A−(A−vc)e
−λ(tc−t0)

0

PB(t0, C) dC (T3)

+

∫ tc

t0

[v′c + λ(A− vc)]e
−λ(tc−t) · PB(t, A− (A− vc)e

−λ(tc−t)) dt (T4)

+
(
1 +

v′
c

β

) ∫ vc−β(tc+
vc
β −tc)

0

PB(tc +
vc
β , C) dC (T5)

−
∫ vc−β(tc−tc)

0

PB(tc, C) dC (T6)

+ (v′c + β)

∫ tc+vc/β

tc

PB(t, vc − β(t− tc)) dt (T7)

There are many cancellations here. (T1) and (T3) cancel since the upper limit of the integrals are both vmax
by (19). (T2) and (T6) cancel, since both of their upper limits simplify to vc. (T5) is equal to 0 since both the
limits of the integral are 0. This leaves us with (T4) and (T7).

We now turn the generic formula (9) into the specific pressure for the Exponential case:

PB(t, C) = −(vmax − C)λe−λt + α
(
1− e−λt

)
+B.

If we expand (T4), using abbreviation (16), it can be written as∫ tc

0

[v′c + λ(A− vc)]e
−λ(tc−t) ·

[
−
(
vmax −A+ (A− vc)e

−λ(tc−t)
)
λe−λt + α

(
1− e−λt

)
+B

]
dt.

=

∫ tc

0

[v′c + λ(A− vc)]e
−λ(tc−t) · [α+B − λ(A− vc)e

−λtc ] dt.

We still have not fixed B; it is just a constant that we can use to shift isobar lines up and down. As a result of
the volume boundary condition

∫ q

0
v(t) dt = d, S′

exp(tc, B)− S′
exp(tc, 0) = (B · d− 0 · d)′ = 0, so S′

exp(tc, B) does
not depend on B. If we fix B = λ(A− vc)e

−λtc −α it is clear that (T4) is equal to 0. Our optimality condition
now is only that (T7) must be equal to 0 for this value of B.

We will examine the sign of v′c + β a bit later, but now consider (T7) without this factor. Expanding
PB(t, vc − β(t− tc)) we are left with∫ tc+

vc
β

tc

PB(t, C) dt =
∫ tc+

vc
β

tc

−
(
vmax − vc + β(t− tc)

)
λe−λt + α

(
1− e−λt

)
+B dt

=

∫ tc+
vc
β

tc

λ(vc − β(t− tc)−A)e−λt + α+B dt.

(20)

The physical intuition behind equating this to 0 is that otherwise the slope −β wall of our imaginary tank of
liquid would feel an overall force, the integral of the pressure along the wall, pushing it to translate as a rigid
plate that remains at slope −β. The pressure along the E–L part of the liquid boundary is zero, by our choice
of B, so this part of the boundary feels no force. Although the pressure integrals along the α and vmax parts of
the tank boundary are positive, they are already pushed as far as is allowed by the constraints.

Performing the integral (20), we obtain

(vc + βtc −A)
(
e−λtc − e−λ(tc+

vc
β )
)
+ β

(
(tc +

vc
β
)e−λ(tc+

vc
β ) − tce

−λtc
)
+

β

λ

(
e−λ(tc+

vc
β ) − e−λtc

)
+ (α+B)

vc
β
.

The Euler–Lagrange curve at vc gives us vc = A − α+B
λ eλtc which rearranges to α + B = λ(A − vc)e

−λtc . We
can substitute this into the expression above to eliminate exponentials involving tc, obtaining

(vc + βtc −A)
(
1− e−λ vc

β
)
+ β

(
(tc +

vc
β
)e−λ vc

β − tc
)
+

β

λ

(
e−λ vc

β − 1
)
+ λ(A− vc)

vc
β
.
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Multiplying through by λ, this simplifies to

λ(vc −A)− β +
λ2

β
(A− vc)vc + e−λ vc

β (β + λA).

Rearranging these terms, we arrive at the expression for F(vc).

Figure 7: Expected cost S(vc) as a function of switch velocity vc, with parameters λ = 0.1, α = 6, β = 20,
d = 4000, L = 4000 and vmax = 200. The optimal vc ≈ 86.94 is given by the local minimum. As we will see
slightly later, a restriction vc ≥ vβ does not allow us to exploit the global minimum on the left of the curve.

Proof of existence and uniqueness of a solution v∗c for (17). To show that such a root exists, we must perform
some basic analysis of the function. First we take derivatives.

F ′(vc) = −2λ2vc
β

+
λ

β
(β + λA)(1− e−

λvc
β )

and

F ′′(vc) = −2λ2

β
+

λ2

β2
(β + λA)e−

λvc
β .

Proposition 6.2. For vβ > 0, v∗c ≥ vβ, where v∗c is the optimal change velocity from an Euler–Lagrange curve
to β deceleration and vβ is the point at which an Euler lagrange curve decelerates at β.

Proof. Taking the value of the second derivative of F(vc) at 0 we find

F ′′(0) =
λ2

β2
(−β + λA) =

λ3

β2

(
vmax +

α− β

λ

)
=

λ3

β2
vβ .

We can also see that F(0) = F ′(0) = 0 trivially. As v → ∞, F (vc) → −∞ and as v → −∞, F(vc) → ∞.
For vβ > 0, F ′′(0) > 0 and F ′′(vc) ↘ − 2λ2

β < 0, so we indeed must have a positive non-trivial root which we
called v∗c . It also follows that F(vc) > 0 on the interval (0, v∗c ) and F(vc) < 0 on the interval (v∗c ,∞). Similarly,
if vβ ≤ 0, F ′′(0) ≤ 0 so we must have one trivial non-negative root.

Now we show that v∗c ≥ vβ always. We define the function

G(U,A) := −βU2 + (β + λA)(U + e−U − 1).

and notice that at U = λvc
β this takes the value of F(vc). Next we define

H(U) : = G(U, β
λ
(U + 1)) = −βU2 + (β + β(U + 1))(U + e−U − 1) = β((U − 2) + (U + 2)e−U ).

We can now deduce that
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Figure 8: F(v) against v for different values of vβ

• 1
βH(U)

∣∣∣
U=0

= 0

• 1
βH

′(U)
∣∣∣
U=0

= 1 + e−U − Ue−U − 2e−U
∣∣∣
U=0

= 1− Ue−U − e−U
∣∣∣
U=0

= 0

• 1
βH

′′(U) = −e−U + Ue−U + e−U = Ue−U > 0 if U > 0.

These three statements imply that H(U) is positive for any U > 0. In particular, picking U =
λvβ
β gives

0 < H
(λvβ

β

)
= G

(λvβ
β

, vβ +
β

λ

)
= G

(λvβ
β

,A
)
= F(vβ).

Therefore, for vβ > 0, F(vβ) > 0. In view of the above properties of F(v), we must have v∗c ≥ vβ .

To connect this result to S′
exp, we now carefully examine the factor v′c + β in (T7).

Lemma 6.3.
v′c = − λβvmax(A− vc)

β(vmax − vc) + λ(A− vc)vc
.

Proof. The value of vc is determined by the constraint
∫∞
0

v(t) dt = d. Substituting in from (18),∫ t0

0

vmax dt+
∫ tc

t0

A− (A− vc)e
−λ(tc−t) dt+

∫ tc+vc/β

tc

vc − β(t− tc) dt = d.

Differentiating with respect to tc,

vmaxt
′
0 + vc −

(
A− (A− vc)e

−λ(tc−t0)
)
t′0 +

∫ tc

t0

(
v′c + λ(A− vc)

)
e−λ(tc−t) dt− vc +

∫ tc+vc/β

tc

v′c + β dt = 0.

The t′0 terms cancel via (19):

v′c

(∫ tc

t0

e−λ(tc−t) dt+
vc
β

)
+

∫ tc

t0

λ(A− vc)e
−λ(tc−t) dt+ vc = 0.

Notice that, again via (19),

λ

∫ tc

t0

e−λ(tc−t) dt = 1− e−λ(tc−t0) =
vmax − vc
A− vc

.

Hence the above display reads

v′c

( 1
λ

vmax − vc
A− vc

+
vc
β

)
+ vmax = 0.
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Corollary 6.4. When 0 ≤ vc ≤ vmax, we have v′c < 0.

Corollary 6.5. When vβ > 0, we have v′c + β > 0 in the range vβ < vc < vmax; v′c + β = 0 at vβ and vmax and
negative outside this interval.

Proof. v′c + β > 0 is equivalent to
λvmax(A− vc)

β(vmax − vc) + λ(A− vc)vc
< 1,

i.e.
λv2c + (β − λA− λvmax)vc + λvmaxA− βvmax < 0.

The two roots of this convex quadratic are

λA+ λvmax − β ±
√
(β − λA− λvmax)2 − 4λ(λvmaxA− βvmax)

2λ

=
λA+ λvmax − β ± (λvmax + β − λA)

2λ
=


vmax

A− β

λ
= vβ .

The inequality therefore holds on the interval (vβ , vmax).

We can now complete the proof of Theorem 6.1. S′
exp was shown to be the product of positive constants,

F(vc) and the factor v′c + β. We also saw that, when vβ > 0, we have the following signs:

0 < vc < vβ vβ < vc < v∗c v∗c < vc < vmax
F(vc): + + −
v′c + β: − + +

(v′c + β) · F(vc): − + −

By Corollary 6.4 the sign of ∂Sexp

∂vc
is the opposite of the sign of S′

exp. Thus we see that vβ is a local maximum
and, if v∗c < vmax, then this is a unique minimum in the permissible range (vβ , vmax).

In the next section we will show phase space diagrams that divide the (v0, d)-plane into regions corresponding
to different structures of optimal trajectory. To do this we will need to create a refinement of the list of optimal
trajectories in Theorem 4.2. We now know that the choice of these trajectories depends on the values of v∗c and
vβ . For v∗c ≥ vmax the optimal solution curve will never include an E–L segment and for vβ ≤ 0 it will never
change from E–L to β deceleration.

Starting with α

• α⇝ β

• α⇝ EL⇝ β

• α⇝ vmax ⇝ EL⇝ β

• α⇝ EL (vβ ≤ 0)

• α⇝ vmax ⇝ EL (vβ ≤ 0)

• α⇝ vmax ⇝ β (v∗
c ≥ vmax)

Starting with β

• β

• β ⇝ EL⇝ β

• β ⇝ EL (vβ ≤ 0)

Starting with vmax

• vmax ⇝ EL⇝ β

• vmax ⇝ EL (vβ ≤ 0)

• vmax ⇝ β (v∗
c ≥ vmax)

Starting with E–L

• EL⇝ β

• EL (vβ ≤ 0)

Figure 9: The possible combinations making up an optimal trajectory (Exponential case)
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v0

tc q = ∞

vmax

t

v

Figure 10: A velocity–time diagram for the Exponential case. The green curves denote possible Euler-–Lagrange
curves followed by β segments; they correspond to different values of d. The blue line indicates β deceleration,
and the red curve shows a particular optimal trajectory following α⇝ vmax ⇝ EL⇝ β ⇝ 0. Note the change
from Euler–Lagrange to β occurs at tc, which does not depend on d. In general, the Euler–Lagrange curve is
not tangent to the −β segment where they meet.

6.2 Phase Diagrams - Exponential Case
We can now construct our first phase space diagram under the conditions that v∗c < vmax and vβ > 0. Firstly,
we must find expressions for the boundaries between each phase. The diagram must start with the boundary
condition d ≥ v2

0

2β , since otherwise it is not physically possible for the car to decelerate to a standstill without
crashing into the traffic light. If the car starts at v0 below v∗c , we know that it is never optimal to travel along
an Euler–Lagrange curve, since the solution curve would have changed to β deceleration by this point. The
only possible combination of trajectories with no E–L segment and v0 < vc∗ < vmax is α ⇝ β since only β
deceleration is the boundary we have just discussed. This α⇝ β phase will continue until we cross v∗c somewhere
in the motion, allowing us to solve for another clear boundary. Combining the distance covered accelerating
from v0 to v∗c at α, (v∗

c )
2−v2

0

2α , with the distance covered decelerating from v∗c to a standstill, (v∗
c )

2

2β , we have

d = v2c (
1
2β + 1

2α )−
v2
0

2α as our next boundary. Above this boundary, if v is below an E–L curve, the vehicle will
accelerate at α to some value va > v∗c , and then travel along an E–L curve since this is always the most optimal
above v∗c , until it reaches v∗c , after which it must return to β deceleration until stationary. The next boundary
we seek is when va can increase no further since it is equal to vmax. The α acceleration from v0 to va covers
v2
a−v2

0

2α metres. Next, we must fit an E–L curve to start at va. The standard E–L curve we derived earlier is
given by v(t) = A− beλt, where A = vmax +

α
λ and we can vary b. Using the initial conditions v(0) = va we can

deduce that A− b = va and thus v(t) = A− (A− va)e
λt. Now we compute the distance travelled from va to v∗c ,

which occurs at t∗c . ∫ t∗c

0

A− (A− va)e
λt dt = At∗c −

A− va
λ

(eλt
∗
c − 1).

Since we have that v(t∗c) = v∗c = A − (A − va)e
λt∗c we can solve for t∗c = 1

λ ln
A−v∗

c

A−va
. Substituting this into the

integral result gives
A

λ
ln

A− v∗c
A− va

− va − v∗c
λ

. (21)

Finally, we can add the distance covered decelerating from v∗c to stationary at β, (v∗
c )

2

2β , and set all va = vmax to
obtain a third boundary expression.

d =
v2max − v20

2α
+

A

λ
ln

A− v∗c
A− vmax

− vmax − v∗c
λ

+
(v∗c )

2

2β

One final boundary expression can be obtained by considering the trajectory for which the vehicle travels down
an E–L curve immediately from v0, and then after v∗c decelerates at a rate of β until stationary. Between this
curve and the d =

v2
0

2β boundary we encounter β ⇝ EL⇝ β trajectories and below this curve we encounter the
α⇝ EL⇝ β which we have already explored. By combining the integral of an E–L curve from v∗c to v0 and β

deceleration (v∗
c )

2

2β we obtain

d =
A

λ
ln

A− v∗c
A− v0

− v0 − v∗c
λ

+
(v∗c )

2

2β
.
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Figure 11: Phase-space diagram of v0 vs. d, with v∗c < vmax and vβ > 0, and with parameters λ = 0.1, α = 6,
β = 20, v∗c ≈ 86.94, and vmax = 200. Units do not reflect realistic physical values.

We may now also explore a situation in which v∗c > vmax and vβ > 0. Now that v∗c is outside of the legal
range of velocities we can never have Euler–Lagrange in an optimal trajectory. Thus the problem simplifies
greatly. d ≥ v2

0

2β is still a necessary condition to not cross the traffic light. We can only follow α⇝ β since there
is no E–L and once d is significantly large we have α ⇝ vmax ⇝ β. The boundary for this can be computed
as the distance from v0 to vmax at α acceleration, v2

max−v2
0

2α added to the distance from vmax to stationary at β

deceleration, v2
max
2β . This results in the expression

d = v2max

(
1

2α
+

1

2β

)
− v20

2α
.
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Figure 12: Phase-space diagram of v0 vs. d, with v∗c > vmax and vβ > 0, and with parameters α = 6, β = 20,
and vmax = 200. Units are not from any standard unit system in which these are realistic physical values.

Finally, when vβ ≤ 0 we do not have to worry about the value of v∗c , since we never change from E–L to β.
We still have the β stopping boundary of d ≥ v2

0

2β . Our first boundary comes from the trajectory of travelling
purely along an Euler–Lagrange curve from v0 to stationary. Since no boundary conditions interfere this must
be the unique optimal trajectory. Above this curve we will see β ⇝ EL trajectories and below it α⇝ EL. This
boundary can by derived as before in (21) by integrating the E–L curve as it travels from vmax to 0 to obtain

d =
A

λ
ln

A

A− v0
− v0

λ
.
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Our final boundary condition comes from trajectories that accelerate to vmax at α and then after some time
follow an E–L curve to stationary. The boundary is given by the distance covered accelerating to vmax from v0
and then instantly decelerating down an E–L curve. This is given by

d =
v2max − v20

2α
+

A

λ
ln

A

A− vmax
− vmax

λ
.

This concludes all possible cases of optimal trajectory for the Exponential case.
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Figure 13: Phase-space diagram of v0 vs. d, with vβ ≤ 0, and parameters α = 6, β = 20, λ = 0.1, and
vmax = 200.
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