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ON A DENSITY PROBLEM RELATED TO A THEOREM OF
SZEGO

CHIARA PAULSEN

ABSTRACT. A classical theorem of Szegd states that for any probability mea-

sure p = w% + 115 on the unit circle the polynomials are dense in L2(T, ) if

and only if log(w) ¢ L(T). A related question asks whether the monomials
with exponents in some subset A C Ny already span L?(T, p) if log(w) ¢ L*(T).
A result by Olevskii and Ulanovskii gives an answer if p belongs to a class of
absolutely continuous measures. We investigate the same question for Markoff
measures.

1. INTRODUCTION

Let © be a probability measure on the complex unit circle T, the latter of which
we shall identify with the interval [0,27) in the usual way. Denote by

de
dm = —
mn 2w
the normalized Lebesgue measure on T. By the Lebesgue decomposition theorem,

one can decompose u with respect to m
dp = wdm + dps,

where ps and m are mutually singular and w is the Radon-Nikodym derivative of
w and m.

We call pu non-degenerate if |supp(u)| = co. In the following, we denote by P
the set of all non-degenerate probability measures on T.

An important theorem by Szeg6 [GS58| in the theory of orthogonal polynomials
on the unit circle (OPUC) implies that for any p € P the polynomials are dense in
L?(T, p) if and only if

2m
/0 log(w(0)) df = —oo0. (1)

In fact, this equivalence already appeared in the work of Kolmogorov in
the context of prediction theory. The connection between Kolmogorov’s work on
prediction theory and Szegd’s work on OPUC was made by Krein . A
contemporary discussion of the connection between Szegd’s theorem and prediction
theory can be found in . Let us briefly outline this connection. For every
Gaussian stationary stochastic process (X, )nez with zero mean, there exists u € P
such that

E[X, X] :/z*”du.
T
By Kolmogorov [Kol4l, Lemma 4] there is an isomorphism between the Hilbert
space H spanned by {X,, | n € Z} and L?(T,u) mapping X,, to 2. Via this
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isomorphism, the error of predicting X, with the knowledge of {X,, | n < —1} is
given by [Binl2, Theorem 3], [Kol41, Chapter 9]

E[(XO — P(,Oo’,l}XO)Q} = exp (/027T logwdm)

where P(_ _1) is the projection onto the subspace of H spanned by {X,, | n < —1}.
Thus, (X,), is a deterministic process (that is, the past predicts the future with
zero error) if and only if the associated measure p fulfills , which, in turn, is
equivalent to the polynomials being dense in L?(T, ).

A measure p € P that fulfills (I is called non-Szegd. If the integral in (1) is
finite then p is called Szegd. We denote the class of all Szeg6é measures by Sz and
put Sz¢:=P\Sz.

The connection to prediction theory motivates the following questions: Is it
already sufficient to know only parts of the past to determine the future events of
(X,)n? If so, how large a part of the past can be ’forgotten’? In order to make the
question more precise, consider the family of exponentials

E(A) :=span{z* | z € T,\ € A}
for A C Ng. Furthermore, define
o = {(A,C) | A CNy,C CP,E(A) dense in L*(T, ) for all u € C}.
Question 1. For which A C Ny and C CP is (A,C) € &' ?

Remark 1.1. We observe the following obvious facts.
1.) By Szegd’s theorem, for any u € Sz and A C Ny, E(A) is not dense in
L?(T, ). Thus, for every pair (A,C) € 7, it follows that C C Sz°.
2.) One has the following implications
NCA N C)ed = (AC) e,
C'CC,(ANC)ed = (NC)ed.
Thus, the most difficult part about Question 1 is to make A as small and
C as large as possible.
3.) It is easy to show that (No\I',Sz¢) € & for all finite I' C Ny (see Corol-
lary .

If one studies Question [I] for a proper subclass C, instead of considering the
maximal class Sz¢, Olevskii and Ulanovskii [OU21, Theorem 1] have obtained a
result for the class

W= {,u =wdm | w > 0 dm-a.e., w bounded, w increasing on (0, 277)}.
Theorem (Olevskii, Ulanovskii). Let I' C N with
Z L < 00.
SV
Then (No\I', WN 5z°) € &.
In this paper, we will add an answer to Question [I] for sets A of the form

Ak, &) = |JIks b+ 4], (ke N £eNy)
JEN
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where k is strictly increasing and [n, m] := [n, m]NZ for n,m € Z,n < m and where
C is the class of Markoff measures Mar(T). This class was introduced by Khrushchev
in [Khr02]. Informally, & belongs to Mar(T) if the sequence of Verblunsky coeffi-
cients (o, (1)), contains a sufficiently dense subsequence that remains bounded
away from zero. We will give a formal definition of Markoff measures and Verblun-
sky coefficients in Section 2. In Section 4 we will show the following.

Theorem 1.2. Let s > 1 and let k := (k;); € NY be strictly increasing. Set
|k*] := ([k3]); € NY. Then,

(A(k, k), Mar(']T)) €.

In particular, there exists a subset A C N with lower density Q(A) = 0 such that
(A, Mar(T)) € &

Theorem [[.2] will follow from the main result of this article, Theorem which
states that for every u € Sz¢ and every strictly increasing k € NV there exists
£ € NY such that E(A(k, £)) is dense in L2(T, i1). In Corollary we further show
that k and £ can be chosen such that d(F(A(k, £))) = 0.

It should be noted that |[OU21] and this paper explore very different situations.
For every p € W one has a,, — 0 by Rakhmanov’s theorem [Rak83|, thus Mar(T)
and W are disjoint. Moreover, every measure contained in W is absolutely contin-
uous with full support. In contrast, if u € Mar(T) then supp(uq.) # T and also,
Mar(T) contains measures with ps # 0 and pure point measures with full support
which are important in physics because of the Anderson localization phenomenon
(see Lemma and Remark .

The structure of this paper is as follows. In Section 2 we briefly review some
notions from OPUC theory. In particular, we state Szegd’s theorem (Theorem [2.1))
and give a definition and some examples of Markoff measures. In Section 3 we
prove the main theorem, Theorem In Section 4 we prove Theorem and
show other applications of Theorem |3.3

Notation.

e We use the conventions N:={n € Z | n > 1} and Ny := NU {0}.
e Interval of integers: For n,m € Z with n < m define

[n,m] := [n,m|NZ.

Upper and lower density: For A C N define the lower and upper density by
e JANILN] o [ANTL N
d(A) == lﬂlglof —~ d(A) = h]I\In—?llop —N

respectively.
e P is the set of all non-degenerate probability measures on T.
Closure of a subset: For u € P and a subset M C L?(T, 1) we write

MLP(T#)

for the closure of M in L2(T, p).
Sz is the set of all measures du = wdm + dus € P for which

/027r log(w(6)) dd > —oo.
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e Mar(T) denotes the set of all Markoff measures (see definition on page |5)).
e We already defined earlier

E(A) =span{z* | z € T, A € A},
o = {(A,C) | A € Ny,C CP,E(A) dense in L*(T, ) for all u € C},
Ak, €) = | JIks, k; + 4], (ke NY,£eNp)
JEN
where k is strictly increasing.
o Let P be the space of all polynomials. For n € Ny, let P<,, be the space of

all polynomials with degree less than or equal to n.
o We will also need the following definitions later

ﬁu(k‘,n) = Trren]}%il ||Z_k - W(Z)HL?(’H',H)v (k,n € No,p € ’P),

Bu(k,00) == lim B, (k,n)

n— oo

:Tirrégnz_k—ﬂ(z)”Lz('ﬂ*#), (k € No,pu € P).

Acknowledgment. I am very grateful to my advisor, Professor Sergey Denisov,
for suggesting the problem formulated as Question 1, and for his countless helpful
discussions and comments.

2. Facts FrOM OPUC
Theorem 2.1 (Szegd). Let p € P with duy = wdm + dps. Then

2m
exp (/ logwdm) = B.(1, 00).
0
This appears first in [GS58 Chapter 3.1], see also [Sim05al, Chapter 2]. We have
the following corollary [Sim05a, Theorem 1.5.7].

Corollary 2.2. Let p € P with dpy = wdm+dus. Then p € Sz° if and only if the
polynomials are dense in L*(T, p), i.e. Bu(k,00) =0 for all k € N.

Let p € P with du = wdm + dus. Because of the non-degeneracy of u, the
monomials 2" are linearly independent in L?(T, ). Thus, for every n € Ny there
is a uniquely determined polynomial

O (p;2) =Y bpi(w)z’ (2 €T)
=0

such that b, ; € C for every i € [0,n], b, = 1 and, for every k € [0,n — 1],
(@ 2), Pr(1552)) oy = O-

The polynomials ®,,(u; z) are called monic orthogonal polynomials of . The monic
orthogonal polynomials satisfy a recursion relation, the Szegd recurrence,

P (s 2) = 2@ (15 2) — an () @7, (113 2)

for every n € Ny, where, for z € T,

O (152) = 2" (;2) = Y bn—i(10)2".
=0
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For n € Ny the recursion coefficient «,(u) is called the n-th Verblunsky coefficient
of p. One has a, () € D for every n € Ny. In fact, the mapping

P — DNOa o= (o (p))n

is a bijection. This is known as Verblunksy’s theorem [Sim05a, Theorem 1.7.11].
One can also express the L2-norms of the monic orthogonal polynomials and the
integral of log(w) by the Verblunsky coefficients [Sim05a, Theorems 1.5.2; 2.3.1]

n

@1 (45 2) 172 r ) = H(1 — i () %), (2)
=0
27 oo
exp (/0 log w dm) = nlgrolo \|<I)n(ﬂ;z)||%2(,ﬂ,,#) — H(l _ |ai(ﬂ)|2).
=0

The second equation proves the following corollary.
Corollary 2.3. Let € P. Then p € Sz if and only if (c, (1)), € €2.

In the following, we will write ®,,,b,; and «,, instead of ®,(u;2),by (1) and
o, (1) whenever the measure p is clear from the context.

Markoff measures. Let ¢ € P. For £ € Ny and ¢ € (0,1) define the class
Mar, ¢(T) C P via

: .
w € Mar, o(T) & nléleO L nax laj| > € (3)

The class Mar(T) of Markoff measures, which was introduced by Khrushchev in
[Khr02], is defined as follows

Mar(T) := U U Mar, o(T).
£eNg >0

Remark 2.4. This definition is in fact a characterization of the original definition
[Khr02, Theorem 1.8]. Khrushchev defines Mar(T) as every p € P such that dm is
not contained in the derived set of

{lenl?dp | n € No}

where ¢, is the n-th orthogonal polynomial in L?(T,u) obtained by using the
Gram-Schmidt algorithm on the monomials z™ with n € Ny.

Let us collect a few properties and examples of Markoff measures.

Lemma 2.5 (Properties of Markoff measures). Let u € P.
a) Mar(T) C Sz°.
b) p € Mare ¢(T) = [[®n]132(p,y < (1— 2y L,
¢) u € Mar(T) = supp(pac) # T.
d) supp(p) # T = p € Mar(T).

The converse implications in ¢) and d) are not true.

Proof. a) Let € Mar(T). Then, (o), does not converge to zero by definition of
Mar(T). In particular, (o), ¢ ¢>. Thus, by Corollary e Sz°.
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b) Let € Mar, ,(T). From (2)) it follows that

n—1
[@aliemy = [~ loaf?) < (1 =) < (1)
i=0
¢) By Rakhmanov’s theorem [Rak83| §3], [Sim05b, Corollary 9.1.11], for any
u € P with supp(ue.) = T one has

lim o, (@) = 0.

n—oo
Let p € Mar(T). Then (a,(p))n does not converge to 0. Thus, by Rakhmanov’s
theorem, supp(pac) # T. To see that the converse implication of ¢) doesn’t hold
true, consider a measure p € P such that for all n € Ny

1 — k!
(1) = 4 VF° n=klL k€N
0, else.

By Corollary € Sz¢. However, u ¢ Mar(T) since a,, — 0. Furthermore, p is
purely singular continuous (see [Sim05b, Theorem 12.5.2]). In particular, pq. = 0.

d) For a proof see |[Khr02, Corollary 1.9]. We briefly present a counterexample
to the converse implication due to Zhedanov [Zhe20]. For ¢ € T which is not a root
of unity and 0 < p < 1 set

w:=(1-p) Zp"éqn
n=0

where §,, is the Dirac measure with supp(d,,) = {w}. Clearly, u € P. There is also
a simple formula for |a,|? in terms of p and ¢ (see [Zhe20, p.5]). For all n € Ny

(1-p)?

|05n‘2 - .
1+ p? — 2pRe(q"t1)
Thus,
1—
e lan| < 1
1+p

for all n € Ny which implies that u € Mar(T). Furthermore, since ¢ is not a root
of unity,

supp(p) = {¢" | n € No} = T. O

Remark 2.6. In some sense, measures which are pure point with full support are
generic examples. Namely, for any rotation invariant probability measure 5y on D
with 50 75 (50 and

/ log(1 — [w]) dfo(w) > —o0
D

one has that almost every sequence (w, ), € Do with respect to the product mea-

sure .
B =) ho
=0

generates a measure p, by choosing p with a, (1) = w, for every n € Ny, that is
pure point and has full support [Sim05b, Theorem 12.6.2]. One can also view the
Verblunsky coeflicients «, as being values of an i.i.d. process (wy), with common
distribution £y. Such measures are important in physics because, going back to
the work of Anderson |And58|, certain random Hamiltonians on lattices produce
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dense point spectra - a phenomenon called Anderson localization. Mathematical
references include [CL90| and [PF92].

3. MAIN THEOREM

Recall that for k,n € Ny
Bu(k,n) = min ||z_k —7(2) || 2 (T,
TFEIPSTL

Definition 3.1. Let p € P. A strictly increasing function f : N — N is called
B-approximating for p if

lim B, (k, (k) = 0.

Corollary 3.2. Let u € P. Then there exists a B-approximating f if and only if
we Sz°.
Proof. Let u € Sz°. Then by Corollary

li_}rn Bu(k,n) = Bu(k,00) =0

for every k € N. Thus there exists an f : N — N that is S-approximating for u.
For the converse implication, let f : N — N be g-approximating for u. Since
(B, (k,n)), is a decreasing sequence for every k € N and f is increasing

Thus, by Corollary 2.2 p € Sz°. O

Recall also, that for two sequences £ := ({;); € N,k := (k;); € NV, where k is
strictly increasing,

Ak, ) = | [k, k; + 4]
jEN
Note that the definition of A(k,£) does not require the intervals [k}, k; + ¢;] to be
disjoint.
Now we are ready to state the main theorem.

Theorem 3.3. Let p € Sz° and f be any [-approximating function for p. Let
k := (k;); € NN be strictly increasing and £ := (¢;); € N such that

Tim £~ f(0;) = oc.
Then E(A(k,£)) is dense in L*(T, p).
Let us first prove the following two corollaries.

Corollary 3.4. Let y € Sz°. Then there exists a set A C N with d(A) = 0 such
that E(A) is dense in L*(T, ).

Proof. By Corollary there exists f : N — N which is S-approximating for u.
Set k1 :=1 and, for j € N, define k;; recursively such that

(kj + fkj) +3)7 +1 < kjpa.
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Put ¢; := f(k;) + j for every j € N, £ := (¢;); and k = (k;);. By Theo-
rem E(A(k,£)) is dense in L?(T, u1). Furthermore, we get the following estimate
for Ak, £).

d(A(k, £)) < liminf [AGk, €) N1, K0 — 1] |

Jj—oo kjy1—1
ki + 0, 1
<liminf 2% < Jiminf = = 0. 0

Corollary 3.5. (No\T', Sz2¢) € & for every finite ' C Ny.
Proof. For u € Sz¢ choose f which is S-approximating for u. Set

kl = max'erl, kj+1 = kj +f(kj)+j
yel’

for all j € N. Set furthermore ¢; := f(k;) + j for all j € N. Then
Ak, £) = NO\[[O,mglchy]] C No\T.
B!

By Theorem m E(A(k,£)) is dense in L?(T,u). Thus, also E(No\I') is dense in
L2(T, ). O

Remark 3.6. Corollary is an extension of Szegd’s classical theorem. Szegd’s
theorem is the case I' = ().

Before we can prove the main theorem, we first prove two lemmas about approx-
imating negative powers of z with polynomials in L?(T, u). Throughout, we will

use the convention ), ;a; := 0if J = 0.

Lemma 3.7. Let p € P. For all k,n € N we have the estimate

k—1
Bu(k,n) < [|Pnallr2er,p) (1 + Z Z [ T N S s >
=1 j1,...,5i€[1,n+1]
Jit+.+ji<k—1
(4)
Lemma 3.8. Let u € P. Then, for all k,n € N
Buulk,n) < N[ @nalp2(rp (20 +2)F 1
Proof of Lemma|3.7. The proof is by induction. For k =1 and n € N we show
Bu(L,n) = [|PpialL2(r,p)-
This is a standard result in OPUC theory but the proof is included here for com-

pleteness.
For a subspace V' C L?(T, i) denote by Py the orthogonal projection onto V.

Bulim) = min {[l=™" = 7()l|z2crpm | 7 € Pen}
=min {||1 = 7(2)l|z2(r ) | 7 € 2 P<p}
= [|1Ppeys (Dllzzer,w)-

Note that ®,,(0) = by41,n41 = 1 and thus

n+1
(D;kw—l(z) —1= Z bn-f-l,n-|-1_izZ €z -Pey.

i=1
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Furthermore, for all m € P<,,,
(zm, @ 1) L2, = (2, Zn+lm>L2(T,M) = (Pny1,2"T) 2(T,0) = 0
since @41 L P<pp. Thus Pp_ )1 (1) = @4, and therefore
Bu(l,n) = 197 1llz2(r,p) = [ Prtallz(r,p)-
Now, we make an induction in k. Assume that for all n € N one can estimate

B.(1,n),...,Bu(k,n) from above by the right-hand side in (). By applying the
triangle inequality one gets for all n € N

n+1
Bulk +1,m) < [l27%* D 43 bt air—m P,y 7 ) L2
m=1
n+1 .
<D 3 B traom 2™ | 2
m=1
min(k,n+1)
3 Bt 1T = Py (2 D) g
m=1
n+1
= 1z7* D 3 brmgm 2™ Y L2
m=1
min(k,n+1)
+ Z |bn+1,n+17m| Bu(k +1—m,n). (5)
m=1

The first summand on the right-hand side of equals

[l D 2= (@F L (2) = D)l ee ey = 19541 (D L2y = 1@ntallzzerpm- (6)

By the induction hypothesis, each ,(k + 1 —m,n) in the second summand on the
right-hand side of can be bounded from above by the following expression

k—1
[@ns1llL2cr,) (1 +) > brt1 1= | - oo [bnt1,ne1—j, |)~ (7)

=1 ji,....5i€[1,n+1],
Jit...+ii<k—m

Note that when applying the induction hypothesis to 8,(k +1 —m,n) we would a
priori get a sum in ¢ that goes from 1 to kK — m. The reason why the sum in
goes from 1 to k — 1 instead is that for i > k — m the index set

{J1,--gi€l,n+1] | j1+ ... + 54 <k —m}
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is empty and thus the sum over this index set equals zero. By and (5), the
second summand on the right-hand side of is bounded from above by

min(k,n+1)

”(I)nJrle(T,u)( Z ‘bn+1,n+17m|

m=1

min(k,n+1) k—1

+ Z Z |bn+1,n+1—m‘ . |bn+1,n+1—j1| feee bn+1,n+1—ji|>-

m=1 =1 ji,...,j:i €[1,n+1],
Jite+iji<k—m

(8)
By rearranging the summands in we get
min(k,n+1)
||(I)n+1L2(T,u)< > lbattnsioml
m=1
k—1 min(k,n+1)
Y > bt 1,4 1-m| * [bngn1—4u |- oo [Bngrng1—j )
=1 m=1 " j,.. ji€[ln+1],

Jitetji<k—m

min(k,n+1)

= Hq)n+1||L2(T,,u) ( Z |bn+1,n+17m|

m=1

k
+y > bt tnt 150 | o D1, nt 15, ) (9)
=2 j1,....5i€[1,n+1],

Ji+...+5: <k
In @, the sum in m is equal to the sum in ji,...,j; in the case ¢ = 1. Thus, the
right-hand side in @ equals
k
1 @ni1ll 2o Y > brntmd1—ja | o [Onina1—ji ]
=1 j1,....5:€[1,n+1],
Jit..+5i<k

Now we have an upper bound for the second summand in the right-hand side of
. In @ we asserted that the first summand in the right-hand side of equals
|®ns1llz2(r,u)- Putting both together we obtain the desired upper bound

Bu(k+1,n)

k
< [Pt llz2em,m <1 + > brt 11— | - |bn+1,n+1—ji|>~ O

=1 j1,....5i€[1,n+1],
Jite+ii <k

Proof of Lemma[3.8 Let wy,...,w, be the zeros of ®,,. Since the zeros of monic
orthogonal polynomials on the unit circle are contained in the unit disk [Sim05a)
Theorem 1.7.1] we have

pals X i< (}) (10)

JC[1,n], |J|=n—k jE€J
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Together with Lemmal 3.7 we get a new estimate for 3, (k, n) by using to bound
each coefficient by, 11 41—, in the right-hand side of

st 8 T (1) (1))

i=1 j1,....5:€[1,n+1] J1 Ji
Jit..+ji<k—1

For each of the binomial coefficients, we now use the bound (Z) < nF. In general,
this bound is very wasteful, but in this case, one always gets the summand (n+1)*~*
from the tuple (j1,...,jk—1) with entries j; = 1 for each ¢ € [1,k — 1]. Hence,

k-1
Bu(k,n) < [|Pnallr2(r ) (1 +Y > (n+1)7 .. (n+ 1)ji>

=1 j1,...,5:€[1,n+1]
Jit.+ji<k-1

k—1
< NPntallz2 e <1+Z > (n+1)’”>

i=1 ji,...,5;€[1,n+1]
Jit.+ji<k-1

k—1 k—1
= [|®ny1llz2(T,) (1 +(n+ 1)’“71 Z Z Z 1). (11)

=1 L=i ji,..,5;€[1,1]
Jit...+ji=L

The last sum in now counts the number of tuples (ji,...,7;) with entries in
N such that '_, js = £. This number is (“_1) since one has to count how many
ways there are to draw ¢ — 1 separating lines between ¢ 1’s. Thus, from we get
the following estimate for 3, (k, n)

-1 k-1 g—l
Bl ) < 1B L2 (H(nﬂ)mz 3 (_1)> (12)

i=1 f=i

To simplify the right-hand side, we use the following combinatorial identity

k—1
{— 1> <k — 1)
S = (" (13)
— (z -1 1
for 1 < i < k— 1. The identity follows by induction in k from Pascal’s rule for
binomial coefficients. Indeed, if we assume holds true for some k > 2, then

k k—1
-1 -1 k—1 k—1 k—1 k
> (01) =% () (5) = () (5) = ()
where the last equation is Pascal’s rule. Combining and yields

k-1 — (k-1
ﬂu(k;n) < ||(I)n+1HL2(T,,u) 1+ (n + 1) Z ( )

)
i=1
= ||q)n+1HL2(1r,u) (1 + (n + 1)k—1(2k—1 _ 1))
<N @psllzo(rp 2n+2)57!

which is the estimate we wanted to show. O
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Proof of Theorem[3.3 Without loss of generality
kj+4; < kjt (14)
for every j € N. Otherwise one passes to subsequences k' := (k,,); and €' := ({,,,);
that fulfill condition (I4). Since A(k’,€) C A(k,£), the density of E(A(K,£'))
implies the density of E(A(k,£)) in L?(T,u). Thus, we can assume ([14)).
For k € N let mp € P<y(1) such that

27 = millpzrp = min |27 = 7(2)llL2(r = Bulks f(K)).
TEP< (k)

By Theorem [2.1] it suffices to show that

e LA(T )

ENo) — B o) ™,

g2
To this end, let k € Nyg. We need to show that 2% € F(A(k, z))L (M)

Let J € N such that
k<t; — f(k;)
for every j > J. Then, for every j > J,
ki <k+kj+deg(m,) <k+kj+ f(k;) < k; +45.
It follows that
z’”kjwkj espan{z™ | k; <m < k; +{;} C E(A(k,£))
for every j > J. Furthermore, for every j € N,

M i 2y = 1275 — m lper ) = Bu(ks, £(K)).

Since f is S-approximating for p,

||zk —z

k+

: k kj —
jl;r&||z — 2" e 2 er,) = 0.

L (T, )

Thus, 2% € E(A(k, £)) which implies that E(A(k, £)) is dense in L(T, ). O

4. APPLICATIONS
We now want to prove Theorem

Proof of Theorem[1.4 Let p € Mar(T) and let 1 < ¢ < s. Put
f:N=N, f(n):=|n"].

We first show that f is S-approximating for u. By Lemma there exist € > 0
and ¢ € N such that -

1l ey, < (1 —€*)7 1
for all n € N. Thus, for every k € N,

kY a1

I ke 1 ll2emn (LK) +2)771 < (1 =€) 50 2 (2K +2)F
< (1— 2553 okt 4 2)h

(1—e) 3= BT oy k
T3 ((1 e2) "2 (2k +2)).

The right-hand side converges to 0 when k& — oo. Thus, by Lemma [3.8 f is
B-approximating for p. Furthermore,

Jim [5) = (k) = Tim (k5] = k] = o0

IN
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since t < s. Hence, by Theorem [3.3] E(A(|k, |k®])) is dense in L?(T, x). Finally,
if one chooses k such that for every j € N

(kj + k3 )J+1<kjn
then

(A, [K°])) < liming (20 D O T By — 1]

- j—o0 kj+1 —1
kj + | k3 1
< liminf g <liminf - =0. (|
J—0o0 41— J—0o0 j

Remark 4.1. Comparing the results from |OU21] with ours, one can have
(A, Mar(T)) € o for sets A that are much sparser than any known set A for which
one has (A,)WNS5z¢) € /. To be more precise, in [OU21| it was proven that
(No\T,WnNS82¢) € o if
1

Z — < Q.

yerl \ﬁ
This implies d(No\I') = 1 since for every M € N one has

1 1 _
oo > — > limsup |I'N[1,N]|- —= > d(T)VM.
;ﬁ N—soo 1, N VN

Thus, by letting M — oo, it follows that d(I') = 1 — d(Np\TI') = 0.
For the class Mar(T) by contrast, there exists A C N with d(A) = 0 such that
(A, Mar(T)) € & by Theorem [1.2]

We now look at the class Mar, ¢(T) introduced in (3)). In this class one can find
an even ‘thinner’ set A(k, £) than the one in Theorem [I.2|such that

(A(k, £), Mar, (T)) € .

To be more precise, in the situation when p € Mar(T) (Theorem , there are
[B-approximating functions f with

f(k) =O(k%), (k= o0)

for any s > 1. However, when p € Mar. ¢(T) (Corollary [4.2), there exist f which
are J-approximating for y with

f(k) = O(log(k)k), (k — o0)
where the implicit constant depends on € and /.

Corollary 4.2. Let ¢ > 0,/ € N, t > 2 and let k := (kj)jen € NV be strictly
increasing. Put

L
O gt )

and [t C. ¢log(k) k] := ([t C. log(k:j)k:jj)j. Then,

(A(k, £ C. o log(k) k), Marg’g,l('ﬂ‘)) €d.



14 CHIARA PAULSEN

Proof. Let p € Mar, y—1(T) and let 2 < 7 < ¢. First, we show that
FiN=N, (k)= [r Ceslog(k) k]
is S-approximating for u. By Lemma b),

n—1_9q

1®nll 72y < (1 —e?)7

Thus, we can estimate

1@ c. 4 tog(kyj+1ll L2 (m,) (21 7Cz e log (k)k | + 2)F 1

L7C plog(k)k]

<= 3(2rClog(k)k] +2)"
C¢ ¢ log(k)k
<(1—ed) = 53 (2rC. g log(k)k + 2)F !
(1—e2)~22
= 27 Coylog(k)k +2
(1—e2)~2-2
= 27 Ceplog(k)k + 2 '

The right-hand side converges to 0 when k goes to infinity. Thus, by Lemma [3.§
f is p-approximating for p. Furthermore,

leIEOLt Celog(kj) k| — f(kj) = jlin;oLt Ceelog(k;) kj] — |7 Ccplog(k;) kj] = o0

-c., k
((1 — 52)% log(k) (27‘ C:¢log(k)k + 2))

(kf% (27 C. ¢ log(k)k + 2)) g

since 7 < t. Thus, by Theorem [3.3] E(A(k, [t C: ¢log(k)k])) is dense in L*(T, u).
O

As a consequence of Theorem we show that if A =Ny \ T with
I'={le"]|neN}

for some t > 1, then (A, Mar(T)) € &/. One can in fact even choose I" to be a union
of large intervals, in the sense that the intervals have double exponential length.

Corollary 4.3. Lett >t >1 and C > 0. Let

o= JIle” ), e ] + [Ce” ]].

JEN
Then (No\I', Mar(T)) € <.
Proof. Let 1 < s <t. Then
\_etHlJ etHl etj+1
lim sup > lim sup > limsup =00

jooo ([eP] +[Cet’ | +1)5 T jooe 2(et! +Cet +1)s T L0 4desV
Thus, there exists NV € N such that for every j > N

et > Q(Letj |+ [CeP | + 1) .
Put k; := le’ | + |Ce?’ | 41 for every j € N. It follows that

No\T 2 [ [hy, L 11 2 | Ty by + Ly )] = Ak, [k°))

J>N J>N
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where k := (k;);j>n and |k*] := ([k]]);j>n. Since E(A(k, |k®])) is dense in
L3(T, 1) for every p € Mar(T) by Theorem also E(Ng \T') is dense in L?(T, u)
for every p € Mar(T). O
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