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Reservoir computing in a lithium-based magneto-ionic device
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In-materio computing exploits the intrinsic physical dynamics of materials to perform complex
computations, enabling low-power, real-time data processing by embedding computation directly
within physical layers. Here, we demonstrate a voltage-controlled magneto-ionic device that func-
tions as a reservoir computer capable of forecasting chaotic time series. The device consists of a
crossbar structure with a Ta/CoFeB/Ta/MgO/Ta bottom electrode and a LiPON /Pt top electrode.
A chaotic Mackey-Glass time series is encoded into a voltage signal applied to the device, while 2D
Fourier transforms of voltage-dependent magnetic domain patterns form the output. Performance
is influenced by the input rate, smoothing of the output, the number of elements in the reservoir
state vector, and the training duration. We identify two distinct computational regimes: short-term
prediction is optimized using smoothed, low-dimensional states with minimal training, whereas pre-
diction around the Mackey-Glass delay time benefits from unsmoothed, high-dimensional states and
extended training. Reservoir computing metrics reveal that slower input rates are more tolerant to
output smoothing, while faster input rates degrade both memory capacity and nonlinear processing.
These findings demonstrate the potential of magneto-ionic systems for neuromorphic computing and

offer design principles for tuning performance in response to input signal characteristics.

I. INTRODUCTION

Physical reservoir computing is a promising neuromor-
phic computing paradigm that uses the intrinsic dynam-
ics of physical systems to perform temporal information
processing and pattern recognition tasks [1-3]. Unlike
recurrent neural networks, which require extensive train-
ing of internal weights, reservoir computing simplifies
the process by training only the output weights. Var-
ious physical implementations have been demonstrated
using optical [4, 5], optoelectronic [6, 7], mechanical
[8, 9], electronic [10-12], and magnetic systems [13-18],
each exploiting distinct temporal dynamics and offer-
ing prospects for high-speed, energy-efficient computa-
tion [3].

Magneto-ionic devices, systems that modulate mag-
netic properties through voltage-driven ion migration,
hold significant promise for neuromorphic computing.
These devices naturally exhibit short-term plasticity,
mimicking the behavior of biological synapses [19-23].
Furthermore, the interplay between ionic transport and
magnetization dynamics gives rise to nonlinear responses
and memory effects, making magneto-ionic systems well-
suited for reservoir computing [21, 23].

Magneto-ionic effects have been demonstrated across
a wide range of material systems involving various mo-
bile ions, including oxygen [24, 25], hydrogen [26, 27],
nitrogen [28, 29], and lithium [30-32]. Reversible
voltage-induced ion migration enables dynamic con-
trol over key magnetic properties, such as magnetic
moment [28-30], magnetic anisotropy [24-26, 31], the
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Dzyaloshinskii-Moriya interaction [33], and the Ruder-
man-Kittel-Kasuya—Yosida (RKKY) interaction [32, 34].
Low-voltage magneto-ionic actuation has also been em-
ployed to reversibly control skyrmion nucleation and an-
nihilation [35, 36].
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FIG. 1. (a) Schematic of the magneto-ionic device, comprising
a crossbar junction with a layered Ta/CoFeB/Ta/MgO/Ta
bottom electrode and LiPON/Pt top electrode. Application
of a positive voltage to the top electrode drives Li* ions
from the LiPON layer toward the bottom electrode, enabling
voltage-controlled modulation of the magnetic domain state in
the CoFeB layer. (b) Out-of-plane magnetic hysteresis loops
measured by MOKE microscopy under different applied volt-
ages, illustrating voltage-induced changes in magnetic behav-
ior. (c)-(e) MOKE microscopy images showing the magnetic
domain structure in the CoFeB layer at a fixed out-of-plane
magnetic field of 0.3 mT under applied voltages of (c) -2 V,
(d) 0V, and (e) +2 V.

Device architectures inspired by solid-state batter-
ies and supercapacitors, such as LiCoOs/LiPON/Co
and LiPON/CoFeB heterostructures [21, 31, 36], have
enabled reversible modulation of magnetic properties
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FIG. 2. (a) Delay-embedded trajectory of the Mackey-Glass signal used in this study. The inset shows the same 100-step
segment of the signal as a time series. (b) Representative voltage waveforms used to drive the magneto-ionic reservoir, obtained
by linearly mapping the Mackey-Glass signal onto a voltage range of -2 V to +2 V. The input rates shown are 0.04 (top), 0.20
(middle), and 0.41 (bottom) Mackey-Glass steps per MOKE microscopy frame. (c)-(e) Zoom-ins of MOKE microscopy images
captured at the (c) 1000th, (d) 1050th, and (e) 1100th frame in a video recorded at an input rate of 0.20 Mackey-Glass steps
per frame.

via lithium ion migration. Lithium insertion into the II. RESULTS AND DISCUSSION
magnetic layer induces significant changes in magnetic

anisotropy, leading to pronounced modifications of the Figure 1(a) illustrates the device structure, consist-
magnetic domain structure. These devices also demon-  jpg of 3 110 pm x 80 pm crossbar junction with a lay-

strate excellent Voltage cyclil?g endura.\nce, excee.ding 10°  ered bottom electrode of Ta(5) / CoFeB(0.96) / Ta(0.08)
cycles [36], underscoring their potential for use in reser- MgO(2) / Ta(2), and a top electrode of LiPON(70)

voir computing applications. S / Pt(5), where all thicknesses are in nanometers (see
The Mackey-Glass (MG) equation is Wldel.y used as a  Methods for fabrication details). The CoFeB layer ex-
benchmark to evaluate the temporal processing capabil-  pihits perpendicular magnetic anisotropy (PMA). The

ities of reservoir computing systems [1.7» 37, 38]. Origi-  lithium phosphorus oxynitride (LiPON) solid-state elec-
nally developed to model delayed physiological feedback, trolyte enables Li* ion transport under an applied bias

Fhis delay d'ifferential equation generates chaotic behav-  petween the Pt top electrode and the metallic bottom
101 fqr specific parameter regimes [39]. The form used layers. Applied positive voltages cause LiT ions to mi-
here is: grate towards the bottom electrode. Li ions likely inter-
_ calate into the MgO/Ta layers, which has been shown to

dx azx(t — ) . ) L .
= — bx(t), (1)  reduce the interfacial PMA in similar devices [23, 31, 36].

At 1+ a2t — 1)
d¢ 1+a(t—7) Conversely, applying negative voltages extracts LiT ions

and leads to an increased PMA. Figure 1(b) shows mag-
netic hysteresis loops measured via magneto-optical Kerr
effect (MOKE) microscopy under an out-of-plane mag-
netic field for different applied voltages. At an applied -2
V, the loop exhibits increased squareness, indicating en-
hanced interfacial PMA. At 0 V, the loop becomes more
tilted, reflecting a reduction in anisotropy. Under +2
V, the loop is significantly slanted with minimal hystere-
sis, consistent with anisotropy suppression due to Lit
ion intercalation [31]. Figures 1(c)-1(e) present MOKE
microscopy images captured at a constant out-of-plane
magnetic field of 0.3 mT under various bias conditions.
At -2 V (Fig. 1(c)), a few broad stripe domains are visi-
ble. At 0V (Fig. 1(d)), the domain density increases and
individual stripes become narrower. At +2 V (Fig. 1(e)),

where x is the Mackey-Glass signal, t is time, and a,b, T
and n are control parameters.

In this work, we implement a reservoir comput-
ing system based on a magneto-ionic device, in which
voltage-driven ion migration induces the nonlinear dy-
namics required for temporal information processing.
The system’s performance is evaluated using a Mackey-
Glass time-series prediction task, serving as a repre-
sentative benchmark for chaotic signal processing. We
show how input rate, state-vector dimensionality, and
causal smoothing modify prediction ability, yielding task-
adaptive operating points without hardware changes.
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FIG. 3. (a) Radially averaged 2D Fourier transforms of the full-size versions of the MOKE microscopy images from Fig. 2,
recorded at an input rate of 0.20 Mackey-Glass steps per frame. (b) Temporal evolution of the reservoir signal for selected
wavenumber components as a function of video frame number, recorded at an input rate of 0.20 Mackey-Glass steps per frame.
The corresponding input signal is shown for comparison. (c) Effect of causal Savitzky-Golay filtering on the reservoir states
for an input rate of 0.20 Mackey-Glass steps per frame. Reservoir responses are shown for second-order polynomial smoothing
with window lengths of 0, 11, 21, 31, 41, and 51 data points at 0.22 um~'. The input signal is again shown for reference.

the domain pattern becomes much denser and finer, in-
dicating a progressive reduction in magnetic anisotropy
with increasing positive voltage.

Figure 2 illustrates the generation of the Mackey-Glass
signal and its injection into the magneto-ionic reservoir.
For the parameters in Eq. 1, we used a = 2, b = 1,
7 = 2, and n = 9.65, which produces a chaotic time
series [40]. The delay-embedded trajectory of this sig-
nal is shown in Fig. 2(a), revealing a characteristic orbit
around a chaotic attractor. The inset displays a 100-
step segment of the time series, highlighting irregular os-
cillations with intermittent amplitude modulations. In
this paper we will refer to a unit increase in the time,
t in the Mackey-Glass equation as a Mackey-Glass step.
Figure 2(b) shows the voltage waveforms used to drive
the reservoir, obtained by linearly mapping the Mackey-
Glass signal onto a voltage range of -2 V to +2 V. The
three panels correspond to three of the ten input rates
used in the experiments. These rates are defined relative
to the 16 frames-per-second (fps) acquisition rate of the
MOKE microscopy system. In the top panel, the slow-
est rate is shown, corresponding to 0.04 Mackey-Glass
steps per MOKE microscopy frame. The middle panel
represents an intermediate rate of 0.20 steps per frame,
and the bottom panel shows the fastest rate used, 0.41
steps per frame. These voltage waveforms are applied to
the magneto-ionic device under an out-of-plane magnetic
bias field of 0.3 mT, while MOKE microscopy videos of
672 x 512 pixels are recorded at 16 fps, each consist-
ing of approximately 2400 frames (see Methods for de-
tails). Figures 2(c)-2(e) show zoom-ins of MOKE mi-
croscopy frames captured at the slowest input rate, cor-
responding to the 1000th, 1050th, and 1100th Mackey-
Glass input steps. The application of voltage leads to
distinct changes in the domain state, altering the density

of stripe domains and skyrmions. The stripe domains
and skyrmions have different energy barriers for creation
and annihilation, where the energy barriers are also de-
pendent on the applied voltage as well as the surrounding
domain pattern [21, 23, 41]. This leads to a complex time
evolution of the magnetic state under a varying applied
voltage as required for reservoir computing.

After recording the video sequence for each input rate,
the frames were cropped to 450 x 450 pixels, binarized
and subjected to a spatial 2D Fourier transform. The re-
sulting spectra were radially averaged around the k = 0
wave vector to obtain the reservoir signal as a function of
wavenumber (see also the Methods). Figure 3(a) shows
three such traces corresponding to the domain images
shown in Fig. 2(c)-(e). Each Fourier spectrum is trun-
cated to a 1D vector comprising at most 64 components,
which form the reservoir state vector at each timestep.
Variations in magnetic domain shape, size and density,
driven by the Mackey-Glass voltage inputs, lead to dis-
tinct changes in these output vectors. Figure 3(b) illus-
trates the temporal evolution of selected components of
the reservoir state vector, alongside the original Mackey-
Glass input signal. Due to the nonlinear mapping from
input voltage to magnetic domain pattern, followed by
spatial Fourier processing, the reservoir components ex-
hibit dynamics that are highly transformed relative to
the input. To examine the impact of noise reduction on
signal integrity, Fig. 3(c) analyzes the effect of a causal
Savitzky—Golay filter applied to the reservoir states in
the time domain. Second-order polynomial smoothing
was applied using window lengths of 0, 11, 21, 31, 41,
and 51 data points, with each window ending at the cur-
rent time point. This analysis highlights the trade-off
between noise suppression and signal fidelity: moderate
smoothing (11-21 points) effectively reduces experimen-
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FIG. 4. Predictions of the Mackey-Glass signal under varying input and model parameters. The time step is referenced to
the video frame rate. (a) One-step ahead prediction at an input rate of 0.04 Mackey-Glass steps per frame, using the full
64-component reservoir state vector, 20 training frames, and a 51-point Savitzky-Golay filter. (b) 50-step-ahead prediction
at the same input rate, performed with a reduced 16-component state vector, 400 training frames, and no smoothing. (c)
Five-step-ahead prediction at a higher input rate of 0.33 Mackey-Glass steps per frame, using a 64-component state vector,

1000 training frames, and no smoothing.

tal noise while preserving key temporal features, whereas
heavier smoothing (41-51 points) introduces noticeable
signal distortion.

Once the reservoir state vectors are generated from
the video frames, the reservoir computer is trained (see
Methods). To evaluate the effect of altering the state vec-
tor, the system is trained across different configurations.
The size of the state vector is varied from by including
Fourier components up to a cutoff wavenumber, always
starting from the lowest wavenumber values and includ-
ing all values up to the maximum. This gives a state
vector varying from 4 to 64 values. Smoothing is system-
atically varied from no filtering to a 51-point Savitzky-
Golay filter, as described above. For each configuration,
the training length is also varied between 20 and 1000
frames. Finally, all combinations are evaluated across
ten input rates, with forward prediction lengths ranging
from 1 to 100 time steps, where the time step refers to
that of the video frames rather than the Mackey-Glass
time.

Figure 4 presents three representative prediction tasks,
each illustrating the combination of input and model pa-
rameters that yielded the best performance, as measured
by the mean squared error (MSE). Each data point rep-
resents an average over 1000 trials, where the predic-
tion task is repeated with a one-frame forward shift to
build statistical confidence. Figure 4(a) shows a one-
step-ahead prediction at the slowest input rate (0.04
Mackey-Glass steps per frame), demonstrating excellent
agreement with the target signal. This optimal result
was achieved using the full 64-component state vector,
minimal training (20 frames), and heavy smoothing (51-
point Savitzky-Golay filter). Figure 4(b) shows a 50-step-
ahead prediction at the same input rate. This prediction
horizon corresponds approximately to the Mackey-Glass
delay time (7), a regime where the system’s temporal
correlations are strongest. As expected, the prediction
accuracy is lower than for single-step forecasting. The

best performance in this case was obtained with a re-
duced state vector (16 components, wavenumbers up to
0.9 pm~1), moderate training length (400 frames), and
no smoothing. Notably, prediction accuracy is higher
during quasi-periodic segments of the signal, while larger
deviations occur in more chaotic regions. Figure 4(c)
shows five-step-ahead prediction for a faster input rate
(0.33 Mackey-Glass steps per frame), optimized using
a 64-component state vector, extensive training (1000
frames), and no smoothing. A systematic underestima-
tion of high-amplitude input values is observed. This
effect is attributed to magnetic saturation: at large pos-
itive voltages, the system enters a dense stripe-domain
configuration, reducing the dynamic range of the reser-
voir and limiting prediction accuracy in this regime.
Figure 5 summarizes the optimal reservoir parame-
ters across a range of input rates and prediction hori-
zons. Figure 5(a) shows the minimum MSE obtained
from all combinations of maximum wavenumber, train-
ing lengths, and smoothing parameters. The error land-
scape reveals two distinct regimes of enhanced predic-
tive performance: (i) a short-term forecasting region at
a low number of prediction steps, dominated by lin-
ear extrapolation, and (ii) a broader minimum centered
around the number of prediction steps equivalent to the
Mackey-Glass delay time 7 (marked with a black dot),
with a weaker secondary minimum near 27. For example,
at an input rate of 0.08 Mackey-Glass steps per frame,
these regions appear around 1-5 prediction steps, again
at 25 steps (approximately 7 for this case), and faintly
around 50 steps. Figure 5(b) shows the optimal maxi-
mum wavenumber corresponding to the minimum error.
While larger wavenumbers generally yield better predic-
tions, deviations from this trend occur in regions with
poor overall performance. In these cases, using a state
vector with fewer elements may help prevent overfitting
and improve generalization. Figure 5(c) presents the op-
timal smoothing window length. Two distinct patterns
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FIG. 5. Optimization results for predicting the Mackey-Glass signal across various prediction horizons and input rates. The
prediction step is referenced to the video frames. (a) Minimum mean squared error (MSE) achieved for each combination of
prediction horizon and input rate, determined by scanning over all combinations of state vector sizes, training lengths, and

smoothing parameters.

The black dots mark the number of steps in the reference time of the video frames equal to 7.

(b)

Optimal maximum wavenumber component (i.e., number of wave vector components) that minimizes the prediction error for
each setting. (c¢) Optimal Savitzky-Golay smoothing window length yielding the lowest prediction error across all conditions.
The black dots mark the number of steps in the reference time of the video frames equal to 7. (d) Optimal number of training
frames resulting in the smallest prediction error for each prediction horizon and input rate.

emerge: increased smoothing is favored at slower input
rates, where noise dominates and signal distortion is min-
imal. In contrast, near the delay time 7, zero smoothing
is consistently preferred, highlighting the importance of
preserving high-frequency components for accurate pre-
diction in this regime. Figure 5(d) displays the optimal
training length. Longer training generally enhances per-
formance across most conditions. However, a notable ex-
ception occurs at short prediction horizons, where mini-
mal training leads to better results, likely due to reduced
overfitting in this linear prediction regime.

Figure 6 evaluates the reservoir’s response using two
key metrics: nonlinearity and memory capacity (see
Methods for details). Figure 6(a) plots the nonlinear-
ity metric versus the maximum wavenumber (at zero
smoothing) for three input rates (0.04, 0.20, and 0.41
Mackey-Glass steps per frame). Nonlinearity peaks for
small maximum wavenumbers and declines beyond that

point. This reflects that the most nonlinear transforma-
tions of the input occur near the peak of the radially
averaged Fourier transform, around 0.5 wm ™! (see Fig.
3(a)). At larger wavenumbers, the reservoir outputs be-
come more homogeneous, resulting in reduced nonlinear-
ity. Figure 6(b) shows how smoothing affects the nonlin-
earity metric for a 64-component state vector. At the
slowest input rate, nonlinearity remains relatively un-
affected by smoothing, indicating that the relationship
between input and output states is preserved. At higher
input rates, however, a non-monotonic behavior emerges:
moderate smoothing reduces nonlinearity, but excessive
smoothing significantly distorts the reservoir states, lead-
ing to an artificial increase in nonlinearity. Figure 6(c)
illustrates the effect of input rate on nonlinearity for the
case of 64 state vector components and zero smoothing.
Increasing the input rate leads to a reduction in non-
linearity, likely because faster voltage variations do not
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FIG. 6. Nonlinearity and memory capacity of the magneto-ionic reservoir under varying input and processing conditions. (a)
Nonlinearity as a function of the maximum wavenumber used to create the state vector, measured at input rates of 0.04, 0.20,
and 0.41 Mackey-Glass steps per frame, with no smoothing applied. (b) Nonlinearity as a function of Savitzky-Golay smoothing
window length, evaluated for the same input rates using the full 64-component state vector (i.e. wavenumbers up to 3.5 um ™).
(c) Nonlinearity as a function of input rate, obtained with a 64-component state vector and no smoothing. (d) Memory capacity
as a function of the maximum wavenumber used to create the state vector, evaluated at input rates of 0.04, 0.20, and 0.41
Mackey-Glass steps per frame without smoothing. (e¢) Memory capacity as a function of smoothing window length, using a
64-component state vector at the same three input rates. (f) Memory capacity as a function of input rate, expressed in terms
of both the number of video frames (left axis) and the equivalent number of Mackey-Glass steps (right axis). These results are

obtained using a 64-component state vector and no smoothing.

allow sufficient time for complex, thermally activated do-
main configuration to evolve before the input changes
again.

The lower panels of Fig. 6 examine memory capacity,
using the same methodology as for the nonlinearity. As
shown in Fig. 6(d), memory capacity increases with state
vector size and eventually saturates. Slower input rates
yield higher capacity, suggesting more persistent tempo-
ral correlations in the magnetic response. Figure 6(e)
shows the impact of smoothing: for slow input rates,
smoothing has minimal effect. For faster rates, moderate
smoothing enhances memory capacity (as it implicitly
incorporates past information), but extensive smoothing
degrades the performance due to signal distortion. Figure
6(f) explores the impact of input rate on memory capac-
ity. When measured relative to the video frame rate (left
axis), memory capacity decreases with increasing input
rate. However, when the memory capacity is considered
in terms of the number of Mackey-Glass steps (right axis)
instead of the number of frames, memory capacity in-
creases with input rate. This highlights how the apparent
memory of the reservoir depends on the timescale used for
evaluation. Taken together, the metrics data confirm a

fundamental trade-off between nonlinearity and memory
capacity, consistent with prior observations in reservoir
computing systems [42]: mechanisms that enhance one
often diminish the other.

In summary, our results demonstrate that the
magneto-ionic device effectively maps temporal voltage
inputs onto high-dimensional magnetic states through
lithium ion migration, enabling accurate forecasting of
chaotic dynamics in the Mackey-Glass system. Optimal
predictive performance depends critically on the fore-
casting horizon and system parameters. For short-term
predictions, optimal results are achieved using smoothed
reservoir states, minimal training, and large state vec-
tors, which enhance linear extrapolation and reduced
noise. In contrast, long-term predictions, especially
near the Mackey-Glass delay time 7, benefit from un-
smoothed data, extensive training, and maximal reser-
voir dimensionality to capture nonlinear temporal dy-
namics. Notably, prediction accuracy peaks around 7
and 27, consistent with known recurrence times in chaotic
systems. High voltages were found to drive the system
into saturated, densely packed stripe-domain configura-
tions, where small voltage changes yielded minimal mag-



netic response, thereby reducing sensitivity and predic-
tive accuracy. Overall, these findings underscore the po-
tential of magneto-ionic systems for reservoir computing
and highlight the need to tailor reservoir characteristics,
including nonlinearity, memory, and readout strategy, to
the specific demands of the forecasting task. With appro-
priate tuning, these systems offer a powerful platform for
complex time-series prediction, even in highly nonlinear
and chaotic regimes.

METHODS

Fabrication

The Ta(5) / CoFeB(0.96) / Ta(0.08) / MgO(2) / Ta(2)
stack was grown via magnetron sputtering at room tem-
perature in an Ar atmosphere using a Singulus Rotaris
sputtering system at Singulus Technologies AG. The film
was patterned to form the bottom electrode using pho-
tolithography and Ar ion-beam milling. A second pho-
tolithography step was used to define the cross-bar top
electrode. The top electrode, consisting of LiPON (70
nm) / Pt (5 nm), was grown by magnetron sputtering
using a Kurt J. Lesker system at Aalto University. The
LiPON layer was formed by sputtering a LizgPO4 target
in a Ny atmosphere. The junction was defined using a
lift-off process giving a junction size of 110 x 80 pm.

Data collection

Images and videos were acquired using an Evico
magneto-optical Kerr effect (MOKE) microscope in the
polar configuration. A 100x objective lens and a 1.6x
projection lens were used to image the magneto-ionic
junction. Voltage signals were applied using a Digilent
Analog Discovery 2 device. The Mackey-Glass signal was
generated in MATLAB, rescaled to a +£2 V range, and
applied to the magneto-ionic device at various rates us-
ing the Digilent waveform generator. MOKE videos were
recorded at 16 frames per second, with approximately
2400 frames captured per input rate.

Image processing

The original 672x512 pixel images were cropped to
450x 450 pixels to remove areas affected by a variation in
the focus, and processed in MATLAB using a sequence of
functions: imdiffusefilt for noise reduction, imadjust for
contrast enhancement, and imbinarize for binarization.
2D fast Fourier transforms were then applied to the bi-
nary images, and the resulting spectra were radially aver-
aged around the k = 0 wave vector, with a binning width
equal to two pixels of the fast Fourier transform to re-
duce noise. These spectra were truncated into 1D vectors
with 64 components, which served as the reservoir state

vectors. To further reduce noise, a second-order causal
Savitzky—Golay filter was applied, with each smoothed
point computed using only preceding data points.

Training

Using the output of the 2D fast Fourier transforms
a reservoir state matrix, S, is created with dimensions
[training length X state vector]. An output vector D,
of size [training length] was created from the Mackey-
Glass equation stepped forward from the input by the
prediction step length. Training was performed using
ridge regression to give weight matrices, Wyyt:

Wous = (STS 4+ al)~1STD, (2)

where I is the identity matrix, and alpha is a small
constant. The training length was varied from 20 to
1000. The number of columns in the state matrix was
varied from 4 to 64 components, created by taking the
radially-averaged Fourier transform wavenumber starting
from the k= 0 wavenumber up to a varying maximum
value. The prediction step was varied from 1 to 100, and
each configuration was repeated 1000 times by advanc-
ing the training and prediction window forward by one
frame. The weight matrices were then applied to un-
seen data to make the prediction. The final prediction
error was calculated as the average mean squared error
of the predicted versus expected output across the 1000
repetitions. For each input rate and prediction horizon,
the optimal combination of state vector size, smoothing
window, and training length was identified based on the
minimum error.

Metrics

Metrics were calculated following the approach by Lee
et al. [17]. The nonlinearity metric quantifies the frac-
tion of the reservoir output that cannot be explained by
a linear mapping from past inputs. For each reservoir
output component ¥, a linear model is fitted using eight
lagged input values:

8
js = a0+ »_ aix(t —i) 3)
i=1

where §, is the predicted output, x(¢t — ) are lagged in-
puts, and the coefficients a; are obtained via linear re-
gression. The predictive quality of the linear model is
evaluated using the coefficient of determination:

2?:1(%,1‘ - g(‘;,i)Q
Z?:1(ys,i —7s)?

where ys = % > i1 Ys,i» and n is the number of time steps

in the test dataset. The nonlinearity is then defined as:

NL = 1 — mean(R? [§s, y4]), (5)

Rg [gsays] =1- (4)



where the mean is taken over all relevant components of
the reservoir state vector. A higher nonlinearity indicates
a greater deviation from linear behavior in the reservoir’s
response to the input signal.

The short-term memory capacity quantifies the ability
of the reservoir to reconstruct past inputs based solely on
its current output state. It is evaluated by applying a lin-
ear model to predict past input values from the reservoir
output:

iﬁ(t — l) = Z wsys(t)v (6)

where & (¢ —1) is the predicted input at lag i, y,(¢) are the
state vector components at time ¢, and ws are regression
coeflicients obtained via linear least squares fitting. The
reconstruction quality for each lag is quantified using the
coefficient of determination R?, and the overall memory
capacity (MC) is defined as:

8
MC =Y "R® [#(t — i), 2(t — i)]. (7)
=1

This metric captures how much information about recent
inputs is retained and linearly accessible from the reser-
voir’s internal state. A higher memory capacity indicates
better short-term recall performance.
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