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Abstract

We consider the simple random walk conditioned to stay forever in a finite domain
DN ⊂ Zd, d ≥ 3 of typical size N . This confined walk is a random walk on the conductances
given by the first eigenvector of the Laplacian on DN . On inner sets of DN , the trace of this
confined walk can be approximated by tilted random interlacements, which is a useful tool to
understand some properties of the walk.

In this paper, we propose to study the cover time of inner subsets ΛN of DN as well as
the so-called late points of these subsets. If ΛN contains enough late points, we obtain the
asymptotic expansion of the covering time as cΛN

d
[

logN − log logN + G
]
, with G a Gumbel

random variable, as well as a Poisson repartition of these late points. The method we use is
similar to Belius’ work about the simple random walk on the torus, which displays the same
asymptotics albeit without the log logN term. In the more general setting of “ball-like” ΛN ,
we simply get the first term of the asymptotic expansion.

Keywords: random walk, confined walk, tilted interlacements, covering, Dirichlet eigenvector,
coupling
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1 Introduction
Motivations This paper studies the covering of a finite domain DN ⊂ Zd, d ≥ 3 of typical
size N ≫ 1 by the simple random walk conditioned to stay in DN forever, that is what we call
the confined walk. This process is in fact a random walk on the conductances given by the first
discrete Laplace eigenfunction on DN .

Recently, the author proved in [Bou24a] a connection between this confined walk and “random
interlacements”, a Poisson cloud of random walk trajectories, in the form of local couplings. We
refer to the rest of the introduction for a rigorous definition.

It is well-known that random interlacements can also be coupled to the simple random walk
(SRW) on the torus (see [Win08; TW11; ČT16]). Such coupling has been a powerful tool to
study the behavior of the random walk, and still is to these days (see [PRS23] and [CN23] for
two recent applications).

Therefore, as an application of the work [Bou24a], it is natural to tackle the study of the
confined walk through interlacements in the same way as for the SRW on the torus. The main
difference between the SRW and the confined walk is the presence of a drift which results in
inhomogeneities in the occupation measure of the confined walk.

Our main result in Theorem 1.1 gives the asymptotic covering time of subsets of DN , as well
as further asymptotics for some special subsets. We also give an application of interest in the
case where DN is a ball and how it relates to the one-dimensional case.

We stress that this work relies of the existing approaches for the covering of the torus by the
SRW, which occurs around time g(0)Nd logN with g(0) the Green function of SRW on Zd at 0.
The main interest here is how the confined walk compares to the SRW and how these differences
translates in the results and proofs.
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1.1 Random walk confined in a large domain as a Doob transform

Fix a bounded connected open set D ⊂ Rd, d ≥ 3 which contains the origin and has a smooth
boundary (meaning it is given in local coordinates by a smooth function). Let N ≥ 1 and define
DN := (ND) ∩ Zd the discrete blow-up of D with factor N .

We consider the substochastic matrix PN of the simple random walk (SRW) on Zd killed
when exiting DN , given by

PN (i, j) = 1
2d if i, j ∈ DN and i ∼ j , 0 else .

Write λN and ϕN for the first eigenvalue and associated eigenvector of PN , with the following
normalization:

PNϕN = λNϕN , ∥ϕ2
N∥ :=

∑
x∈DN

ϕ2
N (x) = Nd . (1.1)

Note that ϕN is defined on DN , but it might be convenient to extend it to ∂DN (and Zd) by
setting ϕN (x) = 0 for x /∈ DN .

Let us introduce the following notation: for h : Zd −→ R a real-valued function on Zd, we
define

∆dh(z) := 1
2d

∑
|e|=1

h(z + e) − h(z) . (1.2)

This way, one can rewrite (1.1) as the Dirichlet problem ∆dϕN = (1 − λN )ϕN , with boundary
condition ϕN ≡ 0 on ∂DN = {y ∈ Zd \ DN : ∃x ∈ DN , x ∼ y}.We refer to [BB25] for more
details and references.

The confined walk on DN is then defined as the Markov chain (Xn)n≥0 with transition
probabilities given by

pN (x, y) := λ−1
N

2d
ϕN (y)
ϕN (x)1{x∼y} , ∀x, y ∈ DN . (1.3)

We write PN
µ for its law with starting distribution µ; we will also write PN

x when µ = δx and PN
ϕ2
N

when µ = cNϕ
2
N (·) with the correct normalizing constant cN . Let us observe that the transition

kernel from (1.3) is that of a random walk among conductances cN (x, y) := ϕN (x)ϕN (y), therefore
ϕ2
N is an invariant measure of the confined walk.

We give some properties of the confined walk and the eigenfunction ϕN in Section 3.1 below.
For now, the most relevant of these properties is the uniform convergence of ϕN towards the
solution to the following (continuous) Dirichlet problem:{

∆v = µ v on D ,

v = 0 on ∂D ,
, ∥v∥2

L2 :=
ˆ
D
v(x)2dx = 1 (1.4)

with ∆ the usual Laplacian. This problem admits a sequence of solutions (µk, φk)k≥1 which is
ordered by the eigenvalues λ1 ≥ λ2 ≥ . . . . We write (µ, φ) := (µ1, φ1) for simplicity. Note that
φ is C ∞ on the interior of D (see [BB25, Theorem 1.5]). We give a precise statement of the
convergence ϕN (z ·N) → φ(z) in Proposition 3.2 below.

1.2 Covering of inner sets - main result

1.2.1 General setting

From now on, we will focus on the covering time of an inner subset of DN . We fix ε > 0 and
consider an open set Λ ⊂ D such that d(Λ, ∂D) ≥ 2ε. We define ΛN := (NΛ) ∩ Zd ⊆ DN its
discrete blowup of size N .
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An additional assumption that we make on ΛN is that it is sN -regular for some s > 0 in
the sense of [PT15, Def. 8.1]: there is a s > 0 such that for any N large enough, for any point
x ∈ ∂BN , there are balls Bin ⊆ ΛN , Bout ⊆ Zd \ ΛN ∪ ∂ΛN of radius sN that are both tangent
to ΛN at point x. Note also that ΛN is macroscopic, and may be arbitrarily close to DN , for
example if D is a ball, or if D is well approximated by “s-regular” sets. This assumption is often
refered to as a positive reach assumption.

We define the range of the confined walk (Xn)n≥0 up to time t ≥ 0 as the random set
RϕN (t) := {X0, . . . , Xt}. The covering time of ΛN is then defined as

CN (ΛN ) := inf {t ≥ 0 : ΛN ⊆ RϕN (t)} = sup
{
Hx : x ∈ ΛN

}
, (1.5)

with Hx := inf{t ≥ 0 : Xt = x} the hitting time of x. Let us state the first of the main results
of this paper, which gives asymptotics for CN (ΛN ). We recall that g is the Green function of
SRW on Zd.

Theorem 1.1. Under PN
ϕ2
N

, we have the following asymptotics in probability:

CN (ΛN ) ∼ g(0)α−1
Λ λNN

d log |ΛN | with αΛ := inf
x∈Λ

φ2(x) . (1.6)

Moreover, CN (ΛN ) has “super-Gumbel” fluctuation, in the sense that for any fixed z ∈ R,

lim inf
N→+∞

PN
ϕ2
N

(
CN (ΛN ) ≤ λNg(0)

αΛ
Nd{log |ΛN | + z}

)
≥ exp(−e−z) . (1.7)

1.2.2 Gumbel and Poisson behaviour under a stronger assumption

If we restrict ourselves to the case where αΛ is achieved by a positive proportion of points in
∂Λ, we are able to get the fluctuations of the covering time as well as a description of the “last
points” to be covered by the confined walk. Fix α ∈ φ2(Λ), we define the α-level set of φ2 as
Lα :=

{
x ∈ D : φ2(x) = α

}
.

Our stronger assumption on Λ is that ∂Λ ∩ LαΛ has in some sense a positive (d− 1) Lebesgue
measure, meaning that it is the trace on ∂Λ of an open set of Rd. We formulate this assumption
with the following statement, which also means that α 7→ Lα is somewhat continuous at αΛ.

Assumption 1. We assume that there exists a ε0 > 0 such that on
{
x ∈ D : αΛ ≤ φ2(x) ≤

(1 + ε0)αΛ
}
, we have ∇φ2 ̸= 0.

Note that Assumption 1 implies that ε−1∣∣{x ∈ D : αΛ ≤ φ2(x) ≤ (1 + ε)αΛ
}∣∣ converges

towards a positive limit (see Proposition A.1 in the Appendix). As an illustration of Assumption
1, one can consider the setting where D and Λ are concentric balls. In this case, the level sets
are spheres and φ = φ̂(| · |) decreases with the radius of the sphere. We give more details on this
example in Section 7.1.

Also note that under Assumption 1, φ2 achieves its minimum αΛ on ∂Λ, meaning ∂Λ∩LαΛ ̸= ∅.
In fact, we will see that the assumption forces the minimum to be achieved for a positive proportion
of points of ∂Λ.

For z ∈ R, we define

tΛN (z) := g(0)
αΛ

Nd{ log |ΛN | − log log |ΛN | + z
}
. (1.8)

We then have the following statement.

Theorem 1.2. Assume that Assumption 1 holds and fix z ∈ R. We have

lim
N→+∞

P
(
C(ΛN ) ≤ tΛN (z)

)
= exp

(
− κΛe

−z) with κΛ :=
ˆ
∂Λ∩LαΛ

dx∣∣∇φ2(x)
∣∣ . (1.9)
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Moreover, there exists an explicit measure µΛ, supported on ∂Λ ∩ LαΛ and with total mass κΛ,
such that:

N Λ,z
RW,N :=

∑
x∈ΛN

δx/N1{x̸∈RϕN
(tΛN (z))} =

∑
x∈ΛN

δx/N1{Hx>tΛN (z)}
(d)−−−−−→

N→+∞
N Λ,z , (1.10)

with N Λ,z a Poisson point process on Rd with intensity measure e−zµΛ. The convergence holds
in distribution with respect to the weak topology on the space of point measures.

The proof of the two theorems heavily relies on the coupling of the range of the tilted RW
with well-chosen random interlacements given by ϕN . In the following sections, we properly
introduce the tilted random interlacements and state the coupling result that we use in this
paper. The core of the paper will then be to prove Theorems 2.1 & 2.2, which are the analogues
of Theorems 1.1 & 1.2 for the tilted interlacements. We present how the later can be deduced
from the former in Section 6.
Comment 1. The log log |ΛN | correction in tN (0) is linked to the codimension of the set {φ2 = αΛ}.
We conjecture that in the general setting, the next order asymptotics to Theorem 1.1 is given by
n log log |ΛN | where n is chosen such that ε−n∣∣{x ∈ Λ : φ2(x) ≤ (1 + ε)αΛ}

∣∣ converges as ε ↓ 0
towards a finite positive limit. This accounts for the fact that very few points of ΛN are such
that φ2 ≈ αΛ, therefore there are fewer “last points” to visit.

1.3 Comparison with the random walk on the torus

Consider the discrete torus of size N ≥ 1, denoted by TdN := (Z/NZ)d, as well as the simple,
nearest-neighbour random walk (SRW) S = (Sn)n≥0 on TdN started from the uniform distribution.
For d ≥ 3, the behavior of this walk has been extensively studied in the literature, with notably the
study of the last points of TdN that the SRW visits. For T ≥ 0, we define RT (S) :=

{
S0, . . . , S⌊T ⌋

}
the range up to time T . Then, the cover time CdN of TdN is defined as

CdN := inf
{
t ∈ N : Rt(S) = TdN

}
. (1.11)

Write Px for the law of the simple random walk on Zd with starting point x ∈ Zd, and simply
P = P0. With a slight abuse of notation, we also denote by Px/P the law of SRW on the torus.

With the work of Aldous [Ald83] on cover time of Markov chains, it is known that CdN ∼
g(0)Nd logN in probability, where g is the SRW Green’s function. It is then natural to inquire
about both the fluctuation of CdN around g(0)Nd logN and about the points that are still not
covered by the SRW at time g(0)Nd logN(1 ± ō(1)).

Such questions where first tackled by Belius [Bel13], who first proved Gumbel fluctuations
for CdN :

lim
N→+∞

sup
x∈TdN

∣∣∣Px

(
CdN ≤ g(0)Nd{ logN + z

})
− exp

(
− e−z)∣∣∣ = 0 . (1.12)

Regarding the “late points” of the SRW, Belius proved that these are distributed following a
Poisson point process with uniform intensity measure. Given z ∈ R we may define N z

N the set of
points that are not covered at time g(0)Nd

{
logN + z

}
. Then, we have the following convergence

in distribution:
1
N

N z
N

(d)−−−−−→
N→+∞

N z , (1.13)

where N z is a Poisson point process on [0, 1]d with intensity e−zdℓd, with ℓd the Lebesgue measure
on Rd.

More recently, a work of Prévost, Rodriguez and Sousi [PRS23] improved our understanding
of the late points and proved a sharp phase transition for the behavior of the set. Consider
a ∈ (0, 1) and the a-fraction of the covering time τaN := ag(0)Nd logN . Then, if L a

N is the set of
points that are not covered by the random walk at time τaN , we have the following alternative:
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• If a > 1
2 , there is a coupling with a Bernoulli field Z a

N such that L a
N ≈ Z a

N with probability
going to 1 as N → +∞a. Morally, the presence of a late point can be considered as
independent Bernoulli random variables.

• If a = 1
2 , the best coupling possible has probability e−1 as N → +∞ of having L a

N ≈ Z a
N .

• If a < 1
2 , there are no coupling that achieve a positive probability as N → +∞ for the

event L a
N ≈ Z a

N .

The key element in the proof of these results is a coupling that links the SRW to a random
subset of Zd introduced in [Szn10] and called the random interlacements. Informally speaking,
the random interlacements (RI) at level u > 0, denoted by I (u), is a Poissonian collection of
independent random walk trajectories whose “density” is governed by u. Successive works of
[Win08; TW11; ČT16] proved that for any u > 0, the range RuNd is “locally close” to I (u).
More details about interlacements are provided in Section 2.1.

With this coupling, we can link CdN to UdN the first level u at which I (u) covers the torus
TdN by having CdN ∼ Nd · UdN . The main benefit of working with interlacements is that the cover
level of a point has an explicit exponential distribution with parameter g(0)−1 which corresponds
to its capacity (see Section 2.1 below). Heuristically, we may think UdN as a maximum of Nd

exponential variables, hence the Gumbel fluctuations which also propagate to CdN , therefore
resulting in (1.12). The fact that Gumbel fluctuations appear in this context in well-known in
extreme value theory when the exponential variables are i.i.d. (see [Res87, Proposition 0.3]).
Random interlacements however display strong correlations: the main step of the proof of (1.12)
is then to create the required independence by studying the set of the last points to be covered.

Our main motivation for this paper is the coupling between the confined walk and a random
tilted interlacements on macroscopic inner subsets of DN that was recently obtained in [Bou24a].
As in the case of the torus, we will use this coupling to prove Theorems 1.1 & 1.2 by first proving
their analogs for the tilted interlacements. We stress that these analog results are the main
point of this paper: the transfers to the confined walk, which we explain in Section 6 is mostly
straightforward. The main additional difficulty comes in the fact that contrary to the case of
the torus, the tilted interlacements is not spatially homogeneous. This can be translated in the
previous heuristics by saying that the cover level of x ∈ DN is an exponential variable with
position-dependent parameter (and not a constant like g(0)−1).

Acknowledgements The author warmly thanks his PhD advisors Quentin Berger & Julien
Poisat for their continued support. This research was partially supported by the Austrian Science
Fund (FWF) 10.55776/P34129.

2 Tilted interlacements, capacity and first estimates

2.1 Tilting of random interlacements

The tilted (continuous-time) random interlacements were introduced in [LS14] defined the tilting
of continuous-time random interlacements as a way to locally modify the trajectories of the RI.
It was used in particular to get large deviation principles for disconnection events, by locally
densifying the RI. We choose to present here the point of view of [Tei09] as random interlacements
on weighted graphs, with a touch of local tilting of interlacements present in [LS14]. We also
mention [CN23] for more recent example of their use in large deviation events.

Consider the space of doubly infinite transient paths on the d-dimensional lattice Zd, d ≥ 3:

W =
{
w : Z → Zd : ∀n ∈ Z, |w(n) − w(n+ 1)|1 = 1 and lim

|n|→∞
|w(n)| = ∞

}
,

aHere L a
N ≈ Z a

N means that Z
a−
N ⊆ L a

N ⊆ Z
a+
N with a− = a−(N) ∼ a+.
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endowed with the σ-algebra W generated by the maps w 7→ w(n), n ∈ Z. We can define
the equivalence relation w ∼ w′ ⇐⇒ ∃k ∈ Z, w(· + k) = w′, and we write W ∗ := W/ ∼ the
corresponding quotient space as well as π∗ the associated canonical projection. The set W ∗ is
endowed with the σ-algebra W ∗ generated by π∗.

Let K be a subset of Zd. We define for w ∈ W the hitting times

HK(w) = inf {k ∈ Z : w(k) ∈ K} , H̄K = inf {k ≥ 1 : w(k) ∈ K} (2.1)

with inf ∅ = +∞ by convention. We also define WK = W ∩ {HK < +∞} the set of trajectories
that hit K.

Consider a positive function h : Zd −→ R∗
+ which satisfies h = 1 outside a finite set.

Informally, the h-tilted random interlacements of level u > 0, denoted by Ih(u), is a Poisson
cloud of h-tilted random walk trajectories, i.e. random walks on Zd equipped with conductances
c(x, y) = h(x)h(y).

More precisely, we let Ph
z denote the law of the random walk on conductances c(x, y) =

h(x)h(y) starting at z ∈ Zd. Consider a finite set K ⊂ Zd. Then, we can define the h-tilted
equilibrium measure of K by

ehK(z) := Ph
z

(
H̄K = +∞

)
h(z)

∑
|e|=1

h(z + e)1{z∈K} , ēhK(x) = ehK(x)
caph(K) . (2.2)

Here, caph(K) is the tilted capacity of the set K, given by

caph(K) = ehK(K) =
∑
x∈∂K

ehK(x) ,

where we have used that the measure ehK is supported on the (inner) boundary of K, which we
denote by ∂K = {x ∈ K : ∃y ∈ Zd \K,x ∼ y}.

Intuitively, ēhK is the law of the first entrance point in K of a random walk trajectory that is
coming from far away. Indeed, we have Ph

z (XHK = x |HK < +∞) → ēhK(x) as |z| → +∞, and
the capacity can be alternatively written as

caph(K) = lim
|z|→+∞

Ph
z (HK < +∞)

Gh(z) , with Gh(z) =
∑
n≥0

Ph
z (Xn = z) the Green function ,

and can be interpreted as the “size” of K seen from a random walk starting at a faraway point on
Zd. Since h ≡ 1 outside a finite set, the tilted Green function Gh resembles the Green function
of the SRW, hence we can convince ourselves that as |z| → +∞, we have Gh(z) ∼ G(z) ≍ |z|2−d,
where | · | is the Euclidean norm on Rd (see [LL10, Thm. 4.3.1]).

Now, let w∗ ∈ W ∗
K be a class of paths hitting K, and denote by w̃ the unique w ∈ w∗ such

that HK(w) = 0. For K finite, we can define on π∗(WK) a finite measure νK given by

νhK(w∗) = Ph
w̃(0)(w(Z−) | H̄K = +∞) × ehK(w(0)) × Ph

w̃(0)(w(Z+)) , (2.3)

which can be interpreted, after normalization, as the law of a SRW trajectory that hits K. The
measures νhK for K finite can be extended to a σ-finite measure νh on W ∗.

The tilted random interlacements process is a Poisson Point Process χh on the space W ∗ ×R+
with intensity νh ⊗ du. The random interlacements of level u > 0 is the subset Ih(u) ⊂ Zd
defined as

Ih(u) :=
{
z ∈ Zd : ∃(w, v) ∈ χh, v ≤ u, z ∈ w(Z)

}
=

{
w(k) : k ∈ Z, (w, v) ∈ χh, v ≤ u

}
.

We denote by Ph the law of the RI on the space Mp(W ∗ × R+) of point measures on W ∗ × R+,
which we also use to denote the law of the (non-decreasing) family of random subsets (Ih(u))u>0.
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A key property of RI is that its trace in a finite set K can be recovered from a collection
of tilted RW trajectories — a property shared with the RI, see [Szn10]. More precisely, denote
by Nh,u

K a Poisson variable with parameter ucaph(K) and let (X(j))j≥0 be i.i.d. h-tilted RW
trajectories starting from ēhK . We then have

Ih(u) ∩K
(d)=

{
R∞(X(j)) : 1 ≤ j ≤ Nh,u

K

}
∩K . (2.4)

In particular, we deduce the following crucial identity, which characterizes the law of Ih(u) as
a random subset of Zd (see [Szn10, Remark 2.2-(2)]): for any fixed u > 0 and any finite set
K ⊂ Zd,

Ph
(
I (u) ∩K = ∅

)
= exp

(
− ucaph(K)

)
. (2.5)

2.2 Cover level of the tilted interlacements

Recall that we consider a subset ΛN = (N · Λ) ∩ Zd ⊂ DN with Λ an open subset of D that
satisfies d(Λ, ∂D) ≥ 2ε for some ε > 0. Let us define Λε

N =
{
x ∈ DN : d(x,DN ) ≤ εN

}
⊂ DN

the εN -enlarged version of ΛN . The tilting functions that we will consider are given by

ΨN (x) :=
{
ϕN (x) if x ∈ ΛεN ,
1 else .

Write PΨN
x for the law of the random walk on conductances ΨN (i)ΨN (j) starting at x ∈ Zd, i.e.

with transition kernel denoted by pψN (x, y).
As previously mentioned, the main ordeal of the paper is to prove an analog of Theorem 1.1

for the tilted interlacements IΨN . To this end, we define the covering level of the set ΛN as the
random variable

UN (ΛN ) := inf{u > 0 : ΛN ⊂ IΨN (u)} = sup
{
Ux : x ∈ ΛN

}
, (2.6)

with Ux := inf{u > 0 : x ∈ IΨN (u)} the covering level of x.

Theorem 2.1 (Cover level of the interlacements). Under PΨN , we have the following asymptotics
in probability:

UN (ΛN ) ∼ g(0)α−1
Λ log |ΛN | with αΛ = inf

x∈Λ
φ2(x) . (2.7)

Moreover, UN (ΛN ) has “super-Gumbel” fluctuation, in the sense that for any fixed z ∈ R,

lim inf
N→+∞

PΨN

(
UN (ΛN ) ≤ g(0)

α(Λ){log |ΛN | + z}
)

≥ exp(−e−z) . (2.8)

Let us define
uΛ
N (z) := tΛN (z)

Nd
= g(0)

αΛ

{
log |ΛN | − log log |ΛN | + z

}
. (2.9)

Our second theorem states that provided Assumption 1 holds, UΛ
N ≈ uΛ

N (G) with G a Gumbel
random variable.

Theorem 2.2. Assume that Assumption 1 holds and fix z ∈ R. We have

lim
N→+∞

PΨN
(
U(ΛN ) ≤ uΛ

N (z)
)

= exp
(

− κΛe
−z) , (2.10)

where κΛ is the constant in Theorem 1.2. Moreover, the following convergence holds in distribution
with respect to the weak topology on the space of point measures:

N Λ,z
RI,N :=

∑
x∈ΛN

δx/N1{x̸∈IψN (uΛ
N (z))} =

∑
x∈ΛN

δx/N1{Ux>uΛ
N (z)}

(d)−−−−−→
N→+∞

N Λ,z , (2.11)

with N Λ,z the same Poisson point process as the one in Theorem 1.2.
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As explained in Section 1.3, we can link Theorem 2.1 to the capacity of a point. Indeed, (2.5)
yields

∀x ∈ Zd, ∀u > 0 , PΨN (x ̸∈ IΨN (u)) = exp
(

− ucapΨN ({x})
)
. (2.12)

Note that contrary to the case of simple random walk, capΨN ({x}) is not a constant. Therefore,
our first task is to understand its dependence in x. The following proposition is crucial, and
explains why φ2 appears in Theorem 2.1.

Proposition 2.3. There are constants c, C > 0 that only depend on the dimension d ≥ 3 such
that for all N large enough,

sup
x∈ΛN

∣∣∣∣capΨN ({x})
φ2
N (x)/g(0) − 1

∣∣∣∣ ≤ CN−c . (2.13)

We prove Proposition 2.3 in the next section. For now, we state a useful corollary that will
be used extensively in the rest of the paper in order to replace capΨN ({x}) with φ2

N (x).

Corollary 2.4. Let f : ΛN −→ R+ be non-zero and uN be such that uNN−c → 0 (where c is
the constant in Proposition 2.3). Then, we have

∑
x∈ΛN

f(x)P
(
x ̸∈ IΨN (uN )

)/ ∑
x∈ΛN

f(x) exp
(

− uNφ
2
N (x)/g(0)

)
−−−−−→
N→+∞

1 . (2.14)

Comment 2. Proposition 2.3 explains why the log logN term appears in (1.8) and (2.9) while
being absent in (1.12). Indeed, when combined with the smoothness of φN , the Proposition
implies that for x, y ∈ ΛN ,

capΨN ({x}) = capΨN ({y}) + g(0)∇φ2(x/N) |x− y|
N

(1 + ō(1)) . (2.15)

Recall that on the torus, we can explain the logN factor by the extreme value theory: it
corresponds to the logarithm of the number of “relevant” points, which are the points z ∈ TdN
such that P(Uz ≥ UdN ) ≍ supw∈ΛN P(Uw ≥ UdN ). In the case of the torus, as cap({w}) is constant,
so is P(Uw ≥ UdN ) therefore the set of relevant points is ΛN (hence a factor log |ΛN |). In our case
however, by (2.12) and Proposition 2.3, one can easily show that

P
(
Uz ≥ g(0)

αΛ
log |ΛN |

)
≍ sup

w∈ΛN
P

(
Uw ≥ g(0)

αΛ
log |ΛN |

)
⇐⇒ capΨN ({z}) − αΛ

g(0) = Ō
( 1

log |ΛN |

)
.

Using (2.15), this condition is satisfied only for ≍ |ΛN |
log |ΛN | points, which are the relevant points in

this case. In particular, when considering the extreme value theory, we are left with a factor
log(|ΛN |/ log |ΛN |) = log |ΛN | − log log |ΛN |, thus explaining the log log |ΛN | correction in (2.9).

3 Some useful estimates

3.1 Useful facts about the confined walk and eigenfunction

3.1.1 Probabilistic interpretation as a confined walk

Recall that PN is the law of the confined walk and P is the law of SRW on Zd. It is known, by
standard Markov chain theory (see e.g. [LL10, Appendix A.4.1]), that the transition kernel (1.3)
is in some sense the limit, as T → +∞, of the transition kernels of the SRW conditioned to stay
in DN until time T . Indeed, if τN is the first time the SRW exits DN and x ∼ y, we have

Px(S1 = y, τN > T )
Px(τN > T ) = 1

2d
Py(τN > T − 1)

Px(τN > T ) = λ−1
N

2d
λNPy(τN > T − 1)

Px(τN > T ) −−−−−→
T→+∞

λ−1
N

2d
ϕN (y)
ϕN (x) ,
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the last limit being a consequence of the fact that Pz(τN > T ) = ϕN (z)∥ϕN∥1
∥ϕN∥2

2
(λN )T + Ō((βN )T )

as T → ∞, for some βN < λN (see [LL10, Prop. 6.9.1]).
We also have a useful relation to compare the simple and tilted random walks. Consider a

set Λ which intersects DN , and an event A ∈ FHΛ , i.e. an event that depends on the trajectory
of the random walk until it hits Λ. Then, using the transition kernel p̃N (x, y) from (1.3) and
after telescoping the ratios of the ϕN ’s, we have

PN
x (A) = 1

ϕN (x)Ex

[
1A · (λN )−HΛϕN (SHΛ)1{

HΛ<HZd\DN

}]
. (3.1)

We can think of (3.1) as a Feynman-Kac representation of the eigenvector ϕN .

3.1.2 Properties of the eigenvector

Studying the confined walk requires some understanding of the eigenvector ϕN . With Q. Berger,
we investigated in [BB25] some properties of ϕN as N → +∞, which we will use in this paper.
Let us compile these results to facilitate their use. Recall that we are in the setting of positive
reach.
Proposition 3.1 (Regularity). There is a constant C > 0 (that depends only on the domain D)
such that, for any x, y ∈ DN ∣∣ϕN (y) − ϕN (x)

∣∣ ≤ C
d(x, y)
N

. (3.2)

Note that this regularity implies that ratios of ϕN ’s in the bulk of DN are 0 and +∞.
According to [BB25, Corollary 1.14], there is a positive constant κ1, and some N1 ≥ 1 such that,
for all N ≥ N1,

κ1 ≤ inf
x,y∈BεN

ϕN (x)
ϕN (y) ≤ sup

x,y∈BεN

ϕN (x)
ϕN (y) ≤ 1

κ1
. (3.3)

This control of the ratios, combined with bounds on ϕN , extends to a control on the values of
ϕN . More precisely, there is a positive constant κ2, and some N2 ≥ 1 such that, for all N ≥ N2,

κ2 ≤ inf
x∈BεN

ϕN (x) ≤ sup
x∈BεN

ϕN (x) ≤ 1
κ2
. (3.4)

Proposition 3.2 (Convergence). For any η > 0, define Dη
N := {x ∈ DN , d(x, ∂DN ) > ηN}.

Then there exists a positive constant cη such that

sup
x∈DηN

∣∣∣∣ ϕN (x)
φ(x/N) − 1

∣∣∣∣ ≤ cηN
−1 . (3.5)

3.1.3 On the principal eigenvalue

Let us mention that it is known (see [Wei58] or [BB25] for details) that λN satisfies

λN = 1 − λ

2d
1
N2 (1 + ō(1)) , (3.6)

where λ = λD is the first Dirichlet eigenvalue of the Laplace-Beltrami operator on D and ō(1) is
a quantity that vanishes as N → +∞.

In particular, there exists c0 > 0 a universal constant, which can be made arbitrarily close to
λ by taking N large enough, such that for any T ≥ 0,

1 ≤ λ−T
N ≤ ec0T/N2

. (3.7)
Therefore, combining (3.1) and (3.3) yields the following inequalities:

κ1Px(A) ≤ PN
x (A) ≤ 1

κ1

[
ec0Px(A) +

+∞∑
k=1

ec0(k+1)Px(A, τC ∈ [k, k + 1)N2)
]
. (3.8)
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3.2 Green function of the tilted walk, proof of Proposition 2.3

We introduce the Green function of the tilted RW:

GΨN (x, y) =
∑
n≥0

PΨN
x (Xn = y) .

Let us stress that this Green function is not symmetric in x and y. When x = y, we simply write
GΨN (x) := GΨN (x, x) which, contrary to the Green function of the SRW, does depend on x.

Proposition 3.3 (Last exit decomposition). For any K ⊆ B and any x ∈ Zd,

PΨN
x (HK < +∞) =

∑
z∈K

GΨN (x, z) eΨN
K (z)

λNϕ2
N (z) . (3.9)

Proof. Consider x ∈ Zd and define LK := sup{n ≥ 0, Xn ∈ K} the last time the tilted RW is in
K. Since the ΨN -tilted RW is transient, we have LK < +∞ PΨN

x -a.s. Therefore,

PΨN
x (HK < +∞) =

∑
n≥0

∑
y∈K

PΨN
x (LK = n,Xn = y) =

∑
n≥0

∑
y∈K

PΨN
x (Xn = y)PΨN

y (H̄K = +∞)

=
∑
y∈K

GΨN (x, y)PΨN
y (H̄K = +∞) .

By (2.2), we have PΨN
y (H̄K = +∞) = eΨN

K (y)/λNϕ2
N (y) for all y ∈ K ⊆ B, which proves the

lemma.

Proposition 3.4. There are positive constants cd, Cd, independent of N such that, for all
x, y ∈ ΛN with |x− y| large enough,

cd
|x− y|d−2 ≤ GΨN (x, y) ≤ Cd

|x− y|d−2 . (3.10)

The proof we present in Appendix A.1 is inspired by the heuristics given in [DRS14, Remark
2.10]. A more general proof should be possible using Gaussian bounds (see [Del99]). With such
estimate on the Green function, we are now in the position to prove Proposition 2.3.

Proof of Proposition 2.3. Fix γ ∈ (0, 1) and consider Bγ
N the ball centered at x with radius Nγ .

We write the tilted capacity from x to ∂Bγ
N as

CΨN (x → ∂Bγ
N ) := PΨN

x (H̄x > H∂BγN
) = inf {EΨN (f) : f(x) = 1 and ∀z ∈ ∂Bγ

N , f(z) = 0} ,
(3.11)

where EΨN (f) := ∑
z∼w[f(z) − f(w)]2cN (z, w) is the Dirichlet energy associated to the con-

ductances cN (z, w) = ΨN (z)ΨN (w) (for z ∼ w) (see [LPW17, Exercice 9.9]). We also write
C1(x → ∂Bγ

N ) for the capacity associated to the SRW (with cN (z, w) = 1). We will prove the
following chain of approximation holds with polynomially decreasing error:

capΨN ({x}) ≈ CΨN (x → ∂Bγ
N ) ≈ ϕ2

N (x)C1(x → ∂Bγ
N ) ≈ ϕ2

N (x)g(0)−1 .

First note that we have PΨN
z (Hx < +∞) = GΨN (z, x)/GΨN (x) and Proposition 3.4 combined

with GΨN (x) ≥ 1 imply that this probability is bounded from above by CdNγ(2−d) uniformly in
z ∈ ∂Bγ

N . In particular,

PΨN
x (H̄x > H∂BγN

) − PΨN
x (H̄x = +∞) =

∑
z∈∂BγN

PΨN
x (H̄x < H∂BγN

, XH
∂B

γ
N

= z)PΨN
z (Hx < +∞)

≤ PΨN
x (H̄x < H∂BγN

)CdNγ(2−d) ,

(3.12)
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hence proving that

1 − capΨN ({x})
CΨN (x → ∂Bγ

N ) ≤ CdN
γ(2−d) . (3.13)

Let us focus on CΨN (x → ∂Bγ
N ). Using Proposition 3.1 and the fact that ϕN ∈ [κ, 1

κ ] uniformly
in N , there is a constant c > 0 such that for every function f ,∣∣∣EΨN (f) − ϕ2

N (x)E1(f)
∣∣∣ ≤ 1

2
∑
z∼w

[f(z) − f(w)]2
∣∣ϕN (z)ϕN (w) − ϕ2

N (x)
∣∣ ≤ cNγ−1ϕ2

N (x)E1(f) .

(3.14)
Since Nγ−1ϕ2

N (x) ≤ κ−2Nγ−1 → 0, combining (3.13) and (3.14), we easily deduce that∣∣∣ CΨN (x → ∂Bγ
N )

ϕ2
N (x)C1(x → ∂Bγ

N ) − 1
∣∣∣ ≤ c2N

γ−1 . (3.15)

To conclude the proof, we claim that 0 ≤ C1(x ↔ ∂Bγ
N )g(0) − 1 ≤ c3N

γ(2−d). This can be proved
with the same method as previously by using g(x, y) ≤ C ′

d|x− y|2−d (see [LL10, Theorem 4.3.1]).
Finally, using Proposition 3.2, we have ∥ϕ2

N − φ2
N∥∞ ≤ N−µ for µ = 1/2(d + 1). Therefore,

taking c = µ ∧ (1 − γ) ∧ γ(d− 2) with the optimal γ = 1/(d− 1), the proposition follows.

3.3 Estimates on the capacity of certain sets

Proposition 3.5. Let x, y ∈ BN , then

capΨN ({x, y}) =
capΨN ({x})PΨN

x (Hy = +∞) + capΨN ({y})PΨN
y (Hx = +∞)

1 − PΨN
x (Hy < +∞)PΨN

y (Hx < +∞)
. (3.16)

Proof. Write K = {x, y} and use the last exit decomposition at points x, y ∈ K. we have

1 = GΨN (x) eK(x)
λNϕN (x)2 +GΨN (x, y) eK(y)

λNϕN (y)2 = GΨN (y, x) eK(x)
λNϕN (x)2 +GΨN (y) eK(y)

λNϕN (y)2 .

Write f(z) = eK(z)/λNϕN (z)2, then we can solve this system for f(x), f(y):

f(x) = 1
GΨN (x)

[
1 −GΨN (x, y)f(y)

]
, f(y)GΨN (y) + GΨN (y, x)

GΨN (x)
[
1 −GΨN (x, y)f(y)

]
= 1

and thus
f(y)

(
GΨN (y) − GΨN (x, y)GΨN (y, x)

GΨN (x)

)
= 1 − GΨN (x, y)

GΨN (x) .

From this, we deduce

f(y) =
1 − GΨN (x,y)

GΨN (x)

GΨN (y) − GΨN (x,y)GΨN (y,x)
GΨN (x)

= GΨN (x) −GΨN (x, y)
GΨN (x)GΨN (y) −GΨN (x, y)GΨN (y, x) .

Multiplying this by λNϕ2
N (y) gives us an expression for eK(y), however we can first notice that

λNϕ
2
N (y) = capΨN ({y})GΨN (y). Therefore, we get

eK(y) = capΨN ({y})GΨN (y)[GΨN (x) −GΨN (y, x)]
GΨN (x)GΨN (y) −GΨN (x, y)GΨN (y, x) , (3.17)

which can be rewritten by noting that GΨN (x, y) = PΨN
x (Hy < +∞)GΨN (y):

eK(y) =
capΨN ({y})[1 − PΨN

y (Hx < +∞)]
1 − PΨN

x (Hy < +∞)PΨN
y (Hx < +∞)

, (3.18)

By symmetry, we also deduce the expression of eK(x), hence proving the statement since
capΨN ({x, y}) = eK(x) + eK(y) by definition.
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Corollary 3.6. There is a constant c0 > 0 such that for all N large enough, any x, y ∈ ΛN , we
have

capΨN ({x, y}) ≥
[
1 + 1

4c
2
0
]
αΛ/g(0) . (3.19)

To prove Corollary 3.6, we use the following result on the tilted walk.

Lemma 3.7. There is a constant c0 > 0 such that for all N large enough,

inf
x,y∈B,x̸=y

PΨN
x (Hy = +∞) ≥ c0 . (3.20)

Proof. Using the Markov property and (3.8), we have

PΨN
x (Hy = +∞) ≥ PΨN

x (Hy > H∂Bε) inf
z∈∂Bε

PΨN
x (Hy = +∞)

≥ κPx(Hy > H∂Bε) inf
z∈∂Bε

PΨN
x (Hy = +∞) .

The first probability can be expressed as 1 − g(x, y)/g(0) ≥ 1 − g(0, e)/g(0) with |e| = 1, and
thus is bounded from below by a positive constant. The second probability is also bounded from
below by a constant independent of N , we refer to the proof of Lemma 2.5 in [Bou24c].

Proof of Corollary 3.6. Note that combining Propositions 2.3 & 3.5, we only need to prove that
provided N large enough, we have

PΨN
x (Hy = +∞) + PΨN

y (Hx = +∞)
1 − PΨN

x (Hy < +∞)PΨN
y (Hx < +∞)

≥ 1 + 1
4c

2
0 . (3.21)

Observe that

1−PΨN
x (Hy < +∞)PΨN

y (Hx < +∞)
= PΨN

x (Hy = +∞) + PΨN
y (Hx = +∞) − PΨN

x (Hy = +∞)PΨN
y (Hx = +∞) .

(3.22)

Injecting (3.22) in the denominator of the left-hand side of (3.21), we get

PΨN
x (Hy = +∞) + PΨN

y (Hx = +∞)
1 − PΨN

x (Hy < +∞)PΨN
y (Hx < +∞)

≥ 1 +
PΨN
x (Hy = +∞)PΨN

y (Hx = +∞)
PΨN
x (Hy = +∞) + PΨN

y (Hx = +∞)

≥ 1 + 1
2PΨN

x (Hy = +∞)PΨN
y (Hx = +∞) .

(3.23)

By Lemma 3.7 we have PΨN
x (Hy = +∞)PΨN

y (Hx = +∞) ≥ c2
0. Therefore taking N large enough

yields (3.21), thus ending the proof.

When the two points x, y are far from each other, the capacity of {x, y} is well-approximated by
the sum of the capacities of {x} and {y}. The bound capΨN ({x, y}) ≤ capΨN ({x}) + capΨN ({y})
is classical. For the lower bound, we have the following statement.

Proposition 3.8. For any disjoint K1,K2 ⊆ ΛN , we have

capΨN (K1∪K2) ≥ capΨN (K1)+capΨN (K2)−λN
∑
z∈K1

∑
w∈K2

[
ϕ2
N (z)GΨN (z, w) + ϕ2

N (w)GΨN (w, z)
]
.

(3.24)
In particular, writing d(K1,K2) := inf

z∈K1,w∈K2
|z − w|, there is a constant cD,d > 0 such that

capΨN (K1 ∪K2) ≥ capΨN (K1) + capΨN (K2) − cD,d
|K1| · |K2|

d(K1,K2)d−2 . (3.25)
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Proof. For any z ∈ K1, note that

PΨN
z (H̄K1∪K2 = +∞) = PΨN

z (H̄K1 = +∞) − PΨN
z (H̄K1 = +∞, H̄K2 < +∞)

≥ PΨN
z (H̄K1 = +∞) − PΨN

z (H̄K2 < +∞) .
(3.26)

Thus, we get a lower bound using (2.2) that reads∑
z∈K1

eΨN
K1∪K2

(z) ≥ λN
∑
z∈K1

ϕ2
N (z)

[
PΨN
z (H̄K1 = +∞) − PΨN

z (H̄K2 < +∞)
]

≥ capΨN (K1) − λN
∑
z∈K1

ϕ2
N (z)PΨN

z (H̄K2 < +∞) .
(3.27)

Using the last exit decomposition (Proposition 3.3), we deduce that∑
z∈K1

eΨN
K1∪K2

(z) ≥ capΨN (K1) − λN
∑
z∈K1

∑
w∈K2

ϕ2
N (z)GΨN (z, w)PΨN

w (H̄K2 = +∞) . (3.28)

We can similarly prove∑
w∈K2

eΨN
K1∪K2

(w) ≥ capΨN (K2) − λN
∑
z∈K1

∑
w∈K2

ϕ2
N (w)GΨN (w, z)PΨN

z (H̄K1 = +∞) . (3.29)

Therefore, we deduce (3.24) after using

capΨN (K1 ∪K2) =
∑
z∈K1

eΨN
K1∪K2

(z) +
∑
w∈K2

eΨN
K1∪K2

(w)

and bounding the probabilities in (3.28),(3.29) by 1. To get (3.25), it suffices to use the fact that
ϕN is bounded from below (recall (3.4)), that λN ≤ 1, as well as Proposition 3.4.

Combining (2.5) with Corollary 3.6 and Proposition 3.8, we get bounds on the correlations
between events {x ̸∈ IΨN (uN )} and {y ̸∈ IΨN (uN )} which will be useful in our proofs (see (4.4)
below).

Proposition 3.9 (Control of the correlations). Let uN be such that uNN−c → 0, we have the
following universal bound: for distinct x, y ∈ ΛN ,

Cov
(
1{x̸∈IΨN (uN )},1{y ̸∈IΨN (uN )}

)
≤ P

(
x, y ̸∈ IΨN (uN )

)
≤ exp

(
− uN

αΛ
g(0)(1 + 1

4c
2
0)

)
. (3.30)

Moreover, there is a constant cρ,Λd > 0 such that for any sequence aN → +∞ and any x, y ∈ ΛN
such that |x− y| ≥ aN , provided N large enough we have

Cov
(
1{x̸∈IΨN (uN )},1{y ̸∈IΨN (uN )}

)
≤ 2 exp

(
− uN

φ2
N (x)+φ2

N (y)
g(0)

)[
exp

(
cΛ
d

uN

ad−2
N

)
− 1

]
(3.31)

Proof. The first inequality is a direct consequence of Corollary 3.6 applied to

P
(
x, y ̸∈ IΨN (uN )

)
= exp

(
− uNcapΨN ({x, y}

))
. (3.32)

For the second inequality, we use Proposition 3.8-(3.25) to get

capΨN ({x, y}) ≥ capΨN ({x}) + capΨN ({x}) − cΛ
d

|x− y|d−2 . (3.33)

Now, using the formula (2.5), we get

P
(
x, y ̸∈ IΨN (uN )

)
≤ P

(
x ̸∈ IΨN (uN )

)
P

(
y ̸∈ IΨN (uN )

)
exp

(
uN

cΛ
d

|x− y|d−2

)
, (3.34)

thus proving the bound after using (2.5) and Proposition 2.3 to replace capΨN by φ2
N/g(0) (with

a factor 2 taking into account the error of this replacement).
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4 Covering level of ΛN - study of the intermediary set

4.1 Some technical considerations

The general principle is the same as Belius’ approach for the covering level on standard random
interlacements. It relies on the following identity, which is a direct consequence of the Poisson
structure of random interlacements: let K ⊂ Zd be a finite set and u1 < u2, then for any K ′ ⊂ K,

P
(
K ⊆ IΨN (u2)

)
= P

(
K \K ′ ⊆ IΨN (u2 − u1)

)
· P

(
K ∩ IΨN (u1) = K ′) . (4.1)

The key point that Belius’ approach exploits is that near the covering time of ΛN , the set of
points that are yet to be covered is “well-separated”, which makes it easier to study thanks to
decorrelation inequalities.

In the rest of the paper, we fix ρ > 0 small enough and define the intermediary set of “late
points” as

ΛN (ρ) :=
{
x ∈ ΛN : x ̸∈ IΨN (uΛ,ρ

N )
}

with uΛ,ρ
N := (1 − ρ)g(0)

αΛ
log |ΛN | . (4.2)

Applying (4.1) then yields

P
(
UΛ
N ≤ uΛ

N (z)
∣∣ ΛN (ρ)

)
= P

(
ΛN (ρ) ⊆ IΨN (uΛ

N (z) − uΛ,ρ
N )

)
. (4.3)

In order to get some estimates, we will often use two results in combination in order to
“integrate” a function on ΛN (ρ). Let f : ΛN −→ R, we first have

Var
[ ∑
z∈ΛN (ρ)

f(z)
]

=
∑

x,y∈ΛN

f(x)f(y)Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
. (4.4)

The proof of (4.4) is straightforward. Coupled with Proposition 3.9, this allows us to get upper
bounds on the variance of such “integral” without consideration for the actual random set ΛN (ρ).

The following lemma states a useful asymptotic that we use to fully exploit (4.4) in the case
where f is either constant or an exponential. We postpone its proof to Appendix A.2, as it is
quite technical and relies on Assumption 1.

Lemma 4.1. Fix β > 0, then under Assumption 1 we have the convergence

lim
N→+∞

log |ΛN |
|ΛN |1−β

∑
x∈ΛN

exp
(

− β
φ2
N (x)
αΛ

log |ΛN |
)

= κΛ
β
. (4.5)

Moreover, the convergence still holds if log |ΛN | is replaced by (1 + εN ) log |ΛN | with (εN )N≥1 a
vanishing sequence.

The sum in (4.5) naturally appears due to (2.5) and the fact that φ2
N (x) ≈ capΨN ({x}) (recall

Proposition 2.3).

4.2 Scattering of the late point

Proposition 4.2. Let ρ > 0 be small enough and define aρN := |ΛN |
4ρ
d−2 , then∑

0<|x−y|≤aρN

P
(
x, y ∈ ΛN (ρ)

)
≲ |ΛN |−ρ . (4.6)

This holds whether or not Assumption 1 is satisfied.
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Proof. We separate the sum depending on whether |x− y| ≤ (log |ΛN |)2 or not. For very close x
and y, the universal bound of Corollary 3.6 suffices and we get∑

0<|x−y|≤(log |ΛN |)2

P
(
x, y ∈ ΛN (ρ)

)
≤ c(log |ΛN |)2d|ΛN | exp

(
− (1 − ρ)(1 + 1

4c
2
0) log |ΛN |

)
, (4.7)

which is equal to c(log |ΛN |)2d|ΛN |
1
4 c

2
0−ρ(1+ 1

4 c
2
0), which is less than c′|ΛN |−ρ provided ρ > 0 small

enough.
For the x, y that are farther away, we instead use Proposition 3.8-(3.25) to get

capΨN ({x, y}) ≥ capΨN ({x}) + capΨN ({y}) − cd
(log |ΛN |)2d−4 . (4.8)

Therefore, also using Proposition 2.3 we deduce

P
(
x, y ∈ ΛN (ρ)

)
≤ (1 + ō(1)) exp

(
− (1 − ρ)φ

2
N (x)+φ2

N (y)
αΛ

log |ΛN | + cd
(log |ΛN |)2d−5

)
. (4.9)

Again, as d ≥ 3 we have (log |ΛN |)2d−5 → +∞ and thus∑
(log |ΛN |)2<|x−y|≤aρN

P
(
x, y ∈ ΛN (ρ)

)
≤ c

∑
(log |ΛN |)2<|x−y|≤aρN

exp
(

− (1 − ρ)φ
2
N (x)+φ2

N (y)
αΛ

log |ΛN |
)
.

(4.10)
Since φ2

N (y) ≥ αΛ by definition, we get that this is less than

c
(aρN )d

|ΛN |1−ρ

∑
x∈ΛN

exp
(

− (1 − ρ)φ
2
N (x)
αΛ

log |ΛN |
)

= c′ (aρN )d
|ΛN |1−ρ (1 + ō(1)) κΛ

1 − ρ

|ΛN |ρ

log |ΛN |
, (4.11)

where we used Lemma 4.1 for the equality. Injecting the definition of aρN , we see that provided N
large enough and ρ small enough so that 1 − ρ > 4ρd

d−2 + 2ρ, this is less that some constant times
|ΛN |−ρ, hence proving the proposition. Note that instead of using Lemma 4.1, we could also
note that φ2

N (x) ≥ αΛ which provides a bound c′′(aρN )d|ΛN |2ρ−1 = c′′|ΛN |2ρ+ 4ρd
d−2 −1 ≤ c′′|ΛN |−ρ

provided 1 − 2ρ > 4ρd
d−2 + 2ρ. Thus, the proposition also holds in the general case (without

Assumption 1.

4.3 Cardinality of the set of late points

Proposition 4.3. Under Assumption 1 and provided ρ > 0 small enough, we have the following
equivalence in probability:

|ΛN (ρ)| ∼ κΛ
1 − ρ

|ΛN |ρ

log |ΛN |
(4.12)

Proof. First observe that according to (2.5) and Corollary 2.4:

E
[
|ΛN (ρ)|

]
=

∑
x∈ΛN

P
(
x ̸∈ IΨN (uρN )

)
= (1 + ō(1))

∑
x∈ΛN

exp
(

− (1 − ρ)φ
2
N (x)
αΛ

log |ΛN |
)
. (4.13)

Now, using Lemma 4.1, we get that this is asymptotically κΛ|ΛN |ρ/(1 − ρ) log |ΛN |.
Let us now prove that Var[|ΛN (ρ)|] is at most of order E

[
|ΛN (ρ)|

]
, which will prove the

proposition using Chebychev inequality.
Applying (4.4), we have

Var[|ΛN (ρ)|] =
∑

x,y∈ΛN

Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
. (4.14)

Let us consider separately three cases in order to control the covariances.
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First, for x = y, this covariance is less than P(x ∈ ΛN (ρ)) and thus∑
x=y∈ΛN

Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
≤

∑
x∈ΛN

P(x ∈ ΛN (ρ)) = E
[
|ΛN (ρ)|

]
. (4.15)

Then, assume 0 < |x− y| ≤ aρN and use the previous Proposition 4.2 to get∑
x,y∈ΛN

0<|x−y|≤aρN

Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
≤

∑
x,y∈ΛN

0<|x−y|≤aρN

P(x, y ∈ ΛN (ρ)) ≲ |ΛN |−ρ . (4.16)

Finally, assume |x− y| > aρN in which case we use the bound (3.31) to get∑
x,y∈ΛN

|x−y|>aρN

Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
≤

∑
x,y∈ΛN

|x−y|>aρN

exp
(

− (1−ρ)φ
2
N (x)+φ2

N (y)
αΛ

)[
exp

(
cΛ
d

uρN
ad−2
N

)
−1

]
.

(4.17)
Writing this double sum as a product, since uρN ≪ ad−2

N , provided N large enough, we get∑
x,y∈ΛN

|x−y|>aρN

Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
≤ 2cΛ

d

uρN
ad−2
N

( ∑
x∈ΛN

exp
(

− (1 − ρ)φ
2
N (x)
αΛ

log |ΛN |
))2

. (4.18)

Therefore, using Lemma 4.1, we get∑
x,y∈ΛN

|x−y|>aρN

Cov
(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
≲

log |ΛN |
|ΛN |2ρ

× |ΛN |4ρ

log2 |ΛN |
= |ΛN |−2ρ

log |ΛN |
. (4.19)

Combining all of the above yields Var[|ΛN (ρ)|] ≤ cE
[
|ΛN (ρ)|

]
for N large enough, hence the

asymptotics |ΛN (ρ)| ∼ E
[
|ΛN (ρ)|

]
in probability using Chebychev’s inequality.

Corollary 4.4. Provided ρ, δ > 0 small enough, there is a cρ,δ > 0 such that for all N large
enough, with probability at least 1 − cρ,δ|ΛN |−ρ/4 we have

|ΛN |ρ−δ(1−ρ) ≤ |ΛN (ρ)| ≤ |ΛN |ρ+N−c + |ΛN |2ρ/3 . (4.20)

Proof. With again the trivial bound capΨN ({x}) ≥ φ2
N (x)(1−N−c) ≥ αΛ(1−N−c) on ΛN (recall

Proposition 2.3), we get E[|ΛN (ρ)|] ≤ |ΛN |ρ+N−c(1−ρ). For the lower bound, we get however that
for any δ > 0,

E [|ΛN (ρ)|] ≥ |ΛN |−(1−ρ)(1+δ)
∣∣∣{x ∈ ΛN : capΨN ({x}) ≤ (1 + δ)αΛ/G(0)

}∣∣∣ . (4.21)

Using the regularity of ϕN and Proposition 2.3, we conclude that there exists a positive constant
cΛ,δ such that

∣∣∣ {
x ∈ ΛN : capΨN ({x}) ≤ (1 + δ)α(Λ)/G(0)

} ∣∣∣ ≥ cΛ,δ|ΛN |. Therefore, we get
that for any δ > 0, we have E [|ΛN (ρ)|] ≥ |ΛN |ρ−δ(1−ρ). We then show without difficulty
that Var (|ΛN (ρ)|) ≤ cΛ

ρ |ΛN |ρ+δN (1−ρ) using the same proof as Proposition 4.3 (and the bound
φ2
N ≥ αΛ) and concluding using Chebychev inequality.

5 Covering by interlacements and Poisson limit

5.1 Fluctuations of the covering level

Let us first deal with the fluctuations of the covering time. We begin with the proof of Theorem
2.1-(2.7), that is the asymptotics UN (ΛN ) ∼ g(0)α−1

Λ log |ΛN | in probability. We recall that this
asymptotics does not require the Assumption 1 to hold.

Recall that we defined ΛN (ρ) as the set of points that are not covered at the level uρN,Λ =
(1 − ρ)g(0)

αΛ
log |ΛN |.
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Proof of Theorem 2.1-(2.7) (first order asymptotics). Write uΛ
N := g(0)α−1

Λ log |ΛN | and fix some
δ > 0. We first notice that using Corollary 4.4,

P
(
UN (ΛN ) ≤ (1 − δ)uΛ

N

)
= P

(
ΛN (δ) = ∅

)
≤ P

(
|ΛN (δ)| ≤ |ΛN |δ/8)

≤ |ΛN |−δ/4 . (5.1)

On the other hand, similarly to the proof of the previous lemma, we have

P
(
UN (ΛN ) ≥ (1 + δ)uN (Λ)

)
≤ (1 + ō(1))

∑
x∈ΛN

e
−
φ2
N

(x)
αΛ

(1+ε) log |ΛN | ≤ |ΛN |−δ (5.2)

Therefore, the two probabilities go to zero, hence proving UN (ΛN ) ∼ uΛ
N in probability.

If we want to get more precise results, we need to better understand the covering of the late
points. As previously stated, the proof of Theorems 2.1 & 2.2 relies on the fact that ΛN (ρ) is
very sparse, and thus each of its points are covered independently from the others.

We define the following “good” event for ΛN (ρ):

Aρ
N,Λ :=

{
|ΛN (ρ)| ≤ cρ|ΛN |ρ ; inf

x,y∈ΛN (ρ),x̸=y
|x− y| ≥ aρN

}
. (5.3)

Lemma 5.1. Let u = u(N) that grows logarithmically in N . We have the a.s. convergence

lim
N→+∞

∣∣∣P(
UΛ
N ≤ uΛ,ρ

N + u
∣∣∣ ΛN (ρ)

)
− exp

(
−

∑
x∈ΛN (ρ)

exp
(

− u
g(0)φ

2
N (x)

))∣∣∣1Aρ
N,Λ

= 0 . (5.4)

Proof. Recall (4.1): by the Poisson structure of the tilted RI, conditioning on ΛN (ρ) we get

P
(
UΛ
N ≤ uΛ

N (z)
∣∣∣ ΛN (ρ)

)
= P

(
ΛN (ρ) ⊆ IΨN (u)

)
, (5.5)

where the P is only on IΨN (u) and ΛN (ρ) is now a fixed set. We now turn to the study of the
probability on the right-hand side of (5.5). Since we are on Aρ

N,Λ, applying Proposition A.2 gives

∣∣∣P(
ΛN (ρ) ⊂ IΨN (u)

)
−

∏
x∈ΛN (ρ)

P
(
x ∈ IΨN (u)

)∣∣∣1Aρ
N,Λ

≤ c log |ΛN | |ΛN |ρ

(aρN )d−2 , (5.6)

where we used u ≤ c log |ΛN |. Recall that aρN = |ΛN |
4ρ
d−2 , hence the right-hand side of (5.6) goes

to 0 as N → +∞.
Let us now investigate the product of probabilities over x ∈ ΛN (ρ), that we can rewrite

exp
( ∑
x∈ΛN (ρ)

log
[
1 − e−ucapΨN ({x})

])
= exp

(
−

∑
x∈ΛN (ρ)

exp
(

− uφ2
N (x)(1 + Ō(N−c ∨ e−Cu)

)])
,

with Ō(N−c ∨ e−Cu) = ō(|ΛN |−c′) that is deterministic and uniform in x ∈ ΛN .

Let us first consider the general case (that is without Assumption 1), which is easily handled
using Lemma 5.1.

Proof of Theorem 2.1-(2.8). We use Lemma 5.1 with u = g(0)
αΛ

{
ρ log |ΛN | + z

}
: for any η > 0,

provided N large enough,

P
(
UΛ
N ≤ uΛ,ρ

N + u
∣∣∣ ΛN (ρ)

)
1Aρ

N,Λ
≥ (1 − δ) exp

(
− |ΛN (ρ)||ΛN |−ρe−z

)
1Aρ

N,Λ
. (5.7)

where we also used φ2
N (x) ≥ αΛ for all x ∈ ΛN . Now, since we can further restrict ourselves to

the event |ΛN (ρ)| ≤ |ΛN |ρ+N−c (recall Corollary 4.4), we get that if N is large enough, this is
greater than (1 − 2δ) exp(−e−z)1Aρ

N,Λ
. Since P(Aρ

N,Λ) → 1, we finally get (2.8).
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We now turn to the case where Λ satisfies Assumption 1. Fix z ∈ R and apply Lemma 5.1
with u = uΛ

N (z) − uΛ,ρ
N so that we are left to study

∑
x∈ΛN (ρ)

exp
(

− φ2
N (x)
αΛ

[
ρ log |ΛN | − log log |ΛN | + z

])
(5.8)

We will use the following proposition.

Proposition 5.2. Fix ρ > 0 small enough, then under Assumption 1 we have the convergence in
probability

ZρN,Λ := log |ΛN |
|ΛN |ρ

∑
x∈ΛN (ρ)

exp
(

− ρ
[φ2

N (x)
αΛ

− 1
]
log |ΛN |

) P−−−−−→
N→+∞

κΛ . (5.9)

Moreover, this limit also holds if we replace log |ΛN | by (1 + εN ) log |ΛN | where εN → 0.

Proof of Theorem 1.2-(2.10). Writing εN = (− log log |ΛN | + z)/ρ log |ΛN |, we can rewrite the
sum in (5.8) as

e−z log |ΛN |
|ΛN |ρ

∑
x∈ΛN (ρ)

exp
(

− ρ
[φ2

N (x)
αΛ

− 1
]
(1 + εN ) log |ΛN |

) P−−−−−→
N→+∞

κΛe
−z , (5.10)

where we used Proposition 5.2. Therefore, injecting (5.10) in Lemma 5.1, we get∣∣∣P(
UΛ
N ≤ uΛ

N (z)
∣∣ ΛN (ρ)

)
− exp

(
− κΛe

−z)∣∣∣1Aρ
N,Λ

P−−−−−→
N→+∞

0 . (5.11)

Since P(Aρ
N,Λ) → 1, we get the desired convergence P

(
UΛ
N ≤ uΛ

N (z)
∣∣ ΛN (ρ)

)
→ exp

(
− κΛe

−z) in
L1 by dominated convergence. The theorem follows immediately.

Proof of Proposition 5.2. We first notice that we can rewrite ZρN,Λ as

ZρN,Λ = log |ΛN |
|ΛN |ρ

∑
x∈ΛN

exp
(

− ρ
[φ2

N (x)
αΛ

− 1
]
log |ΛN |

)
1{x∈ΛN (ρ)} . (5.12)

Thus, we can easily compute its expectation using the explicit formula (2.5) as well as Lemma
4.1 with β = 1. We get

lim
N→+∞

E
[
ZρN,Λ

]
= lim

N→+∞
log |ΛN |

∑
x∈ΛN

exp
(

− φ2
N (x)
αΛ

log |ΛN |
)

= κΛ . (5.13)

Let us now prove that Var
[
ZρN,Λ

]
→ 0, which will prove the proposition.

Using the formula (4.4), we write

Var
[
ZρN,Λ

]
= (log |ΛN |)2 ∑

x,y∈ΛN

exp
(

− ρ
φ2
N (x)+φ2

N (y)
αΛ

log |ΛN |
)
Cov

(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)
.

(5.14)
We will subdivize this sum into three different parts: x = y; close but distinct x, y; and x, y that
are far away from each other.

Control for x = y: here we consider the sum∑
x∈ΛN

exp
(

− 2ρφ
2
N (x)
αΛ

log |ΛN |
)[
P

(
x ∈ ΛN (ρ)

)
− P

(
x ∈ ΛN (ρ)

)2]
(5.15)

which we bound from above by∑
x∈ΛN

exp
(

−
[
2ρφ

2
N (x)
αΛ

+ (1 − ρ)φ
2
N (x)
αΛ

]
log |ΛN |

)
=

∑
x∈ΛN

exp
(

− (ρ+ 1)φ
2
N (x)
αΛ

log |ΛN |
)
. (5.16)
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Using Lemma 4.1, we get

lim
N→+∞

(log |ΛN |)2I0
N,ρ = lim

N→+∞
(log |ΛN |)|ΛN |−ρ = 0 . (5.17)

Control for close x, y: We first use the universal bound given by Corollary 3.6 on the x, y
such that 0 < |x− y| ≤ log2 |ΛN | as well as Lemma 4.1 to get∑

x,y∈ΛN
0<|x−y|≤log2 |ΛN |

exp
(

− ρ
φ2
N (x)+φ2

N (y)
αΛ

log |ΛN |
)
Cov

(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)

≤ c1
log2 |ΛN |

|ΛN |(1−ρ)(1+ 1
4 c

2
0)

|ΛN |1−ρ

log |ΛN |
= c1 log |ΛN |

|ΛN |(1−ρ) 1
4 c

2
0

.

(5.18)

Recall that aρN = |ΛN |
4dρ
d−2 . We then turn to the x, y ∈ ΛN such that (log |ΛN |)2 < |x− y| < aρN .

Using the bound (3.31) as well as φ2
N (y) ≥ αΛ, we get∑

x,y∈ΛN
log2 |ΛN |<|x−y|≤aN

exp
(

− ρ
φ2
N (x)+φ2

N (y)
αΛ

log |ΛN |
)
Cov

(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)

≤ c2
(aρN )d ∧ |ΛN |

|ΛN |
∑
x∈ΛN

exp
(

− φ2
N (x)
αΛ

log |ΛN |
)[

1 − exp
(
cΛ,ρ
d (log |ΛN |)5−2d

)]
.

(5.19)

Using Lemma 4.1 and d ≥ 3, this is bounded by c2|ΛN |
4dρ
d−2 −1/ log2 |ΛN | ≤ c′

2|ΛN |−ρ provided
ρ > 0 small enough.

Control for distant x, y: we use again (3.31):∑
x,y∈ΛN

|x−y|>aN

exp
(

− ρ
φ2
N (x)+φ2

N (y)
αΛ

log |ΛN |
)
Cov

(
1{x∈ΛN (ρ)},1{y∈ΛN (ρ)}

)

≤ c

( ∑
x∈ΛN

exp
(

− φ2
N (x)
αΛ

log |ΛN |
))2 c′ log |ΛN |

(aρN )d−2 .

(5.20)

Again, using Lemma 4.1 and plugging in aρN = |ΛN |
4ρ
d−2 , this sum is bounded from above by

c3(log |ΛN |)3|ΛN |−4ρ for some positive c3.
Combining all the above, we see that there exists a c > 0 such that Var

[
ZρN,Λ

]
is at most of

order (log |ΛN |)5|ΛN |−c → 0, hence completing the proof.

5.2 Poisson limit

We now give a precise statement regarding the "late points" and their convergence towards a
Poisson point process.

Fix some z ∈ R and recall the notation uΛ
N (z) = g(0)

αΛ

{
log |ΛN | + log log |ΛN | + z

}
. We are

interested in the punctual measure of the points of ΛN that are not covered by IΨN (uΛ
N (z)),

that is
N Λ,z
N :=

∑
x∈ΛN

δx/N1{x̸∈IψN (uΛ
N (z))} =

∑
x∈ΛN

δx/N1{Ux>uΛ
N (z)} . (5.21)

Lemma 5.3. For B ⊆ Λ, we write BN = (N ·B) ∩ Zd with N ≥ 1. Then,

lim
N→+∞

E
[
|N Λ,0

N (BN )|
]

=
ˆ
B∩(∂Λ∩LαΛ )

dx∣∣∇φ2(x)
∣∣ =: µΛ(B ∩ (∂Λ ∩ LαΛ)) . (5.22)

Note that this characterizes a finite measure on ∂Λ ∩ LαΛ that we also denote by µΛ.
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Proof. The proof follows from the arguments in Appendix A.2 applied to B ∩ Λ instead of Λ.

We can now properly state the convergence of the “late points” towards a Poisson point
process.

Theorem 5.4. Fix z ∈ R. The punctual measures N Λ,z
N converge in distribution for the topology

of weak convergence towards a Poisson point process N Λ,z with intensity measure e−zµΛ.

Proof. The proof uses a theorem by Kallenberg (see [Res87, Proposition 3.22]) stating that one
only needs to check that

lim
N→+∞

E
[
|N Λ,z

N (BN )|
]

= e−zµΛ(B) , lim
N→+∞

P
(
N Λ,z
N (BN ) = 0

)
= exp

(
− µΛ(B)e−z) , (5.23)

for any B a closed ball of Rd that intersects with Λ.
The first equality is easily proved using the fact that

E
[
|N Λ,z

N (BN )|
]

= log |ΛN |
|ΛN |ez

∑
x∈ΛN

exp
(

−
(φ2

N (x)
αΛ

− 1
)[

log |ΛN | − log log |ΛN | + z
])

(5.24)

and a use of Lemma 4.1. For the second equality, we observe that

P
(
N Λ,z
N (BN ) = 0

)
= P

(
BN ⊂ IΨN (uΛ

N (z))
)
. (5.25)

To get the limit as N → +∞, we will use the fact that the results of Section 4 still hold by
replacing ΛN with BN but still keeping the same uΛ

N (ρ). For ρ > 0, we define

BN (ρ) :=
{
x ∈ BN : x ̸∈ IΨN (uΛ,ρ

N )
}
, (5.26)

where we stress that we kept the same intermediary level uΛ,ρ
N = (1 − ρ)g(0)α−1

Λ log |ΛN |. Then,
using the same proofs as in Section 4 – or observing that uΛ,ρ

N ≥ uB,ρN implies BN (ρ) ⊆ ΛN (ρ),
with self-explanatory notation – we easily get that with high probability,

BN (ρ) ≲ |ΛN |ρ

log |ΛN |
, inf

x,y∈BN (ρ),x̸=y
|x− y| ≥ |ΛN |

4ρ
d−2 . (5.27)

Following the proof of Theorem 2.2, the probability P
(
BN ⊂ IΨN (uΛ

N (z)) |BN (ρ)
)

is well
approximated by∏
x∈BN (ρ)

P
(
x ∈ IΨN (uΛ

N (z)−uΛ,ρ
N )

)
∼ exp

(
−

∑
x∈BN (ρ)

exp
(
− φ2

N (x)
αΛ

[ρ log |ΛN |− log log |ΛN |+z]
))
.

We then conclude by observing that the sum in the exponential just above is

e−z log |ΛN |
|ΛN |ρ

∑
x∈BN (ρ)

exp
(

− ρ
[φ2

N (x)
αΛ

− 1
]
log |ΛN |(1 + ō(1))

)
(5.28)

and doing the proof of Proposition 5.2 to see that this converges to e−zµΛ(B).

6 From tilted interlacements to the confined walk
We now explain how to transfer our result on the tilted interlacements to the confined walk. We
first state the coupling theorem that we use.

Denote by RϕN (tN ) the range up to time tN ≥ 1 of the Markov chain with law PN
ϕ2
N

(recall
that PN

ϕ2
N

is the tilted RW starting from its invariant measure µ = cNϕ
2
N ).
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Theorem 6.1 (Coupling theorem). Let δ ∈ (0, 1) and consider a sequence (tN )N≥1 that satisfies
tN/N

2+δ → +∞. We define

uN := tN
Nd

as well as εN := N− δ
4 .

Then, there are some η > 0 and some constants c1, c2 > 0 (that only depend on α, δ, ε,D and
d ≥ 3) and a coupling QN of RϕN (tN ) and IΨN ((1 ± εN )uN ) such that, for all N large enough,

IΨN ((1 − εN )uN ) ∩BN ⊆ RϕN (tN ) ∩BN ⊆ IΨN ((1 + εN )uN ) ∩BN , (6.1)

with QN -probability at least 1 − c1e
−c2Nη .

We can now finally prove our main theorems by using the fact that εN in Theorem 6.1 can
be neglected in our calculations.

Proof of Theorems 1.1 & 1.2. Using Theorem 6.1, we see that under the coupling, with proba-
bility at least 1 − c1e

−c2Nη we have

N Λ,z+
N

N ⊆ N Λ,z
N,RW ⊆ N Λ,z−

N
N , with z±

N = z± g(0)
αΛ

εN
{

log |ΛN |−log log |ΛN |
}

=: z±ε′
N . (6.2)

In particular, since ε′
N decays polynomially fast, we can apply the proof of Lemma 5.3. Therefore,

with the same notations, we get

lim sup
N→+∞

Eϕ2
N

[
|N Λ,z

N,RW(BN )|
]

≤ lim sup
N→+∞

E
[
|N Λ,z−ε′

N
N (BN )|

]
= µΛ(B)e−z , (6.3)

as well as

lim inf
N→+∞

Eϕ2
N

[
|N Λ,z

N,RW(BN )|
]

≥ lim inf
N→+∞

E
[
|N Λ,z+ε′

N
N (BN )|

]
= µΛ(B)e−z . (6.4)

Similarly, we get the convergence of Pϕ2
N

(
|N Λ,z±ε′

N
N,RW (BN )| = 0

)
towards exp

(
− µΛ(B)e−z).

7 Some specific cases

7.1 The case of a ball

In this section, we will focus on the case where D is the unit ball B = B(0, 1) and Λ is the slighly
smaller ball B(0, 1 − ε) for some ε ∈ (0, 1). This is a much simpler case to consider, since the
function φ is radial: in particular LΛ

αΛ
is exactly the boundary ∂Λ.

Let us first recall some facts about the eigenfunction φ on a ball in Rd. Using the spherical
coordinates (r, θ) ∈ R∗

+ × Sd−1, the Dirichlet problem (1.4) becomes

0 = λu(x) + ∆u(x) = λu(r, θ) +
[ ∂2

∂r2 + d− 1
r

∂

∂r
+ 1
r2 ∆Sd−1

]
u(r, θ) , (7.1)

where ∆Sd−1 is the spherical Laplacian on Rd. Using the separation of variable, we write
u(r, θ) = u1(r)u2(θ) and thus (7.1) can be rewritten as

0 = r2u′′
1(r) + r(d− 1)u′

1(r) +
[
λr2 + ∆Sd−1u2(θ)

u2(θ)
]
u1(r) . (7.2)

In particular, there is a n ∈ R such that

r2u′′
1(r) + r(d− 1)u′

1(r) +
[
λr2 − n

]
u1(r) = 0 ,

∆Sd−1u2(θ)
u2(θ) = −n (7.3)
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In the end, the first eigenfunction φ on the unit ball can be expressed as

φ(r, θ) = r1− d
2J d

2 −1(
√
λr) , (7.4)

with Jα the first-kind Bessel function of index α ∈ R. Note that the properties of Bessel functions
(see [DLMF, (10.6.6)]) imply d

dx
[
x−αJα(x)

]
= −x−αJα+1(x). One can then deduce that the

radial derivative of φ2 is given by

∂

∂r
φ2(r, θ) = −2

√
λr2−dJ1− d

2
(
√
λr)J2− d

2
(
√
λr) < 0 . (7.5)

We deduce in particular that the radial part of φ2, which we denote by φ2,R is a smooth
diffeomorphism, hence by change of variable we can compute the volume of the “level bands” of
φ2, and thus κΛ. Let us write ψ2,R := (φ2,R)−1 the inverse of φ2,R.

Proposition 7.1. Consider D = B(0, 1) and fix r0 ∈ (0, 1). Then, if Λ = B(0, r0), we have

κΛ = lim
ε→0

1
ε

∣∣{x ∈ Λ : φ2(x) ≤ (1 + ε)αΛ
}∣∣ = rd−1

0∣∣φ′
2,R(r0)

∣∣Vold
(
Bd

)
, (7.6)

with Vold
(
Bd

)
the volume of the unit ball in Rd and where φ2,R is the radial part of φ2.

Note that this is consistent with the definition of κΛ in Theorem 1.2.

Proof. Since the level sets of φ2 are spheres of given radii, the set
∣∣{x ∈ Λ : φ2(x) ≤ (1 + ε)αΛ

}
is simply the “annulus” {ψ2,R(αΛ(1 + ε)) ≤ |x| ≤ ψ2,R(αΛ)}. In particular,∣∣{x ∈ Λ : φ2(x) ≤ (1 + ε)αΛ

}∣∣ =
[
(ψ2,R(αΛ))d − (ψ2,R(αΛ(1 + ε)))d

]
Vold

(
Bd

)
, (7.7)

with Vold
(
Bd

)
the volume of the unit ball in Rd. Dividing by ε > 0 and having ε → 0 makes the

derivative of (ψ2,R)d at αΛ appear.
Another way to compute κΛ is through the following change of variable:∣∣{x ∈ Λ : φ2(x) ≤ (1 + ε)αΛ

}∣∣ = Vold−1
(
Sd−1)ˆ

Λ
1{αΛ≤φ2(r)≤(1+ε)αΛ} r

d−1dr

= Vold−1
(
Sd−1)ˆ (1+ε)αΛ

αΛ

∣∣Jψ2,R(y)
∣∣ (ψ2,R(y))d−1dy ,

(7.8)

with JΨ2,R = (ψ2,R)′ = [(φ2,R)′ ◦ ψ2,R]−1 the Jacobian of ψ2,R and Vold−1
(
Sd−1)

the (d − 1)-
volume of the unit sphere in Rd. Dividing by ε > 0 and having ε → 0, this converges to∣∣JΨ2,R(αΛ)

∣∣ = [(φ2,R)′ ◦ ψ2,R(φ2,R(r0))]−1.

7.2 Covering of a segment by the conditioned simple random walk

In this section, we will deviate from the confined walk to instead consider the conditioned walk,
that is the simple random walk conditioned to stay in DN up to some time TN . In the following,
we consider the segment IN := J−N,NK ⊂ Z, where we write Ja, bK := [a, b] ∩Z. We also consider
the time horizon TN to be far greater than N3.

Let CN be the covering time of IN by the simple random walk conditioned to stay in IN ,
then we can conjecture the convergence in distribution

CN
N3

(d)−−−−−→
N→+∞

C ∼
G∑
i=1

ξi , with G ∼ G(1
2) and (ξi) are i.i.d. variables , (7.9)

Let us give some heuristics for this convergence. We write τ0
0 = 0 and define for i ≥ 1:

τi := inf
{
t ≥ τ0

i−1 : |St| = N
}

, εi = sign(Sτi) , τ0
i = inf

{
t ≥ τi : St = 0

}
(7.10)
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Observe that CN = τI , where I is the first i such that εi ̸= ε1 (that is the walk reached both
of the extremities of the segment). With precise gambler’s ruin formulae, one can prove that
τi − τ0

i−1 ≍ N3 with high probability (see below). On the other hand, the return times to 0 are
asymptotically of order N2, as the drift facilitates the return to zero, hence negligible. Therefore,
CN ≈

∑
i≤I(τi − τ0

i−1) with the τi − τ0
i−1 scaling to the first time a Brownian motion conditioned

to stay in [−1, 1] reaches the boundary.
The main point here is the fact that the order is understandable from the point of view of

Theorem 1.1. Indeed, it is known that the first eigenfunction of the Laplace operator on the
segment is of order 1/N at the boundary, hence the αΛ in this case would be ≍ N−2 and the
asymptotics is Nd/αΛ ≍ N3. The disappearance of the factor logN is explained by the fact that
reaching the boundary implies covering the full half-segment, thus at no time there exists a set
of scattered points that the walk collects independently.

A Appendix: technical estimates and decoupling inequalities

A.1 Asymptotics of the Green function of the tilted walk

Proof of Proposition 3.4. Fix η > 0. For x ∈ BN and R ∈ [ 1
η , ηN ], we consider the annulus

intersected with BN , which we write AxN (R) := (B(x, 2R) \B(x,R)) ∩BN . The main part of the
proof is to prove that there exists constants c, c′ > 0, that neither depends on N large enough,
nor on x and R, such that

for all y ∈ AxN (R), cR2−d ≤ GΨN (x, y) ≤ c′R2−d . (A.1)

Afterwards, we prove that y 7→ GΨN (x, y) is non-increasing in |x− y|, which suffices to get the
upper bound; while the lower bound will be easily deduced from the proof of the main point
(A.1).

We first claim that there exists a constant κ′ > 0, that neither depends on N large enough
nor on x and R, that is such that

∀y, z ∈ AxN (R) , κ′GΨN (x, y) ≤ GΨN (x, z) ≤ 1
κ′G

ΨN (x, y) . (A.2)

From (A.2), we can deduce that

κ′|AxN (R)|GΨN (x, y) ≤
∑

z∈AxN (R)
GΨN (x, z) ≤ 1

κ′ |AxN (R)|GΨN (x, y) . (A.3)

Our second claim is that there exists a constant κ′′ > 0 that neither depends on N large enough,
nor on x and R such that

κ′′R2 ≤
∑

z∈AxN (R)
GΨN (x, z) = EΨN

x

[ ∑
k≥0

1{Xk∈AxN (R)}
]

≤ 1
κ′′R

2 . (A.4)

Combining (A.4) with (A.3) yields (A.1).
Proof of (A.2): Fix δ > 0 and y ∈ AxN (R) so that |x− y| < 2δR, and consider w ∈ B(y, 1

4δR).
Then, by the reversibility of Ψ2

N and the Markov property, we get

Ψ2
N (x)

Ψ2
N (w)G

ΨN (x,w) = GΨN (w, x) =
∑

u∈∂B(y,δR)
PΨN
w (XHB(y,δR) = u)GΨN (u, x) . (A.5)

Now, we claim that there is a constant κy > 0, uniform in R large enough, δ, η small enough
and w ∈ B(y, 1

4δR) such that Rd−1PΨN
w (XHB(y,δR) = u) ∈ [κy, κ−1

y ]. In particular, since the
ratio of Ψ2

N is also bounded by constants uniform in x, y, w, for all w ∈ B(y, 1
4δR), we have

GΨN (x,w)/GΨN (x, y) ∈ [κ′
y, (κ′

y)−1]. The proof can be found in [Bou24b, Lemma A.2.3] Since
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Ax(R) can be covered by a finite number (uniform in N and R large enough, and in x ∈ BN ) of
balls with radius 1

4δR, we get (A.2).
Proof of (A.4): Fix δ > 0 small enough and consider AxN,δ(R) = (AxN (R))δR = B(x, (2 +

δ)R) \B(x, (1 − δ)R). We easily see that the time spent in AxN (R) is less than the sum of length
of the excursions AxN (R) → ∂AxN,δ(R), which is what we will use to get the bound. Write M for
the number of such excursions, we get the bounds

EΨN
x

[ ∑
k≥0

1{Xk∈AxN (R)}
]

≤ EΨN
x [M ] sup

w∈AxN (R)
EΨN
w

[
H∂Ax

N,δ
(R)

]
. (A.6)

Using [Bou24a, Lemma 2.5, 2.6], M is dominated by a geometric random variable with parameter
at least some p > 0 independent from R large enough. In particular EΨN

x [G] is bounded from
above by a constant c > 0 that does not depend on R large enough. On the other hand, we can
write using (3.8):

EΨN
w

[
H∂Ax

N,δ
(R)

]
≤ κR2 ∑

k≥0
(k + 1)ec0k(R/N)2Pw(H∂Ax

N,δ
(R) ≥ kR2) . (A.7)

It is known that Pw(H∂Ax
N,δ

(R) ≥ kR2) ≤ ce−k/δ2 . Therefore, provided R ≤ ηN with η > 0 small
enough, there is a constant cη > 0 that does not depend on R such that

EΨN
w

[
H∂Ax

N,δ
(R)

]
≤ cR2 ∑

k≥0
(k + 1)e−cηk ≤ 1

κ′′R
2 . (A.8)

This proves the upper bound in A.4. To get the lower bound, we use again (3.8) and conclude
using Ew

[
H∂Ax

N,δ
(R)

]
≥ cR2 (an easy SRW estimate), hence proving (A.4).

Farther points: if |x − y| > ηN , we prove that GΨN (x, y) can be controlled by the Green
function between x and a point at distance 1

2ηN from x. With the reversibility of Ψ2
N and the

Markov property, we easily get

GΨN (x, y) = Ψ2
N (y)

Ψ2
N (x)G

ΨN (y, x) = Ψ2
N (y)

Ψ2
N (x)

∑
z∈∂B(x, 1

2ηN)

GΨN (z, x)PΨN
y (XH

B(x, 1
2 ηN)

= z) . (A.9)

Applying (A.1) and (3.3), we get that GΨN (x, y) ≍ N2−dPΨN
y (HB(x, 1

2ηN) < +∞). We can show
using (3.8) and gambler’s ruin-type results about the SRW that PΨN

y (HB(x, 1
2ηN) < +∞) ≥ c1

for some constant c1 > 0 that neither depends on N nor on y ∈ ΛN , thus ending the proof of the
Proposition.

A.2 Proof of Lemma 4.1

We introduce the notation

LΛ(α1, α2) :=
{
x ∈ Λ : φ2(x) ∈ [α1, α2)

}
. (A.10)

The main ingredient of the proof of Lemma 4.1 is the following result, which critically requires
Assumption 1 to hold.

Proposition A.1. Under Assumption 1, we have the convergence

lim
ε→0

1
ε

∣∣LΛ(αΛ, (1 + ε)αΛ)
∣∣ =
ˆ

Λ∩LαΛ

dx∣∣∇φ2(x)
∣∣ =: κΛ . (A.11)
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Let us first prove Lemma 4.1 using Proposition A.1. We recall that we must control the sum

log |ΛN |
|ΛN |1−β

∑
x∈ΛN

exp
(

− β
[φ2

N (x)
αΛ

− 1
]

log |ΛN |
)

= log |ΛN |
|ΛN |

∑
x∈ΛN

exp
(

− β
[φ2

N (x)
αΛ

− 1
]

log |ΛN |
)
.

(A.12)
The proof of Lemma 4.1 relies on spliting L(αΛ, αΛ(1 + ε0)) into “level bands” and using
Proposition A.1 to control the number of terms in these level bands.

Fix η > 0 then by Proposition A.1, there exists ε0 > 0 such that for all ε ∈ (0, ε0) we have

(1 − η)εκΛ ≤ |LΛ(αΛ, αΛ(1 + ε0))| ≤ (1 + η)εκΛ . (A.13)

Turning back to the sum of Lemma 4.1, we first split the sum depending on whether φ2
N (x) ≤

αΛ(1 + ε0) or not.
For x’s such that φ2

N (x) > αΛ(1 + ε0), we have∑
x∈ΛN

φ2
N (x)>αΛ(1+ε0)

exp
(

− β
φ2
N (x)
αΛ

log |ΛN |
)

≤ |ΛN |e−β(1+ε0) log |ΛN | = |ΛN |1−β|ΛN |−βε0 . (A.14)

After multiplying by |ΛN |β−1 log |ΛN |, this vanishes at N → +∞.
Let us now consider the x’s such that φ2

N (x) ≤ (1 + ε0)αΛ. Fix δ > 0. For k ≥ 0 we write

αk := αΛ
(
1 + kδε0

log |ΛN |

)
. (A.15)

Then, writing k(ε0) = ε0
δ log |ΛN | − 1, we have

∑
x∈ΛN

φ2
N (x)≤αΛ(1+ε0)

exp
(

− β
φ2
N (x)
αΛ

log |ΛN |
)

=
k(ε0)∑
k=1

∑
x∈LΛ(αk,αk+1)

exp
(

− β
φ2
N (x)
αΛ

log |ΛN |
)

By the definition of αk, we have

|LΛ(αk, αk+1)|e−βδε0(k+1) ≤
∑

x∈LΛ(αk,αk+1)
exp

(
− β

φ2
N (x)
αΛ

log |ΛN |
)

≤ e−βδε0k|LΛ(αk, αk+1)| .

Since δ > 0 can be arbitrarily small, we are left to study

|ΛN |−β
k(ε0)∑
k=1

e−βδε0k|LΛ(αk, αk+1)| . (A.16)

Let us now do a discrete integration by part by writing

e−βδε0k = e−βδε0[k(ε0)+1] −
k(ε0)∑
j=k

(
e−βδε0(j+1) − e−βδε0j

)
.

The sum in (A.16) can thus be rewritten as

|LΛ(αΛ, αk(ε0))|e−βδε0[k(ε0)+1] +
k(ε0)∑
k=1

k(ε0)∑
j=k

(
e−βδε0j − e−βδε0(j+1))|LΛ(αk, αk+1)| (A.17)

Interverting the sums on k and j and noticing that ∑j
k=0 |LΛ(αk, αk+1)| = |LΛ(αΛ, αj+1)|, we

are left with

|LΛ(αΛ, αk(ε0))|e−βδε0[k(ε0)+1] +
(
1 − e−βδε0

) k(ε0)∑
j=0

e−βδε0j |LΛ(αΛ, αj+1)| (A.18)

25



Using the definition of k(ε0) on the first term of (A.18), we get

|LΛ(αΛ, αk(ε0))|e−βδε0[k(ε0)+1] = |LΛ(αΛ, αk(ε0))||ΛN |−βε2
0 ≤ |ΛN |1−βε2

0 .

For the second term of (A.18), we use (A.13) to get

(1−η) N
dδε0

log |ΛN |

k(ε0)∑
j=0

(j+1)e−βδε0j ≤
k(ε0)∑
j=0

e−βδε0j |LΛ(αΛ, αj+1)| ≤ (1+η) N
dδε0

log |ΛN |

k(ε0)∑
j=0

(j+1)e−βδε0j .

We easily conclude by using the fact that

(
1 − e−βδε0

)
δε0

k(ε0)∑
j=0

(j+ 1)e−βδε0j =
(
1 − e−βδε0

)
δε0

e−βδε0
(
3eβδε0 − 2

)
(
(
eβδε0 − 1

)2
δ↓0∼ β(δε0)2

(βδε0)2 = 1
β
. (A.19)

Proof of Proposition A.1. Consider ε0 > 0 that is given by Assumption 1. Note that Λ is a
compact manifold and that for all ε ∈ (0, ε0),L(αΛ, (1 + ε)αΛ) is compact. Note that φ2 is
smooth on the interior of D and has no critical points in L(αΛ, (1 + ε)αΛ). Therefore, according
to the proof of [Mil16, Theorem 3.1], there exists a unique solution (Φδ)δ∈(0,ε0) to the modified
gradient flow equation

Φ0(x) = x ,
d
dδΦδ(x) = ∇φ2

|∇φ2|2
[
Φδ(x)

]
, (A.20)

which is such that Φδ is a diffeomorphism LαΛ −→ L(1+δ)αΛ . We can then write

∣∣LΛ(αΛ, (1 + ε)αΛ)
∣∣ =
ˆ ε

0
dδ
ˆ

Φδ(Λ∩LαΛ )
dx =

ˆ ε

0
dδ
ˆ

Λ∩LαΛ

det(dΦδ(x))∣∣∇φ2 ◦ Φδ(x)
∣∣ dx (A.21)

Let us first claim that the integral on x is a continuous function of δ, and thus is uniformly
continuous. Therefore, we have

lim
ε→0

1
ε

∣∣LΛ(αΛ, (1 + ε)αΛ)
∣∣ =
ˆ

Λ∩LαΛ

det(dΦ0(x))∣∣∇φ2 ◦ Φ0(x)
∣∣ dx =

ˆ
Λ∩LαΛ

dx∣∣∇φ2(x)
∣∣ , (A.22)

the last equality using the fact that Φ0(x) = x. The continuity of the integral with respect to x
follows from the fact that δ 7→ Φδ is C1 meaning that the Jacobian is continuous. In the same way,
the denominator of the integrand is continuous and bounded from above. Hence, the integrand
is continuous on a compact set and Lebesgue continuity theorem gives us the claim.

A.3 Decoupling of interlacements

Proposition A.2. Let K ⊆ ΛN and u > 0, and define s(K) := infx,y∈K,x̸=y |x− y|d−2. Then,
there is a constant c = c(d,Λ) > 0 such that for N large enough we have the decoupling inequality∣∣∣P(

K ⊂ IΨN (u)
)

−
∏
x∈K

P
(
x ∈ IΨN (u)

)∣∣∣ ≤ cu
|K|2

s(K) . (A.23)

Comment 3. Several works in the literature give far better bounds for the decoupling of distant
regions of random interlacements, see e.g. [PT15]. However, they rely on some sprinkling of the
intensity, which is inconvenient when working with a large number of points/sets to decouple.

The proof relies on the following lemma, that holds for any pair of disjointed finite sets.
The result is fairly standard in the case of random interlacements (see [DRS14, Claim 8.1] or
[Bel12, Lemma 2.1]): Lemma A.3 simply states that it still holds for tilted interlacements. The
proof is identical, only replacing the Newtonian capacity and the Green function by their tilted
equivalent, and using Proposition 3.4 to bound the Green function.
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Lemma A.3. Let K1,K2 ⊂ Zd be such that K1 ∩ K2 = ∅, and consider two events Au1 and
Au2 that only depend respectively on IΨN (u) ∩K1 and IΨN (u) ∩K2. Then, there is a constant
Cd > 0 that only depends on the dimension such that

∣∣∣P(Au1 ∩Au2) − P(Au1)P(Au2)
∣∣∣ ≤ Cdu

capΨN (K1)capΨN (K2)
d(K1,K2)d−2 . (A.24)

Proof of Proposition A.2. Choose x ∈ K, we apply Lemma A.3 to the sets K1 = {x} and
K2 = K \ {x}, and the events A1 = {x ∈ IΨN (u)} and A2 = {K \ {x} ⊂ IΨN (u)}. This yields

∣∣∣P(K ⊂ IΨN (u)) − P(x ∈ IΨN (u))P(K \ {x} ⊂ IΨN (u))
∣∣∣ ≤ Cdu

capΨN ({x})capΨN (K \ {x})
d(x,K \ {x})d−2 .

(A.25)
Note that since x ∈ K ⊆ ΛN , by Proposition 2.3 and φN ≤ κ−1

2 , we have capΨN ({x}) ≤
κ−2

2 (1 +N−c)/g(0) as well as

capΨN (K \ {x}) ≤ λN
∑
z∈K

ϕ2
N (z)PΨN

x (H̄K\{x} = +∞) ≤
∑
z∈K

ϕ2
N (z) . (A.26)

Using (3.4) (ϕN is bounded), we deduce that capΨN (K \ {x}) ≤ (1 +N−c)κ−2
2 |K| and thus

∣∣∣P(K ⊂ IΨN (u)) − P(x ∈ IΨN (u))P(K \ {x} ⊂ IΨN (u))
∣∣∣ ≤ Cdu

(1 +N−c)2

g(0)κ4
2

u
|K|
s(K) . (A.27)

Repeating the steps |K| − 1 times and using the triangular inequality concludes the proof of the
proposition with c = 2Cd/g(0)κ4

2.

References
[Ald83] D. J. Aldous. “On the Time Taken by Random Walks on Finite Groups to Visit

Every State”. In: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete
62.3 (1983), pp. 361–374. issn: 0044-3719, 1432-2064. doi: 10.1007/BF00535260.

[BB25] Q. Berger and N. Bouchot. Some properties of the principal Dirichlet eigenfunction
via simple random walk and Brownian motion couplings. 2025. arXiv: 2408.15858
[math.PR].

[Bel12] D. Belius. “Cover Levels and Random Interlacements”. In: The Annals of Applied
Probability 22.2 (Apr. 2012). issn: 1050-5164. doi: 10.1214/11-AAP770.

[Bel13] D. Belius. “Gumbel Fluctuations for Cover Times in the Discrete Torus”. In: Probability
Theory and Related Fields 157.3 (Dec. 2013), pp. 635–689. issn: 1432-2064. doi:
10.1007/s00440-012-0467-7.

[Bou24a] N. Bouchot. A confined random walk locally looks like tilted random interlacements.
2024. arXiv: 2405.14329 [math.PR]. url: https://arxiv.org/abs/2405.14329.

[Bou24b] N. Bouchot. “Localisation de polymères en milieux aléatoires : obstacles de Bernoulli
ou entrelacs aléatoires”. PhD thesis. 2024.

[Bou24c] N. Bouchot. “Scaling limits for the random walk penalized by its range in dimension
one”. In: ALEA 21 (2024), pp. 791–813.

[CN23] A. Chiarini and M. Nitzschner. Lower Bounds for Bulk Deviations for the Simple
Random Walk on Zd, d ≥ 3. Version 1. Dec. 28, 2023. doi: 10.48550/arXiv.2312.
17074. arXiv: 2312.17074 [math-ph]. Pre-published.

27

https://doi.org/10.1007/BF00535260
https://arxiv.org/abs/2408.15858
https://arxiv.org/abs/2408.15858
https://doi.org/10.1214/11-AAP770
https://doi.org/10.1007/s00440-012-0467-7
https://arxiv.org/abs/2405.14329
https://arxiv.org/abs/2405.14329
https://doi.org/10.48550/arXiv.2312.17074
https://doi.org/10.48550/arXiv.2312.17074
https://arxiv.org/abs/2312.17074


[ČT16] J. Černý and A. Teixeira. “Random Walks on Torus and Random Interlacements:
Macroscopic Coupling and Phase Transition”. In: The Annals of Applied Probability
26.5 (Oct. 2016), pp. 2883–2914. issn: 1050-5164, 2168-8737. doi: 10.1214/15-
AAP1165.

[Del99] T. Delmotte. “Parabolic Harnack inequality and estimates of Markov chains on
graphs”. In: Revista matemática iberoamericana 15.1 (1999), pp. 181–232.

[DLMF] NIST Digital Library of Mathematical Functions. F. W. J. Olver, A. B. Olde Daalhuis,
D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V.
Saunders, H. S. Cohl, and M. A. McClain, eds. , Release 1.2.4 of 2025-03-15. url:
https://dlmf.nist.gov/.

[DRS14] A. Drewitz, B. Ráth, and A. Sapozhnikov. An introduction to random interlacements.
Springer, 2014.

[LL10] G. F. Lawler and V. Limic. Random Walk: A Modern Introduction. 1st ed. Cambridge
University Press, June 2010. isbn: 978-0-521-51918-2 978-0-511-75085-4. doi: 10.
1017/CBO9780511750854. (Visited on 02/07/2023).

[LPW17] D. A. Levin, Y. Peres, and L. W. Wilmer. Markov chains and mixing times. Vol. 107.
American Mathematical Soc., 2017.

[LS14] X. Li and A.-S. Sznitman. “A Lower Bound for Disconnection by Random Interlace-
ments”. In: Electronic Journal of Probability 19.none (Jan. 2014). issn: 1083-6489.
doi: 10.1214/EJP.v19-3067.

[Mil16] J. Milnor. Morse Theory. Princeton University Press, Mar. 2, 2016. isbn: 978-1-4008-
8180-2. doi: 10.1515/9781400881802.

[PRS23] A. Prévost, P.-F. Rodriguez, and P. Sousi. Phase transition for the late points of
random walk. 2023. arXiv: 2309.03192 [math.PR].

[PT15] S. Popov and A. Teixeira. “Soft Local Times and Decoupling of Random Interlace-
ments”. In: Journal of the European Mathematical Society 17.10 (2015), pp. 2545–2593.
issn: 1435-9855. doi: 10.4171/JEMS/565. arXiv: 1212.1605 [math].

[Res87] S. I. Resnick. Extreme Values, Regular Variation and Point Processes. Red. by T. V.
Mikosch, S. I. Resnick, and S. M. Robinson. Springer Series in Operations Research
and Financial Engineering. New York, NY: Springer, 1987. isbn: 978-0-387-75952-4
978-0-387-75953-1. doi: 10.1007/978-0-387-75953-1.

[Szn10] A.-S. Sznitman. “Vacant set of random interlacements and percolation”. In: Annals
of mathematics (2010), pp. 2039–2087.

[Tei09] A. Teixeira. “Interlacement Percolation on Transient Weighted Graphs”. In: Electronic
Journal of Probability 14 (none Jan. 1, 2009). issn: 1083-6489. doi: 10.1214/EJP.v14-
670.

[TW11] A. Teixeira and D. Windisch. “On the Fragmentation of a Torus by Random Walk”.
In: Communications on Pure and Applied Mathematics 64.12 (2011), pp. 1599–1646.
issn: 1097-0312. doi: 10.1002/cpa.20382. (Visited on 04/20/2024).

[Wei58] H. F. Weinberger. “Lower bounds for higher eigenvalues by finite difference methods.”
In: Pacific Journal of Mathematics 8.2 (1958), pp. 339–368.

[Win08] D. Windisch. “Random Walk on a Discrete Torus and Random Interlacements”. In:
Electronic Communications in Probability 13.none (Jan. 2008), pp. 140–150. issn:
1083-589X, 1083-589X. doi: 10.1214/ECP.v13-1359.

Institute für Mathematik, Universität Innsbruck – Technikerstraße 13, 7. OG A-6020 Innsbruck,
Austria.

E-mail address: nicolas.bouchot@uibk.ac.at

28

https://doi.org/10.1214/15-AAP1165
https://doi.org/10.1214/15-AAP1165
https://dlmf.nist.gov/
https://doi.org/10.1017/CBO9780511750854
https://doi.org/10.1017/CBO9780511750854
https://doi.org/10.1214/EJP.v19-3067
https://doi.org/10.1515/9781400881802
https://arxiv.org/abs/2309.03192
https://doi.org/10.4171/JEMS/565
https://arxiv.org/abs/1212.1605
https://doi.org/10.1007/978-0-387-75953-1
https://doi.org/10.1214/EJP.v14-670
https://doi.org/10.1214/EJP.v14-670
https://doi.org/10.1002/cpa.20382
https://doi.org/10.1214/ECP.v13-1359

	Introduction
	Random walk confined in a large domain as a Doob transform
	Covering of inner sets - main result
	General setting
	Gumbel and Poisson behaviour under a stronger assumption

	Comparison with the random walk on the torus

	Tilted interlacements, capacity and first estimates
	Tilting of random interlacements
	Cover level of the tilted interlacements

	Some useful estimates
	Useful facts about the confined walk and eigenfunction
	Probabilistic interpretation as a confined walk
	Properties of the eigenvector
	On the principal eigenvalue

	Green function of the tilted walk, proof of Proposition 2.3
	Estimates on the capacity of certain sets

	Covering level of N - study of the intermediary set
	Some technical considerations
	Scattering of the late point
	Cardinality of the set of late points

	Covering by interlacements and Poisson limit
	Fluctuations of the covering level
	Poisson limit

	From tilted interlacements to the confined walk
	Some specific cases
	The case of a ball
	Covering of a segment by the conditioned simple random walk

	Appendix: technical estimates and decoupling inequalities
	Asymptotics of the Green function of the tilted walk
	Proof of Lemma 4.1
	Decoupling of interlacements

	References

