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Abstract. We review our joint work on the scaling limits of disordered systems, linking the notion of disorder
relevance/irrelevance to that of sub/super-criticality of singular SPDEs. This line of research culminated in the
construction of the Critical 2D Stochastic Heat Flow (SHF), a universal process which provides a non-trivial
solution to the Stochastic Heat Equation in dimension 2, a critical singular SPDE that lies beyond the reach of
existing solution theories. The SHF also offers a rare example of a non-Gaussian scaling limit for a disordered
system at its phase transition point in the critical dimension.

1 Introduction. The main question we want to address in this article is how to make sense of the solution
u(t, x) of the stochastic heat equation (SHE)

(1.1) ∂tu(t, x) =
1
2∆u(t, x) + β ξ(t, x)u(t, x) , t > 0, x ∈ Rd,

in the critical dimension d = 2. This is a singular stochastic partial differential equation (SPDE) due to the
ill-defined term ξ(t, x)u(t, x), where ξ(t, x) is a space-time white noise and the solution u(t, x) is expected to be
a generalised function when d ≥ 2.

The SHE is a fundamental object from various perspectives: (i) it is a proto-typical singular SPDEs; (ii) it
is a universal model for diffusive systems in disordered media [7]; (iii) it is connected to random interface growth
models such as the celebrated Kardar-Parisi-Zhang (KPZ) equation via the Cole-Hopf transformation h = log u
[70, 72, 42, 83].

It is a classical result that (1.1) is well-posed in dimension d = 1. However, d = 2 is critical and solution
theories break down. One can understand why d = 2 is critical by the following scaling argument: if we scale
space and time diffusively and define ũ(t, x) := u(ε2t, εx) for some ε > 0, then formally ũ solves the equation

∂tũ =
1

2
∆ũ+ β ε1−

d
2 ξ̃ ũ , t̃ > 0, x̃ ∈ Rd,(1.2)

where ξ̃(t, x) := ε1+
d
2 ξ(ε2t, εx) has the same distribution as ξ. Since the ill-posedness of singular SPDEs is due

to the loss of regularity on small scales, we zoom into smaller and smaller space-time scales by sending ε ↓ 0
and note that, the strength of the noise vanishes in dimensions d < 2, diverges in dimensions d > 2, and stays
constant in the critical dimension d = 2. If the equation contains non-linear terms, one can similarly consider
the effect of scaling on the non-linearity. In the language of singular SPDEs [63, 64, 62], the SHE in dimensions
d < 2, d = 2 and d > 2 are called respectively sub-critical, critical, and super-critical. In recent years, there have
been tremendous progress in developing solution theories for sub-critical singular SPDEs [63, 64, 62, 73, 57, 49].
However, results for critical and super-critical singular SPDEs remain limited [28, 29, 16, 18, 17, 19, 20, 58, 52, 50].

The main goal of this article to review recent progress that eventually led to the construction of the Critical
2D Stochastic Heat Flow (SHF) [29], which provides a non-trivial solution to the 2D SHE. As we will discuss, the
SHF also provides a rare example of a non-Gaussian scaling limit for a statistical physics model (the Directed
Polymer Model) at the critical dimension and at its phase transition point.

We actually came to the study of the 2D SHE (and the associated 2D KPZ equation) from a different direction,
namely, that of disorder relevant systems in statistical mechanics and their scaling limits. It turns out that the
notions of sub-criticality, criticality, and super-criticality for singular SPDEs correspond to the notions of so-called
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disorder relevance, marginal relevance/irrelevance, and disorder irrelevance for systems given by a “pure” model
perturbed by disorder. To draw a first analogy with SPDEs, we may view the SHE (1.1) as a perturbation of the
“pure” heat equation ∂tu = 1

2∆u by the “disorder” term βξu.
Given a pure model, say defined on a lattice, a disorder perturbation is called relevant if any amount of

disorder alters the model’s large scale behavior. In this case, it is natural to tune the disorder strength down
to 0 as the lattice spacing tends to 0, such that it leads to a continuum model with non-trivial dependence on
disorder. In [24], we developed a general theory to construct such continuum limits of disorder relevant models
(see Section 3). However, this theory does not apply to marginally relevant disordered systems, such as the 2D
Directed Polymer Model (DPM).

Interestingly, there is a close connection between the DPM and the SHE due to the fact that the partition
functions of the DPM are precisely the solution of a regularised SHE obtained by discretising space and time,
which is an alternative to the regularisation via mollification of the noise (see Section 2). Our investigation of the
scaling limit of the 2D DPM partition functions eventually led to the construction of the critical 2D SHF.

The starting point of our analysis was the identification of a phase transition for the 2D DPM and for the 2D
SHE in an intermediate disorder regime [25] (see Section 4). Below the phase transition point, in the so-called
sub-critical regime, the partition functions of the 2D DPM and the solution of the mollified SHE converge to the
solution of the deterministic heat equation, and their fluctuations converge to a Gaussian field that solves an
additive stochastic heat equation, thus belonging to the Edwards-Wilkinson universality class [7]. The solution of
the regularised 2D KPZ equation (which is connected to the regularised 2D SHE via the Cole-Hopf transformation
h = log u) was also shown in [28, 59] to have the same Gaussian fluctuations (see Section 5, where further results
in the sub-critical regime are reviewed).

At the phase transition point, more precisely in a critical window around it, we proved in [29] that a unique
random scaling limit emerges from the 2D DPM partition functions, named the Critical 2D Stochastic Heat Flow
(SHF) (see Section 6). The SHF is a family of measure valued stochastic processes Z ϑ indexed by a renormalised
disorder strength parameter ϑ ∈ R, which can be interpreted as non-trivial solutions of the 2D SHE. It was later
shown by Tsai [86] that the solution of the mollified 2D SHE also converges to the SHF.

Many features of the SHF have been established recently (see Section 7), including an axiomatic characterisa-
tion [86] and various properties concerning its invariance, singularity, regularity, asymptotic behavior, moments,
connection to Gaussian Multiplicative Chaos (GMC) and black noise/noise sensitivity [30, 37, 32, 61, 21, 22, 38,
82, 11, 53, 81, 36]. We refer to the lecture notes [31] for a more extended review and open problems.

In the rest of this article, we will review the results sketched above from an historical and personal perspective.
The paper is structured as follows.

• Section 2 provides a high-level discussion of the connection between disordered systems and SPDEs, and
between the DPM and the SHE.

• Section 3 presents our general results on the scaling limits of disorder relevant systems.

• Section 4 describes the phase transition of the 2D DPM on an intermediate disorder scale.

• Section 5 discusses results in the sub-critical regime, including 2D SHE and KPZ.

• Section 6 reviews the construction of the SHF from [29].

• Section 7 presents recent progress on the SHF.

2 Disorder relevance/irrelevance, scaling limits, directed polymer, and SHE. We review here
some background, including the notions of disorder relevance/irrelevance for disordered systems, how they
correspond to the notions of sub/super-criticality for singular SPDEs, how disorder relevance naturally leads
to the construction of non-trivial continuum limits, and how such continuum limits for the directed polymer
provide solutions to the SHE.



2.1 Disordered systems and disorder relevance/irrelevance. We focus on disordered systems that
are disorder perturbations of an underlying pure model, defined via Gibbs measures. Heuristically, disorder
relevance means that, arbitrarily small amount of disorder (or random environment) changes the large scale
qualitative behaviour of the model (e.g., changes in the critical exponents) and leads to a different scaling limit,
while disorder irrelevance means such qualitative changes arise only when the disorder strength is large enough.
At the boundary between these two regimes, typically at a critical dimension, the effect of disorder perturbation
is more subtle and could be either marginally relevant or irrelevant.

A key example is the Directed Polymer Model (DPM), which is a disorder perturbation of the simple random
walk S = (Sn)n≥0 on Zd through the family of Gibbs measures

Pω
N,β(S) :=

1

Zω
N,β

e
∑N

n=1{βω(n,Sn)−λ(β)} P(S) ,(2.1)

where ω := (ω(n, x))n∈N,x∈Z are i.i.d. disorder variables indexed by the time-space lattice N × Zd, β ≥ 0 is the
disorder strength, λ(β) := logE[eβω(n,x)], and the normalizing constant

Zω
N,β = E

[
e
∑N

n=1{βω(n,Sn)−λ(β)}
∣∣∣∣S0 = 0

]
(2.2)

is known as the partition function. As β crosses a critical value βc ∈ [0,∞), the DPM undergoes a phase transition
from diffusive behaviour for the random walk, with path delocalisation, to expected super-diffusive behaviour and
path localisation (see [40, 90] for more background and recent progress). In particular, the DPM with β =∞ is
exactly the last passage percolation model, which belongs to the KPZ universality class [83, 42, 43, 89]. It turns
out that βc = 0 in dimension d = 1 and 2, and βc > 0 in d ≥ 3. This implies that disorder is relevant for the DPM
in d = 1 and 2, since any β > 0 changes the large scale behaviour of the model, whereas disorder is irrelevant in
d ≥ 3. Dimension d = 2 turns out to be the critical dimension, and hence disorder is called marginally relevant
for the 2D DPM.

The connection between singular SPDEs and disordered systems is that, the notions of disorder relevance,
marginal relevance/irrelevance, and disorder irrelevance for disordered systems correspond to the notions of sub-
criticality, criticality, and super-criticality for singular SPDEs. Indeed, if we zoom out to larger and larger
space-time scales by sending ε ↑ ∞ in the rescaled SHE (1.2), then the dependence of the noise strength β ε1−

d
2

on the dimension d shows that, the noise term is a relevant perturbation of the deterministic heat equation in
d < 2, a marginal perturbation in d = 2, and an irrelevant perturbation in d > 2.

2.2 Scaling limits of disorder relevant models. In the physics literature, the Harris criterion [65]
predicts whether disorder is relevant or irrelevant based on a relation between the spatial dimension and the
correlation length exponent of the pure model without disorder. In the mathematics literature, the question of
disorder relevance/irrelevance has been investigated extensively for the disordered pinning model (see [56, 6, 55]
and the references in [54]), and also for the random field Ising model (RFIM) [15, 2, 47, 1, 48] and the DPM [75].

Inspired by [4, 3] on the scaling limit of the DPM in dimension 1 + 1, we proposed in [24] a new perspective
on disorder relevance/irrelevance. The heuristic is that, if the disorder perturbation of a pure model is relevant,
then as we send the lattice spacing δ ↓ 0 (equivalent to zooming out to larger and larger space-time scales), the
effect of disorder will diverge. It is then natural to compensate this by tuning the disorder strength down to 0 at a
suitable rate depending on δ, such that in the limit we obtain a continuum model with non-trivial dependence on
disorder. Note that this is only possible if disorder is relevant, and hence we can use the existence of a non-trivial
disordered continuum limit as a criterion for disorder relevance. This also motivates us to construct non-trivial
scaling limits of disorder relevant models, which has been successfully carried out for the disordered pinning model
[23] and the random field perturbation of the critical 2D Ising model [24, 14].

We will review this theory in Section 3, which is based on polynomial chaos expansions for the model’s
partition functions and their convergence to Wiener-Itô chaos expansions. However, this theory is not applicable
to marginally relevant systems such as the 2D DPM.

2.3 Directed Polymer Model and Stochastic Heat Equation. We now explain the precise connection
between the DPM and the SHE, which allows us to interpret the continuum limit of the 2D DPM as a solution
of the 2D SHE.



To make sense of singular SPDEs such as the SHE (1.1), which are ill-posed due to the irregularity of the
noise ξ and the solution u on small spatial scales, the standard procedure is to first perform a regularisation on
the spatial scale ε (also known as ultraviolet cutoff) and then take suitable limits as ε ↓ 0. If the solution uε of
the regularised equation admits a non-trivial limit after suitable tuning of parameters, centering and scaling, then
the limit can be interpreted as a solution of the singular SPDE.

There are different ways of performing the ultraviolet cutoff, which are expected to lead to the same limits
by universality. These include:

(a) Mollify the space-time white noise ξ on the spatial scale ε;

(b) Discretize space (or space-time) on the spatial scale ε;

(c) Truncate the Fourier transform at frequency 1/ε.

In approach (a), we replace ξ by its spatial mollification ξε := jε ∗ ξ, where jε(x) := ε−2j(xε ) for some smooth
probability density j ∈ C∞

c (R2) with compact support. This leads to the mollified 2D SHE

(2.3) ∂tu
ε =

1

2
∆uε + βεu

εξε, uε(0, ·) ≡ 1,

which admits a classical Itô solution and a Feynman-Kac representation (see [12, Section 3]):

(2.4) uε(t, x) = E
[
e
∫ t

0
(βεξ

ε
(t−s,Bs)−λε)ds

∣∣∣B0 = x
]
,

where E[·] is w.r.t. a standard Brownian motion B in R2, and λε := β
2
ε

2 Var(ξε(s, x)) = β
2
ε

2ε
2 ∥j∥22 ensures that

E[uε(t, x)] = 1. Apart from a time reversal, this is the continuum analogue of the DPM partition function in
(2.2), which leads to approach (b).

If we follow (b) and discretize time and space, then the Brownian motion B in (2.4) is replaced by a simple
random walk, the mollified space-time white noise ξε is replaced by i.i.d. disorder on the diffusive rescaled time-
space lattice ε2N× εZ2, and we have the following correspondence between uε and the time-space rescaled DPM
partition functions

(2.5) uε(1− t, x)←→ Zω
N,β([Nt], [

√
Nx]), t ∈ [0, 1], x ∈ R2,

where ε = 1√
N

, brackets [·] denotes integer parts, and Zω
N,β(m, z) is the point-to-plane partition function from

the time-space point (m, z) ∈ N× Z2 to the plane {N} × Z2:

Zω
N,β(m, z) = E

[
e
∑N

n=m+1{βω(n,Sn)−λ(β)}
∣∣∣∣Sm = z

]
.(2.6)

The problem of defining a non-trivial solution of the 2D SHE now becomes equivalent to finding non-trivial
scaling limits for the family of rescaled DPM partition functions (Zω

N,β([Nt], [
√
Nx]))

t∈[0,1],x∈R2 . The construction
of the limit, the Critical 2D Stochastic Heat Flow [29] (see Sections 6 and 7), builds on a deeper understanding of
the 2D DPM, and in particular, starts with the discovery of a phase transition for the 2D DPM in an intermediate
disorder regime [25]. We will review these results in Section 4. In the next Section 3, we will first review the
theory on the scaling limits of disorder relevant models.

3 Scaling limits of disorder relevant systems. As explained in Section 2.2, when the disorder
perturbation of a pure model is relevant for the model’s large scale behaviour, then it should be possible to
tune disorder strength down to 0 as a function of the lattice spacing, such that we obtain a continuum limit with
non-trivial dependence on disorder. For disordered systems defined via Gibbs measures, the existence of such
continuum limits should first manifest itself through the convergence of the partition functions. We now review
the theory developed in [24] for the convergence of partition functions of disorder relevant systems, which was
inspired by a result of this nature for the 1D DPM [4].

The class of disordered systems we focus on are random field perturbations of binary-valued spin systems.
Let Ω ⊂ Rd be an open and simply connected domain. Given lattice spacing δ > 0, let Ωδ := Ω ∩ (δZ)d denote



the lattice approximation of Ω. More generally, the lattice spacing could be different in different directions and
we could define Ωδ := Ω ∩ (δa1Z × δa2Z × · · · × δadZ) for some a1, . . . , ad > 0. The pure (or reference) model
will be a spin system σ = (σx)x∈Ωδ

with a spin σx ∈ {0, 1} assigned to each x ∈ Ωδ. Let Pref
Ωδ

(with expectation
Eref

Ωδ
) denote the law of σ. We will assume that Pref

Ωδ
has a continuum limit as δ ↓ 0, which is expected to hold

for equilibrium spin systems at the critical point of a continuous phase transition.
The disorder we consider will be i.i.d. random fields ω = (ωx)x∈Ωδ

with E[ωx] = 0, E[ω2
x] = 1, and finite

moment generating function λ(β) := logE[eβωx ] for all β in a neighbour around 0.
Given disorder ω, field bias h ∈ R, and disorder strength β > 0, we can define the random field perturbation

of Pref
Ωδ

via the Gibbs measure

(3.1) Pω
Ωδ;β,h

(dσ) :=
e
∑

x∈Ωδ
(βωx+h)σx

Zω
Ωδ;β,h

Pref
Ωδ

(dσ),

where the partition function is defined by

(3.2) Zω
Ωδ;β,h

:= Eref
Ωδ

[
e
∑

x∈Ωδ
(βωx+h)σx

]
.

If such a random field perturbation of the pure model Pref
Ωδ

is relevant, then it should be possible to find an
intermediate disorder regime with β = βδ ↓ 0 and h = hδ ↓ 0, such that after proper centering and scaling, the
partition function Zω

Ωδ;βδ,hδ
admits a non-trivial distributional limit.

Examples of disordered systems that fit within this framework include the following:

• 1D Directed Polymer Model. For the directed polymer with partition function as in (2.2), the spin field
on N × Z is defined from the random walk path S by σ(n,x) := 1{Sn=x}. Under diffusive rescaling of the
time-space lattice, we see that Ω = (0, 1)× R and Ωδ := Ω ∩ (δZ× δ1/2Z), with δ = N−1.

• Critical 2D Ising Model. The reference measure is that of the critical 2D Ising model with + boundary
condition, where Ω ⊂ R2 is an open, bounded, simply connected domain, Ωδ = Ω ∩ δZ2, σx ∈ {±1}, and
the reference measure is defined by

Pref
Ωδ

(σ) :=
1

Z+
Ωδ;βc

e
∑

x∼y∈Ωδ∪∂Ωδ
βcσxσy ,

where the sum is over all edges between vertices in Ωδ ∪ ∂Ωδ, βc = log(1 +
√
2)/2 is the critical inverse

temperature of the 2D Ising model, ∂Ωδ is the outer boundary of Ωδ, and σy ≡ 1 for all y ∈ ∂Ωδ. A linear
change of variable (σx + 1)/2 ∈ {0, 1} recasts the reference measure into the framework above.

We now recall from [24] the general convergence criteria for the disordered partition functions Zω
Ωδ;βδ,hδ

to
have non-trivial continuum limits (an extension to non-binary spins can be found in [76]).

For k ∈ N and x1, . . . , xk ∈ Ω, define the k-point correlation function of the reference measure Pref
Ωδ

by

(3.3) ψ
(k)
Ωδ

(x1, . . . , xk) :=

{
Eref

Ωδ

[
σ
x
(δ)
1
σ
x
(δ)
2
· · ·σ

x
(δ)
k

]
if x(δ)i ̸= x

(δ)
j for all i ̸= j,

0 otherwise,

where x(δ) denotes the point in Ωδ closest to x.

Assumption 3.1. There exists a correlation exponent γ ∈ [0,∞) such that, for all k ∈ N, there exists a
symmetric function ψ(k)

Ω : Ωk → R and

(3.4) (δ−γ)k ψ
(k)
Ωδ

(x1, . . . , xk) −−→
δ↓0

ψ
(k)
Ω (x1, . . . , xk) in L2(Ωk) .

Furthermore, for some ε > 0,

(3.5) lim sup
ℓ→∞

lim sup
δ↓0

∑
k>ℓ

(1 + ε)k

k!

∥∥ψ(k)
Ωδ

∥∥2
L

2
(Ω

k
)
= 0.



We can now state the convergence result from [24].

Theorem 3.2. Let Zω
Ωδ;βδ,hδ

be the disordered partition function defined as in (3.2). Suppose the reference
measure Pref

Ωδ
satisfies Assumption 3.1 for some exponent γ < d/2. Then choosing

(3.6) βδ = β̂δ
d
2−γ , hδ = − logE[eβδωx ] + ĥδd−γ for some β̂ > 0 and ĥ ∈ R ,

we have

Zω
Ωδ;βδ,hδ

(d)−−→
δ↓0

Z W
Ω;β̂,ĥ,

where W is a white noise on Ω, and Z W
Ω;β̂,ĥ admits the following Wiener-Itô chaos expansion

Z W
Ω;β̂ := 1 +

∞∑
k=1

1

k!

∫
· · ·

∫
Ω

k
ψ

(k)
Ω (x1, . . . , xk)

k∏
i=1

(β̂W (dxi) + ĥdxi) .(3.7)

Remark 3.3. Disorder relevance enters through the condition γ < d/2 in Theorem 3.2, because otherwise
βδ = β̂δd/2−γ will diverge and it will not be possible to obtain a non-trivial limit for the partition function by
sending β ↓ 0. This condition on γ is consistent with the Harris criterion (see [24, Section 1.3] for more details).
When γ = d/2, which is the marginal case, this approach fails because even though the limiting correlation
function ψ(k)

Ω in (3.4) may still exist pointwise, it just fails to be square integrable, and hence the stochastic
integrals in (3.7) are undefined. This will be the case for the partition function of the 2D DPM.

Remark 3.4. The proof of Theorem 3.2 starts with a discrete analogue of the Wiener-Itô chaos expansion
for the partition function Zω

Ωδ;βδ,hδ
with respect to the disorder, known as polynomial chaos expansion. More

precisely, in (3.2), we can use the fact σx ∈ {0, 1} to rewrite e(βωx+h)σx = 1 + ηxσx with ηx := eβωx+h − 1.
Expanding the product over x ∈ Ωδ in (3.2) then leads to the following polynomial chaos expansion in the i.i.d.
variables (ηx)x∈Ωδ

:

(3.8) Zω
Ωδ;βδ,hδ

= 1 +

|Ωδ|∑
k=1

1

k!

∑
(x1,x2,...,xk)∈(Ωδ)

k

ψ
(k)
Ωδ

(x1, . . . , xk)

k∏
i=1

ηxi
.

As β = βδ, h = hδ → 0 as δ ↓ 0, the influence of each ηx on Zω
Ωδ;βδ,hδ

becomes asymptotically negligible, which
allows us to apply a Lindeberg principle [34, 80] to replace (ηx)x∈Ωδ

by a family of i.i.d. Gaussian random variables
(ξx)x∈Ωδ

with the same mean and variance. Furthermore, a polynomial chaos expansion in (ξx)x∈Ωδ
can be written

as a Wiener-Itô chaos expansion w.r.t. a white noise W on Ω. The choice of βδ and hδ in (3.6) and Assumption
3.1 then ensure that this sequence of Wiener-Itô chaos expansions will converge.

Remark 3.5. It is possible to extend the convergence of disordered partition functions in Theorem 3.2 to
construct non-trivial continuum limits of the random Gibbs measure Pω

Ωδ;β,h
(dσ), where the disorder ω on Ωδ

converges to a white noise W on Ω. This has been carried out for the DPM in dimension 1+1 [3], the disordered
pinning model [23], which can be regarded as a DPM in dimension 1+0, with the random walk S on Zd replaced
by a renewal process. It has also been carried out for the random field perturbation of the critical 2D Ising model
[14]. The key observations behind these constructions is that, for the directed models, the measure Pω

Ωδ;β,h
(dσ)

is determined by the joint law of the family of point-to-point partition functions, while for the random field Ising
model, the law of the spin field is determined by its Fourier transform, which can be written in terms of the Ising
partition function with an imaginary external field.

4 Phase transition in the 2D DPM. We now address the question of finding non-trivial limits for the
partition functions of the 2D DPM, which are solutions of a regularised version of the 2D SHE as discussed in
Section 2.3. The starting point is the discovery that even though the 2D DPM has critical value βc = 0, there is
still a phase transition in an intermediate disorder regime [25].



Recall from (2.1)-(2.2) the directed polymer measure Pβ, ω
N (S), with partition function

Zω
N,β = E

[
e
∑N

n=1{βω(n,Sn)−λ(β)}
∣∣∣∣S0 = 0

]
.

Since λ(β) = logE[eβω(n,x)], it is easily seen that (Zω
N,β)N∈N is a non-negative martingale. The critical point

βc(d) is defined as the boundary between a weak disorder phase where Zω
N,β → Zβ,ω

∞ > 0 almost surely for β < βc,
and a strong disorder phase where Zω

N,β → 0 almost surely for β > βc (see [40] and the references therein). It
is known that βc = 0 in d = 1, 2, and βc ∈ (0,∞) in d ≥ 3. In a recent breakthrough [68, 69], it was shown
for β = βc in d ≥ 3, the DPM also belongs to the weak disorder phase. In the weak disorder phase, it is known
that the polymer is diffusive and satisfies an invariance principle [41, 74], and hence the polymer is delocalised in
space. On the other hand, in the strong disorder phase, the partition function Zω

N,β → 0 exponentially fast in N
[68, 69], which is known to imply a form of path localisation ω [33, 88, 35, 8, 9].

In the critical dimension d = 2, it was discovered in [24] that there is still a phase transition in an intermediate
disorder regime βN = β̂/

√
RN for some diverging sequence RN , such that for β̂ < β̂c = 1, the partition function

converges in law to a positive limit, while for β̂ ≥ β̂c = 1, the partition function converges in law to 0. Such a
dichotomy is precisely what characterises the phase transition of the DPM in d ≥ 3.

We now give the precise statement of the result. Let

βN :=
β̂√
RN

with RN :=

N∑
n=1

P(Sn = S′
n) =

1 + o(1)

π
logN,(4.1)

where S and S′ are two i.i.d. simple random walks on Zd.

Theorem 4.1 ([25]). Let Zω
N,βN

be the partition function of the 2D DPM with βN chosen as in (4.1). We
have

(4.2) Zω
N,βN

dist−−−−→
N→∞

{
exp

(
σβ̂ N −

1
2σ

2
β̂

)
if β̂ < 1

0 if β̂ ≥ 1
,

where N is a standard normal variable and σ2
β̂ = log(1− β̂2)−1.

Since the mollified SHE (2.3) and the DPM partition functions give alternative regularisations of the 2D SHE
(see Section 2.3), it should come as no surprise that an analogue of Theorem 4.1 also holds for the mollified 2D
SHE.

Theorem 4.2 ([25]). Let uε(t, x) be the solution of the mollified 2D SHE (2.3) with disorder strength

(4.3) βε := (β̂ + o(1))

√
2π

log 1
ε

.

Then for every (t, x) ∈ (0,∞)× R2, we have

(4.4) uε(t, x)
dist−−−−→

N→∞

{
exp

(
σβ̂ N −

1
2σ

2
β̂

)
if β̂ < 1

0 if β̂ ≥ 1
.

Remark 4.3. In [25], it was also shown that uε(t, x) at distinct time-space points converge to independent
limits. Furthermore, the same phase transition and log-normal limit were established for two other marginally
relevant polymer models. One is a marginally relevant disordered pinning model, and the other is the 1D DPM
defined from Cauchy random walks. The proof relies on an intrinsic exponential separation of space-time scales
common to all these models.

Remark 4.4. Recently, Theorem 4.2 has been extended in [52, 50, 51] to 2D semi-linear SHE’s of the form

∂tu
ε =

1

2
∆uε + (log 1

ε )
− 1

2σ(uε) ξε,



where σ is a Lipschitz function. It was shown that under suitable assumptions on σ, uε(t, x) converges in
distribution to the terminal value of an associated forward-backward SDE, which includes Theorem 4.2 as a
special case.

Remark 4.5. A particular feature of dimension 2, in contrast to higher dimensions d ≥ 3, is that the critical
point in the former case is the point at which the second moment E

[(
Zω
N,βN

)2
]

blows up as N → ∞. A similar
phenomenon holds for the 2D SHE and other marginally relevant polymer models [25]. Furthermore, we have
that below the critical point in dimension d = 2, all moments remain finite [78, 45, 79, 46], while at the critical
point, the h-moments, for any fixed h ≥ 2, blow up as (logN)

h(h−1)
2 +o(1) as demonstrated in a continuous setting

in [77]. Contrary to this sharp transition, the directed polymer in d ≥ 3 admits a gradual loss of moment as the
critical point is approached from below [67].

5 2D SHE and KPZ in the subcritical regime. From the point of view of singular SPDE’s, we
are interested in the solution of the regularised 2D SHE (and 2D KPZ) in the random field limit (regarded as
random generalised functions). It turns out that the critical point identified in Theorems 4.1 and 4.2 for the
one-point distribution is also the critical point for the random field limit. Below the critical point, the solution
of the regularised 2D SHE converges to the solution of the additive stochastic heat equation, also known as
the Edwards-Wilkinson equation. Surprisingly, the solution of the regularised 2D KPZ below the critical point
converges to the same limit.

5.1 Gaussian limit for the subcritical 2D SHE The convergence of the regularised solution of the 2D
SHE in the subcritical regime was proved in [25] for both the DPM partition functions and the solution of the
mollified SHE. To avoid repetitions, we will only state the result for the mollified SHE.

Theorem 5.1 (Edwards-Wilkinson fluctuations [25]). Let uε be the solution of the mollified 2D SHE (2.3)
with disorder strength βε = (β̂+ o(1))

√
2π

log 1
ε

for some β̂ ∈ (0, 1). Then for any test function ϕ ∈ Cc(R
2), we have

(5.1)
1

βε

∫
R2
ϕ(x)

(
uε(t, x)− 1

)
dx

d−−−→
ε→0

∫
R2
ϕ(x)v(t, x)dx,

where v(t, x) is the solution to the Edwards-Wilkinson equation

(5.2) ∂tv(t, x) =
1

2
∆v(t, x) +

√
1

1− β̂2
ξ̃(t, x), v(0, x) ≡ 0 .

Remark 5.2. The space-time white noise ξ̃ in (5.2) is a mixture of the driving white noise ξ in the mollified
SHE (2.3) and an independent white noise. See [31] for more details. We also note that the noise coefficient in
(5.2) diverges as β̂ ↑ β̂c = 1.

Remark 5.3. It follows from (5.1) that, in the sub-critical regime β̂ < 1, the mollified solution uε satisfies a
law of large numbers, namely

∫
R2 ϕ(x)uε(t, x) dx→

∫
R2 ϕ(x) dx in probability as ε→ 0, for any ϕ ∈ Cc(R

2).

5.2 Gaussian limit for the subcritical 2D KPZ The KPZ equation is formally given by

(KPZ) ∂th(t, x) =
1

2
∆h(t, x) +

1

2
|∇h(t, x)|2 + β ξ(t, x) , t > 0, x ∈ Rd.

It is a model for random interface growth and has been studied extensively in d = 1 as a canonical example in
the KPZ universality class [70, 7, 42, 83, 43, 89]. The solution h of the KPZ equation is related to the solution u
of the SHE by the Cole-Hopf transformation h = log u. It is therefore not surprising that d = 2 is also critical for
the KPZ equation. We consider the solution hε of the mollified 2D KPZ, where the space-time white noise ξ is
replaced by its mollification ξε as in the mollified 2D SHE (2.3). It can be seen that hε(t, x) := log uε(t, x) solves
the following mollified 2D KPZ equation

∂th
ε =

1

2
∆hε +

1

2
|∇hε|2 + βεξ

ε − Cε with Cε := β2
εε

−2∥j∥22.(5.3)

A surprising result is that, hε = log uε has the same random field limit as uε in the sub-critical regime, even
though uε(t, x) has a log-normal distribution that is not close to 1.



Theorem 5.4 (Edwards-Wilkinson fluctuations [28, 59]). Let hε be the solution of the mollified 2D KPZ
equation (5.3) with disorder strength βε = (β̂ + o(1))

√
2π

log 1
ε

for some β̂ ∈ (0, 1). Then for any test function

ϕ ∈ Cc(R
2), we have

1

βε

∫
R2
ϕ(x)

(
hε(t, x)−E[hε(t, x)]

)
dx

d−−−→
ε→0

∫
R2
ϕ(x)v(t, x)dx,(5.4)

where v(t, x) is the solution of the Edwards-Wilkinson equation (5.2).

Theorem 5.4 was proved in [28] based on chaos expansion methods, and independently in [59] for β̂ small using
Malliavin calculus.

Remark 5.5. In a series of works [16, 18, 17, 19], it was shown that the anisotropic 2D KPZ equation

∂th
ε =

1

2
∆hε +

1

2

(
(∂xh

ε)2 − (∂yh
ε)2

)
+

β̂

(log ε−1)1/2
ξε(5.5)

also sees Edwards-Wilkinson fluctuations in the limit ε ↓ 0. However, the noise coefficient in the limiting EW
equation is finite for all values of β̂, while the diffusion coefficient also depends on β̂. The methods employed for
the anisotropic 2D KPZ are very different from the (isotropic) 2D KPZ, and it will be interesting to understand
the transition between the two cases.

Remark 5.6. An interesting work [44] has initiated the study of the asymptotic maxima of hε in the sub-
critical regime, making connections but also drawing contrasts to the theory of extrema of log-correlated fields.
We refer to [44] for details.

6 The Critical 2D Stochastic Heat Flow. We now go back to our original question: how can we
construct a non-trivial solution to the SHE (1.1) in dimension d = 2? As we discussed in Section 2.3, discretising
space-time turns this question into the problem of finding a non-trivial scaling limit for the rescaled partition
functions (Zω

N,β([Nt], [
√
Nx]))

t∈[0,1],x∈R2 as N →∞. Solving this problem leads to the construction of the critical
2D Stochastic Heat Flow (SHF) [29], which we describe in the present section.

6.1 Construction of the SHF. As shown in Theorem 5.1 and Remark 5.3, in the sub-critical regime
β̂ < β̂c = 1 on the intermediate disorder scale defined in (4.1) and (4.3), the 2D polymer partition functions
Zω
N,βN

([Nt], [
√
Nx]) and the solution uε(t, x) of the mollified SHE satisfy a law of large numbers, with Edwards-

Wilkinson fluctuations that blow up as β̂ ↑ 1. It is then natural to investigate what happens at β̂ = 1, whether
the random field Zω

N,βN
([Nt], [

√
N ·]) admits a non-trivial limit after suitable centering and scaling.

The first clue came from moment calculations for

ZβN

N ; t(φ) :=

∫
R2
φ(x)Zω

N,βN
([Nt], [

√
Nx]) dx, φ ∈ Cc(R

2).

Clearly, the first moment satisfies E[ZβN

N ; t(φ)] →
∫
φ(x)dx. It turns out that the second moment E[ZβN

N ; t(φ)
2]

converges to non-trivial limits if βN is chosen in a finer critical window around β̂c = 1 [26], more precisely,

(6.1) β2
N =

1

RN

(
1 +

ϑ+ o(1)

logN

)
for a fixed ϑ ∈ R .

For the solution of the mollified 2D SHE, the same limiting second moments were computed earlier by Bertini
and Cancrini [13] in the critical window

(6.2) β2
ε =

2π

log 1
ε

(
1 +

ϑ+ o(1)

| log ε|

)
.

Subsequently, third moment [27] and higher moments [60] of ZN ; t(φ) were all shown to converge to finite limits
as N → ∞. This strongly suggest that, with βN chosen in the critical window for some fixed ϑ ∈ R, we should
have

(6.3) ZβN

N ; t(φ) =

∫
R2
φ(x)Zω

N,βN
([Nt], [

√
Nx]) dx

d−−−−−→
N→∞

∫
R2
φ(x)Zt(dx)



for some limiting random measure Zt(dx). The boundedness of the first moment E[ZβN

N ; t(φ)] already implies the
tightness of (Zω

N,βN
([Nt], [

√
N ·]))N∈N as a sequence of random measures on R2. The key challenge is to show that

there is a unique sub-sequential weak limit in (6.3), which is our main achievement in [29] that constructs the
Critical 2D Stochastic Heat Flow.

In order to state this result properly, we generalise the point-to-plane partition functions from (2.6) by
considering point-to-point partition functions between time points M ≤ N ∈ N0 = {0, 1, 2, . . .} and space points
x, y ∈ Z2:

(6.4) Zβ
M,N (x, y) := E

[
e
∑N−1

n=M+1{βω(n,Sn)−λ(β)}
1SN=y

∣∣∣SM = x
]
,

and defining the process of rescaled random measures ZN :=
(
ZN ; s,t(dx, dy)

)
0≤s≤t

by

(6.5) ZβN

N ; s,t(dx, dy) := N Z
βN

[Ns],[Nt]([
√
Nx], [

√
Ny]) dx dy .

Point-to-point partition functions correspond to solutions of the SHE with general starting time and delta initial
conditions, while point-to-plane partition function corresponds to starting at time 0 from a constant 1 initial
condition.

Theorem 6.1 (Critical 2D SHF). Let βN be chosen in the critical window (6.1) for some ϑ ∈ R. As N →∞,
the process of random measures ZβN

N = (ZβN

N ; s,t(dx, dy))0≤s≤t converges in finite dimensional distribution to a
unique limit Z ϑ = (Z ϑ

s,t(dx, dy))0≤s≤t<∞ called the critical 2d Stochastic Heat Flow, which does not depend on
the law of the disorder ω (assuming E[ω] = 0, E[ω2] = 1, with finite exponential moments). The first and second
moments are

E[Z ϑ
s,t(dx, dy)] = gt−s(y − x) dx dy ,(6.6)

Cov[Z ϑ
s,t(dx, dy),Z

ϑ
s,t(dx

′, dy′)] = Kϑ
t−s(x, x

′; y, y′) dxdy dx′ dy′ ,(6.7)

where gt(·) is the heat kernel on R2 and Kϑ
t−s is defined by

Kϑ
t (x, x

′; y, y′) := 4π g t
2

(
y+y

′

2 − x+x
′

2

) ∫∫
0<a<b<t

g2a(x
′ − x)Gϑ(b− a) g2(t−b)(y

′ − y) dadb ,(6.8)

where Gϑ(t) :=
∫∞
0

e
(ϑ−γ)s

s t
s−1

Γ(s+1) dx is a so-called Volterra function, linked to the Dickman subordinator [26].

Remark 6.2. For simplicity, we have stated Theorem 6.1 for directed polymer partition functions based on an
aperiodic random walk on Z2, so that the normalisation of the SHF matches the one of the mollified SHE. When
dealing with the simple random walk, as in [29], one needs to take periodicity issues into account, e.g. to define
the integer parts in (6.5). We skip these minor details in this presentation.

6.2 More historical background We provide here more details on the motivation and the results that
led to the SHF.

As we already mentioned, the second moment of the LHS of (6.3) was first investigated by Bertini and Cancrini
in the late 1990’s [13] in the setting of the mollified 2D SHE, exploiting the connection with the delta-Bose gas
[5]. They showed that the variance has a finite non-zero limit as N →∞, corresponding to the kernel (6.8), under
the scaling (6.2). However, convergence of the variance to a non-zero limit does not rule out the possibility of a
trivial (deterministic) scaling limit Zt(dx) ≡ dx.

The study of 2D SHE was mostly silent for several years, since the study of moments of order higher than two
is considerably more involved. In [26] we obtained deeper insight on the second moment, in the setting of directed
polymers, via a probabilistic approach that gives a renewal representation for the second moment in terms of the
so-called Dickman subordinator. This, in turn, allowed us to prove convergence of the third moment of the LHS
of (6.3) to a finite (explicit) limit, see [27]. This guaranteed that any subsequential weak limit Zt(dx) in (6.3)
must have the same covariance kernel (6.8), and hence must be truly random.

The key open problem left was then the uniqueness of subsequential limits, which would yield the convergence
to a unique limit in (6.3). For this purpose, a natural idea is to compute all (integer) moments, beyond the



first three. This was achieved by Gu, Quastel and Tsai [60] by a Markovian operator approach (assuming L2

initial conditions). This led to explicit formulas for all integer moments of the SHF, which generalised the
formulas in [27]. These are represented as series of collision diagrams of independent 2D Brownian motions with
point interactions as in Figure 6.1, where wiggle lines denote streams of pairwise collisions and are given weight
Gϑ(b− a) g b−a

4 (y−x), while solid lines depict transition probabilities of the Brownian motions. However, moments
turn out to grow too fast to uniquely determine the distribution of the SHF. We refer to the next section for more
discussion and recent results on moment asymptotics.

0 a1 b1 a2 b2 a3 b3 1

x1

x2

x3

x4
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y2

x3

y3

{2, 3}
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Figure 6.1

Uniqueness of subsequential
weak limits in (6.3) was finally set-
tled in [29], where we proved The-
orem 6.1. The main difficulty of
the proof was the lack of a char-
acterisation of the limit, which led
us to develop a strategy based
on coarse-graining and Lindeberg
principles, which we describe in
the next subsection. Moment es-
timates played an important tech-
nical role in the application of the
Lindeberg principle in [29]: to this
end, we exploited and refined the
operator approach from [60].

Recently, Tsai gave an ax-
iomatic characterisation of the SHF [86], which he then applied to obtain the SHF as the limit of solutions
of the mollified 2D SHE. We will discuss this in more detail in Section 7.

6.3 Proof outline of Theorem 6.1 Let us sketch the proof of Theorem 6.1 [29]. As anticipated, the key
difficulty is proving that a limit exists without a characterisation of the limit. Our strategy is to show that, for
fixed test functions φ,ψ, the laws of (ZβN

N (φ,ψ))N∈N form a Cauchy sequence, i.e.,

(6.9) ZβM

M (φ,ψ) and ZβN

N (φ,ψ) are close in distribution for large M,N ∈ N .

This was inspired by the work of Kozma [71] on the convergence of loop erased random walk on a bounded domain
in Z3, where a characterisation of the limit is still lacking.

To establish (6.9), the idea is to define for each ε ∈ (0, 1) a coarse-grained partition function, Z (cg)
ε (φ,ψ|Θ)

with a similar multi-linear structure as ZβN

N (φ,ψ), see (3.8), which depends on a family of coarse-grained random
variables Θ that replace the microscopic disorder variables η in (3.8). The coarse-grained partition function
is meant to be a bridge between partition functions of different sizes ZβM

M and ZβN

N . More precisely, we can
approximate ZβN

N (φ,ψ) via coarse-graining on time-space scale (εN,
√
εN) to show that

(6.10) ZβN

N (φ,ψ)
L

2

≈ Z (cg)
ε (φ,ψ|ΘN,ε)

for a suitable family ΘN,ε of weakly dependent random variables, depending on N and ε, where the error in the
L2 approximation is small in L2 for small ε, uniformly in large N .

We then prove (6.9) by showing the following approximation:

(6.11) Z (cg)
ε (φ,ψ|ΘN,ε)

dist
≈ Z (cg)

ε (φ,ψ|ΘM,ε)

which is obtained by a suitable Lindeberg principle, applied to multilinear polynomials of weakly dependent
random variables Θ, see [29, Appendix A]. The key technical ingredients to control the error in the Lindeberg
principle are uniform bounds on absolute moments E[|ΘN,ε|

k] for k > 2, where ΘN,ε turns out to be close to the
original averaged partition function (a sign of self-similarity).



Figure 7.1: The top-left picture is a simulation of the Critical 2d SHF with ϑ = 0. The other three pictures
show how this looks when successively zoom into its scales, which effectively corresponds to lowering the disorder
parameter ϑ, see the scaling covariance property (7.2).

7 Properties of the Critical 2D Stochastic Heat Flow. Since the construction of the SHF, there have
been many recent works exploring its properties. We mention some of the highlights in this section. There is still
much more to be explored.

7.1 Axiomatic characterisation. An axiomatic characterisation of the Critical 2D SHF has been
provided in [86] in the spirit of a Lindeberg principle.

Theorem 7.1 (Characterisation of the Critical 2d SHF). Let Z = (Zs,t(·, ·))s≤t be a stochastic process taking
values in the space of locally finite non-negative measures M+(R

2×R2) on R2×R2 equipped with the vague topology
such that:

(1) for any s < t < u, the random measures Zs,t, Zt,u and Zs,u satisfy a form of Chapman-Kolmogorov property
Zs,u = Zs,t • Zt,u;

(2) for any s < t < u, Zs,t and Zt,u are independent;

(3) for any s < t < u, 1 ≤ n ≤ 4, and ϕi, ψi ∈ L
2(R2) for i = 1, . . . , 4, the mixed moments E

[∏n
i=1 Zs,t(ϕi, ψi)

]



agree with that of the SHF with parameter ϑ ∈ R.

Then Z has the same law as the Critical 2d Stochastic Heat Flow with parameter ϑ. Furthermore, (Zs,t(·, ·))s≤t

admits a version that is almost surely continuous in s ≤ t.

The Chapman-Kolmogorov type property (1) in the above theorem for the SHF would formally write as

Z ϑ
s,u(dx, dy) “ = ”

∫
R2

Z ϑ
s,u(dx, dz)Z

ϑ
s,u(dz, dy).

However, the meaning of this expression is unclear since the SHF is a measure and so the integral over dz is
ill-defined. A formalisation of the Chapman-Kolmogorov was provided in [37].

7.2 On the martingale problem for the SHF. A martingale problem formulation of the Critical 2D
SHF was given in [81] and [36]:

Theorem 7.2. Let ϕ ∈ C+
c (R2), ψ ∈ C2

b (R
2) and ϑ ∈ R. Let Z ϑ,ϕ

t (ψ) :=
∫∫

ϕ(x)Z ϑ
t (dx, dy)ψ(y). Then

M ϑ,ϕ
t (ψ) := Z ϑ,ϕ

t (ψ)−
∫
ϕ(x)ψ(y)dxdy −

∫ t

0

Z ϑ,ϕ
s

(
1
2∆ψ

)
ds(7.1)

defines a continuous martingale starting at 0 at time 0 and with quadratic variation ⟨M ϑ,ϕ(ψ)⟩t obtained as a
suitable limit via regularisation.

Although the martingales appearing in (7.1) are quite natural, identifying their quadratic variation is a non-
trivial task and were only defined through a limiting procedure. The uniqueness of the martingale problem
remains open, which probably requires a more explicit characterisation of the quadratic variation and specify its
dependence on the disorder strength ϑ.

Moving from the foundational aspects of the SHF, we will now describe some of its qualitative properties.

7.3 Translation invariance and scaling covariance. We have:

Theorem 7.3 (Translation invariance and scaling covariance). The Critical 2D SHF (Z ϑ
s,t(dx, dy))0≤s≤t<∞

is translation invariant in law:

(Z ϑ
s+a,t+a(d(x+ b), d(y + b)))0≤s≤t<∞

dist
= (Z ϑ

s,t(dx, dy))0≤s≤t<∞ ∀a ≥ 0, ∀b ∈ R2 ,

and it satisfies the following scaling relation:

(7.2) (Z ϑ
as,at(d(

√
ax), d(

√
ay)))0≤s≤t<∞

dist
= (aZ ϑ+log a

s,t (dx, dy))0≤s≤t<∞ ∀a > 0 .

The translation invariance is inherited from the invariance of the white noise. The scaling covariance property is
illustrated in the simulation of the SHF in Figure 7.1: the top-left image is a picture of the SHF at ϑ = 0, while
the following images are successive zoom-ins and scaled up screenshots of the top-left image around its centre.
The zoom-ins appear to be smoother that the original picture due to the shift of the parameter ϑ by log a, which
is negative for a≪ 1 and thus shifts towards the sub-critical regime.

7.4 Singularity & Regularity. The Critical 2D SHF is not a function:

Theorem 7.4 ([32]). For any t > 0 and ϑ ∈ R, the marginal of the Critical 2D SHF at time t,
Z ϑ

t (dx) :=
∫
y∈R2 Z ϑ

t (dy,dx) is a.s. singular with respect to the Lebesgue meeaasure

However, it just fails to be a function:

Theorem 7.5 ([32]). Fix any t > 0 and ϑ ∈ R. Almost surely, the critical 2d SHF Z ϑ
t (dx) belongs to

C0− :=
⋂

ε>0 C
−ε, where C−ε is the negative Hölder space of order −ε.

Nevertheless, since delta measures on Rd belong to C−d the above theorem indicates that it almost surely
does not contains any atoms. The singularity of the SHF is apparent from its image in Figure 7.1.



Figure 7.2: The black contours show the level lines of the Critical 2D SHF corresponding to much lower values
compared to the peaks.

The singularity of the SHF is obtained through another structural property, namely that it is asymptotically
log-normal when averaged over a small ball while the parameter ϑ is sent to −∞ in a precise way according to
the radius of the ball. Equivalently, we can send ϑ→ −∞ and adjust the ball radius accordingly, in the following
way.

Theorem 7.6. For a Euclidean ball B(x, δ) :=
{
y ∈ R2 : |y − x| < δ

}
, denote the uniform distribution over

it by UB(x,δ)(·) := 1

πδ
2 1B(x,δ)(·). Then for any t > 0 and x ∈ R2, the following convergence in distribution holds:

(7.3) ∀ϱ ∈ (0,∞) : Z ϑ
t

(
U
B(x,
√

e
ϱϑ

)

) d−−−−−−→
ϑ→−∞

eN (0,σ
2
)− 1

2σ
2

with σ2 = log(1 + ϱ) .

The regime ϑ→ −∞ means looking at the SHF in the weak disorder limit. In this regime, a LLN and a CLT
were obtained in [22], showing that the SHF displays Edwards-Wilkinson fluctuations.

Theorem 7.7. As ϑ→ −∞ we have the convergence in distribution, for any φ ∈ Cc(R
2),

(7.4)
√
|ϑ|

{
Z ϑ

t (φ)− E[Z ϑ
t (φ)]

} d−−−−−→
ϑ→−∞

N
(
0 , vt,φ

)
,

where vt,φ :=
∫
R2×R2 φ(x)Kt(x, x

′)φ(x′) dxdx′ with Kt(x, x
′) :=

∫ t

0
1
2u e

− |x−x
′|2

2u du.

7.5 Positivity of mass and local extinction. The picture of the Critical 2D SHF in Figure 7.1 might
give the impression that there are regions where the SHF puts no mass. However, this is not the case as shown
in [38, 81]:

Theorem 7.8. For any initial condition ϕ ∈ Cc(R
2), which is not identically equal to 0 we have that, for any

t > 0, a.s. the SHF assigns strictly positive mass in any ball, i.e.,

Z ϑ
t (ϕ,B(x, r)) > 0 for all r > 0, x ∈ R2 .

The positivity of the mass of the SHF is depicted in Figure 7.2. The back contours there indicate the level
lines corresponding to values which are much lower than the peaks. There appears to be a very large separation
of scales between the high and the low or even moderate values of the SHF and it would be interesting to obtain
a better understanding of the range of scales.

On the other hand, the mass of the SHF converges locally to 0 as time progresses as shown in [32]:



Theorem 7.9. Let Z ϑ
t (A) be the mass of the Critical 2D SHF with (without loss of generality) initial

condition 1, on a set A ⊂ R2. Then

(7.5) for any bounded set A ⊂ R2, it holds that Z ϑ
t (A)

d−−−→
t→∞

0.

The large-time regime t → ∞ can be connected to the strong disorder regime ϑ → +∞ via the scaling
covariance property of the SHF (7.2) which gives, in particular,

(7.6) Z ϑ
t (B(0,

√
t))

d
= tZ ϑ+log t

1 (B(0, 1)) .

It was recently proved in [38] that Z ϑ
t (A)→ 0 in distribution as ϑ→∞, which implies t−1 Z ϑ

t (B(0,
√
t))→ 0 as

t → ∞ by (7.6). A quantitative strengthening was obtained in [11], where optimal rates were provided in both
regimes t→∞ and ϑ→∞ (possibly combined).

Theorem 7.10. There are constants δ > 0 and 0 < c′ < c′′ <∞ such that the following holds for any t ≥ 0
and ϑ ∈ R:

(7.7) with probability at least 1− 1
δ e

−δ t e
ϑ

:

Z ϑ
t

(
B
(
0, ec

′
t e

ϑ√
t
))
≤ t e−δ t e

ϑ

,

Z ϑ
t

(
B
(
0, ec

′′
t e

ϑ√
t
)
) ≥ t eδ t e

ϑ

.

7.6 Moment asymptotics and comparisons with GMC. Gaussian Multiplicative Chaos (GMC) is a
distinguished, universal model in random geometries with far reaching connections to Liouville Quantum Gravity,
random maps, turbulence and more. We refer to the reviews [84, 10, 85] for comprehensive accounts.

Given a reference measure σ on Rd, the GMC is a random measure whose density w.r.t. σ is formally the
exponential of a (typically generalised) Gaussian process

(
X(x)

)
x∈Rd :

M(dx) := eX(x)−
1
2E[X

2
] σ(dx) .(7.8)

Some care is needed to make sense of this formula when X is distribution valued, in which case M is typically
singular w.r.t. σ. Certain assumptions are imposed on the covariance kernel k(x, y) of X and the most studied
one is that with a logarithmic blow up k(x, y) ≈ log 1

|x−y| when |x− y| → 0.

It is a natural question whether the SHF Z ϑ(dx) coincides with a GMC on R2, call it M(dx), with
reference measure σ being the Lebesgue measure, for a suitable Gaussian field X. Equating E[M(dx)M(dy)] =

E[Z ϑ
t (dx)Z ϑ

t (dy)] determines the covariance of the candidate Gaussian field X, which must be log log-correlated
(since the covariance of M = Z ϑ

t has logarithmic blow-up). However, this cannot be the case as shown in [30] via
comparison of the corresponding higher moments: for gδ the heat kernel, the exists η > 0 such that:

(7.9) lim inf
δ↓0

E
[
Z ϑ

t (gδ)
h]

E
[
M(gδ)

h] ≥ 1 + η > 1 , for all h ≥ 3.

Still, it is an open question how different is the SHF from a GMC.
In terms of moment comparisons, it follows by the definition of GMC and the results in [77] that

E
[
M(gδ)

h] = (C + o(1)) (log 1
δ )
(h2) , E

[
Z ϑ

t (gδ)
h] = (log 1

δ )
(h2)+o(1), as δ ↓ 0,

which leaves open the question whether in small scales the SHF is a kind of perturbation of GMC. On the other
hand, if we keep δ fixed, say δ = 1, it was shown in [53] that

E
[
Z ϑ

t (g1)
h] ≥ Ceeh for all h ∈ N ,

which indicates that tail distribution of the SHF on a fixed ball is much heavier than that of GMC.



7.7 SHF polymer measure and GMC on path space. The notion of GMC as in (7.8) can be defined
on more general measure spaces, such as the path space C

(
[0, T ];Rd) with σ being the Wiener measure. The

exponential weight appearing in the Feynman-Kac representation of the mollified SHE (2.4) defines a GMC on
such a path space, and one may wonder whether this GMC structure is preserved in the limit of the SHF.

It was proved in [37] that the SHF, for any disorder parameter ϑ, can be lifted to a corresponding measure
on the path space, but this measure turns out not to be a GMC with respect to the Wiener measure (because the
so-called second moment measure is not absolutely continuous w.r.t. the product of Wiener measure with itself).
Nevertheless, it was recently shown in [38] that a conditional GMC property still holds, namely the path measure
corresponding to a parameter strength ϑ can be represented as a GMC with respect to the path measure with
any smaller parameter ϑ′ < ϑ, which acts as a reference measure. A predecessor of this phenomenon in polymer
settings on hierarchical lattices appeared in [39].

7.8 Black noise and noise sensitivity. The last feature we discuss is the black noise property [87] of
the SHF, recently established in [61], which is a continuuum version of the noise sensitivity property (see below).
An interesting corollary is that any coupling of the SHF Z ϑ and a white noise ξ (adapted to the same filtration)
must be such that Z ϑ and ξ are independent (see [66] for a related result for the directed landscape). As a
consequence, the SHF Z ϑ cannot be the solution of a SPDE driven by white noise.

An enhanced form of noise sensitivity was recently established in [21], which concerns the partition functions
ZN that approximate the SHF Z ϑ, see Theorem 6.1. When we perturb disorder by independently resampling
each variable ω(n, z) with a fixed (small) probability ε ∈ (0, 1), we obtain perturbed partition functions Zε

N ,
which are shown in [21] to become asymptotically independent of ZN as N → ∞. A corollary is that the SHF
Z ϑ arising as the limit of ZN is independent of the white noise ξ that arises from the rescaled disorder. This
provides an alternative proof that the SHF Z ϑ cannot be the solution of a SPDE driven by ξ.
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