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SZEGŐ
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Abstract. A classical theorem of Szegő states that for any probability mea-

sure µ = w dθ
2π

+ µs on the unit circle the polynomials are dense in L2(T, µ) if

and only if log(w) /∈ L1(T). A related question asks whether the monomials
with exponents in some subset Λ ⊆ N0 already span L2(T, µ) if log(w) /∈ L1(T).
A result by Olevskii and Ulanovskii gives an answer if µ belongs to a class of
absolutely continuous measures. We investigate the same question for Markoff

measures.

1. Introduction

Let µ be a probability measure on the complex unit circle T, the latter of which
we shall identify with the interval [0, 2π) in the usual way. Denote by

dm =
dθ

2π
the normalized Lebesgue measure on T. By the Lebesgue decomposition theorem,
one can decompose µ with respect to m

dµ = w dm+ dµs

where µs and m are mutually singular and w is the Radon-Nikodym derivative of
µ and m.

We call µ non-degenerate if |supp(µ)| = ∞. In the following, we denote by P
the set of all non-degenerate probability measures on T.

An important theorem by Szegő [GS58] in the theory of orthogonal polynomials
on the unit circle (OPUC) implies that for any µ ∈ P the polynomials are dense in
L2(T, µ) if and only if ∫ 2π

0

log(w(θ)) dθ = −∞. (1)

In fact, this equivalence already appeared in the work of Kolmogorov [Kol41] in
the context of prediction theory. The connection between Kolmogorov’s work on
prediction theory and Szegő’s work on OPUC was made by Krein [Kre45]. A
contemporary discussion of the connection between Szegő’s theorem and prediction
theory can be found in [Bin12]. Let us briefly outline this connection. For every
Gaussian stationary stochastic process (Xn)n∈Z with zero mean, there exists µ ∈ P
such that

E[XnX0] =

∫
T
z−n dµ.

By Kolmogorov [Kol41, Lemma 4] there is an isomorphism between the Hilbert
space H spanned by {Xn | n ∈ Z} and L2(T, µ) mapping Xn to zn. Via this
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isomorphism, the error of predicting X0 with the knowledge of {Xn | n ≤ −1} is
given by [Bin12, Theorem 3], [Kol41, Chapter 9]

E
[
(X0 − P(−∞,−1]X0)

2
]
= exp

(∫ 2π

0

logw dm
)

where P(−∞,−1] is the projection onto the subspace ofH spanned by {Xn | n ≤ −1}.
Thus, (Xn)n is a deterministic process (that is, the past predicts the future with
zero error) if and only if the associated measure µ fulfills (1), which, in turn, is
equivalent to the polynomials being dense in L2(T, µ).

A measure µ ∈ P that fulfills (1) is called non-Szegő. If the integral in (1) is
finite then µ is called Szegő. We denote the class of all Szegő measures by Sz and
put Szc := P\Sz.

The connection to prediction theory motivates the following questions: Is it
already sufficient to know only parts of the past to determine the future events of
(Xn)n? If so, how large a part of the past can be ’forgotten’? In order to make the
question more precise, consider the family of exponentials

E(Λ) := span{zλ | z ∈ T, λ ∈ Λ}

for Λ ⊆ N0. Furthermore, define

A := {(Λ, C) | Λ ⊆ N0, C ⊆ P, E(Λ) dense in L2(T, µ) for all µ ∈ C}.

Question 1. For which Λ ⊆ N0 and C ⊆ P is (Λ, C) ∈ A ?

Remark 1.1. We observe the following obvious facts.

1.) By Szegő’s theorem, for any µ ∈ Sz and Λ ⊆ N0, E(Λ) is not dense in
L2(T, µ). Thus, for every pair (Λ, C) ∈ A , it follows that C ⊆ Szc.

2.) One has the following implications

Λ′ ⊆ Λ, (Λ′, C) ∈ A ⇒ (Λ, C) ∈ A ,

C′ ⊆ C, (Λ, C) ∈ A ⇒ (Λ, C′) ∈ A .

Thus, the most difficult part about Question 1 is to make Λ as small and
C as large as possible.

3.) It is easy to show that (N0\Γ, Szc) ∈ A for all finite Γ ⊆ N0 (see Corol-
lary 3.5).

If one studies Question 1 for a proper subclass C, instead of considering the
maximal class Szc, Olevskii and Ulanovskii [OU21, Theorem 1] have obtained a
result for the class

W :=
{
µ = w dm | w > 0 dm-a.e., w bounded, w increasing on (0, 2π)

}
.

Theorem (Olevskii, Ulanovskii). Let Γ ⊆ N with∑
γ∈Γ

1
√
γ
< ∞.

Then (N0\Γ,W ∩ Szc) ∈ A .

In this paper, we will add an answer to Question 1 for sets Λ of the form

Λ(k, ℓ) :=
⋃
j∈N

Jkj , kj + ℓjK, (k ∈ NN, ℓ ∈ NN
0 )
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where k is strictly increasing and Jn,mK := [n,m]∩Z for n,m ∈ Z, n ≤ m and where
C is the class of Markoff measures Mar(T). This class was introduced by Khrushchev
in [Khr02]. Informally, µ belongs to Mar(T) if the sequence of Verblunsky coeffi-
cients (αn(µ))n contains a sufficiently dense subsequence that remains bounded
away from zero. We will give a formal definition of Markoff measures and Verblun-
sky coefficients in Section 2. In Section 4 we will show the following.

Theorem 1.2. Let s > 1 and let k := (kj)j ∈ NN be strictly increasing. Set
⌊ks⌋ := (⌊ksj⌋)j ∈ NN. Then,(

Λ
(
k, ⌊ks⌋

)
, Mar(T)

)
∈ A .

In particular, there exists a subset Λ ⊆ N with lower density d
(
Λ
)
= 0 such that

(Λ,Mar(T)) ∈ A .

Theorem 1.2 will follow from the main result of this article, Theorem 3.3, which
states that for every µ ∈ Szc and every strictly increasing k ∈ NN there exists
ℓ ∈ NN

0 such that E(Λ(k, ℓ)) is dense in L2(T, µ). In Corollary 3.4 we further show
that k and ℓ can be chosen such that d(E(Λ(k, ℓ))) = 0.

It should be noted that [OU21] and this paper explore very different situations.
For every µ ∈ W one has αn → 0 by Rakhmanov’s theorem [Rak83], thus Mar(T)
and W are disjoint. Moreover, every measure contained in W is absolutely contin-
uous with full support. In contrast, if µ ∈ Mar(T) then supp(µac) ̸= T and also,
Mar(T) contains measures with µs ̸= 0 and pure point measures with full support
which are important in physics because of the Anderson localization phenomenon
(see Lemma 2.5 and Remark 2.6).

The structure of this paper is as follows. In Section 2 we briefly review some
notions from OPUC theory. In particular, we state Szegő’s theorem (Theorem 2.1)
and give a definition and some examples of Markoff measures. In Section 3 we
prove the main theorem, Theorem 3.3. In Section 4 we prove Theorem 1.2 and
show other applications of Theorem 3.3.

Notation.

• We use the conventions N := {n ∈ Z | n ≥ 1} and N0 := N ∪ {0}.
• Interval of integers: For n,m ∈ Z with n ≤ m define

Jn,mK := [n,m] ∩ Z.

• Upper and lower density: For Λ ⊆ N define the lower and upper density by

d(Λ) := lim inf
N→∞

|Λ ∩ J1, NK|
N

, d(Λ) := lim sup
N→∞

|Λ ∩ J1, NK|
N

respectively.
• P is the set of all non-degenerate probability measures on T.
• Closure of a subset: For µ ∈ P and a subset M ⊆ L2(T, µ) we write

M
L2(T,µ)

for the closure of M in L2(T, µ).
• Sz is the set of all measures dµ = w dm+ dµs ∈ P for which∫ 2π

0

log(w(θ)) dθ > −∞.
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• Mar(T) denotes the set of all Markoff measures (see definition on page 5).
• We already defined earlier

E(Λ) = span{zλ | z ∈ T, λ ∈ Λ},
A = {(Λ, C) | Λ ⊆ N0, C ⊆ P, E(Λ) dense in L2(T, µ) for all µ ∈ C},

Λ(k, ℓ) =
⋃
j∈N

Jkj , kj + ℓjK, (k ∈ NN, ℓ ∈ NN
0 )

where k is strictly increasing.
• Let P be the space of all polynomials. For n ∈ N0, let P≤n be the space of
all polynomials with degree less than or equal to n.

• We will also need the following definitions later

βµ(k, n) := min
π∈P≤n

∥z−k − π(z)∥L2(T,µ), (k, n ∈ N0, µ ∈ P),

βµ(k,∞) := lim
n→∞

βµ(k, n)

= inf
π∈P

∥z−k − π(z)∥L2(T,µ), (k ∈ N0, µ ∈ P).

Acknowledgment. I am very grateful to my advisor, Professor Sergey Denisov,
for suggesting the problem formulated as Question 1, and for his countless helpful
discussions and comments.

2. Facts from OPUC

Theorem 2.1 (Szegő). Let µ ∈ P with dµ = w dm+ dµs. Then

exp
(∫ 2π

0

logw dm
)
= βµ(1,∞).

This appears first in [GS58, Chapter 3.1], see also [Sim05a, Chapter 2]. We have
the following corollary [Sim05a, Theorem 1.5.7].

Corollary 2.2. Let µ ∈ P with dµ = w dm+dµs. Then µ ∈ Szc if and only if the
polynomials are dense in L2(T, µ), i.e. βµ(k,∞) = 0 for all k ∈ N.

Let µ ∈ P with dµ = w dm + dµs. Because of the non-degeneracy of µ, the
monomials zn are linearly independent in L2(T, µ). Thus, for every n ∈ N0 there
is a uniquely determined polynomial

Φn(µ; z) =

n∑
i=0

bn,i(µ)z
i (z ∈ T)

such that bn,i ∈ C for every i ∈ J0, nK, bn,n = 1 and, for every k ∈ J0, n− 1K,〈
Φn(µ; z),Φk(µ; z)

〉
L2(T,µ) = 0.

The polynomials Φn(µ; z) are called monic orthogonal polynomials of µ. The monic
orthogonal polynomials satisfy a recursion relation, the Szegő recurrence,

Φn+1(µ; z) = zΦn(µ; z)− αn(µ)Φ
∗
n(µ; z)

for every n ∈ N0, where, for z ∈ T,

Φ∗
n(µ; z) = znΦn(µ; z) =

n∑
i=0

bn,n−i(µ)z
i.
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For n ∈ N0 the recursion coefficient αn(µ) is called the n-th Verblunsky coefficient
of µ. One has αn(µ) ∈ D for every n ∈ N0. In fact, the mapping

P → DN0 , µ 7→ (αn(µ))n

is a bijection. This is known as Verblunksy’s theorem [Sim05a, Theorem 1.7.11].
One can also express the L2-norms of the monic orthogonal polynomials and the
integral of log(w) by the Verblunsky coefficients [Sim05a, Theorems 1.5.2, 2.3.1]

∥Φn+1(µ; z)∥2L2(T,µ) =

n∏
i=0

(1− |αi(µ)|2), (2)

exp
(∫ 2π

0

logw dm
)
= lim

n→∞
∥Φn(µ; z)∥2L2(T,µ) =

∞∏
i=0

(1− |αi(µ)|2).

The second equation proves the following corollary.

Corollary 2.3. Let µ ∈ P. Then µ ∈ Sz if and only if (αn(µ))n ∈ ℓ2.

In the following, we will write Φn, bn,i and αn instead of Φn(µ; z), bn,i(µ) and
αn(µ) whenever the measure µ is clear from the context.

Markoff measures. Let µ ∈ P. For ℓ ∈ N0 and ε ∈ (0, 1) define the class
Marε,ℓ(T) ⊆ P via

µ ∈ Marε,ℓ(T) ⇔ inf
n∈N0

max
n≤j≤n+ℓ

|αj | ≥ ε. (3)

The class Mar(T) of Markoff measures, which was introduced by Khrushchev in
[Khr02], is defined as follows

Mar(T) :=
⋃
ℓ∈N0

⋃
ε>0

Marε,ℓ(T).

Remark 2.4. This definition is in fact a characterization of the original definition
[Khr02, Theorem 1.8]. Khrushchev defines Mar(T) as every µ ∈ P such that dm is
not contained in the derived set of

{|φn|2dµ | n ∈ N0}

where φn is the n-th orthogonal polynomial in L2(T, µ) obtained by using the
Gram-Schmidt algorithm on the monomials zn with n ∈ N0.

Let us collect a few properties and examples of Markoff measures.

Lemma 2.5 (Properties of Markoff measures). Let µ ∈ P.

a) Mar(T) ⊆ Szc.

b) µ ∈ Marε,ℓ(T) ⇒ ∥Φn∥2L2(T,µ) ≤ (1− ε2)
n−1
ℓ+1 −1.

c) µ ∈ Mar(T) ⇒ supp(µac) ̸= T.
d) supp(µ) ̸= T ⇒ µ ∈ Mar(T).

The converse implications in c) and d) are not true.

Proof. a) Let µ ∈ Mar(T). Then, (αn)n does not converge to zero by definition of
Mar(T). In particular, (αn)n /∈ ℓ2. Thus, by Corollary 2.3, µ ∈ Szc.
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b) Let µ ∈ Marε,ℓ(T). From (2) it follows that

∥Φn∥2L2(T,µ) =

n−1∏
i=0

(1− |αi|2) ≤ (1− ε2)⌊
n−1
ℓ+1 ⌋ ≤ (1− ε2)

n−1
ℓ+1 −1.

c) By Rakhmanov’s theorem [Rak83, §3], [Sim05b, Corollary 9.1.11], for any
µ ∈ P with supp(µac) = T one has

lim
n→∞

αn(µ) = 0.

Let µ ∈ Mar(T). Then (αn(µ))n does not converge to 0. Thus, by Rakhmanov’s
theorem, supp(µac) ̸= T. To see that the converse implication of c) doesn’t hold
true, consider a measure µ ∈ P such that for all n ∈ N0

αn(µ) =

{
1√
k
, n = k!, k ∈ N0

0, else.

By Corollary 2.3 µ ∈ Szc. However, µ /∈ Mar(T) since an → 0. Furthermore, µ is
purely singular continuous (see [Sim05b, Theorem 12.5.2]). In particular, µac = 0.

d) For a proof see [Khr02, Corollary 1.9]. We briefly present a counterexample
to the converse implication due to Zhedanov [Zhe20]. For q ∈ T which is not a root
of unity and 0 < p < 1 set

µ := (1− p)

∞∑
n=0

pnδqn

where δw is the Dirac measure with supp(δw) = {w}. Clearly, µ ∈ P. There is also
a simple formula for |αn|2 in terms of p and q (see [Zhe20, p.5]). For all n ∈ N0

|αn|2 =
(1− p)2

1 + p2 − 2pRe(qn+1)
.

Thus,
1− p

1 + p
< |αn| < 1

for all n ∈ N0 which implies that µ ∈ Mar(T). Furthermore, since q is not a root
of unity,

supp(µ) = {qn | n ∈ N0} = T. □

Remark 2.6. In some sense, measures which are pure point with full support are
generic examples. Namely, for any rotation invariant probability measure β0 on D
with β0 ̸= δ0 and ∫

D
log(1− |ω|) dβ0(ω) > −∞

one has that almost every sequence (ωn)n ∈ DN0 with respect to the product mea-
sure

β :=

∞⊗
i=0

β0

generates a measure µ, by choosing µ with αn(µ) = ωn for every n ∈ N0, that is
pure point and has full support [Sim05b, Theorem 12.6.2]. One can also view the
Verblunsky coefficients αn as being values of an i.i.d. process (ωn)n with common
distribution β0. Such measures are important in physics because, going back to
the work of Anderson [And58], certain random Hamiltonians on lattices produce
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dense point spectra - a phenomenon called Anderson localization. Mathematical
references include [CL90] and [PF92].

3. Main Theorem

Recall that for k, n ∈ N0

βµ(k, n) = min
π∈P≤n

∥z−k − π(z)∥L2(T,µ).

Definition 3.1. Let µ ∈ P. A strictly increasing function f : N → N is called
β-approximating for µ if

lim
k→∞

βµ(k, f(k)) = 0.

Corollary 3.2. Let µ ∈ P. Then there exists a β-approximating f if and only if
µ ∈ Szc.

Proof. Let µ ∈ Szc. Then by Corollary 2.2

lim
n→∞

βµ(k, n) = βµ(k,∞) = 0

for every k ∈ N. Thus there exists an f : N → N that is β-approximating for µ.
For the converse implication, let f : N → N be β-approximating for µ. Since

(βµ(k, n))n is a decreasing sequence for every k ∈ N and f is increasing

βµ(k,∞) = inf
k∈N

βµ(k, f(k)) = lim
k→∞

βµ(k, f(k)) = 0.

Thus, by Corollary 2.2, µ ∈ Szc. □

Recall also, that for two sequences ℓ := (ℓj)j ∈ NN
0 ,k := (kj)j ∈ NN, where k is

strictly increasing,

Λ(k, ℓ) =
⋃
j∈N

Jkj , kj + ℓjK.

Note that the definition of Λ(k, ℓ) does not require the intervals Jkj , kj + ℓjK to be
disjoint.

Now we are ready to state the main theorem.

Theorem 3.3. Let µ ∈ Szc and f be any β-approximating function for µ. Let
k := (kj)j ∈ NN be strictly increasing and ℓ := (ℓj)j ∈ NN

0 such that

lim
j→∞

ℓj − f(kj) = ∞.

Then E(Λ(k, ℓ)) is dense in L2(T, µ).

Let us first prove the following two corollaries.

Corollary 3.4. Let µ ∈ Szc. Then there exists a set Λ ⊆ N with d(Λ) = 0 such
that E(Λ) is dense in L2(T, µ).

Proof. By Corollary 3.2 there exists f : N → N which is β-approximating for µ.
Set k1 := 1 and, for j ∈ N, define kj+1 recursively such that

(kj + f(kj) + j)j + 1 ≤ kj+1.
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Put ℓj := f(kj) + j for every j ∈ N, ℓ := (ℓj)j and k := (kj)j . By Theo-
rem 3.3, E(Λ(k, ℓ)) is dense in L2(T, µ). Furthermore, we get the following estimate
for Λ(k, ℓ).

d(Λ(k, ℓ)) ≤ lim inf
j→∞

∣∣Λ(k, ℓ) ∩ J1, kj+1 − 1K
∣∣

kj+1 − 1

≤ lim inf
j→∞

kj + ℓj
kj+1 − 1

≤ lim inf
j→∞

1

j
= 0. □

Corollary 3.5. (N0\Γ, Szc) ∈ A for every finite Γ ⊆ N0.

Proof. For µ ∈ Szc choose f which is β-approximating for µ. Set

k1 := max
γ∈Γ

γ + 1, kj+1 := kj + f(kj) + j

for all j ∈ N. Set furthermore ℓj := f(kj) + j for all j ∈ N. Then
Λ(k, ℓ) = N0\J0,max

γ∈Γ
γK ⊆ N0\Γ.

By Theorem 3.3, E(Λ(k, ℓ)) is dense in L2(T, µ). Thus, also E(N0\Γ) is dense in
L2(T, µ). □

Remark 3.6. Corollary 3.5 is an extension of Szegő’s classical theorem. Szegő’s
theorem is the case Γ = ∅.

Before we can prove the main theorem, we first prove two lemmas about approx-
imating negative powers of z with polynomials in L2(T, µ). Throughout, we will
use the convention

∑
j∈J aj := 0 if J = ∅.

Lemma 3.7. Let µ ∈ P. For all k, n ∈ N we have the estimate

βµ(k, n) ≤ ∥Φn+1∥L2(T,µ)

(
1 +

k−1∑
i=1

∑
j1,...,ji∈J1,n+1K
j1+...+ji≤k−1

|bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |

)
.

(4)

Lemma 3.8. Let µ ∈ P. Then, for all k, n ∈ N
βµ(k, n) ≤ ∥Φn+1∥L2(T,µ)(2n+ 2)k−1.

Proof of Lemma 3.7. The proof is by induction. For k = 1 and n ∈ N we show

βµ(1, n) = ∥Φn+1∥L2(T,µ).

This is a standard result in OPUC theory but the proof is included here for com-
pleteness.

For a subspace V ⊆ L2(T, µ) denote by PV the orthogonal projection onto V .

βµ(1, n) = min
{
∥z−1 − π(z)∥L2(T,µ) | π ∈ P≤n

}
= min

{
∥1− π(z)∥L2(T,µ) | π ∈ z · P≤n

}
= ∥P(z·P≤n)⊥(1)∥L2(T,µ).

Note that Φ∗
n+1(0) = bn+1,n+1 = 1 and thus

Φ∗
n+1(z)− 1 =

n+1∑
i=1

bn+1,n+1−iz
i ∈ z · P≤n.
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Furthermore, for all π ∈ P≤n,

⟨zπ,Φ∗
n+1⟩L2(T,µ) = ⟨zπ, zn+1Φn+1⟩L2(T,µ) = ⟨Φn+1, z

nπ⟩L2(T,µ) = 0

since Φn+1 ⊥ P≤n. Thus P(z·P≤n)⊥(1) = Φ∗
n+1 and therefore

βµ(1, n) = ∥Φ∗
n+1∥L2(T,µ) = ∥Φn+1∥L2(T,µ).

Now, we make an induction in k. Assume that for all n ∈ N one can estimate
βµ(1, n), . . . , βµ(k, n) from above by the right-hand side in (4). By applying the
triangle inequality one gets for all n ∈ N

βµ(k + 1, n) ≤ ∥z−(k+1) +

n+1∑
m=1

bn+1,n+1−m P(P≤n)(z
m−(k+1))∥L2(T,µ)

≤ ∥z−(k+1) +

n+1∑
m=1

bn+1,n+1−m zm−(k+1)∥L2(T,µ)

+

min(k,n+1)∑
m=1

|bn+1,n+1−m| · ∥zm−(k+1) − P(P≤n)(z
m−(k+1))∥L2(T,µ)

= ∥z−(k+1) +

n+1∑
m=1

bn+1,n+1−m zm−(k+1)∥L2(T,µ)

+

min(k,n+1)∑
m=1

|bn+1,n+1−m|βµ(k + 1−m,n). (5)

The first summand on the right-hand side of (5) equals

∥z−(k+1)+ z−(k+1)(Φ∗
n+1(z)−1)∥L2(T,µ) = ∥Φ∗

n+1(z)∥L2(T,µ) = ∥Φn+1∥L2(T,µ). (6)

By the induction hypothesis, each βµ(k+ 1−m,n) in the second summand on the
right-hand side of (5) can be bounded from above by the following expression

∥Φn+1∥L2(T,µ)

(
1 +

k−1∑
i=1

∑
j1,...,ji∈J1,n+1K,
j1+...+ji≤k−m

|bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |
)
. (7)

Note that when applying the induction hypothesis to βµ(k + 1−m,n) we would a
priori get a sum in i that goes from 1 to k − m. The reason why the sum in (7)
goes from 1 to k − 1 instead is that for i > k −m the index set

{j1, . . . , ji ∈ J1, n+ 1K | j1 + ...+ ji ≤ k −m}
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is empty and thus the sum over this index set equals zero. By (7) and (5), the
second summand on the right-hand side of (5) is bounded from above by

∥Φn+1∥L2(T,µ)

(
min(k,n+1)∑

m=1

|bn+1,n+1−m|

+

min(k,n+1)∑
m=1

k−1∑
i=1

∑
j1,...,ji∈J1,n+1K,
j1+...+ji≤k−m

|bn+1,n+1−m| · |bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |

)
.

(8)

By rearranging the summands in (8) we get

∥Φn+1∥L2(T,µ)

(
min(k,n+1)∑

m=1

|bn+1,n+1−m|

+

k−1∑
i=1

min(k,n+1)∑
m=1

∑
j1,...,ji∈J1,n+1K,
j1+...+ji≤k−m

|bn+1,n+1−m| · |bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |

)

= ∥Φn+1∥L2(T,µ)

(
min(k,n+1)∑

m=1

|bn+1,n+1−m|

+

k∑
i=2

∑
j1,...,ji∈J1,n+1K,

j1+...+ji≤k

|bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |

)
. (9)

In (9), the sum in m is equal to the sum in j1, . . . , ji in the case i = 1. Thus, the
right-hand side in (9) equals

∥Φn+1∥L2(T,µ)

k∑
i=1

∑
j1,...,ji∈J1,n+1K,

j1+...+ji≤k

|bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |.

Now we have an upper bound for the second summand in the right-hand side of
(5). In (6) we asserted that the first summand in the right-hand side of (5) equals
∥Φn+1∥L2(T,µ). Putting both together we obtain the desired upper bound

βµ(k + 1, n)

≤ ∥Φn+1∥L2(T,µ)

(
1 +

k∑
i=1

∑
j1,...,ji∈J1,n+1K,

j1+...+ji≤k

|bn+1,n+1−j1 | · ... · |bn+1,n+1−ji |

)
. □

Proof of Lemma 3.8. Let w1, ..., wn be the zeros of Φn. Since the zeros of monic
orthogonal polynomials on the unit circle are contained in the unit disk [Sim05a,
Theorem 1.7.1] we have

|bn,k| ≤
∑

J⊆J1,nK, |J|=n−k

∏
j∈J

|wj | ≤
(
n

k

)
. (10)
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Together with Lemma 3.7 we get a new estimate for βµ(k, n) by using (10) to bound
each coefficient bn+1,n+1−ji in the right-hand side of (4)

βµ(k, n) ≤ ∥Φn+1∥L2(T,µ)

(
1 +

k−1∑
i=1

∑
j1,...,ji∈J1,n+1K
j1+...+ji≤k−1

(
n+ 1

j1

)
· ... ·

(
n+ 1

ji

))
.

For each of the binomial coefficients, we now use the bound
(
n
k

)
≤ nk. In general,

this bound is very wasteful, but in this case, one always gets the summand (n+1)k−1

from the tuple (j1, . . . , jk−1) with entries ji = 1 for each i ∈ J1, k − 1K. Hence,

βµ(k, n) ≤ ∥Φn+1∥L2(T,µ)

(
1 +

k−1∑
i=1

∑
j1,...,ji∈J1,n+1K
j1+...+ji≤k−1

(n+ 1)j1 · ... · (n+ 1)ji

)

≤ ∥Φn+1∥L2(T,µ)

(
1 +

k−1∑
i=1

∑
j1,...,ji∈J1,n+1K
j1+...+ji≤k−1

(n+ 1)k−1

)

= ∥Φn+1∥L2(T,µ)

(
1 + (n+ 1)k−1

k−1∑
i=1

k−1∑
ℓ=i

∑
j1,...,ji∈J1,ℓK
j1+...+ji=ℓ

1

)
. (11)

The last sum in (11) now counts the number of tuples (j1, . . . , ji) with entries in

N such that
∑i

s=1 js = ℓ. This number is
(
ℓ−1
i−1

)
since one has to count how many

ways there are to draw i− 1 separating lines between ℓ 1’s. Thus, from (11) we get
the following estimate for βµ(k, n)

βµ(k, n) ≤ ∥Φn+1∥L2(T,µ)

(
1 + (n+ 1)k−1

k−1∑
i=1

k−1∑
ℓ=i

(
ℓ− 1

i− 1

))
. (12)

To simplify the right-hand side, we use the following combinatorial identity

k−1∑
ℓ=i

(
ℓ− 1

i− 1

)
=

(
k − 1

i

)
(13)

for 1 ≤ i ≤ k − 1. The identity follows by induction in k from Pascal’s rule for
binomial coefficients. Indeed, if we assume (13) holds true for some k ≥ 2, then

k∑
ℓ=i

(
ℓ− 1

i− 1

)
=

k−1∑
ℓ=i

(
ℓ− 1

i− 1

)
+

(
k − 1

i− 1

)
=

(
k − 1

i

)
+

(
k − 1

i− 1

)
=

(
k

i

)
where the last equation is Pascal’s rule. Combining (13) and (12) yields

βµ(k, n) ≤ ∥Φn+1∥L2(T,µ)

(
1 + (n+ 1)k−1

k−1∑
i=1

(
k − 1

i

))
= ∥Φn+1∥L2(T,µ)

(
1 + (n+ 1)k−1(2k−1 − 1)

)
≤ ∥Φn+1∥L2(T,µ) (2n+ 2)k−1

which is the estimate we wanted to show. □
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Proof of Theorem 3.3. Without loss of generality

kj + ℓj < kj+1 (14)

for every j ∈ N. Otherwise one passes to subsequences k′ := (knj )j and ℓ′ := (ℓnj )j
that fulfill condition (14). Since Λ(k′, ℓ′) ⊆ Λ(k, ℓ), the density of E(Λ(k′, ℓ′))
implies the density of E(Λ(k, ℓ)) in L2(T, µ). Thus, we can assume (14).

For k ∈ N let πk ∈ P≤f(k) such that

∥z−k − πk∥L2(T,µ) = min
π∈P≤f(k)

∥z−k − π(z)∥L2(T,µ) = βµ(k, f(k)).

By Theorem 2.1 it suffices to show that

E(N0)
L2(T,µ)

= E(Λ(k, ℓ))
L2(T,µ)

.

To this end, let k ∈ N0. We need to show that zk ∈ E(Λ(k, ℓ))
L2(T,µ)

.
Let J ∈ N such that

k ≤ ℓj − f(kj)

for every j ≥ J . Then, for every j ≥ J ,

kj ≤ k + kj + deg(πkj
) ≤ k + kj + f(kj) ≤ kj + ℓj .

It follows that

zk+kjπkj
∈ span{zm | kj ≤ m ≤ kj + ℓj} ⊆ E(Λ(k, ℓ))

for every j ≥ J . Furthermore, for every j ∈ N,
∥zk − zk+kjπkj

∥L2(T,µ) = ∥z−kj − πkj
∥L2(T,µ) = βµ(kj , f(kj)).

Since f is β-approximating for µ,

lim
j→∞

∥zk − zk+kjπkj
∥L2(T,µ) = 0.

Thus, zk ∈ E(Λ(k, ℓ))
L2(T,µ)

which implies that E(Λ(k, ℓ)) is dense in L2(T, µ). □

4. Applications

We now want to prove Theorem 1.2.

Proof of Theorem 1.2. Let µ ∈ Mar(T) and let 1 < t < s. Put

f : N → N, f(n) := ⌊nt⌋.
We first show that f is β-approximating for µ. By Lemma 2.5 there exist ε > 0
and ℓ ∈ N such that

∥Φn∥2L2(T,µ) ≤ (1− ε2)
n−1

ℓ −1

for all n ∈ N. Thus, for every k ∈ N,

∥Φ⌊kt⌋+1∥L2(T,µ)(2⌊kt⌋+ 2)k−1 ≤ (1− ε2)
⌊kt⌋
2ℓ − 1

2 (2⌊kt⌋+ 2)k−1

≤ (1− ε2)
kt

2ℓ −
1
2−

1
2ℓ (2kt + 2)k−1

≤ (1− ε2)−
1
2−

1
2ℓ

2kt + 2

(
(1− ε2)

kt−1

2ℓ (2kt + 2)
)k

.

The right-hand side converges to 0 when k → ∞. Thus, by Lemma 3.8, f is
β-approximating for µ. Furthermore,

lim
j→∞

⌊ksj⌋ − f(kj) = lim
j→∞

⌊ksj⌋ − ⌊ktj⌋ = ∞
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since t < s. Hence, by Theorem 3.3, E(Λ(⌊k, ⌊ks⌋)) is dense in L2(T, µ). Finally,
if one chooses k such that for every j ∈ N

(kj + ⌊ksj⌋)j + 1 ≤ kj+1

then

d(Λ(k, ⌊ks⌋)) ≤ lim inf
j→∞

∣∣Λ(k, ⌊ks⌋) ∩ J1, kj+1 − 1K
∣∣

kj+1 − 1

≤ lim inf
j→∞

kj + ⌊ksj⌋
kj+1 − 1

≤ lim inf
j→∞

1

j
= 0. □

Remark 4.1. Comparing the results from [OU21] with ours, one can have
(Λ,Mar(T)) ∈ A for sets Λ that are much sparser than any known set Λ for which
one has (Λ,W ∩ Szc) ∈ A . To be more precise, in [OU21] it was proven that
(N0 \ Γ,W ∩ Szc) ∈ A if ∑

γ∈Γ

1
√
γ
< ∞.

This implies d(N0\Γ) = 1 since for every M ∈ N one has

∞ >
∑
γ∈Γ

1
√
γ
≥ lim sup

N→∞
|Γ ∩ J1, NK| · 1√

N
≥ d(Γ)

√
M.

Thus, by letting M → ∞, it follows that d(Γ) = 1− d(N0\Γ) = 0.
For the class Mar(T) by contrast, there exists Λ ⊆ N with d(Λ) = 0 such that

(Λ,Mar(T)) ∈ A by Theorem 1.2.

We now look at the class Marε,ℓ(T) introduced in (3). In this class one can find
an even ‘thinner’ set Λ(k, ℓ) than the one in Theorem 1.2 such that(

Λ(k, ℓ),Marε,ℓ(T)
)
∈ A .

To be more precise, in the situation when µ ∈ Mar(T) (Theorem 1.2), there are
β-approximating functions f with

f(k) = O(ks), (k → ∞)

for any s > 1. However, when µ ∈ Marε,ℓ(T) (Corollary 4.2), there exist f which
are β-approximating for µ with

f(k) = O(log(k)k), (k → ∞)

where the implicit constant depends on ε and ℓ.

Corollary 4.2. Let ε > 0, ℓ ∈ N, t > 2 and let k := (kj)j∈N ∈ NN be strictly
increasing. Put

Cε,ℓ :=
−ℓ

log(1− ε2)

and ⌊t Cε,ℓ log(k)k⌋ :=
(
⌊t Cε,ℓ log(kj) kj⌋

)
j
. Then,(

Λ(k, ⌊t Cε,ℓ log(k)k⌋), Marε,ℓ−1(T)
)
∈ A .
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Proof. Let µ ∈ Marε,ℓ−1(T) and let 2 < τ < t. First, we show that

f : N → N, f(k) := ⌊τ Cε,ℓ log(k) k⌋

is β-approximating for µ. By Lemma 2.5 b),

∥Φn∥2L2(T,µ) ≤ (1− ε2)
n−1

ℓ −1.

Thus, we can estimate

∥Φτ⌊Cε,ℓ log(k)k⌋+1∥L2(T,µ)(2⌊τCε,ℓ log(k)k⌋+ 2)k−1

≤ (1− ε2)
⌊τCε,ℓ log(k)k⌋

2ℓ − 1
2 (2⌊τCε,ℓ log(k)k⌋+ 2)k−1

≤ (1− ε2)
τCε,ℓ log(k)k

2ℓ − 1
2−

1
2ℓ (2τCε,ℓ log(k)k + 2)k−1

≤ (1− ε2)−
1
2−

1
2ℓ

2τ Cε,ℓ log(k)k + 2
·
(
(1− ε2)

τ Cε,ℓ
2ℓ log(k)

(
2τ Cε,ℓ log(k)k + 2

))k
≤ (1− ε2)−

1
2−

1
2ℓ

2τ Cε,ℓ log(k)k + 2
·
(
k−

τ
2

(
2τ Cε,ℓ log(k)k + 2

))k
.

The right-hand side converges to 0 when k goes to infinity. Thus, by Lemma 3.8,
f is β-approximating for µ. Furthermore,

lim
j→∞

⌊t Cε,ℓ log(kj) kj⌋ − f(kj) = lim
j→∞

⌊t Cε,ℓ log(kj) kj⌋ − ⌊τ Cε,ℓ log(kj) kj⌋ = ∞

since τ < t. Thus, by Theorem 3.3, E(Λ(k, ⌊t Cε,ℓ log(k)k⌋)) is dense in L2(T, µ).
□

As a consequence of Theorem 1.2, we show that if Λ = N0 \ Γ with

Γ = {⌊et
n

⌋ | n ∈ N}

for some t > 1, then (Λ,Mar(T)) ∈ A . One can in fact even choose Γ to be a union
of large intervals, in the sense that the intervals have double exponential length.

Corollary 4.3. Let t ≥ t̃ > 1 and C > 0. Let

Γ :=
⋃
j∈N

J⌊et
j

⌋, ⌊et
j

⌋+ ⌊Cet̃
j

⌋K.

Then (N0\Γ,Mar(T)) ∈ A .

Proof. Let 1 < s < t. Then

lim sup
j→∞

⌊etj+1⌋
(⌊etj⌋+ ⌊Cet̃j⌋+ 1)s

≥ lim sup
j→∞

et
j+1

2(etj + Cet̃j + 1)s
≥ lim sup

j→∞

et
j+1

4estj
= ∞.

Thus, there exists N ∈ N such that for every j ≥ N

⌊et
j+1

⌋ ≥ 2
(
⌊et

j

⌋+ ⌊Cet̃
j

⌋+ 1
)s

.

Put kj := ⌊etj⌋+ ⌊Cet̃
j⌋+ 1 for every j ∈ N. It follows that

N0\Γ ⊇
⋃
j≥N

Jkj , ⌊et
j+1

⌋K ⊇
⋃
j≥N

Jkj , kj + ⌊kj⌋sK = Λ(k, ⌊ks⌋)
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where k := (kj)j≥N and ⌊ks⌋ := (⌊ksj⌋)j≥N . Since E(Λ(k, ⌊ks⌋)) is dense in

L2(T, µ) for every µ ∈ Mar(T) by Theorem 1.2, also E(N0 \ Γ) is dense in L2(T, µ)
for every µ ∈ Mar(T). □
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