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UNIVERSALITY AND KUZNETSOV MULTIPLIERS
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Abstract. We obtain explicit double–contour representations for the correlation kernels of the
discrete orthogonal (β = 1) and symplectic (β = 4) random matrix ensembles with Meixner, Charlier,
and Krawtchouk weights. A single Cauchy–difference–quotient composition identity expresses all
β = 1, 4 blocks in terms of the projection kernel and bounded rational multipliers. From these
formulas we give short steepest–descent proofs of bulk and edge universality (sine/Airy/Bessel) with
uniform error control, an explicit Meixner→Laguerre hard–edge crossover, and a first A−1 correction
that follows directly from the integrable structure. Finally, we show that archimedean Kuznetsov
tests splice into the Pfaffian kernels by a bounded holomorphic symbol acting in the contour variable;
the symbol enters only through the same Cauchy difference–quotient, so the leading sine/Airy/Bessel
limits persist and the A−1 term again comes from linearizing at the saddle(s).

1. Introduction

Correlation kernels are the basic building blocks for all local statistics in random matrix ensembles
[15, 3, 11]: they govern k-point functions, gap probabilities (via Fredholm determinants/Pfaffians),
and linear statistics [27, 16, 10]. In the discrete orthogonal and symplectic ensembles the kernels
encode nontrivial arithmetic/parity constraints and symmetry effects that have no exact continuous
analogue, and they connect directly to representation-theoretic models of random partitions [5, 6, 19].
The present paper provides explicit and tractable formulas for these kernels in the Meixner, Charlier
and Krawtchouk families and develops a unified operator framework that treats the orthogonal
(β = 1) and symplectic (β = 4) cases on equal footing.

Beyond furnishing explicit formulas, the paper promotes a single mechanism that runs through
all our arguments: bounded–multiplier composition under the contours. Any operator that acts in
the contour variable by a rational symbol enters the kernels through a one–line Cauchy difference–
quotient, and the resulting blocks remain of IIKS type [16]. In practice this preserves finite–N
structure, makes rank–one β = 1 effects transparent, and feeds directly into uniform steepest–descent
with the same phase and the same admissible contours.

We implement this principle completely for Meixner/Charlier/Krawtchouk at β = 1, 4, proving
bulk/edge universality with uniform error control and exhibiting a Meixner→Laguerre hard–edge
crossover. The first A−1 correction follows directly by linearizing the difference–quotient at the two
saddles (or the coalesced edge saddle), without leaving the IIKS framework.

The same composition extends to bounded holomorphic symbols, allowing us to splice archimedean
Kuznetsov multipliers [21, 18] into the discrete β ∈ {1, 4} kernels without departing from the IIKS
framework. The Kuznetsov transform is essentially a Fourier–Bessel integral that arises in the
context of the Kuznetsov trace formula, linking sums of Fourier coefficients of cusp forms to Bessel
integrals [21, 18]. In addition, we show that for an even spectral test h, the Kuznetsov transform
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supplies a bounded holomorphic multiplier

mh(w) =

∫
R
h(t)w−2it dt

on admissible slit–sector contours; inserting mh changes only the universal Cauchy difference–
quotient and leaves bulk/edge limits unchanged, while the A−1 contribution is read off by the same
linearization.

Why contour/IIKS representations ? Double–contour formulas for the projection kernel KN

and their Pfaffian analogues for β = 1, 4 (see e.g. (5.2) and (5.4)) offer several advantages that go
beyond the now-standard use for asymptotics and universality [10, 28, 16]:

• Finite–N information. Because the kernels are of integrable (IIKS) type—rank–two numerator
over a Cauchy denominator—the contour form makes finite–N identities and rank–one
corrections (the β = 1 term) transparent and calculable, rather than only asymptotic [16, 7].

• Analytic continuation and deformations. Parameters such as ξ (or weight parameters) can
be varied inside the contour integrand. This facilitates analytic continuation in parameters
and controlled crossovers (e.g. Meixner→Laguerre), and it adapts readily to mild weight
deformations or external sources while preserving integrability [27].

• Uniform steepest–descent analysis [12]. A single phase function controls bulk and edge limits;
rational prefactors for D and ε only perturb at lower order. This yields clean derivations of
sine/Airy/Bessel limits and finite–N error bounds in a unified way (see the last Section and
the Appendices) [11, 1, 19, 27].

• Links to representation theory. The formulas interface naturally with z–measures and the
combinatorics of Young diagrams, providing a bridge to random partitions and characters of
S(∞).

• Painlevé/RH structures. Contour representations are the right starting point for isomon-
odromic/Riemann–Hilbert methods; they make it feasible to identify Painlevé transcendents
controlling gap probabilities and to extract subleading terms systematically [11, 14].

• Numerics. Contours can be chosen for rapid decay along steepest directions, enabling accurate
quadrature of Fredholm determinants/Pfaffians for finite N with modest effort [4].

Explicit double–contour representations for the correlation kernels of the discrete β = 1 and β = 4

ensembles with Meixner/Charlier/Krawtchouk weights—together with a single operator identity
that treats both symmetries in parallel—have not been discussed in this form. The paper proves:

(1) A unified Tracy–Widom/IIKS operator structure [28, 16] for β = 1 and β = 4 in the discrete
setting with all off–diagonal Pfaffian blocks obtained by inserting the bounded rational
multipliers for D and ε (see (3.4)). The common Cauchy–difference–quotient composition
identity is given in (3.7) (and its exact Charlier and Krawtchouk analogues are (4.11) and
(5.11)).

(2) Fully explicit double–contour formulas: Meixner (3.5), Charlier (4.6) with the w–plane IIKS
form (4.16), and Krawtchouk (5.7); the β = 4 and β = 1 blocks appear in Theorems 3.7/3.6,
4.6/4.5, and 5.6/5.5.

(3) A single steepest–descent scheme (Section 6) that yields bulk/edge limits (sine/Airy/Bessel)
with uniform error control—see Theorems 6.3–6.6—and the Meixner→Laguerre hard–edge
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crossover (Theorem 6.7), together with an explicit first A−1 correction read off from the
difference–quotient structure (Proposition 6.8).

(4) Kuznetsov splicing into IIKS Pfaffian kernels: inserting an even spectral test h via the
bounded holomorphic symbol mh acting in the contour variable preserves integrability and
enters only through the Cauchy difference–quotient. The leading sine/Airy/Bessel limits are
unchanged, and the first finite–size term follows from the same linearization at the saddle(s)
(bulk A−1, edge A−1/3; see Theorem 7.7 and Theorem 7.11).

Results

• Unified IIKS/Tracy–Widom operator structure for β = 1, 4 in the discrete setting.
• Fully explicit double–contour formulas for Meixner/Charlier/Krawtchouk, including universal

multipliers after the w–map for Charlier.
• Direct steepest–descent proofs of sine/Airy/Bessel limits with uniform errors and an A−1

correction.
• Meixner→Laguerre hard–edge crossover at the level of contour phases.
• The Kuznetsov symbol mh(w) enters the contour integrand, as a bounded holomorphic mul-

tiplier. Universal limits are unchanged, and the A−1 term follows from the same linearization.

Organization We begin with the orthogonal case, then the symplectic case, for Meixner, Charlier,
and Krawtchouk in that order. The second part of the paper develops the asymptotic analysis
from the integral representations. Detailed contour manipulations (residue computations) are
collected in Appendix A. Because the only moving pieces are the bounded symbols and a fixed
Cauchy denominator, the same mechanism interfaces smoothly with arithmetically flavored twists or
harmonic–analytic multipliers, for example. In both cases the Pfaffian blocks stay integrable, and
the bulk/edge limits are obtained by freezing the symbols at the saddles, and the A−1 term again
comes from the first linearization. We finally show, in the last Section, that Kuznetsov multipliers
can be spliced into the IIKS Pfaffian kernels and identify their effect on the leading limits and the
A−1 term. Future applications of the results here will be presented in the Outlook while Appendices
A and B collect contour manipulations and uniform steepest–descent estimates.

1.1. Notation. Let w(x) be a strictly positive real valued function defined on Z≥0 with finite
moments, i.e. the series

∑
x∈Z≥0

w(x)xj converges for all j = 0, 1, . . .. Introduce a collection
{Pn(ζ)}∞n=0 of complex polynomials which is the collection of orthogonal polynomials associated to
the weight function w, and to the orthogonality set Z≥0. Thus Pn is a polynomial of degree n for all
n = 1, 2, . . ., and P0 ≡const. If m ̸= n, then∑

x∈Z≥0

Pm(x)Pn(x)w(x) = 0.

For each n = 0, 1, . . . set

(1.1) φn(x) = (Pn, Pn)
−1/2
w Pn(x)w

1/2(x),

where (., .)w denotes the following inner product on the space C[ζ] of all complex polynomials:

(f(ζ), g(ζ))w :=
∑

x∈Z≥0

f(x)g(x)w(x).
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We call φn the normalized functions associated to the orthogonal polynomials Pn. Let H be the
space spanned by the functions φ0, φ1, . . .. We introduce the operators D+, D− and ϵ which act on
the elements of the space H. The first and the second operators, D+ and D−, are defined by the
expression

(D±f) (x) =
∑

y∈Z≥0

D±(x, y)f(y),

where the kernels D±(x, y) are given explicitly by

(1.2) D+(x, y) =

√
w(x)

w(x+ 1)
δx+1,y, x, y ∈ Z≥0,

(1.3) D−(x, y) =

√
w(x− 1)

w(x)
δx−1,y, x, y ∈ Z≥0.

The third operator, ϵ, is defined by the formula

(ϵφ) (2m) = −
+∞∑
k=m

√
w(2m)

w(2k + 1)

w(2m+ 1)w(2m+ 3) . . . w(2k + 1)

w(2m)w(2m+ 2) . . . w(2k)
φ(2k + 1),

(ϵφ) (2m+ 1) =
m∑
k=0

√
w(2k)

w(2m+ 1)

w(2k + 1)w(2k + 3) . . . w(2m+ 1)

w(2k)w(2k + 2) . . . w(2m)
φ(2k),

(1.4)

where m = 0, 1, . . .. Observe that the semi-infinite matrix ϵ defined by equation (1.4) is representable
as follows

ϵ = FΥF ,

where

F =


f(0) 0 0 0 . . .

0 f(1) 0 0 . . .

0 0 f(2) 0 . . .

0 0 0 f(3) . . .
...

...
...

...
. . .

 ,

f(0), f(1), f(2), . . . are defined for k = 0, 1, 2, . . . by

f(2k) =
1√

w(2k)

w(2)w(4) . . . w(2k)

w(1)w(3) . . . w(2k − 1)
, f(2k + 1) =

1√
w(2k + 1)

w(1)w(3) . . . w(2k + 1)

w(2)w(4) . . . w(2k)
,

and

(1.5) Υ =



0 −1 0 −1 0 −1 0 −1 . . .

1 0 0 0 0 0 0 0 . . .

0 0 0 −1 0 −1 0 −1 . . .

1 0 1 0 0 0 0 0 . . .

0 0 0 0 0 −1 0 −1 . . .

1 0 1 0 1 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .


.

Set D = D+−D−. It is convenient to enlarge the domains of D and ϵ, and to consider the operators

D : H+ ϵH → H+DH,
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ϵ : H+DH → H+ ϵH.

Proposition 1.1. The operators D and ϵ are mutual inverse (Christoffel–Darboux reductions used
later can be found in [26, §3.2].) .

Definition 1.2 (Rational multipliers in the contour coordinates). Let H = span{φ0, φ1, . . .} ⊂
ℓ2(Z≥0) be the orthonormal family from (1.1), and write vectors by their Cauchy (generating-function)
representation

f(x) =
1

2πi

∮
{ζ}

f̂(ζ) ζ−x−1 dζ,

where f̂ is analytic in an annulus containing the contour(s). A linear operator T on H + ϵH acts by
a rational multiplier (or has a rational symbol) if there exists a rational function mT (ζ) such that,
for all such f ,

(Tf)(x) =
1

2πi

∮
{ζ}

mT (ζ) f̂(ζ) ζ
−x−1 dζ.

Equivalently, when T acts on the x–variable of a double–contour kernel, the corresponding con-
tour integrand is multiplied by mT . The poles of mT lie among the finitely many “forbid-
den points” singled out by our contour conventions (e.g. ±1 in the Meixner/Charlier ω–plane;
−1/p, 0, 1/q in the Krawtchouk v–plane). The resulting kernels remain integrable in the sense of
Its–Izergin–Korepin–Slavnov [16].

Examples used throughout.

• Meixner. In the ω–coordinates

D̂(ω) = ω − ω−1, ϵ̂(ω) =
1

ω2 − 1
,

so D and ϵ act by the rational multipliers ω − ω−1 and (ω2 − 1)−1.

• Krawtchouk. With the ratio map RK(v) =
1− qv

1 + pv
, the symbols are

D̂(v) = dK(v) = RK(v)−RK(v)−1 =
−2v + (q − p)v2

(1 + pv)(1− qv)
,

ϵ̂(v) = mK(v) =
1

RK(v)2 − 1
=

(1 + pv)2

−2v + (q − p)v2
,

i.e. the multipliers in the Krawtchouk case. For the definitions of the classical discrete weight
functions, see Definitions 2.5, 2.6 and 2.7.

Finally, let HN be the subspace of H spanned by the functions φ0, φ1, . . . , φ2N−1. Denote by KN

the projection operator onto HN . Its kernel is

(1.6) KN (x, y) =

2N−1∑
k=0

φk(x)φk(y).

2. Definition of discrete symplectic and orthogonal ensembles

Definition 2.1. The N -point discrete symplectic ensemble with the weight function w and the
phase space Z≥0 is the random N -point configuration in Z≥0 such that the probability of a particular



6 MIGUEL TIERZ

configuration x1 < . . . < xN is given by

Pr {x1, . . . , xN} = Z−1
N4

N∏
i=1

w(xi)
∏

1≤i<j≤N

(xi − xj)
2(xi − xj − 1)(xi − xj + 1).

Here ZN4 is a normalization constant which is assumed to be finite.

In what follows ZN4 is referred to as the partition function of the discrete symplectic ensemble
under considerations.

Definition 2.2. Suppose that there is a 2× 2 matrix valued kernel KN4(x, y), x, y ∈ Z≥0, such that
for a general finitely supported function η defined on Z≥0 we have

Z−1
N4

∑
(x1<...<xN )⊂Z≥0

N∏
i=1

w(xi) (1 + η(xi))
∏

1≤i<j≤N

(xi − xj)
2(xi − xj − 1)(xi − xj + 1)

=
√
det (I + ηKN4),

where KN4 is the operator associated to the kernel KN4(x, y), and η is the operator of multiplication
by the function η. KN4 is called the correlation operator, and KN4(x, y) is called the correlation
kernel of the discrete symplectic ensemble defined by the weight function w(x) on the phase space
Z≥0.

Definition 2.3. The 2N -point discrete orthogonal ensemble with the weight function W and the
phase space Z≥0 is the random 2N -point configuration in Z≥0 such that the probability of a particular
configuration x1 < . . . < x2N is given by

Pr {x1, . . . , x2N} = Z−1
N1

2N∏
i=1

W (xi)
∏

1≤i<j≤2N

(xj − xi), if xi − xi−1 is odd for any i, and x1 is even,

0, otherwise.

Here ZN1 is a normalization constant.

In what follows we assume that the weight function W (x) is such that

(2.1) W (x− 1)W (x) = w(x), for x ≥ 1, and W (0) = w(0),

where w(x) is a strictly positive real valued function on Z≥0 satisfying the same conditions as the
weight function in the definition of the discrete symplectic ensemble.

Definition 2.4. Suppose that there is a 2× 2 matrix valued kernel KN1(x, y), x, y ∈ Z≥0, such that
for an arbitrary finitely supported function η defined on Z≥0 we have

Z−1
N1

∑
(x1<...<x2N )⊂Z≥0

2N∏
i=1

W (xi)(1 + η(xi))
∏

1≤i<j≤2N

(xj − xi) =
√
det (I + ηKN1),

where KN1 is the operator associated with the kernel KN1(x, y), and η is the operator of multiplication
by the function η. Then KN1 is called the correlation operator, and the kernel of KN1 is called the
correlation kernel of the discrete orthogonal ensemble defined by the weight function W (x) on the
phase space Z≥0.

The three studied discrete weights are classical [20]:
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Definition 2.5 (Meixner weight). Fix 0 < ξ < 1 and βM > 0. The Meixner weight on Z≥0 is

wMx(x) :=
(βM)x
x!

ξ x =
Γ(βM + x)

Γ(βM)x!
ξ x, x ∈ Z≥0.

(Here (a)x is the Pochhammer symbol.)

Definition 2.6 (Charlier (Poisson) weight). Fix θ > 0. The Charlier weight on Z≥0 is

wCh(x) := e−θ θ
x

x!
, x ∈ Z≥0.

Definition 2.7 (Krawtchouk weight). Fix M ∈ Z≥0 and p ∈ (0, 1), and set q := 1 − p. The
Krawtchouk weight on {0, 1, . . . ,M} is

wK(x) :=

(
M

x

)
px qM−x, x = 0, 1, . . . ,M.

Pfaffian scalar blocks. We write the scalar block of the Pfaffian kernel as

SN,4 := KN ϵKN , SN,1 :=

{
KN + 1

2 φ2N ⊗ (ϵ φ2N−1), Meixner,

KN + 1
2 φN ⊗ (ϵ φN−1), Charlier, Krawtchouk.

Off–diagonal blocks are obtained by inserting the symbols of D or ϵ in the contour variable (see
(3.4), (4.15), (5.10)).

3. Meixner ensembles for β = 1, 4: integral formulas

Throughout we fix ξ ∈ (0, 1) and write s :=
√
ξ. We use the notation of Sections 1–2: the

orthonormal system {φk}k≥0 on Z≥0, the operators D±, D = D+ −D− and ϵ with Dϵ = ϵD = I on
H + ϵH, and the projection

(3.1) KN =

2N−1∑
k=0

φk ⊗ φk, KN (x, y) =

2N−1∑
k=0

φk(x)φk(y).

We begin by deriving all contour formulas needed in this section, then prove the β = 1 and β = 4

kernels in parallel.

3.1. Meixner generating function and contour conventions. Define for m ∈ Z

(3.2) Gm(ω) :=
(
1− s ω

)−m(
1− s

ω

)m
,

analytic in the annulus A := {ω : s < |ω| < s−1}. Our contour conventions are: two simple
positively oriented loops {ω1} ⊂ int {ω2} contained in A, both encircling {0, s} and avoiding {1, s−1}.
Single–contour integrals use a loop {ω} ⊂ A with the same property.

Lemma 3.1 (Single–contour formulas and rational multipliers). For every m ≥ 0 and x ∈ Z≥0,

(3.3) φm(x) =
1

2πi

∮
{ω}

Gm(ω)

ω x−m+1
dω, (ϵφm)(x) =

1

2πi

∮
{ω}

Gm(ω)

(ω2 − 1)ω x−m+1
dω.

Consequently D and ϵ act in the ω–plane by rational multipliers

(3.4) D̂(ω) = ω − ω−1, ϵ̂(ω) =
1

ω2 − 1
.

Proof. The generating function for Meixner functions implies [ωx−m]Gm(ω) = φm(x) in our normal-
ization; extracting coefficients by Cauchy’s formula yields the first identity in (3.3). For the ϵ–image,
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use the factorization ϵ = FΥF from Section 1, write the parity–split sums from (1.4) as geometric
series, and insert the same coefficient extraction; the diagonal conjugations in F cancel between the
two parity chains and the signed matrix Υ produces precisely the factor (ω2 − 1)−1. (Equivalently,
since D acts by shifts x 7→ x± 1, the identity (Df)(x) = f(x+ 1)− f(x− 1) translates under (3.3)
to multiplication by ω − ω−1 on the ω–side; inverting D on H + ϵH gives the multiplier (ω2 − 1)−1

for ϵ.) The contours lie in A, hence all manipulations are justified. □

Proposition 3.2 (Projection kernel as a nested double contour). For all x, y ∈ Z≥0,

(3.5) KN (x, y) =
1

(2πi)2

∮
{ω1}

∮
{ω2}

G2N (ω1)G2N (ω2)

ω1ω2 − 1

dω1

ω x−2N+1
1

dω2

ω y−2N+1
2

.

Proof. Insert the single–contour form (3.3) for φk(x) and φk(y) into (3.1) and sum over k =

0, . . . , 2N − 1. Since Gk(ω1)Gk(ω2) =
(
(1−s/ω1)(1−s/ω2)
(1−sω1)(1−sω2)

)k
and {ω1} ⊂ int{ω2} ⊂ A, the geometric

series sums to

(3.6)
2N−1∑
k=0

(
ω1ω2

)k((1− s/ω1)(1− s/ω2)

(1− sω1)(1− sω2)

)k
=

1− (ω1ω2)
2N
(1−s/ω1

1−sω1

1−s/ω2

1−sω2

)2N
1− ω1ω2

(1−s/ω1

1−sω1

1−s/ω2

1−sω2

) .

A direct algebra simplifies the denominator to ω1ω2 − 1, and the numerator produces the factor
G2N (ω1)G2N (ω2). The coefficient extraction in ω1, ω2 gives (3.5). Absolute convergence is guaranteed
by our contour nesting. □

Proposition 3.3 (Projection identity K2
N = KN ). With the same contours, KN is an idempotent:∑

n≥0KN (x, n)KN (n, y) = KN (x, y).

Proof. Insert (3.5) twice and compute the sum over n by Cauchy’s coefficient rule:∑
n≥0

KN (x, n)KN (n, y) =
1

(2πi)4

∮ ∮ ∮ ∮
G2N (ω1)G2N (ω2)G2N (ω3)G2N (ω4)

(ω1ω2 − 1)(ω3ω4 − 1)

×
[∑
n≥0

ω−n+2N−1
2 ω n−2N+1

3

] dω1

ω x−2N+1
1

dω2

ω−2N+1
2

dω3

ω 2N+1
3

dω4

ω y−2N+1
4

.

By the nesting |ω3| < |ω2|, the bracket equals ω2/(ω2 − ω3). Evaluating the ω3–integral by residues
(only the simple pole at ω3 = ω2 contributes) yields∑

n≥0

KN (x, n)KN (n, y) =
1

(2πi)3

∮ ∮ ∮
G2N (ω1)G2N (ω2)G2N (ω4)

(ω1ω2 − 1)(ω4 − ω2)

dω1

ω x−2N+1
1

dω2

ω−2N
2

dω4

ω y−2N+1
4

.

Next integrate in ω2; the only pole inside {ω2} is at ω2 = 1/ω4. Its residue is −G2N (ω1)G2N (ω4)
ω1ω4−1 ·

ω− y+2N−1
4 . Substituting back gives exactly (3.5). All deformations keep 1 and s−1 outside, so no

other residues appear. □

3.2. The composition lemma and immediate corollary.

Lemma 3.4 (Cauchy–multiplier composition). Let T be a linear operator that acts by a rational
multiplier mT (ω) on the ω–side in the sense of Definition 1.2. Then, with KN as in (3.5),
(3.7)

(KNTKN )(x, y) =
1

(2πi)2

∮
{ω1}

∮
{ω2}

G2N (ω1)G2N (ω2)

ω1ω2 − 1

mT (ω1)−mT (ω2)

ω1 − ω2

dω1

ω x−2N+1
1

dω2

ω y−2N+1
2

.
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Proof. By (3.5) and Definition 1.2,

(KNTKN )(x, y) =
∑
u,v≥0

KN (x, u)T (u, v)KN (v, y)

=
1

(2πi)5

∮ ∮ ∮ ∮ ∮
G2N (ω1)G2N (ζ)G2N (ω2)

(ω1ζ − 1)(ζω2 − 1)
mT (ζ)

× dω1

ω x−2N+1
1

[∑
u≥0

ζ−u+2N−1
][∑

v≥0

ζ v−2N+1
]dζ
ζ

dω2

ω y−2N+1
2

.

Summing the geometric series yields the factors 1/(ω1ζ−1) and 1/(ζω2−1), and the extra dζ/ζ comes
from the exponents. We now evaluate the ζ–integral. Since mT is rational and all its poles are among
the finitely many points excluded by our contours (e.g. ±1 for T = ϵ), the only poles of the ζ–integrand
that can contribute are at ζ = 1/ω1 and ζ = 1/ω2. Writing 1

(ω1ζ−1)(ζω2−1) =
1

ω2−ω1

(
1

ζ−1/ω1
− 1

ζ−1/ω2

)
we obtain by Cauchy

1

2πi

∮
{ζ}

mT (ζ)

(ω1ζ − 1)(ζω2 − 1)

dζ

ζ
=

1

ω2 − ω1

( mT (ω1)

ω1ω2 − 1
− mT (ω2)

ω1ω2 − 1

)
,

because the contour encloses exactly one of 1/ω1, 1/ω2 depending on nesting, and ζ = ±1 lie outside
by assumption. Substituting into the remaining ω–integrals gives (3.7). Absolute convergence of the
geometric series and boundedness of mT on the contours justify all interchanges. □

Corollary 3.5 (The skew–projection for β = 4). Taking T = ϵ and mϵ(ω) = (ω2 − 1)−1 yields
(3.8)

SN,4(x, y) := (KN ϵKN )(x, y) =
1

(2πi)2

∮ ∮
G2N (ω1)G2N (ω2)

ω1ω2 − 1

ω2 − ω1

(ω2
1 − 1)(ω2

2 − 1)

dω1

ω x−2N+1
1

dω2

ω y−2N+1
2

.

3.3. Meixner β = 1 (orthogonal).

Theorem 3.6. With SN,1 := KN + 1
2 φ2N ⊗ (ϵφ2N−1), one has

SN,1(x, y) =
1

(2πi)2

∮ ∮
G2N (ω1)G2N (ω2)

ω1ω2 − 1

dω1

ω x−2N+1
1

dω2

ω y−2N+1
2

(3.9)

+
1

4π2

(∮ G2N (ω1)

ω x−2N+1
1

dω1

)(∮ G2N−1(ω2)

(ω2
2 − 1)ω y−2N+2

2

dω2

)
.

Moreover the off–diagonal Pfaffian blocks are obtained by multiplying the ω2–integrand by D̂(ω2) =

ω2 − ω−1
2 for (SN,1D) and the ω1–integrand by ϵ̂(ω1) = (ω2

1 − 1)−1 for (ϵSN,1).

Proof. Insert the rank–one identity SN,1 = KN + 1
2 φ2N ⊗ (ϵφ2N−1). The first term is (3.5). The

second term is the product of the single–contour formulas (3.3) with m = 2N and m = 2N−1, which
yields the second line of (3.9). Acting with D (resp. ϵ) on the second variable (resp. first variable)
multiplies the corresponding integrand by the symbol (3.4), hence the announced off–diagonal
formulas. All contours are those fixed at the beginning of the section. □

3.4. Meixner β = 4 (symplectic).

Theorem 3.7. The β = 4 scalar block is given by the double–contour formula (3.8). Furthermore, the
off–diagonal blocks in the Pfaffian kernel are obtained by inserting the multipliers D̂(ω2) = ω2 − ω−1

2

and ϵ̂(ω1) = (ω2
1 − 1)−1 in the respective integrands.
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Proof. By definition SN,4 = KN ϵKN ; apply Lemma 3.4 with mϵ(ω) = (ω2 − 1)−1 to obtain (3.8).
The rules for the off–diagonal blocks follow exactly as in Theorem 3.6. □

3.5. Contours, poles and boundedness. All above formulas use simple nested loops {ω1} ⊂
int{ω2} ⊂ A, both encircling {0, s} and avoiding {1, s−1}. The only poles introduced by the rational
multipliers are at ω = ±1, which lie outside the loops. On any fixed admissible deformation (e.g.
those used in the asymptotic steepest–descent analysis), the multipliers D̂ and ϵ̂ stay bounded.

3.6. Common features emphasized. In both cases the only difference between β = 1 and β = 4

at the Meixner level is:
• β = 4: the scalar input is the skew projection SN,4 = KN ϵKN (no rank–one term);
• β = 1: the scalar input is the rank–one perturbation SN,1 = KN + 1

2 φ2N ⊗ (ϵφ2N−1).
Once SN,β is known, all off–diagonal blocks are obtained by the same contour multipliers (3.4) (and
(4.15) for Charlier and (5.10) for Krawtchouk). Thus both ensembles are presented in completely
parallel (IIKS) form.

4. The Charlier ensemble (β = 1, 4): integral formulas

Fix θ > 0 and the Poisson weight on Z≥0

(4.1) wCh(x) = e−θ θ
x

x!
, x ∈ Z≥0.

Let Cn(·; θ) denote the Charlier polynomials and hn their squared norms with respect to wCh (e.g.
hn = θnn! for the standard normalization). Set the orthonormal “wave functions”

(4.2) φn(x) =
Cn(x; θ)√

hn

√
wCh(x), n = 0, 1, 2, . . . .

For N ∈ N, denote by

(4.3) K
(Ch)
N =

N−1∑
k=0

φk ⊗ φk, K
(Ch)
N (x, y) =

N−1∑
k=0

φk(x)φk(y),

the orthogonal projection onto HN = span{φ0, . . . , φN−1} ⊂ ℓ2(Z≥0).

4.1. Single- and double-contour representations. We use the well-known exponential generating
function [20, Ch. 5]

(4.4)
∞∑
n=0

Cn(x; θ)

n!
tn = e−θt(1 + t)x, t ∈ C.

For any radius 0 < ρ < 1, the circle |t| = ρ avoids the singularity at t = −1 and yields the
single–contour Cauchy formulas

(4.5) φn(x) =

√
wCh(x)

2πi
√
hn

∮
|t|=ρ

e−θt(1 + t)x

tn+1
dt, n ≥ 0.

Proposition 4.1 (Nested double–contour for K
(Ch)
N ). For radii 0 < ρ2 < ρ1 < 1 one has

(4.6) K
(Ch)
N (x, y) =

√
wCh(x)wCh(y)

(2πi)2

∮
|t1|=ρ1

∮
|t2|=ρ2

e−θ(t1+t2)(1 + t1)
x(1 + t2)

y

t1 − t2

(
t2
t1

)N dt1 dt2
t1 t2

.
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Proof. Insert (4.5) for φk(x) and φk(y) into (4.3). Since |t2| < |t1|, the geometric series gives∑N−1
k=0 t−k−1

1 tk2 = 1−(t2/t1)N

t1−t2
· 1
t1
. Multiplying by the remaining factors and simplifying produces two

terms; the one with 1/(t1 − t2) is exactly (4.6). The term with (t2/t1)
N/(t1 − t2) cancels against

the Christoffel–Darboux [26, Ch. 3, §4] two–term reduction for the finite sum in (4.3). (Equivalently,
start from the CD identity and obtain (4.6) directly; both routes are standard.) □

Proposition 4.2 (Projection identity). K(Ch)
N is an orthogonal projection:

∑
u≥0K

(Ch)
N (x, u)K

(Ch)
N (u, y) =

K
(Ch)
N (x, y).

Proof. By construction K
(Ch)
N is the orthogonal projection onto HN (sum of the first N orthonormal

basis vectors), hence K
(Ch)
N

2 = K
(Ch)
N as an operator—equivalently the stated identity on kernels.

If desired, one may check idempotence directly from (4.6) by the same contour computation used
for Meixner: the u–sum is a geometric series because of the nesting |t2| < |t1|, and one residue at
t3 = t2 reproduces K

(Ch)
N (x, y). □

4.2. Discrete operators as rational multipliers in the t–plane. Let D± be the nearest–neighbor
shifts on ℓ2(Z≥0) and D = D+ −D−. Acting on the x–variable under the single–contour (4.5), the
shifts correspond to multiplication by (1 + t)±1. Therefore D acts by the rational symbol

(4.7) D̂(t) = (1 + t)− (1 + t)−1 =
t(2 + t)

1 + t
.

Let ϵ be the inverse–difference operator on H + ϵH (so that Dϵ = ϵD = I on this domain). Writing

(4.8) (ϵφn)(y) =

√
wCh(y)

2πi
√
hn

∮
|t|=ρ

e−θt(1 + t)y

tn+1
mϵ(t) dt

and using D(ϵφn) = φn with (4.7) forces mϵ(t) = 1/D̂(t), i.e.,

(4.9) mϵ(t) =
1 + t

t(2 + t)
.

Lemma 4.3 (Single–contour formula for ϵφn). For every n ≥ 0 and y ∈ Z≥0,

(4.10) (ϵφn)(y) =

√
wCh(y)

2πi
√
hn

∮
|t|=ρ

e−θt(1 + t)y

tn+1

1 + t

t(2 + t)
dt.

Proof. Combine the ansatz (4.8) with D(ϵφn) = φn under the transform (4.5) and (4.7). The pole at
t = 0 is allowed (coefficient extraction), while t = −1 and t = −2 lie outside the contour |t| = ρ < 1;
thus all interchanges are justified by absolute convergence on the fixed circle. □

4.3. Cauchy–multiplier composition in the t–plane.

Lemma 4.4 (Composition lemma). Let T act by a rational multiplier mT (t) on the t–side (as in
Definition 1.2). Then, with K

(Ch)
N as in (4.6),

(4.11)

(
K

(Ch)
N TK

(Ch)
N

)
(x, y) =

√
wCh(x)wCh(y)

(2πi)2

×
∮
|t1|=ρ1

∮
|t2|=ρ2

e−θ(t1+t2)(1 + t1)
x(1 + t2)

y

(t1 − t2)2

(
t2
t1

)N mT (t1)−mT (t2)

t1t2
dt1 dt2.
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Proof. Insert (4.6) twice and represent T by its multiplier in a single t–variable ζ acting between
them. After routine coefficient extraction, one arrives at a quadruple integral with factors (t1 − t2)

−1

and (ζ − η)−1 and projection weights (t2/t1)
N and (η/ζ)N . Integrate first in η then in ζ over

concentric circles |η| < |ζ| < 1: partial fractions give 1
(t1−t2)(ζ−η) =

1
t1−t2

(
1

ζ−t1
− 1

ζ−t2

)
· 1
1−η/ζ , so

the η–integral kills the geometric series and the ζ–integral picks only the residues at ζ = t1, t2 (the
poles of mT lie outside |t| < 1 by our contour choice). The result is (4.11). □

4.4. Charlier β = 1 (orthogonal): rank–one correction.

Theorem 4.5. Let S(Ch)
N,1 := K

(Ch)
N + 1

2 φN ⊗ (ϵφN−1). Then

S
(Ch)
N,1 (x, y) =

√
wCh(x)wCh(y)

(2πi)2

∮
|t1|=ρ1

∮
|t2|=ρ2

e−θ(t1+t2)(1 + t1)
x(1 + t2)

y

t1 − t2

(
t2
t1

)N dt1 dt2
t1t2

(4.12)

+
1

4π2

(∮
|t|=ρ0

√
wCh(x) e

−θt(1 + t)x√
hN tN+1

dt

)(∮
|t|=ρ0

√
wCh(y) e

−θt(1 + t)y√
hN−1 tN

mϵ(t) dt

)
,

for any ρ0 ∈ (0, 1). The off–diagonal blocks are obtained by multiplying the t2–integrand by D̂(t2) for
(S

(Ch)
N,1 D) and the t1–integrand by mϵ(t1) for (ϵS

(Ch)
N,1 ).

Proof. The first line is K
(Ch)
N in the form (4.6). The rank–one term equals 1

2 φN (x) (ϵφN−1)(y) and
the single–contour representations (4.5)–(4.10) give the second line. The off–diagonal blocks follow
by the multiplier rules (4.7)–(4.9). □

4.5. Charlier β = 4 (symplectic): IIKS form.

Theorem 4.6. With S
(Ch)
N,4 := K

(Ch)
N ϵK

(Ch)
N and mϵ(t) from (4.9),

S
(Ch)
N,4 (x, y) =

√
wCh(x)wCh(y)

(2πi)2

∮
|t1|=ρ1

∮
|t2|=ρ2

e−θ(t1+t2)(1 + t1)
x(1 + t2)

y

t1 − t2

(
t2
t1

)N mϵ(t1)−mϵ(t2)

t1 − t2

dt1 dt2
t1t2

.

(4.13)

The off–diagonal blocks of the Pfaffian kernel are obtained by multiplying the t2–integrand by D̂(t2)

for (S
(Ch)
N,4 D) and the t1–integrand by mϵ(t1) for (ϵS

(Ch)
N,4 ).

Proof. Apply Lemma 4.4 with T = ϵ and mT = mϵ. □

4.6. Contours and poles. All contour integrals above use simple, positively oriented circles
|t2| = ρ2, |t1| = ρ1 with 0 < ρ2 < ρ1 < 1; both circles enclose t = 0 and avoid the points t = −1

(from (1 + t)±1) and t = −2 (from mϵ). The multipliers D̂ and mϵ are bounded on these circles,
and the geometric series converge absolutely, justifying all sum/integral interchanges and contour
deformations used above.

4.7. Remark: the w–plane change of variables. For later comparison with Meixner, it is
convenient to introduce the exact “Bessel” map

(4.14) t =

√
θ

2

(
w − 1

w

)
, dt =

√
θ

2

(
1 +

1

w2

)
dw.
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Under (4.14) the multipliers become universal :

(4.15) D̂(w) = w − w−1, ϵ̂(w) =
1

w2 − 1
,

identical to the Meixner symbols. The double–contour formula (4.6) transforms to a IIKS kernel with
Cauchy denominator (w1w2 − 1)−1 (up to a harmless overall constant coming from the Jacobian);
explicitly,

K
(Ch)
N (x, y) =

1

(2πi)2

∮
{|w1|=1}

∮
{|w2|=1}

G̃N (w1;x) G̃N (w2; y)

w1w2 − 1
dw1 dw2,(4.16)

where G̃N is obtained by substituting (4.14) into the t–integrand in (4.6). Consequently, Lemma 4.4
can be rephrased in the w–plane with the same difference–quotient structure as in the Meixner case,
and Theorems 4.6–4.5 follow verbatim with the multipliers (4.15).

Summary. The Charlier β = 4 and β = 1 kernels admit fully explicit double–contour representations
in the t–plane, and—after the exact map (4.14)—they match the Meixner formulas term–by–term
with universal multipliers (4.15).

5. Krawtchouk ensembles for β = 1, 4: unified integral formulas

Fix M ∈ Z≥0 and p ∈ (0, 1), q := 1− p. The Krawtchouk weight on {0, 1, . . . ,M} is

(5.1) wK(x) =

(
M

x

)
pxqM−x, x = 0, 1, . . . ,M.

Let Kn( · ; p,M) be the degree-n Krawtchouk polynomials, hn their squared norms w.r.t. wK , and
set the orthonormal “wave functions”

(5.2) φn(x) =
Kn(x; p,M)√

hn

√
wK(x), 0 ≤ x ≤ M.

For 0 ≤ N ≤ M + 1 let HN = span{φ0, . . . , φN−1} and denote by

(5.3) K
(K)
N =

N−1∑
k=0

φk ⊗ φk, K
(K)
N (x, y) =

N−1∑
k=0

φk(x)φk(y),

the orthogonal projection onto HN .

5.1. Generating function, single and double contours. We use the standard ordinary generating
function [20, Ch. 9]

(5.4)
M∑
n=0

Kn(x; p,M) vn = (1 + pv)M−x(1− qv)x, v ∈ C.

For any ρ with 0 < ρ < min{1/p, 1/q}, the circle |v| = ρ avoids the singularities at v = 0,−1/p, 1/q

and we have the single-contour formulae

(5.5) φn(x) =

√
wK(x)

2πi
√
hn

∮
|v|=ρ

(1 + pv)M−x(1− qv)x

vn+1
dv,

and, for the ϵ–image (proved below via multipliers),

(5.6) (ϵφn)(y) =

√
wK(y)

2πi
√
hn

∮
|v|=ρ

(1 + pv)M−y(1− qv)y

vn+1
mK(v) dv.
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Proposition 5.1 (Nested double–contour for the projection kernel). For radii 0 < ρ2 < ρ1 <

min{1/p, 1/q},
(5.7)

K
(K)
N (x, y) =

√
wK(x)wK(y)

(2πi)2

∮
|v1|=ρ1

∮
|v2|=ρ2

(1 + pv1)
M−x(1− qv1)

x (1 + pv2)
M−y(1− qv2)

y

v1 − v2

(
v2
v1

)N dv1 dv2
v1v2

.

Proof. Insert (5.5) for φk(x) and φk(y) into (5.3) and sum over k = 0, . . . , N − 1. Since |v2| < |v1|,
the geometric series gives

∑N−1
k=0 (v2/v1)

k = (1 − (v2/v1)
N )/(1 − v2/v1), i.e.

∑N−1
k=0 v−k−1

1 vk2 =
1

v1(v1−v2)

(
1− (v2/v1)

N
)
. Multiplying by the remaining factors from (5.5) and simplifying yields

(5.8)
(1 + pv1)

M−x(1− qv1)
x

v1
· (1 + pv2)

M−y(1− qv2)
y

v2
· 1− (v2/v1)

N

v1 − v2
.

The term with 1/(v1−v2) produces the integral kernel in (5.7), while the term with (v2/v1)
N/(v1−v2)

is exactly cancelled by the Christoffel–Darboux identity (CDI) [26, Ch. 3, §4] for Krawtchouk
polynomials when one rewrites the finite sum

∑N−1
k=0 by the standard two–term formula. Equivalently,

one may start from the CDI and obtain (5.7) directly; both routes are standard and give the same
result. □

Proposition 5.2 (Projection identity). K
(K)
N is an idempotent:

∑M
u=0K

(K)
N (x, u)K

(K)
N (u, y) =

K
(K)
N (x, y).

Proof. By construction K
(K)
N is the orthogonal projection onto HN = span{φ0, . . . , φN−1}, hence

K
(K)
N

2 = K
(K)
N in operator form, which is the stated identity on kernels. One can also verify that

(5.7) implies idempotence by a contour computation paralleling Proposition 3.3 in the Meixner
section: writing the u–sum as a finite geometric series gives (1− (v3/v2)

M+1)/(1− v3/v2), and the
residue at v3 = v2 reproduces K

(K)
N (x, y) while the tail vanishes because the outer contour keeps

|v2| < ρ1 < min{1/p, 1/q} so no extra pole is crossed. □

5.2. Discrete operators as rational multipliers on the v–side. Define the nearest–neighbor
shifts D± and D = D+ −D− exactly as in Section 3, and let ϵ be the inverse–difference operator on
H + ϵH (so Dϵ = ϵD = I). Introduce the ratio map

(5.9) RK(v) :=
1− qv

1 + pv
.

Then the action of D± on the x–variable of (5.5) corresponds on the v–side to multiplication by
R±1

K (v), hence:
(5.10)

D̂(v) = RK(v)−RK(v)−1 =
−2v + (q − p)v2

(1 + pv)(1− qv)
, ϵ̂(v) =

1

RK(v)2 − 1
=

(1 + pv)2

−2v + (q − p)v2
=: mK(v).

Lemma 5.3 (Single–contour ϵ–image). For every n ≥ 0 and y ∈ {0, . . . ,M}, (5.6) holds.

Proof. Let f(y) = (ϵφn)(y). Since Dϵ = ϵD = I on H + ϵH, we have Df = φn. Write f

by a single contour as in (5.5) but with an unknown multiplier m(v) in the integrand. Acting
with D in the y–variable corresponds, by the x 7→ x ± 1 identities (1 + pv)M−(y±1)(1 − qv)y±1 =

(1 + pv)M−y(1− qv)y ·R∓1
K (v), to multiplication by RK(v)−RK(v)−1 on the v–side. The equation

Df = φn forces m(v) to be 1/(RK(v)2 − 1), i.e. mK(v) in (5.10). This proves (5.6). □
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5.3. Cauchy–multiplier composition for Krawtchouk.

Lemma 5.4 (Composition lemma). Let T act by a rational multiplier mT (v) on the v–side (Defini-
tion 1.2). Then, with K

(K)
N as in (5.7),

(5.11)(
K

(K)
N TK

(K)
N

)
(x, y) =

√
wK(x)wK(y)

(2πi)2

×
∮
|v1|=ρ1

∮
|v2|=ρ2

(1 + pv1)
M−x(1− qv1)

x (1 + pv2)
M−y(1− qv2)

y

v1 − v2

(
v2
v1

)N mT (v1)−mT (v2)

v1 − v2

dv1 dv2
v1v2

.

Proof. Insert (5.7) twice and write T via its multiplier in a single contour variable ζ:

(K
(K)
N TK

(K)
N )(x, y) =

√
wK(x)wK(y)

(2πi)5

∮ ∮ ∮ ∮ ∮
(1 + pv1)

M−x(1− qv1)
x

v1

(1 + pv2)
M−u(1− qv2)

u

v2

(v2/v1)
N

v1 − v2

× (1 + pζ)M−u(1− qζ)u

ζ
mT (ζ)

(1 + pη)M−y(1− qη)y

η

(η/ζ)N

ζ − η

dv1 dv2 dζ dη

η
.

Here
∑M

u=0 has been performed by Cauchy coefficient extraction, producing the Cauchy denominators
(v1−v2)

−1 and (ζ−η)−1 and the finite-rank projection factors (v2/v1)N and (η/ζ)N as in (5.7). Now
integrate first in η and then in ζ on nested circles |η| < |ζ| < min{1/p, 1/q}: by the partial-fraction
identity 1

(v1−v2)(ζ−η) =
1

v1−v2

(
1

ζ−v1
− 1

ζ−v2

)
· 1
1−η/ζ , Cauchy’s theorem gives 1

2πi

∮ mT (ζ)
(ζ−v1)(ζ−v2)

dζ =

mT (v1)−mT (v2)
v1−v2

, since the only enclosed poles are at ζ = v1 and ζ = v2 (the poles of mT lie at
{−1/p, 0, 1/q} and are outside by our choice of radii). After these two one–variable integrations, the
remaining v1, v2 integrals have exactly the form (5.11). □

5.4. Krawtchouk β = 1 (orthogonal): rank–one correction.

Theorem 5.5. Let S(K)
N,1 := K

(K)
N + 1

2 φN ⊗ (ϵφN−1). Then

S
(K)
N,1 (x, y) =

√
wK(x)wK(y)

(2πi)2

∮
|v1|=ρ1

∮
|v2|=ρ2

(1 + pv1)
M−x(1− qv1)

x (1 + pv2)
M−y(1− qv2)

y

v1 − v2

(
v2
v1

)N dv1 dv2
v1v2

+
1

4π2

( ∮
|v|=ρ0

√
wK(x)(1 + pv)M−x(1− qv)x√

hN vN+1
dv

)( ∮
|v|=ρ0

√
wK(y)(1 + pv)M−y(1− qv)y√

hN−1 vN
mK(v) dv

)
,

for any ρ0 ∈ (0,min{1/p, 1/q}). The off–diagonal blocks are obtained by multiplying the v2–integrand
by D̂(v2) for (S

(K)
N,1D) and the v1–integrand by mK(v1) for (ϵS

(K)
N,1 ).

Proof. The first line is K
(K)
N in the form (5.7). The rank–one term equals 1

2 φN (x) (ϵφN−1)(y) and
the single–contour representations (5.5)–(5.6) give the second line. The off–diagonal blocks follow
by the Krawtchouk multipliers (5.10) acting, respectively, on the y– and x–variables. □

5.5. Krawtchouk β = 4 (symplectic): IIKS form.

Theorem 5.6. With S
(K)
N,4 := K

(K)
N ϵK

(K)
N and mϵ = mK from (5.10),

S
(K)
N,4 (x, y) =

√
wK(x)wK(y)

(2πi)2

∮
|v1|=ρ1

∮
|v2|=ρ2

(1 + pv1)
M−x(1− qv1)

x (1 + pv2)
M−y(1− qv2)

y

(5.12)
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× 1

v1 − v2

(
v2
v1

)N mK(v1)−mK(v2)

v1 − v2

dv1 dv2
v1v2

.

The off–diagonal blocks of the Pfaffian kernel are obtained by multiplying the v2–integrand by D̂(v2)

for (S
(K)
N,4D) and the v1–integrand by mK(v1) for (ϵS

(K)
N,4 ).

Proof. Apply Lemma 5.4 with T = ϵ and mT = mK . The multiplier rules for the off–diagonal blocks
are the same as in the Meixner case, now with the Krawtchouk symbols (5.10). □

5.6. Contours and poles. All contour integrals above use disjoint circles |v2| = ρ2, |v1| = ρ1 with
0 < ρ2 < ρ1 < min{1/p, 1/q}; both circles enclose the origin and avoid {−1/p, 1/q}. The only poles
created by the rational multipliers in (5.10) are at v = 0, −1/p, and 1/q, which are kept outside by
construction. The boundedness of D̂ and mK on these circles justifies all sum/integral interchanges
and deformations used above.

6. Asymptotics and universality: direct proofs from the contour formulas

We prove bulk/edge limits for the discrete β ∈ {1, 4} kernels using only the nested double–contour
formulas for the projection kernels and the Cauchy–multiplier composition lemmas:

• Meixner: (3.5), (3.7), (3.8), (3.9), multipliers (3.4).
• Charlier: (4.6), (4.11); or after the exact w–map, the universal multipliers (4.15) and IIKS

form (4.16).
• Krawtchouk: (5.7), (5.11), (5.9), (5.10).

See [12] for the Riemann-Hilbert problem steepest–descent scheme underlying our local Gauss-
ian/Airy reductions.

Standing notation and normalization. Let A denote the large parameter (“matrix size”):

A =


2N, Meixner,
N, Charlier,
N, Krawtchouk.

In each family let Φ(z;u) be the one–variable phase read from the projection kernel (in its contour
variable z ∈ {ω, t, v}), and assume the standard bulk hypothesis: for each bulk u, Φ( · ;u) has
two simple saddles z±(u) on admissible steepest–descent deformations of the fixed contours (the
admissibility is exactly that used in the earlier sections). Denote the macroscopic density by

ρ(u) :=
1

2π
∂u
(
arg z+(u)− arg z−(u)

)
,

and fix the microscopic scaling ∆(u) > 0 by the spacing rule

(6.1) 2π∆(u) ρ(u) = 1.

We write
x =

⌊
Au+ s∆(u)−1

⌋
, y =

⌊
Au+ t∆(u)−1

⌋
,

with s, t = O(1). All O(·)–bounds below are uniform for u in compact subsets of the bulk (and in
fixed windows near regular edges) once the contours are chosen admissibly; the rational symbols for
D and ϵ are bounded on these contours by construction.
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6.1. A local two–saddle lemma and the edge (cubic) reduction.

Lemma 6.1 (Two–saddle Gaussian reduction). Fix a bulk u. For x = ⌊Au + s∆(u)−1⌋, y =

⌊Au+ t∆(u)−1⌋ with s, t = O(1), each one–variable contour integral in (3.5)/ (4.6)/ (5.7) along the
steepest arcs through z±(u) equals

eAΦ(z+;u)A+(u) e
−πis A−1/2

(
1 +O(A−1)

)
, eAΦ(z−;u)A−(u) e

+πit A−1/2
(
1 +O(A−1)

)
,

with nonzero continuous amplitudes A±(u). The normalization (6.2) enforces that one lattice step in
x (resp. y) corresponds to a 2π phase shift across the two saddles. The bounds are uniform for u in
compact bulk sets.

Lemma 6.2 (Cubic reduction at a soft edge). Let u∗ be a soft edge where z+(u∗) = z−(u∗) =: z∗ and
Φ′(z∗;u∗) = Φ′′(z∗;u∗) = 0. Under the standard A2/3 rescaling of x, y about u∗, each one–variable
integral reduces to the Airy normal form, and bounded rational multipliers freeze at z∗ at leading
order. Uniformity holds in fixed edge windows.

6.2. Bulk sine universality. We first define the spacing ∆(u) as:

(6.2)

2π∆(u) ρ(u) = 1, ρ(u) =
1

2π
∂u
(
arg z+(u)−arg z−(u)

)
, x =

⌊
Au+s∆(u)−1

⌋
, y =

⌊
Au+t∆(u)−1

⌋
,

Theorem 6.3 (Bulk sine limit, Meixner, β = 4). With SN,4 as in (3.8) and x, y scaled by ∆(u)

from (6.2),

∆(u)SN,4(x, y) −→ sinπ(s− t)

π(s− t)
,

uniformly for s, t in compact sets and u in compact bulk sets.

Proof. In (3.8) the integrand is G2N (ω1)G2N (ω2) divided by (ω1ω2 − 1) times the bounded dif-

ference–quotient factor
ω2 − ω1

(ω2
1 − 1)(ω2

2 − 1)
. Insert the Gaussian reductions from Lemma 6.1; freeze

bounded multipliers at (ω+(u), ω−(u)); the product eA(Φ(ω+)+Φ(ω−)) gives a positive amplitude,
the Cauchy denominator yields the Hilbert–transform structure, and (6.2) fixes the overall factor.
The phase difference supplies the sine numerator. Uniformity follows from the admissible contour
choice. □

Theorem 6.4 (Bulk sine limit, Meixner, β = 1). With SN,1 as in (3.9) and the scaling (6.2),

∆(u)SN,1(x, y) −→ sinπ(s− t)

π(s− t)
,

uniformly for s, t in compact sets and u in compact bulk sets. The off–diagonal blocks—obtained by
inserting the bounded multipliers in (3.4)—converge to the standard GOE sine blocks. The rank–one
term is a product of two O(A−1/2) one–variable integrals at adjacent degrees, hence O(A−1), and is
negligible after multiplying by ∆(u).

Charlier and Krawtchouk in the bulk. Having treated Meixner in detail, by symmetry of the steepest
descent phase and the bounded multiplier principle, the same local limits hold for Charlier and
Krawtchouk as well. For Charlier, the exact w–map (cf. the remark around (4.15)) transforms (4.6)
into the Meixner–type IIKS kernel (4.16) with the universal multipliers (w − w−1) and (w2 − 1)−1.
Therefore, the proofs of Theorems 6.3–6.4 apply verbatim to (4.11), (3.8), (3.9). For Krawtchouk,
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use (5.7), (5.11) with the bounded symbols (5.9)–(5.10); the same two–saddle analysis yields the
sine limit for the β = 4 and β = 1 blocks.

6.3. Soft edges: Airy universality.

Theorem 6.5 (Airy edge). At a soft edge u∗, under the A2/3 rescaling, the scalar blocks of (3.8)
and (3.9) converge to the Airy kernel; the off–diagonal blocks follow by multiplier insertion. In the
β = 1 case the rank–one piece is O(A−2/3), negligible under the A−1/3 edge rescaling.

Proof. Apply Lemma 6.2 in the proofs of Theorems 6.3–6.4. □

6.4. Hard edges: Bessel universality and a Charlier transfer.

Theorem 6.6 (Hard–edge limits). With the standard hard–edge scaling near the boundary of support,
the scalar blocks in (3.8) converge to the Bessel kernel; the β = 1 kernels behave analogously. For
Charlier, this follows from the exact map to the Meixner IIKS form; for Krawtchouk, use the v–plane
behavior near the endpoint together with (5.10).

6.5. Parameter crossover: Meixner → Laguerre at the hard edge.

Theorem 6.7 (Crossover). Let ξ ↑ 1 with 2N(1 − ξ) → α ∈ (0,∞) in the Meixner ensemble.
Then the hard–edge limits of (3.8) and (3.9) converge to the Laguerre hard–edge kernels with Bessel
parameter α (cf. the Meixner→Laguerre relation in [7]).

Proof. Write s =
√
ξ in the Meixner phase induced by (3.5) and expand log 1−s/ω

1−sω for 1−s ∼ α/(4N).
The limiting phase is Laguerre–type while the rational multipliers stay bounded; hence Theorem 6.6
passes to the limit. □

6.6. First subleading term from the difference–quotient. We study now the next term in the
asymptotic expansion of the kernel, which can affect finite-N observables like gap probabilities or
variance calculations. Write

Q(z1, z2) :=
M(z1)−M(z2)

z1 − z2
,

where, in the unspliced case of this Section, M = mϵ (cf. the symbols entering (3.7)/(4.11)/(5.11)).
In the bulk, Lemma 6.1 gives two Gaussian contributions from the steepest arcs through the saddles
z±(u), with phases e−πis and e+πit under the spacing rule (6.2). Freezing all bounded factors at
(z+(u), z−(u)) and Taylor expanding Q to first order at that point, the linear terms produce the
first Gaussian moments; after forming the two–saddle interference these become (∂s − ∂t) acting on
the sine kernel. This is the sole source of the A−1 term.

Proposition 6.8 (Order A−1 correction). In the bulk and at regular edges,

SN,4(x, y) = Kuniv(s, t) + A−1K1(s, t;u) +O(A−2),

where Kuniv is the sine/Airy/Bessel limit and K1 is obtained by expanding the difference–quotient
mϵ(z1)−mϵ(z2)

z1 − z2

to first order at (z+(u), z−(u)) in (3.7)/ (4.11)/ (5.11) and multiplying by the frozen Gaussian (or
Airy/Bessel) amplitudes. For β = 1, add the explicit separable O(A−1) correction from the rank–one
term to gap probabilities via Sherman–Morrison/Pfaffian analogues. For numerics, combine Nyström
[4] with the Pfaffian–determinant reduction [25, 2].
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Worked example and unspliced bulk dictionary. In the unspliced case M(w) = ε(w) =

(w2 − 1)−1, the A−1 term admitted by Proposition 6.8 has the universal shape

(6.3) K1(s, t;u) = α(u)
sinπ(s− t)

π(s− t)
+ β(u) (∂s − ∂t)

[
sinπ(s− t)

π(s− t)

]
.

Let w±(u) be the two saddles for the one–variable phase (Lemma 6.1), with w+(u)w−(u) = 1 and
w±(u) = e±iθ(u) in the bulk (Appendix A). Define

Q0(u) =
M(w+)−M(w−)

w+ − w−
, Qa(u) =

M ′(w+)(w+ − w−)−
(
M(w+)−M(w−)

)
(w+ − w−)2

,

Qb(u) =

(
M(w+)−M(w−)

)
−M ′(w−)(w+ − w−)

(w+ − w−)2
.

Then

(6.4) α(u) = c0(u)Q0(u), β(u) =
c+(u)

Φ′′(w+;u)
Qa(u) − c−(u)

Φ′′(w−;u)
Qb(u),

where c0(u), c±(u) are the Gaussian first–moment constants from Lemma 6.1 (identical to those in
Theorems 6.3–6.4). For M = ε these Q’s simplify explicitly in terms of θ(u):
(6.5)

Q0(u) = − cos θ(u)

2 sin2 θ(u)
, Qa(u) = − 1

4 sin2 θ(u)
− i cos θ(u)

2 sin3 θ(u)
, Qb(u) = − 1

4 sin2 θ(u)
+

i cos θ(u)

2 sin3 θ(u)
.

Since w− = w+ and Φ′′(w−;u) = Φ′′(w+;u), the combination (6.4) is real-valued, and (6.3) is
therefore a real correction. For β = 1, K1 is the sum of (6.3) and the explicit separable O(A−1)

contribution coming from the rank–one term in SN,1; see Proposition 6.8.

Remark 6.9 (Soft edge, unspliced). At a soft edge u∗ where the saddles coalesce, the coalesced point
w∗ satisfies

M(w1)−M(w2)

w1 − w2
−→ M ′(w∗) as (w1, w2) → (w∗, w∗).

Thus the leading Airy block in Theorem 6.5 is multiplied by M ′(w∗) = ε′(w∗) and the first A−1/3

term comes from the next Taylor coefficient, in complete analogy with Lemma 6.2.

Comment. Formulas (6.3)–(6.4) are the unspliced counterpart of the bulk linearization dictionary in
Proposition 7.9 (with M = ε); Theorem 7.7 repeats precisely the same mechanism after replacing M

by M(w) = ε(w)mh(w) in the spliced setting. We keep Section 7 for that generality and do not
duplicate it here.

Remark 6.10 (Uniformity and off–diagonal blocks). All bulk/edge bounds are uniform for u in
compact sets and for fixed microscopic windows; bounded rational multipliers merely change
the finite amplitudes and are frozen at leading order. Every off–diagonal statement follows by
inserting the corresponding symbol—(3.4) in the ω– or w–plane, and (5.10) in the v–plane—into
the double–contour integrand.

The following section will discuss the application of the bounded multiplier mechanism in number
theory.
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7. Kuznetsov transform as a Bounded Multiplier in IIKS Pfaffian Kernels

Classical analytic number theory provides the Kuznetsov transform, which is an integral transform
(often appearing in spectral sum formulas) that tests automorphic L2-spectra for random matrix
behavior. In this Section, we show that the archimedean Kuznetsov transform [21, 17, 13, 8]
can be inserted into the discrete β ∈ {1, 4} Pfaffian kernels (Meixner/Charlier/Krawtchouk) by
multiplication in the contour variable. Concretely, if Th acts on the contour coordinate by the
bounded holomorphic symbol mh, then KNThKN and all ensuing Pfaffian blocks remain of IIKS
type, with mh entering only through the universal Cauchy difference–quotient. Bulk/edge limits are
unchanged at leading order; the first finite–size term is obtained by the same linearization at the
saddle(s) as in the unspliced case.

7.1. Test functions and the Kuznetsov symbol. Let h : R → C be an even test function
on the spectral side of Kuznetsov. On the slit plane C \ (−∞, 0] we fix the principal branch of
logw = ln |w|+ i argw with | argw| < π and choose the IIKS loops inside a fixed slit sector

Sδ := {w ∈ C \ (−∞, 0] : | argw| ≤ π − δ}

for some δ ∈ (0, π), avoiding {±1}. We define [21, 17]

(7.1) mh(w) :=

∫
R
h(t)w−2it dt.

Assumption 7.1 (Admissible tests). With the principal branch of log on C \ (−∞, 0], choose the
IIKS loops inside Sδ and avoiding {±1}. Assume either

(H1) Gaussian class: h(t) = e−σt2 with σ > 0. Then

mh(w) =
√
π/σ exp

(
− (logw)2/σ

)
,

which is holomorphic on C \ (−∞, 0] and bounded on compact subsets of Sδ.
(H2) Exponential–moment class: there exists δ ∈ (0, π) such that∫

R
|h(t)| e 2(π−δ)|t| dt < ∞.

Then (7.1) converges absolutely and defines a bounded holomorphic function on every
compact subset of Sδ (Paley–Wiener type; see [24, 17]).

In both cases mh is bounded and holomorphic on all admissible contour deformations used in the
steepest–descent analysis for Meixner/Charlier/Krawtchouk.

Lemma 7.2 (Even h implies a reality symmetry). If h is even and real-valued, then mh(w) =

mh(1/w). In particular, for |w| = 1 one has mh(w) ∈ R.

Remark 7.3. After the exact w–map for Charlier, the discrete symbols are universal,

(7.2) D(w) = w − 1

w
, ϵ(w) =

1

w2 − 1
,

as proved earlier; inserting rational/holomorphic multipliers in the contour variable preserves the
IIKS form.

7.2. Splicing rules for β = 4 and β = 1. Write M(w) := ϵ(w)mh(w), with the universal symbols

(7.3) D(w) = w − 1

w
, ϵ(w) =

1

w2 − 1
.
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Rew

Imw

branch cut (−∞, 0]

Sδ
Γ1

Γ2

1−1
0

Figure 1. Admissible contour configuration for the Kuznetsov multiplier. The
branch cut is (−∞, 0]. The loops Γ1 ⊂ Γ2 are positively oriented, lie in a slit sector
Sδ (bounded away from the cut), and avoid w = ±1.

Theorem 7.4 (Kuznetsov splicing into IIKS Pfaffian kernels). Let Th act in the contour variable by
the bounded holomorphic symbol mh of (7.1) (compare [21, 22, 8]).

β = 4: The scalar block is
S
(h)
N,4 = KN ThϵKN ,

and in double–contour (IIKS) form

(7.4) S
(h)
N,4(x, y) =

1

(2πi)2

∫∫
G(w1;x)G(w2; y)

w1w2 − 1

M(w1)−M(w2)

w1 − w2
dw1 dw2,

with the same nested contours as for KN .
β = 1: The scalar block is

S
(h)
N,1 = KN + 1

2 φ2N ⊗ (Thϵ φ2N−1),

and the off–diagonal blocks are obtained by inserting the universal multipliers D(w) or ϵ(w)

on the appropriate variable exactly as in the unspliced case.

Proof. Apply the Cauchy–multiplier composition lemma to KNTKN with T = Thϵ (or successively
with T = ϵ and T = Th). This yields the difference–quotient with ϵ 7→ ϵmh, i.e. (7.4). The β = 1

rank–one structure and the off–diagonal multiplication rules are identical to those proved for the
unspliced kernels. See Lemma 3.4 (composition) and the block rules around (3.4), (4.15), (5.10).

Lemma 7.5 (Cauchy–multiplier composition with holomorphic symbols). Let KN be any of the
projection kernels in IIKS (double–contour) form used so far, with the fixed nested loops and contour
conventions of the corresponding family. Let T act in the contour variable by multiplication with a
symbol mT which is holomorphic and bounded on and between the admissible loops inside the slit
sector {| argw| ≤ π − δ} ⊂ C \ (−∞, 0]. Then the composition identity

(KNTKN )(x, y) =
1

(2πi)2

∫∫
G(w1;x)G(w2; y)

w1w2 − 1

mT (w1)−mT (w2)

w1 − w2
dw1 dw2
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holds, i.e. the symbol enters only through the Cauchy difference–quotient. In evaluating the inter-
mediate ζ–integral one may choose the ζ–loop to encircle exactly one of {1/w1, 1/w2} and to avoid
ζ = 0 and the branch cut of log.

Proof. We give the proof once in the w–plane IIKS normal form; for Meixner and Krawtchouk this
is exactly the form stated in Eqs (3.5) and (5.7), while for Charlier one may use the exact w–map,
Eq. (4.16).

Step 1: Reduction to the already–proved rational case. Let Γ1 ⊂ int Γ2 be the two fixed admissible
loops for w1, w2, and let A denote the closed collar between them (together with a thin collar of
Γ1,Γ2) contained in the slit sector and avoiding {±1}. By hypothesis, mT is holomorphic on an
open neighborhood of A and bounded there.

By Runge’s theorem on planar domains with connected complements of each component [9],
applied component wise to the collar region (or, equivalently, by uniform approximation on each loop
by Laurent polynomials, which suffices since the ζ–integral will run on a single loop), there exists a
sequence of rational functions {rn} with poles outside that neighborhood (in particular outside the
admissible loops and away from the branch cut) such that

∥rn −mT ∥L∞(A) −→ 0 (n → ∞).

For each n, the operator Tn acting by the rational symbol rn satisfies the composition identity

(KNTnKN )(x, y) =
1

(2πi)2

∫∫
G(w1;x)G(w2; y)

w1w2 − 1

rn(w1)− rn(w2)

w1 − w2
dw1 dw2,

by Lemma 3.4.
Step 2: Uniform bounds and dominated convergence on the double loop. Because the loops are

fixed and disjoint, there is a positive separation

d∗ := inf{|w1 − w2| : w1 ∈ Γ1, w2 ∈ Γ2} > 0,

and similarly a uniform lower bound

δ∗ := inf{|w1w2 − 1| : wj ∈ Γj} > 0,

since Γ1,Γ2 avoid {±1} by construction. Therefore, for any bounded m on A,∣∣∣∣m(w1)−m(w2)

w1 − w2
· 1

w1w2 − 1

∣∣∣∣ ≤ 2∥m∥L∞(A)

d∗ δ∗
.

The one–variable factors G(wj ; ·) are fixed on Γj (no growth issues on the fixed loops). Hence the
integrands above are dominated by an integrable bound independent of n.

Since rn → mT uniformly on A, we have

sup
(w1,w2)∈Γ1×Γ2

∣∣∣∣rn(w1)− rn(w2)

w1 − w2
− mT (w1)−mT (w2)

w1 − w2

∣∣∣∣ ≤ 2∥rn −mT ∥L∞(A)

d∗
−−−→
n→∞

0.

Dominated convergence on the fixed double loop then gives
1

(2πi)2

∫∫
G(w1;x)G(w2; y)

(w1w2 − 1)(w1 − w2)

(
rn(w1)− rn(w2)

)
dw1 dw2

−→ 1

(2πi)2

∫∫
G(w1;x)G(w2; y)

(w1w2 − 1)(w1 − w2)

(
mT (w1)−mT (w2)

)
dw1 dw2.
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Step 3: Convergence of (KNTnKN ) to (KNTKN ). Write the triple–integral representation of
KNTKN as in the proof of Lemma 3.4: after coefficient extraction in the discrete variable, one
obtains a ζ–integral whose integrand is

G(ζ; ·)mT (ζ)

(w1ζ − 1 )( ζw2 − 1 )
· dζ
ζ
,

on a ζ–loop that encircles exactly one of {1/w1, 1/w2} and avoids ζ = 0 (and the branch cut). For
Tn replace mT by rn. Since ∥rn −mT ∥L∞(A) → 0 and the remaining factors are bounded on the
fixed ζ–loop, the ζ–integrals converge uniformly in (w1, w2) ∈ Γ1 × Γ2. Thus

(KNTnKN )(x, y) −→ (KNTKN )(x, y)

by Fubini/Tonelli and dominated convergence (all loops are fixed, and the geometric–series steps
used to derive the triple integral are absolutely convergent by the nesting of the loops). This justifies
passing to the limit on the operator kernel side as well.

Step 4: Conclusion. For every n we have the exact identity

(KNTnKN )(x, y) =
1

(2πi)2

∫∫
G(w1;x)G(w2; y)

w1w2 − 1

rn(w1)− rn(w2)

w1 − w2
dw1 dw2.

By the two convergences proved in Steps 2–3, letting n → ∞ yields precisely the desired formula
with mT in place of rn. This proves the composition identity for bounded holomorphic symbols.

Remark on the ζ–residue evaluation. In the rational case (hence for rn above) one may evaluate
the ζ–integral by the partial fraction identity

1

(w1ζ − 1 )( ζw2 − 1 )
· 1
ζ
=

1

w2 − w1

(
1

ζ(w1ζ − 1 )
− 1

ζ( ζw2 − 1 )

)
,

and Cauchy’s theorem on a loop enclosing exactly one of {1/w1, 1/w2} (and avoiding ζ = 0 and
the branch cut). This produces the difference–quotient in w after substituting the residue into the
outer w1, w2–integrals, exactly as written in Lemma 3.4; Step 1 above shows that the same outcome
persists by holomorphic approximation. □

Remark 7.6 (β = 1 indices by family). For Meixner we follow the manuscript and set KN =∑2N−1
k=0 φk ⊗φk, so SN,1 = KN + 1

2 φ2N ⊗ (Thϵ φ2N−1). For Charlier and Krawtchouk the projection
is
∑N−1

k=0 and the rank–one term is 1
2 φN ⊗ (Thϵ φN−1). In Section 7 below we use the large parameter

A to keep the cases uniform (A = 2N for Meixner and A = N otherwise).

7.3. Asymptotics and the first finite–size term. Let A be the large parameter (A = 2N for
Meixner; A = N for Charlier/Krawtchouk). Fix a bulk point u, let w±(u) be the two saddles for the
one–variable phase of KN on admissible steepest–descent contours, and normalize 2π∆(u)ρ(u) = 1

as before.

Theorem 7.7 (Bulk sine limit and A−1 correction). With x = ⌊Au+s∆(u)−1⌋, y = ⌊Au+t∆(u)−1⌋,

∆(u)S
(h)
N,4(x, y) =

sinπ(s− t)

π(s− t)
+ A−1K

(h)
1 (s, t;u) + O(A−2),

uniformly on compact s, t–sets and u in compact bulk sets. Moreover, K(h)
1 is obtained by freezing all

bounded multipliers at (w+, w−) and linearizing the difference–quotient

Q(w1, w2) :=
M(w1)−M(w2)

w1 − w2
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at (w+, w−). Equivalently, it is the A−1 term furnished by the general mechanism “linearize the
difference–quotient and multiply by the frozen Gaussian amplitudes” (Proposition 6.8). Cf. also the
uniform two–saddle reduction (Lemma 6.1).

Corollary 7.8 (β = 1, spliced bulk). Under the hypotheses of Theorem 7.7,

∆(u)S
(h)
N,1(x, y) =

sinπ(s− t)

π(s− t)
+ A−1K

(h)
1 (s, t;u) + O(A−2),

with the same K
(h)
1 as in Theorem 7.7, and an additional explicit separable O(A−1) contribution

coming from the rank–one term in S
(h)
N,1. The off–diagonal blocks converge to the GOE sine–kernel

limits by multiplier insertion.

Proposition 7.9 (Linearization dictionary at bulk). Set

Q0(u) =
M(w+)−M(w−)

w+ − w−
, Qa(u) =

M ′(w+)(w+ − w−)−
(
M(w+)−M(w−)

)
(w+ − w−)2

,

Qb(u) =

(
M(w+)−M(w−)

)
−M ′(w−)(w+ − w−)

(w+ − w−)2
.

Then
K

(h)
1 (s, t;u) = αh(u)

sinπ(s− t)

π(s− t)
+ βh(u) (∂s − ∂t)

[
sinπ(s− t)

π(s− t)

]
,

with
αh(u) = c0(u)Q0(u), βh(u) = c+(u)

Qa(u)

Φ′′(w+;u)
− c−(u)

Qb(u)

Φ′′(w−;u)
,

where c0, c± are the same family–dependent Gaussian first–moment constants as in the unspliced
analysis. (No new steepest–descent input is needed.)

Remark 7.10. The A−1 source is only the linearization of the difference–quotient; all bounded
multipliers (including the Cauchy denominator) freeze at leading order, and their linear parts
integrate to zero by oddness on steepest descent, as in the unspliced case.

Theorem 7.11 (Soft edge). At a soft edge u∗ with coalesced saddle w∗, under the standard A2/3

scaling the scalar block converges to the Airy kernel multiplied by the diagonal derivative

M ′(w∗) = ϵ′(w∗)mh(w∗) + ϵ(w∗)m
′
h(w∗),

because M(w1)−M(w2)
w1−w2

→ M ′(w∗) along the Airy scaling (w1, w2 → w∗). The first correction is
obtained from the next Taylor terms at w∗ exactly as in the unspliced edge analysis (cubic reduction;
see Lemma 6.2). In the β = 1 case, the rank–one piece in S

(h)
N,1 is O(A−2/3) and hence negligible

under the A−1/3 edge scaling; the off–diagonal blocks follow by multiplier insertion.

7.4. Worked example: Charlier with Gaussian test. For hσ(t) = e−σt2 ,

mh(w) =

√
π

σ
exp
(
− (logw)2

σ

)
, m′

h(w) = −2 logw

σw
mh(w).

With M(w) = mh(w)
w2−1

one has

M ′(w) =
(w2 − 1)m′

h(w)− 2wmh(w)

(w2 − 1)2
.
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At a soft edge w∗ this yields

M ′(w∗) =
−2w∗

(w2
∗ − 1)2

mh(w∗) − 2 logw∗
σ w∗(w2

∗ − 1)
mh(w∗).

For bulk u, compute the two saddles w±(u) for KN (or solve the t–quadratic and map by t =√
θ
2 (w − 1/w)), then form Q0, Qa, Qb from Proposition 7.9 and combine with the same Gaussian

moments as in the unspliced case to obtain ασ(u), βσ(u).

Remark 7.12 (β=1 rank–one in Fredholm–Pfaffians). For gap probabilities, treat the scalar block
S
(h)
N,1 as a rank–one perturbation of KN in the sense of Fredholm–Pfaffians [10, 23]: write S

(h)
N,1 =

KN + 1
2 u⊗ v with u = φ2N and v = Thϵ φ2N−1, and apply the standard Fredholm–Pfaffian rank–one

update (as discussed in Proposition 6.8). This contributes an explicit O(A−1) correction in fixed
windows.

7.5. Context and related work. Kuznetsov’s trace formula inserts a spectral test h via an
archimedean Bessel/Hankel transform; in our setting the same input appears as a bounded holomorphic
multiplier mh in the contour variable. The IIKS composition lemma shows that such multipliers are
absorbed by a single difference–quotient, preserving integrability and the Pfaffian block structure,
while the steepest–descent scheme and the identification of the A−1 term via linearization at the
saddle(s) carry over verbatim.

7.6. Checklist for applications.

• Contours. Use the same nested loops as for KN ; they avoid {±1} and lie in an annulus where
mh is bounded/holomorphic (Assumption 7.1), with a uniform angular gap | argw| ≤ π − δ

on the principal branch of logw.
• Splicing rule. Replace ϵ(w) by M(w) = ϵ(w)mh(w) inside the difference–quotient. For
β = 1, keep the rank–one term with Th acting on ϵφ2N−1.

• Asymptotics. Leading sine/Airy/Bessel limits are unchanged. The A−1 (or edge A−1/3)
term is obtained by linearizing the difference–quotient at the relevant saddle(s).

• Off–diagonal blocks. Insert D(w) or ϵ(w) in the integrand on the appropriate variable
exactly as in the unspliced Pfaffian rules.

Therefore, Kuznetsov’s archimedean input “splices” into the discrete β = 1, 4 IIKS framework by
a bounded contour multiplier, leaving the universal limits intact and producing subleading terms by
the same one–line mechanism (difference–quotient linearization) that governs the unspliced kernels.

8. Conclusions and Outlook

We gave explicit double–contour (IIKS) formulas for the β = 1, 4 kernels in the Meixner, Charlier
and Krawtchouk families and proved bulk/edge universality with uniform error control, including
an explicit Meixner→Laguerre hard–edge crossover. The first subleading term arises from a single
source—the linearization of the IIKS difference–quotient at the relevant saddle(s)—and In contrast
to the Riemann–Hilbert approach employed in [11] for β = 2 or in other studies for β = 1, 4 our
method maintains the analysis in the original contour integral form. This approach simplifies the
steepest descent analysis and error estimates.

It is classical that Kuznetsov’s trace formula inserts a spectral test h via an archimedean
Bessel/Hankel transform on the spectral side [21, 17, 22]; here we showed that, within the IIKS
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contour formalism for the discrete β ∈ {1, 4} kernels, this corresponds to multiplication in the
contour variable by the bounded holomorphic symbol

mh(w) =

∫
R
h(t)w−2it dt

on the admissible slit–sector loops (cf. Assumption 7.1), so that the Pfaffian blocks acquire the
universal difference–quotient with M(w) = ϵ(w)mh(w) (cf. Theorem 7.4). Consequently, the leading
sine/Airy/Bessel limits are unchanged, and the first finite–size term again follows from the same
linearization (cf. Proposition 6.8 and Theorem 7.7).

Outlook. The same bounded–multiplier principle extends with essentially no extra technology to
several nearby settings.

• Arithmetically flavored deformations. Twists implemented by rational (or bounded holo-
morphic) symbols—such as congruence thinnings, Dirichlet–character weights, or mild
Euler–factor normalizations—enter by the same difference–quotient insertion. The IIKS form
and admissible contours are unchanged, so bulk/edge limits persist and the A−1 term is
again read off from the first linearization.

• Mesoscopic consequences . The fixed–window O(A−1) rates for the kernels feed into number–
variance and linear–statistics bounds and, in a mesoscopic window L ≪ A1/2, into CLT–type
statements for smooth test functions.

• Interfaces with representation theory . The z–measure/Schur–process kernels fit the same
contour/IIKS template, so the bulk/edge asymptotics and A−1 linearization transfer directly
once the multipliers stay bounded on admissible contours.

• Number theory via z–measures. The contour/IIKS form dovetails with the hypergeometric
structures in z–measures on partitions. The same bounded–multiplier principle should
yield bulk and edge asymptotics for correlation kernels arising from z–measures and related
Schur–type processes, including precise crossover regimes and A−1 corrections, with minimal
additional work on admissible contours.

• External sources and deformations. Small perturbations of the weights (or analytic parameter
changes such as ξ ↑ 1) preserve integrability of the kernel and the boundedness of multipliers
on fixed contours; our arguments then can give universality and controlled crossovers.

• Isomonodromy links. While we avoided Riemann–Hilbert methods, the IIKS form is also
the standard starting point for isomonodromic/Painlevé analysis of gap probabilities; our
explicit double contours and multipliers should make those identifications straightforward in
the discrete setting.

Practical by–products. The explicit contours/numerator factors also make finite–N Fredholm/Pfaffian
numerics straightforward and suggest incorporating the A−1 correction to accelerate convergence of
gap probabilities.
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Appendix A. Explicit bulk density ρ(u) and microscopic spacing ∆(u)

We compute the macroscopic density ρ(u) and the microscopic spacing ∆(u) directly from the
one–variable factors in the projection kernels. We work solely with the nested double–contour
representations and the corresponding one–variable phases, with no appeal to Riemann–Hilbert
analysis. Throughout we keep the contour conventions and boundedness of rational multipliers from
the main text.

General principle (common to all three families). Let K(x, y) denote the projection kernel in
the relevant family written in its double–contour form (3.5)/(4.6)/(5.7). Let z be the corresponding
contour variable and Φ(z;u) the one–variable phase extracted from the integrand with x ≈ Au. In
the bulk there are two simple saddles z±(u) on admissible deformations of the fixed contours, with
ℜΦ(z±;u) equal and maximal, and ℑΦ(z+;u) = −ℑΦ(z−;u).

Under the microscopic scaling

x =
⌊
Au+ s∆(u)−1

⌋
, y =

⌊
Au+ t∆(u)−1

⌋
,

the two steepest–descent contributions acquire phases e∓πis and e±πit, respectively. The relative
phase per lattice step is determined by the variation of the arguments of the saddles:

ρ(u) =
1

2π
∂u
(
arg z+(u)− arg z−(u)

)
, 2π∆(u) ρ(u) = 1.

Thus, once z±(u) are solved from the saddle equation ∂zΦ(z;u) = 0 (on admissible contours), ρ(u)
is read off from the derivative of their argument gap, and ∆(u) is recovered from the spacing rule.
The bounded rational multipliers (the symbols of D and ϵ in (3.4), (4.15), (5.10)) do not affect ρ

and ∆, as they only modify finite amplitudes.

Meixner: explicit ρM (u) and ∆M (u). From (3.5) and (3.2), the one–variable phase in the ω–plane
is

ΦM (ω;u) = log
(
1− s

ω

)
− log(1− sω)− (u− 1) logω, s =

√
ξ ∈ (0, 1).

The saddle equation ∂ωΦM (ω;u) = 0 simplifies to the quadratic identity

u sω2 +
(
(1− u)− (1 + u)s2

)
ω + u s = 0,

with product ω+(u)ω−(u) = 1, hence in the bulk ω±(u) = e±iθ(u). Taking the sum gives

2 cos θ(u) = ω+(u) + ω−(u) =
u(1 + s2) + (s2 − 1)

s u
.

Therefore the bulk support is

u ∈
(1− s

1 + s
,
1 + s

1− s

)
,

and

ρM (u) =
1

π
θ′(u) =

1− s2

2πs u2
1√

1−
(u(1 + s2) + (s2 − 1)

2su

)2 , ∆M (u) =
1

2N ρM (u)
.

The bounded multipliers D̂, ϵ̂ in (3.4) do not affect the saddle locations and only change finite
amplitudes, hence they play no role in the density.
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Charlier: explicit ρCh(u; τ) and ∆Ch(u). From (4.6) and the generating function (4.4), the
t–phase is

ΦCh(t;u, τ) = u log(1 + t)− τ t− log t, τ = lim
N→∞

θN
N

∈ (0,∞).

The saddle equation ∂tΦCh = 0 gives

τ t2 + (τ + 1− u) t+ 1 = 0.

In the bulk, the discriminant is negative, equivalent to u ∈ (1+τ−2
√
τ , 1+τ+2

√
τ). Parameterizing

the saddles as t±(u) = τ−1/2e±iθ(u) yields

2 cos θ(u) = τ1/2
(
t+(u) + t−(u)

)
= −τ + 1− u√

τ
=⇒ cos θ(u) =

u− (1 + τ)

2
√
τ

.

Hence

ρCh(u; τ) =
1

π
θ′(u) =

1

2π
√
τ

1√
1−

(u− (1 + τ)

2
√
τ

)2 , ∆Ch(u) =
1

N ρCh(u; τ)
.

Exact Meixner transfer. Under the exact w–map (4.14), the multipliers become universal (4.15)
and the kernel takes the IIKS form (4.16); thus the Meixner derivation above can be pulled back
verbatim, but the direct t–plane computation already yields the same ρCh.

Krawtchouk: explicit ρK(u; γ, p) and ∆K(u). From (5.7) and (5.4), the v–phase is

ΦK(v;u, γ) = (1− u) log(1 + pv) + u log(1− qv)− γ log v, γ =
N

M
, q = 1− p.

The saddle equation ∂vΦK = 0 reduces to

pq(1− γ) v2 −
[
(p− u)− γ(p− q)

]
v + γ = 0.

In the bulk the roots are conjugate, which is equivalent to

u ∈
(
p− γ(p− q)− 2

√
γ(1− γ)pq, p− γ(p− q) + 2

√
γ(1− γ)pq

)
.

Writing v±(u) = Re±iθ(u) with R2 = γ/(pq(1− γ)) gives

2R cos θ(u) = v+(u) + v−(u) =
(p− u)− γ(p− q)

pq(1− γ)
=⇒ cos θ(u) =

(p− u)− γ(p− q)

2
√
γ(1− γ)pq

.

Therefore

ρK(u; γ, p) =
1

π
θ′(u) =

1

2π
√
γ(1− γ)pq

1√
1−

((p− u)− γ(p− q)

2
√

γ(1− γ)pq

)2 , ∆K(u) =
1

M ρK(u; γ, p)
.

Summary table. For convenience we collect the explicit formulas proved above. In each case
∆(u) = (A ρ(u))−1 with A = 2N (Meixner), A = N (Charlier), A = M (Krawtchouk).
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Family Bulk support (u−, u+) Angle cos θ(u) Density ρ(u)

Meixner
(1− s

1 + s
,
1 + s

1− s

) u(1 + s2) + (s2 − 1)

2su

1− s2

2πsu2
1√

1−
(u(1+s2)+(s2−1)

2su

)2
Charlier (1 + τ − 2

√
τ , 1 + τ + 2

√
τ)

u− (1 + τ)

2
√
τ

1

2π
√
τ

1√
1−

(u−(1+τ)
2
√
τ

)2
Krawtchouk p− γ(p− q)± 2

√
γ(1− γ)pq

(p− u)− γ(p− q)

2
√
γ(1− γ)pq

1

2π
√
γ(1− γ)pq

1√
1−

( (p−u)−γ(p−q)

2
√

γ(1−γ)pq

)2
Remarks. (i) At either endpoint u± of the bulk support, ρ(u) ∼ C±

√
|u− u±|, matching the

soft–edge cubic reduction used in the Airy limits. (ii) The bounded multipliers (Meixner (3.4);
Charlier (4.7)–(4.9); Krawtchouk (5.10)) do not change ρ(u): they shift only finite amplitudes and
thus contribute at subleading orders in the steepest–descent evaluation.

Appendix B. Uniform steepest–descent estimates

This appendix records the standard local/outer split for the one–variable contour integrals used
in Section 6, with bounds uniform for u in compact bulk sets and for soft–edge windows; see also
[12] for the general RHP steepest–descent framework. We choose local coordinates so that the phase
function has the form eiNθ(z) with θ′(z±) = 0 at saddles z±, then expand θ(z) to second order to get
a Gaussian integral; by ensuring no other stationary points interfere, one controls the error O(N−1)

uniformly.

Bulk: uniform Gaussian reduction. Fix a bulk u and let z±(u) be the two simple saddles on
admissible steepest–descent arcs. Introduce local charts ζ± by z = z±e

ζ± on small sectors containing
the steepest directions. Then

Φ(z;u) = Φ(z±;u) +
1
2Φ

′′(z±;u) ζ
2
± +R±(ζ±;u), |R±(ζ±;u)| ≤ C|ζ±|3

for |ζ±| ≤ ζ0, with C, ζ0 independent of u in compact bulk sets. Split each contour into the “local”
piece |ζ±| ≤ A−1/3 and its complement:

• On the complement, ℜ(Φ−Φ(z±)) ≤ −c|ζ±|2 along steepest descent, hence the contribution
is O(e−cA1/3

).
• On the local piece, replace the integrand by its quadratic Taylor expansion and evaluate the

Gaussian exactly. Shifts x 7→ x+ s∆−1 and y 7→ y + t∆−1 contribute phase factors e∓πis,
e±πit; the spacing rule 2π∆ρ = 1 enforces the 2π phase change per lattice step.

This proves Lemma 6.1 with the uniform window |s|, |t| ≤ Aδ for any δ < 1
2 and the O(A−1) error.

Soft edge: cubic/Airy normal form and the scaling constant. At a soft edge (z∗, u∗) with
Φ′(z∗;u∗) = Φ′′(z∗;u∗) = 0, write

Φ(z;u) = Φ(z∗;u∗) +
κ
3 ζ

3 − η λ ζ +O(ζ4) +O(ηζ2),



32 MIGUEL TIERZ

where ζ is a local edge chart and η is the u–offset. Choosing x = ⌊Au+ s cA1/3⌋ with c = (κ/λ)1/3

reduces the one–variable integrals to Airy integrals with errors O(A−1/3) uniformly in fixed soft–edge
windows, yielding Theorem 6.5.
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