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Abstract

We consider the simple random walk conditioned to stay forever in a finite domain
Dy C Z%,d > 3 of typical size N. This confined walk is a random walk on the conductances
given by the first eigenvector of the Laplacian on Dy. On inner sets of Dy, the trace of this
confined walk can be approximated by tilted random interlacements, which is a useful tool to
understand some properties of the walk.

In this paper, we propose to study the cover time of inner subsets Ay of Dy as well as
the so-called late points of these subsets. If Ay contains enough late points, we obtain the
asymptotic expansion of the covering time as cy N¢ [log N —loglog N + g], with G a Gumbel
random variable, as well as a Poisson repartition of these late points. The method we use is
similar to Belius’ work about the simple random walk on the torus, which displays the same
asymptotics albeit without the loglog N term. In the more general setting of “ball-like” Ay,
we simply get the first term of the asymptotic expansion.

KEYWORDS: random walk, confined walk, tilted interlacements, covering, Dirichlet eigenvector,
coupling
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1 Introduction

Motivations This paper studies the covering of a finite domain Dy C Z% d > 3 of typical
size N > 1 by the simple random walk conditioned to stay in Dy forever, that is what we call
the confined walk. This process is in fact a random walk on the conductances given by the first
discrete Laplace eigenfunction on Dy.

Recently, the author proved in [Bou24a] a connection between this confined walk and “random
interlacements”, a Poisson cloud of random walk trajectories, in the form of local couplings. We
refer to the rest of the introduction for a rigorous definition.

It is well-known that random interlacements can also be coupled to the simple random walk
(SRW) on the torus (see [Win08; [TW11; (CT16]). Such coupling has been a powerful tool to
study the behavior of the random walk, and still is to these days (see [PRS23] and |[CN23| for
two recent applications).

Therefore, as an application of the work [Bou24a], it is natural to tackle the study of the
confined walk through interlacements in the same way as for the SRW on the torus. The main
difference between the SRW and the confined walk is the presence of a drift which results in
inhomogeneities in the occupation measure of the confined walk.

Our main result in Theorem [I.]] gives the asymptotic covering time of subsets of Dy, as well
as further asymptotics for some special subsets. We also give an application of interest in the
case where Dy is a ball and how it relates to the one-dimensional case.

We stress that this work relies of the existing approaches for the covering of the torus by the
SRW, which occurs around time g(0)N¢log N with g(0) the Green function of SRW on Z? at 0.
The main interest here is how the confined walk compares to the SRW and how these differences
translates in the results and proofs.
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1.1 Random walk confined in a large domain as a Doob transform

Fix a bounded connected open set D C R d > 3 which contains the origin and has a smooth
boundary (meaning it is given in local coordinates by a smooth function). Let N > 1 and define
Dy := (ND) N Z% the discrete blow-up of D with factor N.

We consider the substochastic matrix Py of the simple random walk (SRW) on Z¢ killed
when exiting Dy, given by

1
PN(i,j):ﬁ ifi,je Dyandi~j, 0 else.
Write Ay and ¢ for the first eigenvalue and associated eigenvector of Py, with the following
normalization:
Pyén =Avon, okl = D ¢x(x) =N (1.1)
z€DN
Note that ¢y is defined on Dy, but it might be convenient to extend it to Dy (and Z%) by
setting ¢ (z) =0 for ¢ Dy.
Let us introduce the following notation: for h : Z* — R a real-valued function on Z¢, we
define )
Agh(z) = 2 Z h(z+e) —h(z). (1.2)
le|=1
This way, one can rewrite (|1.1)) as the Dirichlet problem Agzpny = (1 — An)¢n, with boundary
condition ¢y = 0 on Dy = {y € Z*\ Dy : 3z € Dy,z ~ y}.We refer to [BB25] for more
details and references.
The confined walk on Dy is then defined as the Markov chain (X,),>¢ with transition
probabilities given by

AV ¢
pN(T,y) = 27]2 Cbzgi; l{xNy} )

Vz,y € Dy . (1.3)

N
Y
when p = cy¢3 () with the correct normalizing constant cy. Let us observe that the transition
kernel from is that of a random walk among conductances cy(z,y) := ¢n(z)dn(y), therefore
#3; is an invariant measure of the confined walk.

We give some properties of the confined walk and the eigenfunction ¢y in Section below.
For now, the most relevant of these properties is the uniform convergence of ¢ towards the
solution to the following (continuous) Dirichlet problem:

We write Pﬁ/ for its law with starting distribution u; we will also write PY when p = 6, and P

;)3 = /Dv(aj)de: 1 (1.4)

Av=pv on D,
v=20 on 0D ,

with A the usual Laplacian. This problem admits a sequence of solutions (p, ¢x)r>1 which is
ordered by the eigenvalues A\; > Ao > .... We write (i, ¢) := (11, 1) for simplicity. Note that
@ is €*° on the interior of D (see [BB25, Theorem 1.5]). We give a precise statement of the
convergence ¢y (z - N) — ¢(z) in Proposition [3.2| below.

1.2 Covering of inner sets - main result

1.2.1 General setting

From now on, we will focus on the covering time of an inner subset of Dy. We fix ¢ > 0 and
consider an open set A C D such that d(A,dD) > 2e. We define Ay := (NA)NZ% C Dy its

discrete blowup of size .



An additional assumption that we make on Ay is that it is s/N-regular for some s > 0 in
the sense of [PT15, Def. 8.1]: there is a s > 0 such that for any N large enough, for any point
x € OBy, there are balls B™ C Ay, B C Z?\ Ay U Ay of radius sN that are both tangent
to Ay at point . Note also that Ay is macroscopic, and may be arbitrarily close to Dy, for
example if D is a ball, or if D is well approximated by “s-regular” sets. This assumption is often
refered to as a positive reach assumption.

We define the range of the confined walk (X),>0 up to time ¢ > 0 as the random set
Ry (t) :={Xo,...,X¢}. The covering time of Ay is then defined as

Q:N(AN) = inf {t > 0: AN - R¢N(t)} = sup{Hz S AN}, (15)

with H, :=inf{t > 0 : X; = x} the hitting time of x. Let us state the first of the main results
of this paper, which gives asymptotics for €x(Ayx). We recall that g is the Green function of
SRW on Z°.

Theorem 1.1. Under PL, , we have the following asymptotics in probability:

¢27

Cn(AN) ~ g(0)a " ANNlog [Ay|  with ay = in£ ©*(x). (1.6)
xe
Moreover, €x(AN) has “super-Gumbel” fluctuation, in the sense that for any fized z € R,

liminf P2} (€n(An) < ANg Nd{1g|ANy+z})>exp( -, (1.7)
N—+o00

1.2.2 Gumbel and Poisson behaviour under a stronger assumption

If we restrict ourselves to the case where a, is achieved by a positive proportion of points in
OA, we are able to get the fluctuations of the covering time as well as a description of the “last
points to be covered by the confined walk. Fix o € ¢?(A), we define the a-level set of ? as
Lo:={z€D: p*(z)=a}.
Our stronger assumptlon on A is that 9A N L,, has in some sense a positive (d — 1) Lebesgue
measure, meaning that it is the trace on A of an open set of R%. We formulate this assumption
with the following statement, which also means that a +— L, is somewhat continuous at ay.

Assumption 1. We assume that there exists a g9 > 0 such that on {z € D : a) < % (z) <
(1+e0)ap }, we have V2 #£ 0.

Note that Assumption (1| implies that e '[{z € D : ap < ¢*(z) < (1 +€)ap}| converges
towards a positive limit (see Proposition in the Appendix). As an illustration of Assumption
one can consider the setting where D and A are concentric balls. In this case, the level sets
are spheres and ¢ = ¢(| - |) decreases with the radius of the sphere. We give more details on this
example in Section

Also note that under Assumption ? achieves its minimum a, on A, meaning OANL, A F D
In fact, we will see that the assumption forces the minimum to be achieved for a positive proportion
of points of JA.

For z € R, we define

th(2) = Nd{log |An| —loglog |[AN| + 2} . (1.8)

We then have the following statement.

Theorem 1.2. Assume that Assumption[1] holds and fix = € R. We have

dz
lim P(C(An) < t8(2)) = exp ( — kpe ?)  with Ky = / —_— 1.9
Jim B(E(Ay) < 1) = exp (— mxe ™) e TG 09



Moreover, there exists an explicit measure py, supported on ONN Ly, and with total mass Ky,
such that:

NRWN - Z 5z/N]l{ng¢ N} T Z 5r/N]l{Hx>tA(Z} —>NA’ , (1.10)

TEAN TEAN

with N* a Poisson point process on R® with intensity measure e *ux. The convergence holds
in distribution with respect to the weak topology on the space of point measures.

The proof of the two theorems heavily relies on the coupling of the range of the tilted RW
with well-chosen random interlacements given by ¢y. In the following sections, we properly
introduce the tilted random interlacements and state the coupling result that we use in this
paper. The core of the paper will then be to prove Theorems [2.1] & [2:2] which are the analogues
of Theorems & for the tilted interlacements. We present how the later can be deduced
from the former in Section [6l

Comment 1. The loglog |A x| correction in ¢x(0) is linked to the codimension of the set {(p? = a }.
We conjecture that in the general setting, the next order asymptotics to Theorem is given by
nloglog|An| where n is chosen such that e "|{z € A : ¢*(x) < (1 +¢)ap}| converges as ¢ | 0
towards a finite positive limit. This accounts for the fact that very few points of Ay are such
that ©? ~ ay, therefore there are fewer “last points” to visit.

1.3 Comparison with the random walk on the torus

Consider the discrete torus of size N > 1, denoted by T% := (Z/NZ)?, as well as the simple,
nearest-neighbour random walk (SRW) S = (S,,),>0 on T4 started from the uniform distribution.
For d > 3, the behavior of this walk has been extensively studied in the literature, with notably the
study of the last points of T that the SRW visits. For 7' > 0, we define Ry (S) := {So, ... S|y}
the range up to time 7. Then, the cover time C% of T4 is defined as

C4:=inf {t €N : Ry(S) =T%}. (1.11)

Write P, for the law of the simple random walk on Z¢ with starting point = € Z%, and simply
P = P(. With a slight abuse of notation, we also denote by P, /P the law of SRW on the torus.

With the work of Aldous |A1d83] on cover time of Markov chains, it is known that C% ~
g(0)N%log N in probability, where g is the SRW Green’s function. It is then natural to inquire
about both the fluctuation of C¢, around g(0)N%log N and about the points that are still not
covered by the SRW at time g(0)N%log N(1 4 o(1)).

Such questions where first tackled by Belius [Bell3], who first proved Gumbel fluctuations
for C’f{,:

Nlim sup
——+00 d
z€Ty,

P (C3 < 9N log N -+ ) —exp— )

=0. (1.12)

Regarding the “late points” of the SRW, Belius proved that these are distributed following a
Poisson point process with uniform intensity measure. Given z € R we may define NF the set of
points that are not covered at time g(0) N d{ log N + z}. Then, we have the following convergence
in distribution:

—N v ——— N7, (1.13)
N—>+oo
where N is a Poisson point process on [0, 1]% with intensity e ~*dly, with £4 the Lebesgue measure
on RY.

More recently, a work of Prévost, Rodriguez and Sousi [PRS23| improved our understanding
of the late points and proved a sharp phase transition for the behavior of the set. Consider
a € (0,1) and the a-fraction of the covering time 7§ := ag(0)N?log N. Then, if £ is the set of
points that are not covered by the random walk at time 73;, we have the following alternative:



o Ifa> %, there is a coupling with a Bernoulli field 23 such that £§ ~ Z% with probability
going to 1 as N — +odf}] Morally, the presence of a late point can be considered as
independent Bernoulli random variables.

o Ifa= %, the best coupling possible has probability e as N — 400 of having N~ 2N

e If a < %, there are no coupling that achieve a positive probability as N — 400 for the
event 2N ~ Zy.

The key element in the proof of these results is a coupling that links the SRW to a random
subset of Z? introduced in [Szn10] and called the random interlacements. Informally speaking,
the random interlacements (RI) at level u > 0, denoted by .#(u), is a Poissonian collection of
independent random walk trajectories whose “density” is governed by u. Successive works of
[Win08; TW11; |(CT16] proved that for any u > 0, the range R, ya is “locally close” to .# (u).
More details about interlacements are provided in Section

With this coupling, we can link C% to U$% the first level u at which .#(u) covers the torus
'I["}V by having Cj‘{, ~ N¢. Uf{,. The main benefit of working with interlacements is that the cover
level of a point has an explicit exponential distribution with parameter g(0)~! which corresponds
to its capacity (see Section below). Heuristically, we may think U¢ as a maximum of N9
exponential variables, hence the Gumbel fluctuations which also propagate to C%, therefore
resulting in . The fact that Gumbel fluctuations appear in this context in well-known in
extreme value theory when the exponential variables are i.i.d. (see [Res87, Proposition 0.3]).
Random interlacements however display strong correlations: the main step of the proof of
is then to create the required independence by studying the set of the last points to be covered.

Our main motivation for this paper is the coupling between the confined walk and a random
tilted interlacements on macroscopic inner subsets of Dy that was recently obtained in [Bou24a].
As in the case of the torus, we will use this coupling to prove Theorems & by first proving
their analogs for the tilted interlacements. We stress that these analog results are the main
point of this paper: the transfers to the confined walk, which we explain in Section [6] is mostly
straightforward. The main additional difficulty comes in the fact that contrary to the case of
the torus, the tilted interlacements is not spatially homogeneous. This can be translated in the
previous heuristics by saying that the cover level of x € Dy is an exponential variable with
position-dependent parameter (and not a constant like g(0)~1).

Acknowledgements The author warmly thanks his PhD advisors Quentin Berger & Julien
Poisat for their continued support. This research was partially supported by the Austrian Science
Fund (FWF) 10.55776/P34129.

2 Tilted interlacements, capacity and first estimates

2.1 Tilting of random interlacements

The tilted (continuous-time) random interlacements were introduced in [LS14] defined the tilting
of continuous-time random interlacements as a way to locally modify the trajectories of the RI.
It was used in particular to get large deviation principles for disconnection events, by locally
densifying the RI. We choose to present here the point of view of [Tei09] as random interlacements
on weighted graphs, with a touch of local tilting of interlacements present in [LS14]. We also
mention [CN23| for more recent example of their use in large deviation events.

Consider the space of doubly infinite transient paths on the d-dimensional lattice Z9, d > 3:

W={w:Z—-Z":¥neZlwn) - wn+1)i=1and lim |w(n)|=oo},

[n]—o0

*Here .£% ~ 2% means that 2y~ C .Z% C Zy" with a_ =a_(N) ~ a.



endowed with the o-algebra # generated by the maps w — w(n),n € Z. We can define
the equivalence relation w ~ w' <= 3k € Z,w(- + k) = v, and we write W* := W/ ~ the
corresponding quotient space as well as 7* the associated canonical projection. The set W* is
endowed with the o-algebra #* generated by 7*.

Let K be a subset of Z¢. We define for w € W the hitting times

Hg(w)=inf{k€Z : wk) e K}, Hg=inf{k>1: wk)ec K} (2.1)

with inf @ = 400 by convention. We also define Wx = W N {Hg < 400} the set of trajectories
that hit K.

Consider a positive function h : Z¢ — R*% which satisfies h = 1 outside a finite set.
Informally, the h-tilted random interlacements of level u > 0, denoted by .#,(u), is a Poisson
cloud of h-tilted random walk trajectories, i.e. random walks on Z% equipped with conductances
c(z,y) = h(z)h(y).

More precisely, we let P? denote the law of the random walk on conductances c(z,y) =
h(z)h(y) starting at z € Z%. Consider a finite set K C Z¢. Then, we can define the h-tilted
equilibrium measure of K by

el (x
e}}((z) = P}ZZ (HK = +00)h(z) |e|z::1 h(z + e)]l{ZeK} , é’}((x) = (m}i{’z((lz') . (2.2)

Here, cap”(K) is the tilted capacity of the set K, given by

cap”(K) = ej(K) = Y ei(x),
r€O0K

where we have used that the measure e}}( is supported on the (inner) boundary of K, which we

denote by 0K = {z ¢ K : Iy € Z¢\ K,z ~ y}.

Intuitively, é’}{ is the law of the first entrance point in K of a random walk trajectory that is
coming from far away. Indeed, we have PA( Xy, = x| Hx < +00) — &% (x) as |z| — +oo, and
the capacity can be alternatively written as

PI(H
caph(K) = lim z(Hr < +00)

|| -+oo Gh(z) , with G"(z) = Z PZ(Xn = z) the Green function,

n>0

and can be interpreted as the “size” of K seen from a random walk starting at a faraway point on
Z%. Since h = 1 outside a finite set, the tilted Green function G” resembles the Green function
of the SRW, hence we can convince ourselves that as |z| — 400, we have G?(2) ~ G(z) = |2|>77,
where | - | is the Euclidean norm on R? (see [LL10, Thm. 4.3.1]).

Now, let w* € Wy be a class of paths hitting K, and denote by @ the unique w € w* such
that Hi(w) = 0. For K finite, we can define on 7*(Wx) a finite measure vi given by

vic(w*) = Pl (w(Z-) | H = +00) x el (w(0)) x P ) (w(Z+)) (2.3)

which can be interpreted, after normalization, as the law of a SRW trajectory that hits K. The
measures v for K finite can be extended to a o-finite measure v on W*.

The tilted random interlacements process is a Poisson Point Process x" on the space W* x R,
with intensity " ® du. The random interlacements of level u > 0 is the subset .%,(u) C Z%
defined as

In(u) == {zEZd : Iw,v) th,vgu,zew(Z)} = {w(k:) ckeZ, (w,v) Exh,vgu} .

We denote by P, the law of the RI on the space M, (W* x Ry ) of point measures on W* x R,
which we also use to denote the law of the (non-decreasing) family of random subsets (%}, (u))y>0-



A key property of RI is that its trace in a finite set K can be recovered from a collection
of tilted RW trajectories — a property shared with the RI, see [Szn10]. More precisely, denote
by N[}?“ a Poisson variable with parameter ucap”(K) and let (X1));>¢ be i.i.d. h-tilted RW
trajectories starting from é}}(. We then have

Ihw) N K C{RL(XD) 1 1<j < NP AK. (2.4)

In particular, we deduce the following crucial identity, which characterizes the law of ., (u) as
a random subset of Z¢ (see [Szn10, Remark 2.2-(2)]): for any fixed v > 0 and any finite set
K c 74,

Py (S (u) N K = @) = exp ( — ucap”(K)) . (2.5)

2.2 Cover level of the tilted interlacements

Recall that we consider a subset Ay = (N -A)NZ¢ C Dy with A an open subset of D that
satisfies d(A,dD) > 2¢ for some ¢ > 0. Let us define A5, = {z € Dy : d(x,Dy) <eN} C Dy
the e N-enlarged version of Ay. The tilting functions that we will consider are given by

Op2) = {¢>N(x) if e As,

1 else.

Write PYN for the law of the random walk on conductances Wy (i)W (j) starting at = € Z%, i.e
with transition kernel denoted by py, (%, ).

As previously mentioned, the main ordeal of the paper is to prove an analog of Theorem
for the tilted interlacements .#y, . To this end, we define the covering level of the set Ax as the
random variable

Un(An) ==inf{u >0 : Ay C g, (u)} =sup{U, : x € AN}, (2.6)
with U, := inf{u >0 : z € Hy(u)} the covering level of z.

Theorem 2.1 (Cover level of the interlacements). Under Py, we have the following asymptotics
in probability:

Un(AN) ~ g(0)aytlog|[Ay| with ap = inf\tp2(x). (2.7)
HAS
Moreover, Un(AN) has “super-Gumbel” fluctuation, in the sense that for any fized z € R,
9(0) —z
liminf Py, (Un (Ay) < 25 {log [Av| +2}) = exp(—e 7). (2.8)
Let us define
A ty(2)
un(z) == = {1 |An|—loglog|An| + 2} . (2.9)

Nd

Our second theorem states that provided Assumptlon I 1| holds, U3 ~ ui (G) with G a Gumbel
random variable.

Theorem 2.2. Assume that Assumption[]] holds and fiz z € R. We have

lim Py, (U(AN) < ul(2)) = exp (— rpe ?), (2.10)
N—+o0
where K is the constant in Theorem[I.4. Moreover, the following convergence holds in distribution
with respect to the weak topology on the space of point measures:
(d) A,
NRIN - Z 5x/N]l{x€f¢ }_ Z 5x/N]1{U >u } —>N%+oo N Z, (211)

TEAN xEAN

with NN the same Poisson point process as the one in Theorem .



As explained in Section we can link Theorem to the capacity of a point. Indeed, ([2.5)
yields
Vo € 28 Yu >0, Py, (r & vy (u)) = exp ( —ucap?™ ({z})). (2.12)

Note that contrary to the case of simple random walk, cap¥~ ({x}) is not a constant. Therefore,
our first task is to understand its dependence in x. The following proposition is crucial, and
explains why (? appears in Theorem

Proposition 2.3. There are constants ¢,C > 0 that only depend on the dimension d > 3 such
that for all N large enough,

sup M -1/ <CN“. (2.13)

vehy | 93 (2)/9(0)
We prove Proposition [2.3]in the next section. For now, we state a useful corollary that will
be used extensively in the rest of the paper in order to replace cap?™ ({z}) with % ().

Corollary 2.4. Let f : Ay — Ry be non-zero and uy be such that uyN~—¢ — 0 (where ¢ is
the constant in Proposition . Then, we have

S H@Ple g Sun(n)) | 3 Faexp (- undk@)/o0) o1 (219)

N
TEAN TEAN oo

Comment 2. Proposition explains why the loglog N term appears in ([1.8)) and (2.9) while
being absent in ((1.12)). Indeed, when combined with the smoothness of ¢y, the Proposition
implies that for z,y € Ay,

cap™ ({2}) = cap™ ({u}) + 9(O)V2(a/N) U (1 4 o(1) (2.15)

Recall that on the torus, we can explain the log N factor by the extreme value theory: it
corresponds to the logarithm of the number of “relevant” points, which are the points z € T‘fv
such that P(U, > Uf) < sup,ep, P(Uw > Ug). In the case of the torus, as cap({w}) is constant,
so is P(Uy, > U$) therefore the set of relevant points is Ay (hence a factor log |Ay|). In our case
however, by and Proposition one can easily show that

_ 1
P(U, > 99 1og [Ay]) = P(U, > %9 log|Ay|) < cap¥™ AN _o(— ).
(U Z "o og | N|) wSE%FN (U = ap og | N|> cap ({Z}) g(O) O(log |AN|)

. : e — AN : o
Using ([2.15)), this condition is satisfied only for =< - . ‘XN‘ points, which are the relevant points in

this case. In particular, when considering the extreme value theory, we are left with a factor
log(JAn|/log |AN]|) = log |AN| — loglog |AN], thus explaining the loglog|A x| correction in (2.9).

3 Some useful estimates

3.1 Useful facts about the confined walk and eigenfunction

3.1.1 Probabilistic interpretation as a confined walk

Recall that PV is the law of the confined walk and P is the law of SRW on Z?. It is known, by
standard Markov chain theory (see e.g. [LL10, Appendix A.4.1]), that the transition kernel
is in some sense the limit, as T' — 400, of the transition kernels of the SRW conditioned to stay
in Dy until time T'. Indeed, if 7 is the first time the SRW exits Dy and x ~ y, we have

P,(Si=yn>T) 1P,(rn>T—-1) M AWPy(ry>T-1) Ay on(y)
P.(rnv >T) - 2d Pu(ry>T) 2 P.(ty > T) T—+oo  2d ¢n(z)’




the last limit being a consequence of the fact that P.(7y > T) = ¢n(2) H¢N”1 AT +0((Bx:)T)

onli3
as T — oo, for some Sy < Ay (see [LL10, Prop. 6.9.1]). E
We also have a useful relation to compare the simple and tilted random walks. Consider a
set A which intersects Dy, and an event A € Fp,, i.e. an event that depends on the trajectory
of the random walk until it hits A. Then, using the transition kernel py(z,y) from and
after telescoping the ratios of the ¢n’s, we have

1
on(z) HA<HZd\DN}] '
We can think of (3.1]) as a Feynman-Kac representation of the eigenvector ¢y .

PY(A) = E,|14- ()\N)_HA¢N(SHA)]1{ (3.1)

3.1.2 Properties of the eigenvector

Studying the confined walk requires some understanding of the eigenvector ¢n. With Q. Berger,
we investigated in [BB25| some properties of ¢ as N — +o00, which we will use in this paper.
Let us compile these results to facilitate their use. Recall that we are in the setting of positive
reach.

Proposition 3.1 (Regularity). There is a constant C' > 0 (that depends only on the domain D)
such that, for any x,y € Dy

d(xz,y
ox(y) — ox(a)] < € A2Y.

Note that this regularity implies that ratios of ¢n’s in the bulk of Dy are 0 and +oo.
According to [BB25, Corollary 1.14], there is a positive constant %1, and some N; > 1 such that,
for all N > Ny,

(3.2)

on () on ()

1
k1 < iInf < sup < —.
eyeBy ON(Y) ~ ayebs, ON(Y) T K1

This control of the ratios, combined with bounds on ¢y, extends to a control on the values of
¢n. More precisely, there is a positive constant k9, and some No > 1 such that, for all N > No,

1
ke < inf n(x) < sup dw(z) < —
zEBY, z€BS, K2

(3.3)

. (3.4)
Proposition 3.2 (Convergence). For any n > 0, define DY, := {z € Dy,d(z,0Dy) > nN}.
Then there exists a positive constant ¢, such that

on ()
vern | p(@/N)

— 1‘ <c, N1 (3.5)

3.1.3 On the principal eigenvalue

Let us mention that it is known (see [Wei58| or [BB25| for details) that Ay satisfies
Al
~ 2dN?
where A = \p is the first Dirichlet eigenvalue of the Laplace-Beltrami operator on D and o(1) is
a quantity that vanishes as N — 4o0.
In particular, there exists ¢y > 0 a universal constant, which can be made arbitrarily close to
A by taking N large enough, such that for any 7" > 0,

1< AT < eT/N* (3.7)
Therefore, combining (3.1]) and (3.3)) yields the following inequalities:

Av =1 (1+3(1)), (3.6)

+oo
k1P, (A) < PN (4) < ; P, (A) + 3 VP (A o e [k k+ DN?)| . (38)
k=1
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3.2 Green function of the tilted walk, proof of Proposition
We introduce the Green function of the tilted RW:

GV (z,y) Z PYN(X,=1).
n>0

Let us stress that this Green function is not symmetric in  and y. When x = y, we simply write
GYN(z) := GYN (x,x) which, contrary to the Green function of the SRW, does depend on .

Proposition 3.3 (Last exit decomposition). For any K C B and any = € Z¢,

VN p
PV (Hp < +00) = g{G‘I’N(x, z)m. (3.9)

Proof. Consider z € Z¢ and define Lg := sup{n > 0, X,, € K} the last time the tilted RW is in
K. Since the W y-tilted RW is transient, we have Ly < 400 PYN-a.s. Therefore,

PYY(Hi < +o00) = 3 3 PYY(Li = n.Xn =) = Y 3 PY¥(Xy = )Py~ (Hy = +00)
n>0yeK n>0yeK
= Z G‘I’N(a:, y)P;I’N(ﬁK =+00).
yeK

By (2.2), we have P‘I’N(HK = 4o0) = eK N(y)/Ang%(y) for all y € K C B, which proves the
lemma. =

Proposition 3.4. There are positive constants cq,Cq, independent of N such that, for all
x,y € Ay with |x — y| large enough,

Cq

Cd \I/
; <G (y)*iyx =g

3.10
|z — y|d- (3.10)

The proof we present in Appendix is inspired by the heuristics given in [DRS14, Remark
2.10]. A more general proof should be possible using Gaussian bounds (see [Del99]). With such
estimate on the Green function, we are now in the position to prove Proposition

Proof of Proposition[2.3. Fix v € (0,1) and consider B}, the ball centered at z with radius N7.
We write the tilted capacity from = to B}, as

Cuy(x — OBY) = PN (Hy > Hppy ) = inf {€y (f) : f(z) =1 and Vz € OB}, f(2) = 0},
(3.11)
where €y, (f) == 3, ulf(2) — f(w)]?cn(2,w) is the Dirichlet energy associated to the con-
ductances cy(z,w) = ¥y (2)¥n(w) (for z ~ w) (see [LPW17, Exercice 9.9]). We also write
Ci(z — OB)) for the capacity associated to the SRW (with ¢y (z,w) = 1). We will prove the
following chain of approximation holds with polynomially decreasing error:

cap”™ ({z}) = Cuy (z = OBY) = ¢ (¢)Ci(x — OBY) = ¢ (2)9(0) ™.

First note that we have PYN (H, < +o0) = G¥¥(z,2)/GY~ (z) and Propositioncombined
with G¥~(z) > 1 imply that this probability is bounded from above by CyN 7(2=d) yniformly in
z € OB};. In particular,

PUN(Hy > Hypy ) — Py (Hy = +00) = ) PYN(Hy < Hppy, Xp,,, = 2)PYV(Hy < +00)
zean N
< PIN(H, < Hypy )OaNT9,
(3.12)

10



hence proving that

__eap™ ({z})

Let us focus on Cy (z — dB};). Using Proposition and the fact that ¢n € [k, %] uniformly
in NV, there is a constant ¢ > 0 such that for every function f,

1

1

< CyNY2=d) (3.13)

0, (1)~ A@EN| < 1 T UE) — f@)PlonEon(w) - ()] < N @)
o (3.14)
Since N7 193, (z) < k2N~ — 0, combining (3.13) and (3.14), we easily deduce that
C\pN (.’E — OB}, ) 1
Feeony e (3.15)

To conclude the proof, we claim that 0 < Cy(z > dB})g(0) — 1 < c3N7?~4) . This can be proved
with the same method as previously by using g(z,y) < C}|z — y|?>~? (see [LL10, Theorem 4.3.1]).
Finally, using Proposition , we have [|¢% — ¢%]loc < N7# for pu = 1/2(d + 1). Therefore,
taking ¢ = u A (1 — ) A y(d — 2) with the optimal v = 1/(d — 1), the proposition follows.  [J

3.3 Estimates on the capacity of certain sets
Proposition 3.5. Let ¢,y € By, then

cap™™ ({a})Py ¥ (Hy = +00) + cap”™ ({y})P ¥ (Hy = +00)

Uy _
cap z,Yy) =
(e, v} 1—PyN(H, < +00)PyN (H, < 400)

(3.16)

Proof. Write K = {z,y} and use the last exit decomposition at points z,y € K. we have

1= G@N(x)L@ + GV (z, y)L@ _ GWN<y7x)6K7(fU) QYN (y) ek (y)

AN (2)? ANGN(Y)? ANon(7)? ANon(y)?
Write f(2) = ex(2)/Anén(2)?, then we can solve this system for f(z), f(y):
1 G~
1) = g 1= 6 @niw)] L 0G0+ TS 1= 6 )] =1
and thus G () GV (3. 2) GV ()
BN _ Mz, y My, x 1 Nz, y
f() (G (y) G (7) ) == =i @
From this, we deduce
g e -y
W)= ) CNGpGTNwe) — GIN(@)GIN () = C¥ (2, ) TN (y.2)

Multiplying this by Ay¢% (y) gives us an expression for e (y), however we can first notice that
ANG3 (y) = cap¥N ({y})GYN (y). Therefore, we get

cap”™ ({y})GYN () [GYN (x) — G¥V (y, z)]

_ NI
ex(y) G‘I’N(l')G\IIN (y) — G¥N (;L"y)G\I/N(y’:[;) ) (3.17)
which can be rewritten by noting that GV~ (z,y) = P;;IIN(Hy < +00)GN (y):
NN Uy
cap yp)1—-P Hy < to0
) ({1 — Py~ ( ) (3.18)

1-PYV(H, < +00)PyN(H, < 400)

By symmetry, we also deduce the expression of ex(x), hence proving the statement since
Cap‘llN({»’Ua y}) = ex(x) + ex(y) by definition. O
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Corollary 3.6. There is a constant cg > 0 such that for all N large enough, any x,y € Ay, we
have

cap”™ ({z,y}) > [1 + jct]an/g(0). (3.19)

To prove Corollary [3.6, we use the following result on the tilted walk.

Lemma 3.7. There is a constant co > 0 such that for all N large enough,

i TN (Hy, = >cp. 2
x’yégi#ny (Hy = 400) > ¢ (3.20)

Proof. Using the Markov property and , we have
PYN(H, = +00) > PYN(H, > Hype) nf Py~ (H, = +00)
> kP, (H, > HaBs)ZeiggE PV (H, = 400).
The first probability can be expressed as 1 — g(z,v)/g(0) > 1 — ¢(0,¢e)/g(0) with |e] = 1, and

thus is bounded from below by a positive constant. The second probability is also bounded from
below by a constant independent of N, we refer to the proof of Lemma 2.5 in [Bou24c]. O

Proof of Corollary[3.6. Note that combining Propositions [2.3] & we only need to prove that
provided N large enough, we have

PN (Hy = +00) + PN (H, = +00)
1—PyN(H, < +00)PyN (H, < 400)

1
> 1+ ch : (3.21)

Observe that

—PYV(Hy < +00)PyN (Hy < +00)

(3.22)
=PV (Hy = +00) + PV (Hy = +00) — PN (H, = +00)P~ (H, = +00).
Injecting (3.22]) in the denominator of the left-hand side of (3.21]), we get
Py (Hy = +00) + Py (Hy = +00) _ PY¥(Hy = +00)Py/ (H, = +00)
1—PyN(H, < +00)PyN(H, < +00) 2 (Hy = +o0) + Py (H, = +00)  (3.93)

1
> 1+ QP;I’N(Hy = +00)P, N (Hy = +00) .

By Lemma Ewe have PY~ (H, = —I—OO)P;I’N(HQC = +00) > 3. Therefore taking N large enough
yields (3.21f), thus ending the proof. O

When the two points x, y are far from each other, the capacity of {x, y} is well-approximated by
the sum of the capacities of {x} and {y}. The bound cap¥¥ ({z,y}) < cap¥~({z}) + cap¥~ ({y})
is classical. For the lower bound, we have the following statement.

Proposition 3.8. For any disjoint K1, Ko C Ay, we have

cap”N (K1UK3) > cap”™ (K1)+cap”™ (Ka)=Ay > Y [9251\7 )G (z,w) + ¢y (w )G\I}N(wﬂ’)} :
zeK1 weKso
(3.24)
In particular, writing d(K1, Kg) := Kinf « |z — w|, there is a constant cp 4 > 0 such that
ZEK1,wEK2
K| - |K:
cap¥N (K1 UK>y) > cap‘PN(Kl) + cap¥V (K2) — CD’dd(|Ki’K|2)2|_2 ) (3.25)
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Proof. For any z € K1, note that
Pz‘le (HK1UK2 = +00) = PEN (HK1 = +OO> - P;IjN(I:IKl = +007HK2 < +OO)

T T (3.26)
> P, N(HK1 = +OO) - P; N(HK2 < +OO) .
Thus, we get a lower bound using (2.2)) that reads
> erin,(2) 2 A Y 6k(2) [PYY (Hi, = +o0) — PYY(Hy, < +0))|
zeKy ZGKI (327)
> cap” AN Y ON()PIN(Hg, < +00).
zeK1
Using the last exit decomposition (Proposition , we deduce that
Z eKluK ) > cap? — AN Z Z % (2)GYN (2, w)PEN (Hy, = +00). (3.28)
z€K1 2€ K1 weK2
We can similarly prove
ST e, (w) > cap” —AN Y. Y AR(w)GIY (w, 2)PIN (Hg, = +00).  (3.29)
weKo zeKq1 weKs
Therefore, we deduce (3.24)) after using
pY
N Kl UK2 Z eKlUKQ + Z eKlqu
z€K3 weKs
and bounding the probabilities in (3.28)),(3.29) by 1. To get (3.25), it suffices to use the fact that
¢n is bounded from below (recall (3.4])), that Ay < 1, as well as Proposition O

Combining ([2.5)) with Corollary and Proposition we get bounds on the correlations
between events {z ¢ Sy, (un)} and {y & Hy, (un)} which will be useful in our proofs (see (|4.4])
below).

Proposition 3.9 (Control of the correlations). Let un be such that uy N—¢ — 0, we have the
following universal bound: for distinct x,y € Ay,

Cov<ﬂ{z€fql1\,(u1\/)}’ ]l{yéfq/N(UN)}> < P(x,y Q j\pN (UN)) < exp ( - UN%(l + %cg)) . (330)

Moreover, there is a constant cd’A > 0 such that for any sequence ay — +00 and any z,y € Ay
such that |x — y| > an, provided N large enough we have

o (@) +0% (1) A UN
Con {1yt Horotoy) 52059 i B oy (425 ] o)
Proof. The first inequality is a direct consequence of Corollary applied to
P(z,y & Fu,(un)) = exp ( — uycap”N ({z, y})) ) (3.32)

For the second inequality, we use Proposition n- to get
A

cap”™ ({z,y}) = cap”™ ({z}) + cap”™ ({z}) — m (3.33)
Now, using the formula , we get
A
P(:L',y ¢ cﬂ\I/N(uN)) < P<$ ¢ cﬂ\I/N(uN))]P)(y ¢ j‘PN(uN)) €xp (uN‘x_cﬁ) ) (3'34)

thus proving the bound after using (2.5 and Proposition [2.3to replace cap¥™ by ©3%;/g(0) (with
a factor 2 taking into account the error of this replacement) O
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4 Covering level of Ay - study of the intermediary set

4.1 Some technical considerations

The general principle is the same as Belius’ approach for the covering level on standard random
interlacements. It relies on the following identity, which is a direct consequence of the Poisson
structure of random interlacements: let K C Z? be a finite set and u; < ug, then for any K’ C K,

P(K - f\pN(UQ)) = P(K\K’ - f\pN(UQ — ul)) . P(Kﬂ j\pN(’u,l) = K,) . (41)

The key point that Belius’ approach exploits is that near the covering time of Ay, the set of
points that are yet to be covered is “well-separated”, which makes it easier to study thanks to
decorrelation inequalities.

In the rest of the paper, we fix p > 0 small enough and define the intermediary set of “late
points” as

An(p) ={z €Ay : o & Jy,(uy’)} with u?;p = (1—p)%?\)10g |AN]. (4.2)
Applying then yields
PR < ui(2) [ Aw(p)) = P(AN(p) C Sy (uy (=) = uif”)) - (4.3)

In order to get some estimates, we will often use two results in combination in order to
“integrate” a function on Ayx(p). Let f: Ay — R, we first have

Var[ 3 f )= Y F@F@CV (L zennoy Liyean (o) (4.4)

2€AN(p z,y€EAN

The proof of is straightforward. Coupled with Proposition this allows us to get upper
bounds on the variance of such “integral” without consideration for the actual random set Ay (p).

The following lemma states a useful asymptotic that we use to fully exploit in the case
where f is either constant or an exponential. We postpone its proof to Appendix as it is
quite technical and relies on Assumption

Lemma 4.1. Fiz > 0, then under Assumption [ we have the convergence

log [AN| <PN( ) KA
Nll>+oo W o exXp ( B log |A |> F . (45)

Moreover, the convergence still holds if log |An| is replaced by (1 + en)log |An| with (eN)N>1 @
vanishing sequence.

The sum in ([&.5) naturally appears due to (2.5 and the fact that ¢%;(z) ~ cap¥~ ({z}) (recall
Proposition .

4.2 Scattering of the late point

4
Proposition 4.2. Let p > 0 be small enough and define af, := |AN]Tf2, then

> PleyeAn(p) SIANT (4.6)

p
0<|z—y|<aly

This holds whether or not Assumption (1] is satisfied.
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Proof. We separate the sum depending on whether |z — y| < (log |Ax])? or not. For very close x
and y, the universal bound of Corollary [3.6] suffices and we get

S Play e An(p) < clloglAn])?Ax]exp (— (1= p)(1+ 1) loglAnl), (4.7)
0<|z—y|<(log |An])?

which is equal to ¢(log |AN|)2d|AN|%C(2>7P(H%C(2>), which is less than ¢/|Ax| ™" provided p > 0 small
enough.
For the z,y that are farther away, we instead use Proposition |i to get

cap™ ({y}) 2 cap™™ ({}) + cap™ (fy}) = (ot (48)

Therefore, also using Proposition 2.3] we deduce

_ 2 (z 2 C
P(z,y € An(p)) < (1+0(1)) exp (— (1 - p) LN W 106 | | + W) - (49)

Again, as d > 3 we have (log |Ax|)??® — +o0 and thus

> Pewedv()<e 3 e (- (- p) A og|ax]).

A
(log [An])2<|z—y|<af (log [AN])2<|z—y|<af
(4.10)
Since 3 (y) > a by definition, we get that this is less than

(agv)d P (2) / (agv)d > N
E X 1—p)=log|A = 1+ o0(1 4.11
c‘/\N‘l—p = Ne p( ( ) ap Og‘ N‘) C ’«N‘l_p( 0( ))1 lo |~N’ ’ ( )

where we used Lemma for the equality. Injecting the definition of af;, we see that provided N
large enough and p small enough so that 1 — p > % + 2p, this is less that some constant times
|An| ™", hence proving the proposition. Note that instead of using Lemma we could also
note that ¢%(z) > ey which provides a bound ¢”(af,)?|An|?~1 = c”|AN|2p+%_1 < "|AN|7P
provided 1 — 2p > % + 2p. Thus, the proposition also holds in the general case (without

Assumption [I} O

4.3 Cardinality of the set of late points

Proposition 4.3. Under Assumption[1] and provided p > 0 small enough, we have the following
equivalence in probability:
ka AN

A (p)] ~ (4.12)

1—plog|An|
Proof. First observe that according to (2.5) and Corollary

BllAx ()] = X Blo# Sun (1) = (1+0(1) 3 exp (= (1= )X g ay]). (413)

TEAN rEAN

Now, using Lemma we get that this is asymptotically kp|An|?/(1 — p) log |An|.

Let us now prove that Var[|[Ayx(p)|] is at most of order E[|[An(p)|], which will prove the
proposition using Chebychev inequality.

Applying , we have

Var[An(p)[] = D Cov(Lizean(o)}s Liyean(on) - (4.14)

z,y€AN

Let us consider separately three cases in order to control the covariances.
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First, for = y, this covariance is less than P(z € Ax(p)) and thus

Y Cov(lueay(ny: Liyean(ny) < D Pz € An(p)) = E[[An(p)|] - (4.15)

r=yEAN TEAN

Then, assume 0 < |z — y| < a?\, and use the previous Proposition to get

Y. Cov(lueayy Lweany) S 2. PBlayeAn(p) SIAN[TP. (4.16)
z,yeAN T, YyEAN
0<|z—y|<ak, 0<|z—y|<af,

Finally, assume |z — y| > af; in which case we use the bound (3.31)) to get

p
S CovlLpennion Lyean(oy) < 3 exp (= (1= p) LD [y (420 ) 1]
T,YyEAN T,y€EAN apy

lz—y[>aly lz—y|>a?,

(4.17)
Writing this double sum as a product, since uf, < a?l\fz, provided N large enough, we get

up 2 (p 2
Z COV(ﬂ{xGAN(p)}a ﬂ{yGAN(p)}) < 269%( Z exp ( - (1 - p)wgij(\) log |AN|)) . (4.18)

x,yEAN aN l’EAN
lz—y[>af,

Therefore, using Lemma, we get

S log [An|  [An["  [An[7*

Cov(1{zen s Liyen S X = ,
cachn ( { € N(P)} {yE N(P)}) |AN’2P 10g2 |AN| IOg |AN|
jo—y[>af,

(4.19)

Combining all of the above yields Var[|An(p)|] < cE[|An(p)|] for N large enough, hence the
asymptotics |An(p)| ~ E[|[An(p)|] in probability using Chebychev’s inequality. O

Corollary 4.4. Provided p,0 > 0 small enough, there is a c,s > 0 such that for all N large
enough, with probability at least 1 — c, s|An|~?/* we have
AN < AN (p)] < (AN 4 AN (4.20)

Proof. With again the trivial bound cap¥~ ({z}) > ¢%/(2)(1—=N"¢) > ax(1—N"¢) on Ay (recall
Proposition , we get E[|An(p)]] < |[An]PHN (=), For the lower bound, we get however that
for any d > 0,

E[[An ()] = [An|= 20 (o € Ay cap™ ({o}) < (1+6)an/G(0)}] . (4.21)
Using the regularity of ¢ and Proposition we conclude that there exists a positive constant
cp,s such that ‘ {x €Ay : cap?V({z}) < (1+ 5)05(A)/G(0)H > cps|An|. Therefore, we get

that for any 6 > 0, we have E[|[An(p)|] > |An|?"%0=P). We then show without difficulty
that Var (|[An(p)]) < CQ|AN|p+5N(1_"’) using the same proof as Proposition (and the bound
©% > ay) and concluding using Chebychev inequality. O

5 Covering by interlacements and Poisson limit

5.1 Fluctuations of the covering level

Let us first deal with the fluctuations of the covering time. We begin with the proof of Theorem
, that is the asymptotics Un(An) ~ g(O)OJX1 log |An| in probability. We recall that this
asymptotics does not require the Assumption [I] to hold.

Recall that we defined Ay (p) as the set of points that are not covered at the level uf\h A=

(1-p) % log [Ax].
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Proof of Theorem 1) (first order asymptotics). Write uh; := g(O)ozK1 log |An| and fix some
5 > 0. We first notice that using Corollary

P(y(An) < (1= 8)uy) = P(Ax(8) = @) < P(|[An(8)] < [An]*®) < [An|7%. (5.1)
On the other hand, similarly to the proof of the previous lemma, we have

‘PN(CC

P(sy(An) > (1+8)un(h) < (1+58(1) 3 e (o lAnl A0 (5.2)
.OCGAN
Therefore, the two probabilities go to zero, hence proving Uy (An) ~ u% in probability. O

If we want to get more precise results, we need to better understand the covering of the late
points. As previously stated, the proof of Theorems & relies on the fact that Ayx(p) is
very sparse, and thus each of its points are covered independently from the others.

We define the following “good” event for Ay (p):

- . ; _ 14
Aai= Aol < clhnls  inf -yl > a} ). (5.3)

Lemma 5.1. Let u = u(N) that grows logarithmically in N. We have the a.s. convergence

Nl_i)rerlOo ‘P(ﬂ% < u%’p +u ’ AN(p)) — exp ( — Z exp (— % % () )‘:H._AP =0. (54
z€AN(p)

Proof. Recall (4.1): by the Poisson structure of the tilted RI, conditioning on Ay (p) we get
P < uiy(2) | An(p)) = P(An(p) € Fuy(w)), (5.5)

where the PP is only on Sy, (u) and AN( ) is now a fixed set. We now turn to the study of the
probability on the right-hand side of (| . Since we are on AN A» applying Proposition gives

[An|P

‘P(AN(,O) C ﬂ\pN(u)) - H P(z € Fu,(u ‘IlAp < clog\AN\( pyi2

z€AN(p)

(5.6)

4
where we used u < clog |[Ay]|. Recall that af, = |A N\dfp?, hence the right-hand side of (5.6) goes
to 0 as N — +4o0.
Let us now investigate the product of probabilities over z € Ax(p), that we can rewrite

exp( Y log[t— e ™) —exp (= 3 exp (—ugk(@)(1+O(NTEV e )],

z€AN(p) zeAN (p)
with O(N~¢V e~%") = 6(|Ax|~¢) that is deterministic and uniform in € Ay. O

Let us first consider the general case (that is without Assumption , which is easily handled

using Lemma,

Proof of Theorem 1) We use Lemma with u = %i){plog |An| + z}: for any n > 0,
provided N large enough,

P(UN < uh’ +u|An(p)) 1y, = (1= exp (= An(lIAN e )1y - (5.7)

where we also used p3;(z) > ay for all x € Ay. Now, since we can further restrict ourselves to
the event |[An(p)| < |[An|PTV " (recall Corollary , we get that if IV is large enough, this is
greater than (1 — 20) exp(—efz)]lA?vA. Since P(A%; 1) — 1, we finally get (2.8). O
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We now turn to the case where A satisfies Assumption [} Fix z € R and apply Lemma

with u = ui (2) — ux’p so that we are left to study

> exp( QPN( z) [plog |An| — loglog |An]| + z]) (5.8)
z€AN(p) A
We will use the following proposition.
Proposition 5.2. Fiz p > 0 small enough, then under Assumption[1] we have the convergence in

probability

_ log|An]| ¢ (@) P
ZR exp ( — p|=2—= — 1| log|AN|) —— Ka - (5.9)
RN xe%;(p) (ol )=

Moreover, this limit also holds if we replace log |An| by (1 + en)log |An| where en — 0.

Proof of Theorem [1.3-([2.10). Writing ex = (—loglog |[An| + 2)/plog |AN|, we can rewrite the
sum in as

_ lOg ‘AN| <P2 (x) P _
e —p[F= —1](1 log |A z 1
|[An|P xeAzN:(p) eXp( Pl o J(1+en)log] N|) m kae 7, (5.10)
where we used Proposition Therefore, injecting ((5.10)) in Lemma , we get
P

‘IP’(L[%, <uly(2) | An(p)) —exp (— ke~ ‘ﬂAp (5.11)

A N—+o00

Since P(A% y) — 1, we get the desired convergence PN < ul(2) |[AN(p)) — exp (— rpe @) in
L' by dominated convergence. The theorem follows immediately. O

Proof of Proposition[5.3. We first notice that we can rewrite Z% N.A 88

log |AN]| 2 (z)
P _ _ 4[® _
ZN,A = An]? erAN exp ( P[ ZA 1] log ’AN‘)I}-{xGAN(p)} . (5.12)

Thus, we can easily compute its expectation using the explicit formula (2.5) as well as Lemma

[41) with 8 = 1. We get

(
lim E[Z} ] = hr_r’_l log [An] exp( log]AN]) = Kp - (5.13)

N
e rEAN

Let us now prove that Var [Z]’if A) = 0, which will prove the proposition.
Using the formula , We write

2 2
Var[ZK,’A] = (log |AN’)2 Z eXp ( — p%/w log |AN|>COV(ﬂ{xeAN(p)}> H{yEAN(p)}) .
T, YyEAN
(5.14)
We will subdivize this sum into three different parts: x = y; close but distinct z,y; and z,y that
are far away from each other.
Control for x = y: here we consider the sum

> exp (20757 log[Awl) [Pl € A (o)) ~B(x € An(p))’] (5.15)

TEAN

which we bound from above by

> exp (= 20757 + (1 - )32 og [Ax]) = 3 exp (= (0+ DX log[An]). (5.16)

QA
rEAN TzEAN
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Using Lemma we get

. 2 T —p _
i (log |Ax[)*ZR, = Tim_(log [AxDIAx | =0. (5.17)

Control for close z,y: We first use the universal bound given by Corollary on the z,y
such that 0 < |z — y| < log? |Ay| as well as Lemma |4.1| to get

2 T 2
S exp (= p2EA W g Ay ) Cov(Lmenn () Tipenn (o)

mvyeAN
0<|z—y|<log? |AN]| (5.18)

log?[An|  [An[""" _ cilog|An]
|AN’(1_p)(1+icg) IOg ’AN’ |AN’(1_p)%Cg

4d
Recall that af, = |AN|dfp2. We then turn to the z,y € Ay such that (log |[An|)? < |z —y| < af.
Using the bound (3.31)) as well as p3,(y) > ax, we get

2 T 2
> exp (= p 2N log | A |) Cov(Lreay ()} Liyenn (o)
x,yGAN
log? [ Ay |<[z—y|<an (5.19)
(al)? A |AN| @3 () A 5-2d
< g exp ( — 2= log|An]|) |1 — exp (¢;”(log|An )
A EA: (= 2 0g |An])| (e (log | An])~27)]

. . . m—l 2 12 _ .
Using Lemma and d > 3, this is bounded by ca|An |27 /log® |An| < ¢4|An|™? provided
p > 0 small enough.

Control for distant x,y: we use again (3.31):

2 z 2
> exp (= pEA tog [A[) Cov (1 peny (o)) Liyern (o))
T, YyEAN

lz—y|>an (5.20)

2% (@) ?¢'log |An|
SC Zexp(—Tlog’AN’) W
TEAN N

4
Again, using Lemma and plugging in af;, = |A N|dTp2, this sum is bounded from above by
cs(log [An|)3|An|~# for some positive cj.
Combining all the above, we see that there exists a ¢ > 0 such that Var[Z}; ,] is at most of
order (log|An|)®|An|~¢ — 0, hence completing the proof. O

5.2 Poisson limit

We now give a precise statement regarding the "late points" and their convergence towards a
Poisson point process.
Fix some z € R and recall the notation u (z) = %i){ log [An]| + loglog |An| + z}. We are

interested in the punctual measure of the points of Ay that are not covered by .y, (uk(2)),
that is

N,z N
NV = 20 S Lagr, o} = 22 S L{usuy ) (5.21)

TEAN rEAN

Lemma 5.3. For B C A, we write By = (N - B) N Z% with N > 1. Then,

dx
li E[INAY(B :/ —_— = BN((OANL,,)). 5.22
i EARE = [ e BN @A L) (52)

Note that this characterizes a finite measure on OAN Ly, that we also denote by .
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Proof. The proof follows from the arguments in Appendix applied to BN A instead of A. [

We can now properly state the convergence of the “late points” towards a Poisson point
process.

Theorem 5.4. Fiz z € R. The punctual measures N}{}Z converge in distribution for the topology
of weak convergence towards a Poisson point process N2 with intensity measure e * Ly .

Proof. The proof uses a theorem by Kallenberg (see [Res87, Proposition 3.22]) stating that one
only needs to check that

Jim B[NV (By)l] = e ua(B) . lim POVY(By) = 0) = exp (— pa(B)e )., (5.28)

for any B a closed ball of R? that intersects with A.
The first equality is easily proved using the fact that

P log |A 2 (x
E[INy*(Bn)|] = Lj\j > exp ( - (SON( ) _ 1)[log |An| — loglog |An| +z]> (5.24)
|AN‘6 xEAN aA

and a use of Lemma For the second equality, we observe that
P(Ny*(By) =0) = P(By C Ju, (uh(2))). (5.25)

To get the limit as N — +oo, we will use the fact that the results of Section [4] still hold by
replacing Ay with By but still keeping the same w3 (p). For p > 0, we define

Bn(p) = {x € By : x & Fy, (ux")}, (5.26)

where we stress that we kept the same intermediary level u?;p = (1 - p)g(0)a;*log|Ay|. Then,

using the same proofs as in Section |4 — or observing that uﬁ,’p > uﬁ’p implies By (p) € An(p),
with self-explanatory notation — we easily get that with high probability,

By(p) 5 o8 inf o -yl > |Ax] (5.27)
~logl|An| T wyeBn(p)aty - ' '

Following the proof of Theorem the probability P(By C Jy, (ud(2))| By (p)) is well
approximated by

2 X
[I Ploesu h(z)—un) ~exp(— 3 exp (=22 plog |Ax|—loglog [An|+2])).
2€Bn (p) 2€BN (p)

We then conclude by observing that the sum in the exponential just above is

_,log|A 2 (g _
=108 |Ax| > exp(—p[‘”g( ) _ 1]log |Ax](1 +0(1))) (5.28)
|AN’P A
z€BN(p)
and doing the proof of Proposition to see that this converges to e ?up(B). O

6 From tilted interlacements to the confined walk

We now explain how to transfer our result on the tilted interlacements to the confined walk. We
first state the coupling theorem that we use.
Denote by R4, (tn) the range up to time ¢t > 1 of the Markov chain with law Pf;g (recall
N

that Pf;é is the tilted RW starting from its invariant measure y = cy¢3;)-
N
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Theorem 6.1 (Coupling theorem). Let 6 € (0,1) and consider a sequence (tn)n>1 that satisfies
tn /N2t — oo, We define

t s
uN = N—]\; as well as ey =N 1.

Then, there are some n > 0 and some constants c¢1,co > 0 (that only depend on o, d,e,D and
d > 3) and a coupling Qn of Ry, (tn) and Fy, ((1 £en)un) such that, for all N large enough,

f\pN((l —en)uny)N By C Rqu(tN) N By C f\pN((l +en)uny) N By, (6.1)

—coNT

with Qpn-probability at least 1 — cie

We can now finally prove our main theorems by using the fact that ex in Theorem can
be neglected in our calculations.

Proof of Theorems ¢[1.3. Using Theorem we see that under the coupling, with proba-
bility at least 1 — cie=2N" we have

: - 0
/\/']evzzv C NJ/\%IZ%W C /\/']/\}’zN , with 2% = z:I:MEN{ log [An|—loglog [AN|} =: 2y . (6.2)
b aA

In particular, since &’y decays polynomially fast, we can apply the proof of Lemma Therefore,
with the same notations, we get

N z N A,Z* 4 —z
thUPEﬁVUN]esz(BN)H <limsup E[|Ny™ (By)|] = pa(B)e (6.3)
N—+o0 N—+o00
as well as
s A,z . A, z+¢ _
lim inf By (Ao (Br)l) 2 liminf BN (By) ) = pa(B)e (6.4)

. A, zte) _
Similarly, we get the convergence of P s (\NN7§V§N (Bn)| = 0) towards exp (— ua(B)e™?). O

7 Some specific cases

7.1 The case of a ball

In this section, we will focus on the case where D is the unit ball B = B(0,1) and A is the slighly
smaller ball B(0,1 — ¢) for some ¢ € (0,1). This is a much simpler case to consider, since the
function ¢ is radial: in particular £3 , s exactly the boundary 9A.

Let us first recall some facts about the eigenfunction ¢ on a ball in R%. Using the spherical
coordinates (r,§) € RY x S%-1. the Dirichlet problem (T.4]) becomes

22 d-10 1
0= Mu(z) + Au(z) = Iu(r, 0) + {ﬁ et ﬁASd_l]u(r,e) : (7.1)

where Aga-1 is the spherical Laplacian on RY. Using the separation of variable, we write
u(r,0) = u1(r)uz(f) and thus (7.1 can be rewritten as

0= r2u{(r) +r(d — i (r) + M2+ L“W(@}ul(r) : (7.2)
UQ(H)
In particular, there is a n € R such that
Aga-
ruf(r) + r(d = D () + P = nju(r) =0 W =" (7:3)
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In the end, the first eigenfunction ¢ on the unit ball can be expressed as
o(r,0) =r'"50a  (Vr), (7.4)
2

with .J, the first-kind Bessel function of index o € R. Note that the properties of Bessel functions
(see [DLMF, (10.6.6)]) imply -L[z=*Jy(z)] = —27*Jas1(x). One can then deduce that the
radial derivative of ? is given by

%wz(h 0) = *Q\F)\T2_dJ1_g(\F>\T)J2_%(\f)\r) <0. (7.5)

We deduce in particular that the radial part of p?, which we denote by 2,R is a smooth
diffeomorphism, hence by change of variable we can compute the volume of the “level bands” of
©?, and thus xy. Let us write Yo R = (902,1%)71 the inverse of @9 g.

Proposition 7.1. Consider D = B(0,1) and fix ro € (0,1). Then, if A = B(0,ry), we have

d
KA Ziig(l)a{xeA L i) < (1+e)an )| = mVOId(IBd), (7.6)

with Vold(]Bd) the volume of the unit ball in R? and where p2,R 15 the radial part of ©2.

Note that this is consistent with the definition of x5 in Theorem

Proof. Since the level sets of ¢? are spheres of given radii, the set |[{z € A : ¢*(z) < (1 +¢)ay}
is simply the “annulus” {2 r(ax(1+¢)) < |z| < 2 r(ap)}. In particular,

{zeA: @*(x) < (1+e)ant| = [(Yo,r(an) — (Yo,r(an(l+¢)))?]Volg(BY),  (7.7)

with Voly(B?) the volume of the unit ball in RY. Dividing by £ > 0 and having £ — 0 makes the
derivative of (12 g)? at ay appear.
Another way to compute x, is through the following change of variable:

o €At (@) < (1+e)an}] = Volg1 (87 /A L{ay<p2(r<(te)an) AT
(1+e)ap (78)
Vol () [ i a0 (),
ap
with Jy, , = (¥2,r) = [(p2,r)" © ¥2,r] ™" the Jacobian of ¢ r and Volg_1(S*!) the (d — 1)-
volume of the unit sphere in R?. Dividing by € > 0 and having ¢ — 0, this converges to

| Jwy n(n)] = [(2,r) 0 Yo,r(02,r(r0))] " O

7.2 Covering of a segment by the conditioned simple random walk

In this section, we will deviate from the confined walk to instead consider the conditioned walk,
that is the simple random walk conditioned to stay in Dy up to some time Ty . In the following,
we consider the segment Iy := [N, N| C Z, where we write [a,b] := [a,b]NZ. We also consider
the time horizon Tl to be far greater than N3.

Let €y be the covering time of Iy by the simple random walk conditioned to stay in Iy,
then we can conjecture the convergence in distribution

¢N (d)

. l . . . .
e — C~ Z{Z ,  with G ~ G(3) and (§;) are i.i.d. variables, (7.9)

Let us give some heuristics for this convergence. We write 7§ = 0 and define for i > 1:

=inf{t>70, : |S| =N} , e =sign(S,) , 70 =inf{t>r:S5 =0} (7.10)
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Observe that €y = 77, where Z is the first i such that ¢; # 1 (that is the walk reached both
of the extremities of the segment). With precise gambler’s ruin formulae, one can prove that
7 — 72 1 < N3 with high probability (see below). On the other hand, the return times to 0 are
asymptotically of order N2, as the drift facilitates the return to zero, hence negligible. Therefore,
Cn ~ Yoz (T — 72 ) with the 7; — 70, scaling to the first time a Brownian motion conditioned
to stay in [—1, 1] reaches the boundary.

The main point here is the fact that the order is understandable from the point of view of
Theorem Indeed, it is known that the first eigenfunction of the Laplace operator on the
segment is of order 1/N at the boundary, hence the oy in this case would be < N~2 and the
asymptotics is N%/ay =< N3. The disappearance of the factor log N is explained by the fact that
reaching the boundary implies covering the full half-segment, thus at no time there exists a set
of scattered points that the walk collects independently.

A Appendix: technical estimates and decoupling inequalities

A.1 Asymptotics of the Green function of the tilted walk

Proof of Proposition[3.4 Fix n > 0. For 2 € By and R € [1,7N], we consider the annulus
intersected with By, which we write A% (R) := (B(x,2R)\ B(z, R)) N By. The main part of the
proof is to prove that there exists constants ¢, > 0, that neither depends on N large enough,
nor on x and R, such that

for all y € A% (R), cR*% < GYN(z,y) <dR*. (A.1)

Afterwards, we prove that y — G¥~(x,7) is non-increasing in |2 — y|, which suffices to get the
upper bound; while the lower bound will be easily deduced from the proof of the main point

(A1),

We first claim that there exists a constant x’ > 0, that neither depends on N large enough
nor on z and R, that is such that

Vy,z € AR(R), KGN (z,y) <GV (z,2) < LGV (z,y). (A.2)
From (A.2)), we can deduce that

RAR (RGN (z,y) < D G¥(x,2) < FAR(R)|GYN (2,y). (A.3)
2€A%(R)

Our second claim is that there exists a constant £” > 0 that neither depends on N large enough,
nor on = and R such that

RRPS Y G (2) =BIY [ Y Loy ca ) S R (A.4)
2€A%(R) k>0

Combining (A.4)) with (A.3) yields (A.1)).
Proof of (A.2)): Fix 6 > 0 and y € A% (R) so that |z —y| < 20R, and consider w € B(y, iéR).
Then, by the reversibility of W%, and the Markov property, we get

Vi (@)
Wi (w)

G (2, w) = GYY (w, 2) = Z P (Xtp,om = w)GN (u, ). (A.5)
u€dB(y,0R)

Now, we claim that there is a constant &, > 0, uniform in R large enough, 4,7 small enough
and w € B(y, 16R) such that RIIPYN (Xbpsm = W € Ky, k'] In particular, since the

ratio of W%, is also bounded by constants uniform in z,y,w, for all w € B(y, %5}2), we have
GYN (z,w)/GYN (z,y) € [k}, (k1,)~']. The proof can be found in [Bou24b, Lemma A.2.3] Since
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Az(R) can be covered by a finite number (uniform in N and R large enough, and in x € By ) of
balls with radius %5]%, we get .

Proof of (A4): Fix § > 0 small enough and consider AR s(R) = (A% (R))°F = B(x, (2 +
d)R)\ B(z, (1 —9)R). We easily see that the time spent in A% (R) is less than the sum of length
of the excursions A% (R) — 0A% 5(R), which is what we will use to get the bound. Write M for
the number of such excursions, we get the bounds

k>0 weA% (R)

Using [Bou24al Lemma 2.5, 2.6], M is dominated by a geometric random variable with parameter
at least some p > 0 independent from R large enough. In particular E;I’N [G] is bounded from
above by a constant ¢ > 0 that does not depend on R large enough. On the other hand, we can

write using (3.8)):

¢ 2
EYN [HBA%’E(R)} < RR* Y (k+ 1) BN P (Hps (r) > kR). (A.7)
k>0

It is known that P, (Hy AT, (R) = kR?) < ce ¥/ 8, Therefore, provided R < nN with n > 0 small
enough, there is a constant ¢y > 0 that does not depend on R such that

By | Hoas, (r)] < eR? Y (k+1)e ok < L R?. (A.8)
k>0

This proves the upper bound in To get the lower bound, we use again (3.8]) and conclude
using E,,[Hp Az ( r)] > cR? (an easy SRW estimate), hence proving (A.4)).

Farther points: if |x —y| > nN, we prove that G¥~(x,y) can be controlled by the Green
function between x and a point at distance %nN from z. With the reversibility of U3, and the
Markov property, we easily get

P2 P2
G (z,y) = \I} ) G (y,z) = \Ijév w) > G (z2) PN (X
N(x) N(x) zE@B(a},%nN)

=2). (A.9)

Hp o 1on)

Applying (A1) and (3.3)), we get that G~ (x,y) =< N2_dP§’N(HB(x 1,3y < +00). We can show
2
using (3.8) and gambler’s ruin-type results about the SRW that Py‘I’N (Hp(z 1,3y < +00) 2 a1
12
for some constant ¢; > 0 that neither depends on NV nor on y € Ay, thus ending the proof of the
Proposition. O
A.2 Proof of Lemma 4.1]

We introduce the notation
LMag,00) 1= {z €A : @?(x) € [a1,a2)}. (A.10)

The main ingredient of the proof of Lemma is the following result, which critically requires
Assumption [I] to hold.

Proposition A.1. Under Assumption [l we have the convergence
dx

1A _ _.
iﬂ%g’ﬁ (an, (14 e)an)| = /AM&A V@] KA - (A.11)
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Let us first prove Lemma [£.T| using Proposition We recall that we must control the sum

Pl 5 o (= A BE ] togian) =P 5 (5[ g,

zEAN TEAN
(A.12)
The proof of Lemma relies on spliting L(ap, ap(1 + €p)) into “level bands” and using
Proposition to control the number of terms in these level bands.
Fix i > 0 then by Proposition there exists g9 > 0 such that for all € € (0, () we have

(1 —n)erp < |LMan, an(l+e0))| < (14 n)eky . (A.13)

Turning back to the sum of Lemma we first split the sum depending on whether go?v(x) <
ap (1 +€p) or not.
For x’s such that % (7) > ax(1 + &p), we have

3 (@ — €0) lo — —Be
S e (-8 log Ay]) < [Anfe P08 IN] = o[ F AP (A)
TEAN
03 (x)>ap (1+e0)

After multiplying by |Anx|?~!log |Ax/|, this vanishes at N — +oo.
Let us now consider the z’s such that o3 (z) < (1 +&¢)ay. Fix § > 0. For k > 0 we write

k5€0
= 1+ Al
o =an(1+ logIAN|> A
Then, writing k(go) = 5 log [An| — 1, we have
E(eo)
> e (-2 ogan) =Y Y e (-2 log|Ay])
TeAN k=1 ze LA (o, apt1)

03 (2)<ap (1+eo)
By the definition of ay, we have
£ e apg) e P00 < ST e (= B log [An]) < e 0K LA (e, )
zeLM (op,ap41)
Since § > 0 can be arbitrarily small, we are left to study

k(eo)
AN D7 e PR LA (g, ey - (A.16)
k=1

Let us now do a discrete integration by part by writing

€0)
e~ Boeok _ ,—Bdcolk(e0)+1] Z —Bdeo(j+1) —55€0j) ]

The sum in (A.16]) can thus be rewritten as

k(o) k(o
"CA(@A,O%(EO))!B Bozolk(zo)+1] Z Z —Hoe0) _ =B LA (ay, gy )| (A.17)

Interverting the sums on k and j and noticing that Zi:o LA (g, 1) = [L2(ap, aji1)], we
are left with
k(<o) ‘
LM (g, ey ) e POPOIREN T (1 — =020y N =007 | LA (0 0 41))| (A.18)
j=0
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Using the definition of k(gg) on the first term of (A.18]), we get
|£A(OZA, ak(eo))|e—5660[k(so)+ﬂ — |£A(04A7 ak(so))HANr/BEg < |AN|1—55§ .

For the second term of (A.18)), we use (A.13)) to get

Nd5 co & —Bcoj & —Be0j| A ' Ny & —Bc0j
(1-n 10g‘A | Z j+1)e < ]2) e 1LY (e, aji1)] < (1+77)m j}% (j+1)e :
We easily conclude by using the fact that
Heo , e Poe0(3eM%0 —2) 510 B(de0)® 1

1— e Poe0 )deo (j+1)e Po%0d = (1 — ¢=Fo0)5¢ ~ =
( Z J ( T A (T Eal.

. (A.19)

Proof of Proposition[A.1. Consider ey > 0 that is given by Assumption Note that A is a
compact manifold and that for all ¢ € (0,&0), L(a, (1 + €)ap) is compact. Note that 2
smooth on the interior of D and has no critical points in L£(ayp, (1 + €)ap). Therefore, according
to the proof of [Mil16, Theorem 3.1], there exists a unique solution (®s)se(0,¢,) to the modified
gradient flow equation

2
Bole) =z . 15¥ale) = o G Pala)). (A.20)

which is such that @ is a diffeomorphism Lo, — L(1145)a, - We can then write

€ €
LA (an, (1+e)ap)| = [ do de= [ do _det(dds(@)) dz (A.21)
2
0 ®5(ANLa, ) 0 ANLa, |V?o @5(2)]

Let us first claim that the integral on x is a continuous function of §, and thus is uniformly
continuous. Therefore, we have

hmf|£ (ap, (1 +€)an |—/ Wd$:/ d%, (A.22)
e=0 ANLa, |V? 0 @o()] AL, |V ()]

the last equality using the fact that ®¢(z) = x. The continuity of the integral with respect to x
follows from the fact that § — ®s is C! meaning that the Jacobian is continuous. In the same way,
the denominator of the integrand is continuous and bounded from above. Hence, the integrand
is continuous on a compact set and Lebesgue continuity theorem gives us the claim. ]

A.3 Decoupling of interlacements

Proposition A.2. Let K C Ay and u > 0, and define s(K) = inf, yek pry |2 — y|?2. Then,
there is a constant ¢ = c¢(d, A) > 0 such that for N large enough we have the decoupling inequality

‘IP’(KCJ\I,N ) I Pz € Fu, (u ))‘<cu‘K|2

< e e (A.23)
reK

Comment 3. Several works in the literature give far better bounds for the decoupling of distant
regions of random interlacements, see e.g. [PT15]. However, they rely on some sprinkling of the
intensity, which is inconvenient when working with a large number of points/sets to decouple.

The proof relies on the following lemma, that holds for any pair of disjointed finite sets.
The result is fairly standard in the case of random interlacements (see [DRS14) Claim 8.1] or
[Bel12, Lemma 2.1]): Lemma simply states that it still holds for tilted interlacements. The
proof is identical, only replacing the Newtonian capacity and the Green function by their tilted
equivalent, and using Proposition [3.4] to bound the Green function.
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Lemma A.3. Let K1, Ky C Z% be such that Ki N Ky = @, and consider two events A} and
AY that only depend respectively on Sy, (u) N Ky and Fy, (u) N Ka. Then, there is a constant
Cq > 0 that only depends on the dimension such that

cap¥y (Kl)cap‘I’N (K3)
d(Kl, Kg)d72

[P(A} N A3) — P(A})P(4Y)

< Cyu (A.24)

Proof of Proposition[A.9 Choose x € K, we apply Lemma to the sets K1 = {z} and
Ky = K \ {z}, and the events A; = {x € Fg, (u)} and Ay = {K \ {z} C Hy, (u)}. This yields

cap”~ ({z})cap¥~ (K \ {x})
d(z, K\ {a})— '

[P(K C S (w) = Pz € S (w)P(K \ {2} C Sy (w))| < Cau

(A.25)
Note that since x € K C Ay, by Proposition and pny < /12_1, we have cap?N ({z}) <
Ky 2(1 4+ N7¢)/g(0) as well as

cap”™ (K \ {z}) < Ay ) X (2)PYY (Hie\ 2y = +00) < D o (2). (A.26)
zeEK zEK

Using (3.4) (én is bounded), we deduce that cap?™ (K \ {z}) < (1 + N=%)s5 | K| and thus

NP K]
9] "S(K)

[P(K € S (w) = Pz € S (w)P(K \ {2} C Fuy (u))| < i (A.27)

Repeating the steps |K| — 1 times and using the triangular inequality concludes the proof of the
proposition with ¢ = 2Cy/g(0)x3. O
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