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MAXIMAL TWISTED BETTI NUMBERS OF COMPLEX
HYPERPLANE ARRANGEMENT COMPLEMENTS

YONGQIANG LIU, LAURENTIU MAXIM, AND BOTONG WANG

ABSTRACT. We show that the Betti numbers of a local system on the complement of an
essential complex hyperplane arrangement are maximized precisely when the local system
is constant. This result answers positively a recent question of Yoshinaga and the first
author.

1. INTRODUCTION

Let A = {Hy,...,Hy} be an essential affine hyperplane arrangement in C", with com-
plement Uy. As shown independently by Dimca-Papadima [DP03] and Randell [Ra02], the
complement U4 has the homotopy type of a minimal CW complex, hence, in particular, its
cohomology groups H'(Upy;Z) are free abelian, for any integer ¢ > 0. The Betti numbers
b;(U,4) of Uy are classically known, e.g., see [OT92].

Let us now fix a coefficient field K and consider a K-local system £ on Uy of rank r.
For 7 > 0 an integer, denote by

bi(Uy; £) == dimg H (Uy; £)

the corresponding twisted Betti numbers of Uy. Then it follows by definition, together
with the existence of a minimal CW structure on Uy, that (cf. also [Coh98] for the case

K=0C)
(1) bi(Ug; L) < r-ci(Uy) =r-b;(Uy),

where ¢; denotes the number of i-cells in a minimal CW structure of Uy. Note that for
CW complexes which do not admit a minimal structure (e.g., an arbitrary hypersurface
arrangement complement) it is difficult in general to compare the leftmost and rightmost
terms of (1), as both are dominated by the middle term in (1).

It is therefore natural to investigate for which local systems the above inequality (1)
becomes an equality for some 0 < ¢ < n. For rank-one local systems, this question was
answered in full by Liu-Yoshinaga in the case when A is a complexified real arrangement,
see [LY25, Theorem 1.1].

The main result of this paper settles the question for all complex arrangements, in par-
ticular also providing a positive answer to Question 1.3 in [LLY25]. We prove the following.
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Theorem 1.1. Let A be an essential affine hyperplane arrangement in C™, with comple-
ment Uy. Let K be a field, and £ a nontrivial rank r K-local system on Uy with twisted
Betti numbers b;(Ua; L). Then for any 0 < i < n we have

bz(UA, £) <r-: bz(U.A>
The following consequence is immediate.

Corollary 1.2. If the inequality (1) is an equality for some 0 < i < n, then it is an
equality for all i in this range, and this can only happen for the constant sheaf.

The proof of Theorem 1.1 is by induction on the dimension n of the ambient space, by
first reducing to the case of central arrangements.
As a byproduct of the proof, we also get the following result.

Proposition 1.3. Let A be an essential affine hyperplane arrangement in C" with com-
plement Uy. For a point x in one of the hyperplanes of A, let B, C C" be a sufficiently
small ball centered at x. Let L be any finite rank K-local system on Uy. Then the pullback
homomorphism

H"(Ug; £) = H"(UaN By £)

1s surjective. Moreover, we have the following surjective map

(2) H"(Us; L) » @ H"(UaN By L)
xELo(.A)

with Ly(A) denoting the 0-dimensional flats (or edges) of A.

Remark 1.4. When L is the constant sheaf, (2) becomes an isomorphism, known as
the Brieskorn decomposition. So (2) should be viewed as a generalization of Brieskorn
decomposition to arbitrary local systems.
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2. PRELIMINARIES

In this section we develop the tools necessary for proving our main result Theorem 1.1

(see also the Appendix). For the constructible sheaf calculus, we use the notations from
[Dim04, MS22].
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Lemma 2.1. Let P be a K-perverse sheaf on C", and let x be any point on C" with
inclusion map i, : {x} — C". Then the natural homomorphism
HO(C™;P) — H(x;i,'P)
18 surjective.
Proof. Let j, : C*\ {#} < C" be the open embedding. Then we have a distinguished
triangle
Jois P = P g P
Since j, ! is t-exact and j,, is right t-exact (e.g., see [Dim04, Theorem 5.2.4]), it follows that
Jarji'P € PD=(C" K). Hence, by Artin vanishing (e.g., see [MS22, Theorem 10.3.59]),
we have that
H(C" jnj, P) =0
for all ¢ > 0. Then by the long exact sequence associated to the above triangle, it follows
that the homomorphism

H(C"P) = HY(C"; iy, P) = H(;1, ' P)
is surjective. 0
Lemma 2.1 directly implies Proposition 1.3.

Proof of Proposition 1.5. Since the inclusion map j: U4 — C" is a quasi-finite affine
morphism, it follows that Rj.L[n| is a K-perverse sheaf on C" (e.g., see [Dim04, Corol-
lary 5.2.17]). The first assertion in the statement then follows by applying Lemma 2.1 to
Rj.L[n]. The second claim follows by applying Lemma 2.1 to Rj.L[n| upon replacing z
by the finite set of points Lo(A) in C™. O

On the other hand, Lemma 2.1 can be used to prove the following result, which is crucial
for the proof of our main Theorem 1.1.

Proposition 2.2. Let A be an affine hyperplane arrangement in C", and let Uy = C™*\ A
be its complement. Let L be any finite rank K-local system on Uy. Let x be a point on one
of the hyperplanes of A, and let B, C C" be a sufficiently small ball centered at x. Let
f: C" — C be a general linear function, and let ¢ € C be a point different but sufficiently
close to f(x) (relative to the radius of B, ). Then the pullback homomorphism

HYUAN f7Y(e); £) — H Y (U4 By 0 f7(c): L)
18 surjective.

Proof. Let j: Uy — C" be the open embedding, which is a quasi-finite affine morphism.
Then, as already explained in the proof of Proposition 1.3, the complex F = Rj,.L[n] is a
perverse sheaf on C". Hence, the perverse nearby cycle complex

PYspa)(F) = g (F)[-1]

associated to F is a perverse sheaf on f~!(f(z)).
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Let us first note that by the construction of nearby cycles, we have natural isomorphisms
(3)  H" N UaNBo N f e £) = H N (Bo N f7H(e); F) = HO w3y Py pia) (F))-
Furthermore, there are natural isomorphisms

(4) H" N UaN f7He); £) = HH (e F) = HO(fH(f(2); Py (F)),
where the first isomorphism in (4) is immediate, while the second isomorphism will be
proved in Proposition A.4 in the Appendix (the main difficulty here being the fact that f

is not a proper map). The desired surjectivity in the statement follows from Lemma 2.1,
by using (3) and (4). O

The following result was proved by Cohen for rank one local systems (see [Coh98], and
also [Coh93]).

Proposition 2.3. Let H be a generic hyperplane in C*. For L a rank r K-local system
on Uy, we have

r-b,(Uy), ifi=n,

dimg Hi(UAa UaNH; L) = {O otherwise

Proof. Since H is generic, by the Zariski Theorem of Lefschetz type (e.g., see [Dim92,
Theorem 1.6.5]), the inclusion map Uq4NH < Uy is an (n—1)-equivalence. Then by [PS19,
Lemma 5.6], the pullback homomorphism H*(Uy; L) — H (U4 N H; L) is an isomorphism
for 0 < ¢ < n — 2 and is injective for ©+ = n — 1. By the long exact sequence of the
cohomology of the pair (Uy, Uy N H),

—)Hi(UA,UAﬂH;E) —)HZ(UA,ﬁ) %Hi(UAﬂH;AC) — e

we get that H'(Uy, UsNH; L) = 0 for i < n—1. On the other hand, since U4 (resp., UsNH)
is affine, it is homotopy equivalent to an n (resp., n — 1) dimensional CW complex. In
particular, H(Uq; L) = 0 for i > n and H(Ug4 N H;L) = 0 for ¢ > n — 1. By the
above relative long exact sequence, we get that H (Uy,Uys N H; L) = 0 for i > n. Hence
H{(U4,UsNH; L) =0 for i # n and
dimKH"(UA,UAﬂH;E) = ‘X(UA,UAQH;EH = |X(UA§£) —X(UAQH;£)|

=7 [x(Ua) =x(Uan H)| =7 [x(Ua\ H)|

=r-b,(Uy),
where the last equality is proved in [DP03, Lemma 5. 0]
Corollary 2.4. Let H be a generic hyperplane in C". For a rank r K-local system L on
Uy, if dimg H"(Ug; £) =1 - b,(U4), then we have a natural isomorphism
(5) H" YU L) =2 H Y UANH; L).
Proof. The long exact sequence for the cohomology of the pair (U4, U4 N H) reduces as in
Proposition 2.3 to a 4-term exact sequence

(6) 0— Hn_l(UA;ﬁ) — Hn_l(UAﬂH;ﬁ) — Hn(UA,UAﬂH;E) — Hn(UA,ﬁ) — 0.



5

By Proposition 2.3, our assumption on dimension implies that the surjective homomor-
phism
Hn<UA,UAﬁH;£) — Hn(U_A;ﬁ)

is in fact an isomorphism. Then the claim follows by using the exact sequence (6). U

3. PROOF OF THE MAIN RESULT

Proof of Theorem 1.1. We first give the proof of the theorem assuming ¢ = n, by induction
on n in two steps. If n = 1, the claim is obvious. For induction, we assume that the claim
holds for any essential hyperplane arrangement in C*1.

Step 1: Assume that A is a central arrangement in C". We reduce the proof to a lower
dimension case, then use induction. Assume that the local system L is defined by a
homomorphism on 7 (Uy4) which sends the meridian corresponding to the hyperplane H; €
A to a matrix A; € GL,(K), for each i =1,...,d.

Let M4 denote the complement of the corresponding projective arrangement in CP™ ™,
and consider the Hopf map p: U4 — M 4. Then we have a spectral sequence with Fo-tem
given by ES* = H%(My; R'p,L), which converges to H*'(U4; £). Since the fiber of the
Hopf map p is C*, we have that Eg’b = 0 for b # 0,1. Following [Dim04, page 210], we
consider the total turn monodromy operator of the local system L as an invertible operator
T(L) : K" — K". This operator plays an important role in describing the local systems
Rp.L, b=0,1.

If T(L) # I, is not the identity matrix, it follows from [Dim04, Proposition 6.4.3] that
R'p.L is a local system of rank 0 < v’ < r. Since M4 is an (n — 1)-dimensional affine
variety, it is homotopy equivalent to an (n — 1)-dimensional CW complex. It follows that
for the above spectral sequence we have that Ejy “0b — (0 unless b = 1 and Eg’b = 0 if
a + b > n. Therefore,

B = N U L),
Then we have
dimg H"(Uy; £) = dimg H" (M yg; R'p. L) <7 - by 1(My) = 1" b,(Ug) < 7 - by (Un).

For the equality b,_1(M4) = b,(U,4), we apply the Kiinneth formula to the isomorphism
U q = M A X C*.

On the other hand, if T'(£) = I, is the identity matrix, there exists a local system L'
of rank r on M4 (constructed as in [Dim04, Proposition 6.4.3]) such that £ = p~1L'.
Moreover, by the Kiinneth formula we have the following isomorphism (note that T'(L)
corresponds to the image of the representation defining £ on the factor C*)

H"  (Ma; L) = H'(Ua; £).

Since b,,_1(My4) = b,(U4), and M 4 can be seen as a complement to an essential hyperplane
arrangement in C"~! (by setting one of the hyperplanes as the hyperplane at infinity in
CP" 1), the claim follows by induction.
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Step 2: Next we prove the claim when the arrangement A in C" is not necessarily central
by reducing to the central case with the same dimension for the ambient space.

Assume by contradiction that the inequality (1) is an equality for i = n. If £ is not the
constant sheaf, without loss of generality, we assume that A; # I.. Since A is essential,
there exists an intersection point z € Lo(A) contained in Hy. Let B, be a sufficiently
small open ball in C™ centered at x. Consider a generic hyperplane H sufficiently close to
x (relative to the radius of B,). Consider the commutative diagram

Hn_l(UA;,C) —»H"_l(UAﬁH;ﬁ)

l i

H" Y UsN By L) —— H" Y (U N B, NH; L).

The isomorphism (5) implies that the top horizontal arrow is surjective. Moreover, Propo-
sition 2.2 implies that the vertical arrow on the right is surjective. Therefore, the commu-
tativity of the diagram implies that the bottom horizontal arrow must be surjective. Then
by the relative long exact sequence, the surjectivity of the bottom horizontal map implies
that

(7) H"(U4N By, UsNB, NH; L) — H' (U N By; L)

is an isomorphism. Since U4 N B, can be viewed as a complement of central hyperplane
arrangement, by Proposition 2.3, we have

dimg H*(UgsN By; L) = dimg H*(Uo4N B, U4 N B, NH; L) =71 -b,(UaN By).

By Step 1 applied to the restriction of £ over UM B,,, this restriction must be the constant
sheaf, which contradicts the assumption that A; # I,.

We conclude the proof by showing that it can be reduced to the case ¢ = n, which
was already proved above. When ¢ = 0, the claim is obvious. So we assume that ¢ > 1.
Set B = AN L, where L is a generic i-dimensional affine space in C*. Then B is an
affine arrangement in L = C'. By the Lefschetz hyperplane section theorem, we have

dimg H(Uy, £) < dimg H(Ug, £). Then we have
dimg H' (U4, £) < dimg H(Ug, L) < 7 - b;(Ug) =1 - b;(Uy).

Here the last equality is due to the genericity of L and the minimality of CW structures
of arrangements, whereas the middle inequality follows from applying the result proved
above for B as an arrangement in C* and the fact that if £ is not the constant sheaf then
also L|y, is not constant. O

APPENDIX

In this appendix, we include a proof of a result well known to experts (Proposition A.1
and Corollary A.3); see, for instance, [Tib07, Section 6.1]. However, since we were unable
to find it in the precise form required for this paper, we provide a complete proof here
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for the reader’s convenience. We also prove Proposition A.4, which is used in the proof of
Proposition 2.2.

Let xg, ..., 2, be the homogeneous coordinates of CP", and let H,, = {xo = 0} C CP"
be the hyperplane at infinity. Fix a Whitney stratification CP" = | |,.; W; of CP", which
we denote by W. Let | = agzg + a1x1 + - - - + a,x, be a linear form, with a; # 0 for some
1 <i < n. Let X be the blow-up of CP" along the axis V; = {l = o = 0} C CP", with
exceptional divisor £. Then taking the ratio I/z, defines a proper map 7 : X — CP'. Let
X =77Y(C) and E = €N X. Denote the restriction 7|x : X — C by mx. In other words,
mx : X — C is the fiberwise projective compactification of the linear map [/zy : C" — C,
where C" = CP" \ H,,. We denote the composition X — X — CP" of the blowup map
and inclusion maps by p.

Proposition A.1. Under the above notations, for a general linear form [, the following
statements hold.

(1) The pull-back of the Whitney stratification VW of CP" by p defines a Whitney strat-
ification of X, which we denote by W' .

(2) The map wx: X — C does not have critical points along E, with respect to the
stratification W'.

Proof. Notice that [z : I] defines a rational map CP" --» CP' and X is equal to the closure
of its graph in CP" x CP'. Moreover, X is equal to the intersection of X with CP" x C.
Taking cartesian product with C, the Whitney stratification W of CPP" induces a Whitney
stratification Wepnyc on CP" x C. For the first statement, we will show that X intersects
every stratum of Wepn ¢ transversally, which implies that the restriction of Wepnyc to X
is a Whitney stratification.
Let ¢ be the coordinate of C. Then X C CP" x C is defined by the equation [ = ¢ -z, or

apxo + a1y + -+ apx, —trg =10

for general ag,...,a,. Let Ocpryc(1) be the pullback of the line bundle Ocpr (1) by the
projection. Then, via pullback, xo,...,x, define global sections of Ocpryc(1). Also via
pullback, ¢ is a global function of CP" x C, and hence the product tz is also a global section
of Ocprxc(1). Notice that the global sections x, . .., x,, txg define a base-point free linear
system of Ocpryc(1), and X is a general member of this linear system. Therefore, by the
Bertini theorem for basepoint-free linear systems, the zero locus of a general section is
transversal to the Whitney stratification Wepr«c. Hence the first statement follows.

For the second statement, we need to show that for any z € C, (7x) !(z) intersects
every stratum of W' transversally along E. Notice that

E=V,xCcCP"xC.

Let & be any point in (7x)~!(z) N E. Then 7 is contained in the line p(z) x C in E. Since
W' is defined as the pullback of a stratification of CP", the line p(Z) x C is contained in
one stratum of W'. Since the line p(Z) x C intersects (7x)~'(z) transversally, the stratum
of W' containing # also intersects (mx)~!(x) transversally. Therefore, the intersection of
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(mx)"!(x) and any stratum of W' is transversal along E. Thus, the second statement
follows. O

Remark A.2. It is essential to work with 7wy instead of 7. In fact, if we replace X, mx
and W by X, 7 and the pullback of W by the blow-up X — CP", then the first state-
ment may fail. In fact, let u,v be the homogeneous coordinate of CP'. If we apply
the same arguments, then X is a general member of the linear system defined by sec-
tions uxg, uzy, ..., ur,, vry of the line bundle Ocpn(1) W Oppi(1), which has base locus
{u = 29 = 0} C CP" x CP'. When restricted to C = {u # 0} C CP', the base locus is

removed.

Let F be an algebraic constructible complex of K-vector spaces on C". Let f: C" — C
be a general affine function, and let f: X — C be the fiberwise compactification of f.
Denote by k : C* — X the natural embedding.

Corollary A.3. For any ¢y € C, the supports of "o, (Rk.(F)) and?oz . (ki(F)) consist
of finitely many points, all of which are contained in k(C") = C".

Proof. First, notice that if [ is the homogenization of f, then X is the same variety as
defined at the beginning of the appendix, and f = wx. Considering CP" = C" U H,
let W be a Whitney stratification of CP" such that C" is a union of strata and F is
constructible with respect to the induced stratification of C™. Let W be defined as in
Proposition A.1. Then W' is a Whitney stratification of X with respect to which Rk, (F)
is constructible. Since the vanishing cycle complex Po5 . (Rk.(F)) has support contained
in the stratified critical locus of f, using the second statement of Proposition A.1 it follows
that this support is contained in k(C"), i.e., it coincides with the support of Po;_. (F).
On the other hand, since f is general, the support of Pos_., (F) consists of finitely many
points in k(C") = C", thus proving the assertion for the vanishing cycles of Rk.(F). The
claim about P¢; . (ki(F)) follows similarly, or by using Verdier duality. O

We next prove the following result, which is used in Proposition 2.2.

Proposition A.4. Let f : C* — C be a general linear function, and let ¢y be a fized point
in C. Then for any K-constructible complex F € DY(C") there is a natural isomorphism

(8) H=(f7H(e)s Fly-19) = H(fH(co)s Pp—co (F)),
for ¢ € C sufficiently close to cg.

Proof. The isomorphism in (8) would be true if f were a proper map. Since this is not
the case, we need to work with a proper extension fof f, and use the fact proved above
that f does not have “singularities at infinity”. It suffices to assume that ¢y is a stratified
critical value of f, the statement being obvious otherwise.

Let X C CP" x C be as before the standard partial compactification of the graph of
f, with projection f: X — C. Then f is a proper extension of f, whose fibers are the
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projective closures of the fibers of f. Let k : C" < X be the inclusion map. Consider the
cartesian diagram

fHe) L

d ]

FHe) — X.

ic

Since c¢ is a regular value of f, there is a base change isomorphism (e.g., see [Sch03,
Proposition 4.3.1, Remark 4.3.6])

(9) i, 'Rk, = Rk,,i;".
We then have the following sequence of natural isomorphisms:
HO(f~Y(co); "7, (REF)) = H(f(c);1, ' Rk.F)
(10) = B () b )
= H ' (f )i ' F),
where the first isomorphism follows from the properness of ]?and [MS22, Example 10.4.20].

To complete the proof of (8), in view of (10) it suffices to show that there is a natural
isomorphism

(11) H(f 7 (c0); "oy (RELF)) 2 HO(f7H(c0)iPs—e(F)).-

In fact, if ke : f~(co) = f(co) is the inclusion map induced by k, there is a natural
isomorphism

(12) H(f(eo)sPp-oo(F)) = HO(f 7 (c0)s Rhico, "0 —co(F))-
Moreover, by [Sch03, Remark 4.3.7 (3)], there is a base change morphism
(13) pwf—co o Rk* — RkCO* © pwf*CO

inducing upon taking cohomology the natural map

(14) H(f 7 (co); "5 (RE.F)) = HO(F 7 (co); Rhicg, " —co(F)),

which we will prove to be an isomorphism. For this, it thus suffices to show that the base

change morphism (13) induces the following isomorphism in D%(f~!(c)):
(15) pwf—co(Rk*]:) = RkCo*pwf—Co (]:)

After replacing F by its Verdier dual, and using the fact that the perverse nearby cycle
functor commutes with Verdier duality, it suffices to show that

(16) Phi oo (R F) & ko Php—cy (F).

Let £ := X\ C" and let ¢ : E — X denote the closed embedding. Since f is a general
linear function, it follows from the above Corollary A.3 that the support of the (perverse)
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vanishing cycles of f is disjoint from F. Hence, we have for the induced closed inclusion
e, cEN fY(co) = f (o) that

(17) gc_ol (pgof_co(l{?!]:)) = 0.
Therefore, we have
(18) P05 oy (ki) 22 ke (P07 (1 F)) = ke (P05 (F))4

where the first isomorphism follows from (17) by using the attaching triangle for (ke,, ¢, ),
while the second isomorphism uses the fact that vanishing cycles commute with open
embeddings (cf. also [MS22, Proposition 10.4.19(2)]).

Consider next the distinguished triangles

Co'( ¢f Co( )) — kco!(p@f—co(f)) — kco!ic_ol(F) +—1>
and
~ +1
P50 F) =Pz (BF) = iy (B F) —,

with i, : f7 (co) <= C" and iy : f '(co) = X the inclusion maps. Note that there
are natural base change morphisms connecting the terms of the first triangle to those of
the second, respectively. By (18), it follows that to show (16) it suffices to prove the
isomorphism

(19) G F 22 ki F.

This is immediate, either by using directly the base change formula (e.g., see [Bor08,

Chapter V, Proposition 10.7]), or by noting that, if 7 b EN f- Y(¢cy) = E denotes the
inclusion map, then

0V e F = (E)y Y F =0,

co co
whence, using the attaching triangle for the pair (k.,, {.,) yields
o F 22 ke ki F 2 ki kT T 2 ki

This completes the proof of (15) and of the Proposition. O

(€0] CO
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