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Abstract

The well-known proof of Beurling’s Theorem in the Hardy space H2, which describes all shift-invariant
subspaces, rests on calculating the orthogonal projection of the unit constant function onto the subspace
in question. Extensions to other Hardy spaces Hp for 0 < p < ∞ are usually obtained by reduction to
the H2 case via inner-outer factorization of Hp functions. In this paper, we instead explicitly calculate
the metric projection of the unit constant function onto a shift-invariant subspace of the Hardy space Hp

when 1 < p < ∞. This problem is equivalent to finding the best approximation in Hp of the conjugate
of an inner function. In H2, this approximation is always a constant, but in Hp, when p ̸= 2, this
approximation turns out to be zero or a non-constant outer function. Further, we determine the exact
distance between the unit constant and any shift-invariant subspace and propose some open problems.
Our results use the notion of Birkhoff-James orthogonality and Pythagorean Inequalities, along with an
associated dual extremal problem, which leads to some interesting inequalities. Further consequences
shed light on the lattice of shift-invariant subspaces of Hp, as well as the behavior of the zeros of optimal
polynomial approximants in Hp.

1 Introduction
Optimal polynomial approximants (OPAs) are polynomials which heuristically approximate the reciprocal
of an element in a function space. For example, let X be a Banach space of analytic functions on a planar
domain, for which polynomials are dense, that remains invariant under multiplication by polynomials. Also,
let Pn be the set of all polynomials of degree at most n. Given f ∈ X \ {0} and n ∈ N = {0, 1, 2, . . .}, we
say that a polynomial pn in Pn is an n-th optimal polynomial approximant to 1/f if it minimizes ∥1− pf∥X
among all polynomials p in Pn. Note that OPAs always exist (since f · Pn is a finite dimensional subspace
of X), but they are not necessarily uniquely determined.

Under the name least squares inverses, Robinson [40] introduced these approximants, in a restricted
context, as a way to address various problems in signal processing. Chui [25], Chui and Chan [26], and
Izumino [36] followed the work of Robinson with related results. Fifty years later, starting with [6], a renewed
interest in the subject arose due to significant and interesting connections to function theory, reproducing
kernels, and orthogonal polynomials (see, e.g., the surveys [5] and [43]). OPAs were further investigated in
Dirichlet-type spaces [8, 10], in more general reproducing kernel Hilbert spaces [31], in the spaces ℓpA [24, 44],
in Lp of the unit circle [18], in Hilbert spaces of analytic functions on the bidisk [7, 13] and on the unit ball
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[41, 42], and in the context of free functions [3]. Recently, a long-standing conjecture for OPAs in several
variables was disproved in [11]. See also [1, 9, 14, 29, 30] for related work.

In this paper, we will focus on the Hardy spaces Hp, which for 0 < p <∞ can be defined as

Hp :=

{
f ∈ Hol(D) : ∥f∥pp := sup

0<r<1

1

2π

∫ 2π

0

|f(reiθ)|p dθ <∞
}
,

where Hol(D) is the set of analytic functions on the open unit disc D. In the case p = ∞, we define

H∞ :=

{
f ∈ Hol(D) : ∥f∥∞ := sup

z∈D
|f(z)| <∞

}
.

For 1 ⩽ p ⩽ ∞, it is well known that Hp is a Banach space and H2 is a Hilbert space. Functions in Hp have
non-tangential limits almost everywhere on the unit circle T, and Hp functions restricted to their boundary
values on T can be viewed as a closed subspace of Lp := Lp(T, dm), where dm is normalized Lebesgue
measure on T. Indeed, Hp can equivalently be defined as the set of Lp functions with Fourier coefficients
vanishing for negative frequencies. For more on Hp spaces see, e.g., [27] or [35].

This work was initially motivated by the question of whether OPAs in Hp (p ̸= 2) can have zeros in the
closed unit disk, which, at the time of writing this manuscript, is still an open problem. This question arose
from an interesting fact in H2: if f ∈ H2 is such that f(0) ̸= 0, then the OPAs to 1/f can never vanish in
the closed unit disk [12, 25].

Note for f ∈ Hp, if f(0) = 0, then by subharmonicity, all OPAs in Hp (1 ⩽ p ⩽ ∞) vanish identically. It
is also worth noting that for p = 1 and p = ∞, OPAs are not uniquely defined, unlike the case of 1 < p <∞.
Therefore, for the rest of this work, we will consider only 1 < p < ∞ and functions f ∈ Hp such that
f(0) ̸= 0.

OPAs are intimately linked with the forward shift S, given by (Sf)(z) = zf(z); the projection of the
unit constant function onto the subspace span{Skf : k = 0, 1, . . . , n} is f multiplied by the OPA of degree
up to n. When p = 2, this projection is an orthogonal projection and the Hilbert space structure makes
computation of OPAs straightforward with linear algebra techniques. However, when p ̸= 2, the projection
is a metric projection, which is nonlinear, and makes explicit computation of OPAs much more difficult. In
this paper we find a strikingly simple expression for the limit of OPAs in Hp without calculating the OPAs
explicitly. We will often use z interchangeably with S, and say a subspace M is z-invariant if SM ⊆ M .
If f ∈ Hp has corresponding OPAs (pn)n≥0, then limn→∞ pnf can be seen as the projection of 1 onto the
z-invariant subspace

[f ]p := span{Skf : k = 0, 1, 2, . . .}
Hp

.

It is critical for us to recall the celebrated theorem of Beurling which describes every closed nontrivial z-
invariant subspace M of H2 as M = J · H2, for some inner function J (a function in H∞ is called inner
if it has boundary values of unit modulus almost everywhere). Note that Beurling’s Theorem holds for all
0 < p <∞ (see, e.g., [32, p. 98]) and for weak-∗ closed subspaces of H∞ (see, e.g., [32, Theorem 7.5, Chapter
2]). A significant focus of this work is placed on studying projections of 1 onto these subspaces.

As we shall see, these projections naturally lead to approximating (in Lp) conjugates of inner functions
by Hp functions. Given an Hp function, we determine the distance between 1 and the z-invariant subspace
of Hp generated by that function. In H2, that distance is measured via the orthogonal projection of 1 onto
the invariant subspace. Indeed, that orthogonal projection gives a scalar multiple of the generating inner
function. This approach gives rise to a proof of Beurling’s Theorem for H2 (see, e.g., [35, p. 100]). Again,
we note for p ̸= 2, Hp is not a Hilbert space but rather a Banach space and in this setting we no longer have
orthogonal projections, but rather metric projections. Although these projections are non-linear, we can
still discuss orthogonality in the Birkhoff-James sense. Our immediate aim is to explore several questions,
including:

- What is the metric projection of 1 onto a z-invariant subspace in Hp?

- Is the projection of 1 onto a z-invariant subspace an inner function?
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- If the projection of 1 onto a z-invariant subspace is not an inner function, does the projection have an
inner factor which is not shared with the generating function for the subspace?

- Given a z-invariant subspace, what is the distance between 1 and that invariant subspace?

When considering metric projections, the use of duality is a critical tool for the related extremal problem
(see, e.g., [27, 38]). In our context, the statement of duality is as follows. Let 1 < p < ∞, ψ ∈ Lp, and
q = p

p−1 . Then the distance between ψ and Hp can be expressed as the norm of the linear functional given
by ψ on the annihilator of Hp inside Lq, namely,

sup
∥f∥q⩽1

∣∣∣∣ 1

2πi

∫
T
f(ζ)ψ(ζ) dζ

∣∣∣∣ = inf
φ∈Hp

∥ψ − φ∥Lp . (1.1)

The paper is organized as follows:

- In Section 2, we discuss the background needed to pass from the Hilbert setting to the more gen-
eral Banach setting. In particular, we introduce Birkhoff-James orthogonality and state some useful
inequalities, known as Pythagorean inequalities, which will be used in the subsequent sections.

- In Section 3, we answer the questions posed above by finding an explicit formula for the metric pro-
jection of 1 onto any z-invariant subspace of Hp and calculating the associated distance. This leads to
several corollaries that enrich our understanding of the lattice of z-invariant subspaces of Hp.

- In Section 4, we study the zeros of OPAs in Hp and outline a possible path to prove that those zeros
always lie outside D for any p ̸= 2. We also consider planar disks, centered at the origin, in which
OPAs cannot vanish. We establish several estimates for the radius of such a disk, depending only on
p and f , for which OPAs are zero-free.

- Finally, in Section 5, we conclude with some comments and open questions.

2 Preliminaries: Birkhoff-James Orthogonality and Pythagorean
Inequalities

Recall that in H2, if M is a closed nontrivial z-invariant subspace of H2, then the orthogonal projection of
1 onto M gives a scalar multiple of the inner function that is the generator for M . We seek to understand
the properties of the analagous metric projection when 1 < p < ∞. Recall that the metric projection of 1
onto a z-invariant subspace M ⊆ Hp is the unique function g∗p minimizing ∥1− g∥p over all g ∈M . We are
particularly interested in obtaining an explicit formula for this projection and determining whether or not it
is a generator of M . Since by Beurling’s Theorem we know that M = [J ]p for some inner function J , we are
equivalently asking if g∗p = J ·G where G is an outer function. To examine this question, it will be useful to
have some background on metric projections.

Let x and y be vectors belonging to a normed linear space X . We say that x is orthogonal to y in the
Birkhoff-James sense if

∥x+ βy∥X ⩾ ∥x∥X

for all scalars β [15, 37]. In this situation we write x ⊥X y. This way of generalizing orthogonality is
particularly useful in our context since it is based on an extremal condition.

If X is an inner product space, then the relation ⊥X coincides with the usual orthogonality relation. In
more general spaces, however, the relation ⊥X is neither symmetric nor linear. In the case X = Lp(µ), for
a measure µ, let us write ⊥p instead of ⊥Lp . When 1 < p < ∞, Birkhoff-James orthogonality in Lp can be
expressed as in integral condition, which will be useful later.
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Theorem 2.1 (James (1947) [37]). Suppose that 1 < p <∞. If f and g are elements of Lp, then

f ⊥p g ⇐⇒
∫

|f |p−2fg dµ = 0, (2.1)

where any occurrence of “|0|p−20” in the integrand is interpreted as zero.

For a short proof of this criterion for orthogonality in Lp, see [28, Theorem A, p. 124]. For an extension
to more general normed spaces, see [4]. In light of this integral orthogonality condition, we define, for a
measurable function f and any s > 0, the notation

f ⟨s⟩ := |f |s−1f. (2.2)

Note that if f ∈ Lp for 1 < p < ∞, then f ⟨p−1⟩ ∈ Lq, where p and q are conjugate exponents, and then for
g ∈ Lp,

f ⊥p g ⇐⇒ ⟨g, f ⟨p−1⟩⟩ = 0,

where ⟨· , ·⟩ is the standard dual pairing between Lp and its dual. Consequently, the relation ⊥p is linear in
its second argument, and it then makes sense to speak of a vector being orthogonal to a subspace of Lp. In
particular, if f ⊥p g for all g belonging to a subspace M of Lp, then

∥f + g∥Lp ⩾ ∥f∥Lp

for all g ∈ M , and thus distLp(f,M ) = ∥f∥Lp . In other words, the best approximation to f in M is 0, or,
using another terminology, f is badly approximable by M . In our case, we will be interested in f = 1− g∗,
where g∗ is the metric projection of 1 onto M , and therefore, to identify g∗, we are looking for g∗ ∈ M such
that (1− g∗) ⊥p g for every g ∈ M .

There is a version of the Pythagorean Theorem for Lp, where orthogonality is in the Birkhoff-James
sense. It takes the form of a family of inequalities relating the lengths of orthogonal vectors with that of
their sum.

Theorem 2.2. Suppose f ⊥p g in Lp. If p ∈ (1, 2], then

∥f + g∥pLp ⩽ ∥f∥pLp +
1

2p−1 − 1
∥g∥pLp (2.3)

∥f + g∥2Lp ⩾ ∥f∥2Lp + (p− 1)∥g∥2Lp . (2.4)

If p ∈ [2,∞), then

∥f + g∥pLp ⩾ ∥f∥pLp +
1

2p−1 − 1
∥g∥pLp (2.5)

∥f + g∥2Lp ⩽ ∥f∥2Lp + (p− 1)∥g∥2Lp . (2.6)

These inequalities originate from [16, 17, 22]; see [23, Corollary 3.4] for a unified treatment with broader
classes of spaces.

It will be expedient to refer to (2.3) and (2.6) as the upper Pythagorean inequalities, and (2.4) and (2.5)
as the lower Pythagorean inequalities, so that the two cases depending on p can be handled together. The
specific values of the positive multiplicative constants, i.e., p−1 and 1/(2p−1−1), are generally unimportant,
and thus they will usually be denoted simply by K.

3 Metric projections of 1 onto invariant subspaces
For f ∈ Hp, recall that [f ]p denotes the closure of the polynomial multiples of f in Hp. Colloquially,
we say [f ]p is the closed z-invariant subspace generated by f . The present section deals with solving the
minimization problem

inf
g∈M

∥1− g∥p,
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where M is a z-invariant subspace. We will use several standard facts concerning Hp functions; e.g., if
J ∈ Hp is inner, then by Beurling’s Theorem, [J ]p = J · Hp, a function f ∈ Hp is outer if and only if
[f ]p = Hp, and a polynomial is outer if an only if it does not vanish in the open unit disk. See [27] for more
properties of Hp functions.

3.1 Extremal functions and distances
We first consider the case where the z-invariant subspace M is generated by a finite Blaschke product.

Proposition 3.1. Let 1 < p <∞. If J is the finite Blaschke product

J(z) =

N∏
k=1

z − ak
1− ākz

with zeros a1, a2, . . . , aN ∈ D \ {0}, then
inf

h∈Hp
∥1− Jh∥p

is attained when h = h∗, where for N > 1,

1− J(z)h∗(z) = (1− |a1a2 · · · aN |2)2/p
[∏d

k=1(1− w̄kz)∏N
k=1(1− ākz)

]2/p
, z ∈ D (3.1)

and the parameters w1, w2, . . . wd ∈ D \ {0} satisfy

1 = (1− |a1a2 · · · aN |2)
∏d

k=1(1− w̄kaj)∏N
k=1(1− ākaj)

(3.2)

for all j, 1 ⩽ j ⩽ N , where 1 ⩽ d ⩽ N − 1. For N = 1,

1− J(z)h∗(z) =

[
1− |a1|2

1− ā1z

]2/p
, z ∈ D. (3.3)

Moreover, distHp(1, [J ]p) =
(
1− |J(0)|2

)1/p.
Proof. The function

a1a2 · · · aNJ(z) = a1a2 · · · aN
N∏

k=1

z − ak
1− ākz

takes values in a disk of radius |a1a2 · · · aN | < 1. Consequently the function

1− (−1)Na1a2 · · · aN
N∏

k=1

z − ak
1− ākz

= 1− J(0)J(z)

is outer. It remains outer if we multiply through by
∏N

k=1(1− ākz). That is to say,

N∏
k=1

(1− ākz)− (−1)Na1a2 · · · aN
N∏

k=1

(z − ak) (3.4)

is an outer polynomial. In fact, the degree N terms cancel, leaving an outer polynomial of degree d ⩽ N −1.
If N = 1, we simply obtain the constant 1 − |a1|2 and the proof is complete for that case. Otherwise, we
write the outer polynomial (3.4) as

c(1− w̄1z)(1− w̄2z) · · · (1− w̄dz). (3.5)
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Because this polynomial is outer, each wk satisfies 0 < |wk| ⩽ 1. Substituting z = aj into the equation

N∏
k=1

(1− ākz)− (−1)Na1a2 · · · aN
N∏

k=1

(z − ak) = c(1− w̄1z)(1− w̄2z) · · · (1− w̄dz)

yields

N∏
k=1

(1− ākaj)− (−1)Na1a2 · · · aN
N∏

k=1

(aj − ak) = c(1− w̄1aj)(1− w̄2aj) · · · (1− w̄daj)

N∏
k=1

(1− ākaj)− 0 = c

d∏
k=1

(1− w̄kaj)

1 = c

∏d
k=1(1− w̄kaj)∏N
k=1(1− ākaj)

(3.6)

for each j, 1 ⩽ j ⩽ N .
The rational expression ∏d

k=1(1− w̄kz)∏N
k=1(1− ākz)

is outer, so that its 2/p power is an analytic function in D. The condition (3.6) tells us that the Hp function

1−

[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

]2/p
= 1−

(
1− J(0)J(z)

)2/p
has zeros at a1, a2, . . . , aN , and thus can be written as Jh for some h ∈ Hp. Rearranging gives

1− J(z)h(z) =

[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

]2/p
=
(
1− J(0)J(z)

)2/p
, (3.7)

an outer function in Hp.
Recalling notation from (2.2), we have, for |z| = 1,

(1− Jh)⟨p−1⟩J =


[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

]2/p
⟨p−1⟩

N∏
k=1

(z − ak)

(1− ākz)

=


[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

]2/p
(p−2)/2

[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

]2/p
1+(p−2)/2

N∏
k=1

(z − ak)

(1− ākz)

=

[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

](p−2)/p

c̄

∏d
k=1(1− wkz̄)∏N
k=1(1− akz̄)

·
N∏

k=1

(z − ak)

(1− ākz)

=

[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

](p−2)/p

c̄zN−d

∏d
k=1(z − wk)∏N
k=1(z − ak)

·
∏N

k=1(z − ak)∏N
k=1(1− ākz)

= zN−d

[
c

∏d
k=1(1− w̄kz)∏N
k=1(1− ākz)

](p−2)/p

c̄

∏d
k=1(z − wk)∏N
k=1(1− ākz)

, (3.8)
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which is zN−d, multiplied by an element of Hq. Notice also that the exponent N − d is an integer greater
than or equal to 1. These conditions imply that, for all n ⩾ 0,∫ 2π

0

(1− J(eiθ)h(eiθ))⟨p−1⟩J(eiθ)einθ
dθ

2π
= 0,

and hence 1−Jh ⊥p Jz
n for all indices n ⩾ 0. We may conclude that h = h∗ is indeed the extremal function

for which we are looking.
By comparing (3.4) and (3.5) when z = 0, we obtain c = 1− |a1a2 · · · aN |2. Moreover, from (3.7),

distHp(1, [J ]p) = ∥1− Jh∗∥p

=

∥∥∥∥(1− J(0)J
)2/p∥∥∥∥

p

= ∥1− J(0)J∥2/p2

=
(
1− |J(0)|2

)1/p
,

as claimed.

We note that Proposition 3.1 provides explicit information about the constants wk. The solution (3.1)
to the extremal problem is consistent with equation (11) on page 138 of Duren [27], which solves the general
dual extremal problem in Hp with rational kernels. The benefit of the present approach, in which the kernel
arises in connection with a finite Blaschke product, is that condition (3.2) enables the direct calculation of
the parameters wk, 1 ⩽ k ⩽ N −1, as well as the scaling factor; on the other hand, in [27] the determination
of these parameters is left open as a “very difficult problem.” For N = 1, the constants wk are absent and
the formula (3.3) is a normalized power of the Szegö kernel.

Using the following lemma, we can extend the hypotheses of Proposition 3.1 to include any inner function.

Lemma 3.2. Let 1 < p < ∞ and J be an inner function. Then there exists a sequence (Jn)n≥0 of finite
Blaschke products such that ∥Jn − J∥p → 0 as n→ ∞.

Proof. Firstly, it is known that the set of (infinite) Blaschke products is dense in the set of inner functions
with respect to the H∞ norm, and thus also the Hp norm (this is a corollary of a theorem of Frostman; see
[32, Corollary 6.5]). Thus, it suffices to consider the case where J is an infinite Blaschke product

J(z) = ζ

∞∏
k=1

|ak|
ak

ak − z

1− ākz
, z ∈ D,

where ζ ∈ T and (ak)
∞
k=1 is a Blaschke sequence in D. For n ∈ N we set

Jn(z) = ζ

n∏
k=1

|ak|
ak

ak − z

1− ākz
, z ∈ D.

We know that ∥Jn−J∥2 → 0 (see the lemma on p. 64 in [35] and the discussion thereafter). Thus, the result
follows immediately if 1 < p < 2. If p > 2, then, almost everywhere on the circle, we have

|Jn − J |p = |Jn − J |2 · |Jn − J |p−2 ⩽ |Jn − J |2 · 2p−2

and so ∥Jn − J∥p ⩽ ∥Jn − J∥
1
p

2 · 2
p−2
p , which gives the desired result.

We now extend Proposition 3.1.
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Theorem 3.3. Let 1 < p <∞. Suppose J is an inner function with J(0) ̸= 0, and

inf
h∈Hp

∥1− Jh∥p (3.9)

is attained when h = h∗. Then [Jh∗]p = [J ]p and, in particular, h∗ is outer. Moreover,

distHp(1, [J ]p) =
(
1− |J(0)|2

)1/p
.

Proof. By Lemma 3.2, we can find a sequence (Jn)n≥0 of finite Blaschke products converging to J in Hp.
Hence, by continuity of metric projections, we have distHp(1, [Jn]p) → distHp(1, [J ]p) as n → ∞ (see [21,
Proposition 4.8.1]). By Proposition 3.1,

distHp(1, [Jn]p) =
(
1− |Jn(0)|2

)1/p
,

but since Jn → J in Hp, certainly Jn(0) → J(0), and therefore

distHp(1, [J ]p) =
(
1− |J(0)|2

)1/p
. (3.10)

Now let us show that [Jh∗]p = [J ]p, i.e., that h∗ is outer. Suppose h∗ = J1g for some nontrivial inner
function J1 and g ∈ Hp outer. Then by the above established distance formula (3.10), and using the fact
that |J1(0)| < 1, we obtain

∥1− Jh∗∥pp = inf
h∈Hp

∥1− Jh∥pp

⩾ inf
g∈Hp

∥1− JJ1g∥pp

= 1− |J(0)|2|J1(0)|2

> 1− |J(0)|2

= ∥1− Jh∗∥pp,

which is a contradiction, and therefore h∗ must be outer.

Note for 1 < p < ∞, p ̸= 2, the distance formula in Theorem 3.3 appears to be previously unknown.
This formula reveals additional information concerning the lattice of invariant subspaces of Hp in that it
allows for quantitative comparison among z-invariant subspaces based on the generator of the subspace. In
addition to this observation, the proof of Proposition 3.1 gives rise to a guess for the metric projection of
1 onto any proper invariant subspace. This observation, fortuitously, allows us to streamline the proof of a
more general theorem that encompasses the previously established results of this section.

Theorem 3.4. Let 1 < p < ∞ and f ∈ Hp, f(0) ̸= 0. Put f = JF , with J inner and F outer, and
let Ĵ = J(0)J . Let g∗p be the metric projection of 1 onto [f ]p, that is, g∗p is the unique solution to the
minimization problem

inf
g∈[f ]p

∥1− g∥p.

Then g∗p is given as
g∗p = 1− (1− Ĵ)2/p.

Moreover, g∗p has no inner factor other than J and

distHp(1, [f ]p) = (1− |J(0)|2)1/p.

Proof. Note that for z ∈ D, |Ĵ(z)| ⩽ |J(0)| < 1 and therefore 1 − Ĵ is non-vanishing in the disk, and so g∗p
is a well-defined function in Hp. We would like to show that g∗p is the metric projection of 1 onto [f ]p. By
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Beurling’s Theorem for Hp, it suffices to consider the infimum of ∥1 − g∥p for g ∈ [J ]p and show that the
Birkhoff-James orthogonality conditions hold:

1− g∗p ⊥p z
kJ ∀k ≥ 0.

Observe, for k ≥ 0,∫
T

∣∣1− g∗p
∣∣p−2

(1− g∗p) z
kJ dm =

∫
T

∣∣∣(1− Ĵ)2/p
∣∣∣p−2

(1− Ĵ)2/p zkJ dm

=

∫
T
(1− Ĵ) (1− Ĵ)

(p−2)/p

zkJ dm

=

∫
T
(1− Ĵ)

(p−2)/p

zkJ dm− J(0)

∫
T
(1− Ĵ)

(p−2)/p

zk dm

= 0.

Further,
∥1− g∗p∥pp = ∥(1− Ĵ)2/p∥pp = ∥1− Ĵ∥22 = 1− |J(0)|2,

that is,
distHp(1, [f ]p) = (1− |J(0)|2)1/p.

Now, by the same argument as in the end of Theorem 3.3, g∗p has no additional inner factor besides J .

3.2 Consequences and corollaries
The distance formula appearing in Theorem 3.4 tells us that an additional inner factor strictly increases the
distance between 1 and the corresponding invariant subspace. Namely, we have the following:

Corollary 3.5. Let 1 < p <∞ and let M be a nontrivial closed z-invariant subspace of Hp. Let N ⊊M be
a strictly smaller invariant subspace. Then

distHp(1, N) > distHp(1,M).

Let us employ this corollary in an example.

Example 3.6. For each n ≥ 2, let Bn be the Blaschke product having precisely a zero of multiplicity n at
1 − 1/n, and zeros nowhere else. One may check that Bn converges pointwise to the atomic singular inner
function e−

1+z
1−z . Moreover, it is easy to see that |Bn(0)| > |Bn+1(0)|. Therefore, the invariant subspace

generated by the singular inner function is buried deeper away from 1 than any of the subspaces generated
by the associated Blaschke products which approximate the singular inner function. This is an example of a
more general phenomenon, namely the distance of 1 to an invariant subspace generated by a singular inner
function is smaller, in the long run, than the distance between 1 and the invariant subspaces generated by
Blaschke products converging to that singular inner function. This sheds additional light on the structure
of the lattice of z-invariant subspaces of Hp.

We note also that if f = JF ∈ Hp where J is a nontrivial inner function and F is outer, then

distHp(1, [f ]p) = inf
g∈Hp

∥1− Jg∥pp = inf
g∈Hp

∥J − g∥pLp .

Therefore, the problem of finding the metric projection of 1 in Hp onto the invariant subspace generated by
an inner function is the same as the problem of best approximation of the conjugate of that inner function in
Lp by an Hp function. Theorem 3.4 tells us that the best approximation is an outer function. Phrasing the
problem in this way also naturally brings in the tool of duality in extremal problems. Applying previously
mentioned duality (1.1) to this particular extremal problem, Theorem 3.4 gives rise to a highly nontrivial
inequality for the dual problem, which we record now.
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Corollary 3.7. Let 1 < q <∞. If J1 and J2 are non-constant inner functions not vanishing at the origin,
then the following strict inequality holds:

sup
∥g∥q⩽1

∣∣∣∣ 1

2πi

∫
T
gJ1 dζ

∣∣∣∣ < sup
∥g∥q⩽1

∣∣∣∣ 1

2πi

∫
T
gJ1J2 dζ

∣∣∣∣ .
Proof. The result follows from Corollary 3.5 and duality (1.1).

Note that Corollary 3.7 does not hold for q = 1, since by Poreda’s Theorem [39] for any finite Blaschke
product B,

inf
f∈H∞

∥B − f∥L∞ = 1.

Then by duality, if J1 and J2 are finite Blaschke products, both supremum values in Corollary 3.7 are equal
to one.

Applying Corollary 3.7 to Blaschke products, we obtain the following non-trivial inequality:

Corollary 3.8. Let 1 < q < ∞. Let {ak}∞k=1 be a sequence of distinct values in D \ {0} and let n > m.
Then the following strict inequality holds:

sup
∥g∥q=1

∣∣∣∣∣∣
m∑
j=1

g(aj)

( ∏m
k=1(1− akaj)∏m

k=1,k ̸=j(ak − aj)

)∣∣∣∣∣∣ < sup
∥g∥q=1

∣∣∣∣∣∣
n∑

j=1

g(aj)

( ∏n
k=1(1− akaj)∏n

k=1,k ̸=j(ak − aj)

)∣∣∣∣∣∣ .
Proof. Let J1(z) =

∏m
k=1

ak−z
1−akz

. Then for any g ∈ Hq, since J1(ζ) = 1
J1(ζ)

for |ζ| = 1 and by the Residue
Theorem,

1

2πi

∫
T
gJ1 dζ =

1

2πi

∫
T
g(ζ)

(
m∏

k=1

1− akζ

ak − ζ

)
dζ =

m∑
j=1

Res(g̃; aj),

where g̃(z) = g(z)
(∏m

k=1
1−akz
ak−z

)
. Note that

Res(g; aj) = g(aj)

( ∏m
k=1(1− akaj)∏m

k=1,k ̸=j(ak − aj)

)
.

Doing a similar computation for the right hand side of the inequality yields the result.

Clearly, one can easily extend Corollary 3.8 to infinite Blaschke products B1 and B2 having distinct zeros
and such that the zero set of B1 is strictly contained in the zero set of B2, and the zero set of B2 does not
contain the origin. When we apply Corollary 3.8 to two Blaschke factors, we obtain the following:

Example 3.9. Suppose a, b ∈ D \ {0} are distinct and let J1(z) = z−a
1−āz and J2(z) =

z−b
1−b̄z

. Then the left
hand side of the inequality in Corollary 3.8 is

sup
∥g∥q=1

|g(a)|(1− |a|2).

It is easy to show using Hölder’s inequality that this supremum is equal to (1− |a|2)
1
p (here, p is the Hölder

conjugate to q) and the extremal function is

g∗(z) =

(
1− |a|2

(1− āz)2

)1/q

.

On the other hand, the right hand side of the inequality in Corollary 3.8 is

sup
∥g∥q=1

∣∣∣∣g(a)(1− |a|2)1− b̄a

b− a
− g(b)(1− |b|2)1− āb

b− a

∣∣∣∣ .
10



Therefore, Corollary 3.8 states in this special case that the following strict inequality holds:

(1− |a|2)1/p < sup
∥g∥q=1

∣∣∣∣g(a)(1− |a|2)1− b̄a

b− a
− g(b)(1− |b|2)1− āb

b− a

∣∣∣∣ .
Curiously, even for p = q = 2, we have not been able to find a direct proof of this elementary inequality for
distinct arbitrary elements a, b ∈ D \ {0}.

The metric projections discussed in the present section can also be obtained via limits of optimal poly-
nomial approximants, which we discuss now.

4 Optimal polynomial approximants in Hp

For n ∈ N, we denote by Pn the set of complex polynomials of degree at most n. Given 1 < p < ∞ and
f ∈ Hp with f(0) ̸= 0, there exists a unique polynomial qn,p[f ] ∈ Pn such that

∥1− qn,p[f ]f∥p = inf
q∈Pn

∥1− qf∥p.

We recall that these minimizing polynomials are called the optimal polynomial approximants (OPAs) to 1/f
in Hp. These polynomials have been extensively studied in various settings (for existence and uniqueness of
OPAs in Hardy spaces see [18, Section 2]; see Section 1 for references pertaining to other relevant work).

It is well known that if f ∈ H2 with f(0) ̸= 0, then the OPAs to 1/f in H2 cannot vanish in the closed
unit disk. This result was first established in [25] and later reestablished in [12]. On the other hand, a
corresponding result for p ̸= 2 has been explored (see [18, 19, 20]) but has yet to be fully understood. We
begin with an alternative proof of this fact for H2 which may be helpful in extending the result to the Hp

setting.

Proposition 4.1. Let f ∈ H2 with f(0) ̸= 0. If J is any non-constant inner function, then there exists a
constant c = cf ∈ T such that

∥1− Jf∥2 > ∥1− cf∥2.

Proof. Observe that

∥1− Jf∥22 =

∫
T
|1− Jf |2 dm

=

∫
T
(1− Jf)(1− Jf) dm

= 1 + ∥f∥2 − 2Re(J(0)f(0))

⩾ 1 + ∥f∥2 − 2|J(0)f(0)|
> 1 + ∥f∥2 − 2|f(0)|,

where the penultimate inequality holds because, by the Maximum Principle, |J(0)| < 1. Taking c so that
cf(0) = |f(0)|, a simple calculation, similar to that above, shows

∥1− cf∥22 = 1 + ∥f∥2 − 2|f(0)|,

which completes the proof.

A similar inequality holding in Hp would allow us to deduce that OPAs in Hp cannot vanish in the disk.

Proposition 4.2. Let 1 < p < ∞. Suppose f ∈ Hp with f(0) ̸= 0 and let J be any non-constant inner
function with J(0) ̸= 0. If there exists a constant c ∈ C \ {0} such that

∥1− Jf∥p ⩾ ∥1− cf∥p,

then any non-trivial optimal polynomial approximant in Hp cannot vanish in the open unit disk.
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Proof. Let g ∈ Hp with g(0) ̸= 0. Without loss of generality, assume that the degree of qn,p[g] is n. If qn,p[g]
has zeros in D, we write qn,p[g] = Bkpn, where Bk is a Blaschke product of degree k with 1 ⩽ k ⩽ n and pn
is a polynomial of degree at most n with no zeros in the disk. Then, by hypothesis,

∥1− qn,p[g]g∥p = ∥1−Bkpng∥p ⩾ ∥1− cpng∥p
for some constant c ∈ C. However, by minimality of qn,p[g] and since cpn has degree at most n, we get
qn,p[g] = cpn, which is a contradiction since pn has no zeros in the disk.

In light of Proposition 4.1, we conjecture the following:

Conjecture 4.3. Let 1 < p < ∞ and f ∈ Hp with f(0) ̸= 0. If J is any non-constant inner function, then
there exists a constant c = cf ∈ T such that

∥1− Jf∥p > ∥1− cf∥p.

By continuity, we can at least say that the desired inequality still holds for values of p which are close to
two. In particular, using [20, Lemma 3.1.1], we obtain the following:

Proposition 4.4. Suppose f ∈ H∞ and f(0) ̸= 0. Then there exists a neighborhood of p = 2 such that the
optimal polynomial approximants to 1/f in Hp do not vanish in D.

Remark 4.5. We note that, using the continuity properties of the optimal polynomial approximants, we
can replace D with D in the previous result. Indeed, under the assumptions of Proposition 4.4, we know
that, for any n ∈ N, the polynomials qn,p[f ] converge to qn,2[f ] as p → 2 uniformly on D (see Lemma 3.1.1
in [20]). Noting that qn,2[f ] does not vanish on D establishes the claim.

4.1 Behavior of OPAs and bounds on their roots
Using the results of the previous sections, we can say more about the roots of optimal polynomial approxi-
mants in Hp. First, we get that the roots always escape any compact subset of D as n increases ad infinitum,
which is an improvement of Proposition 5.1 in [19].

Proposition 4.6. Let 1 < p < ∞ and f ∈ Hp with f(0) ̸= 0. Then, for any compact subset K of D, there
exists N ∈ N such that the roots of qn,p[f ] lie outside K for all n ⩾ N .

Proof. Let f = JF , with J inner and F outer, and let g∗p be the metric projection of 1 on [f ]p as given in
Theorem 3.4. We know that qn,p[f ]f → g∗p in Hp (see for example Proposition 3.0.1 in [20]). Since the inner
factor of g∗p is J , we also get that the sequence qn,p[f ]F converges to the outer part of g∗p in Hp which of
course does not vanish in D. The result follows by Hurwitz’s Theorem.

In [18], Centner gave the following lower bound: let 1 < p < ∞, f ∈ Hp with f(0) ̸= 0 and n ∈ N, then
any root of qn,p[f ] must lie outside the open disc of radius (1−∥1− qn,p[f ]f∥pp)1/2 centered at the origin (see
[18, Proposition 5.1]). We next provide an improvement.

Proposition 4.7. Let 1 < p < ∞ and n ∈ N. Suppose that f ∈ Hp has inner part J , with J(0) ̸= 0. Let
also w1, . . . , wk be the roots (counting multiplicities) of qn,p[f ] in D. Then

|w1 · · ·wk| ⩾
(1− ∥1− qn,p[f ]f∥pp)1/2

|J(0)|
. (4.1)

Proof. We have that qn,p[f ] = Bkpn where Bk is the Blaschke product formed by the roots w1, . . . , wk and
pn is a polynomial of degree at most n that does not vanish in D. Then, by Theorem 3.3, we have

∥1− qn,p[f ]f∥pp = ∥1−Bkpnf∥pp
⩾ inf

φ∈Hp
∥1−BkJφ∥pp

= 1− |w1 · · ·wkJ(0)|2.

Rearranging the terms of the inequality yields the claim.
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Remark 4.8. Note that since

lim
n→∞

∥1− qn,p[f ]f∥pp = distpHp(1, [f ]p) = 1− |J(0)|2,

the right-hand side of (4.1) converges to 1 as n increases to ∞. Thus, Proposition 4.7 can be viewed as a
quantitative version of Proposition 4.6.

Next, we give bounds for the roots of optimal polynomial approximants that depend on whether p is
greater or less than two.

Proposition 4.9. Let 1 < p < 2 and n ∈ N. Suppose that f ∈ Hp has inner part J , with J(0) ̸= 0. Let also
w1, . . . , wk be the roots (counting multiplicities) of qn,p[f ] in D, then

|w1 · · ·wk| ⩾

(
1−

[
1− |f(0)|2

∥f∥2
2

]p/2)1/2

|J(0)|
.

In particular, if f = J is inner, then

|w1 · · ·wk| ⩾

(
1−

[
1− |J(0)|2

]p/2)1/2
|J(0)|

.

Proof. We combine Proposition 4.7 with the note following Proposition 4.0.15 in [20], which says that

∥1− qn,p[f ]f∥p ⩽

(
1− |f(0)|2

∥f∥22

)1/2

.

For the case 2 < p <∞, we first need the following lemma:

Lemma 4.10. Let 1 < p <∞, and let f ∈ Hp. Then

∥1− q0,p[f ]f∥p < 1

if and only if f(0) ̸= 0. In this case,

∥1− q0,p[f ]f∥rp ⩽
Ar/(r−1)

(1 +A1/(r−1))r
+

A

(1 +A1/(r−1))r
< 1,

where K and r are the relevant upper Pythagorean parameters and

A := K

∥∥∥∥f − f(0)

zf(0)

∥∥∥∥r
p

Proof. There is no harm in first assuming f(0) = 1, so suppose f = 1+ zφ ∈ Hp, with φ nonzero. Then for
0 < c ⩽ 1, we have ∫

T
(1− c)⟨p−1⟩zφ dm = 0.

Consequently, (1− c) ⊥p zφ holds, and by Theorem 2.2 we have

1− cf(z) = (1− c) + (−czφ(z))
∥1− cf∥rp ⩽ (1− c)r +K∥czφ∥rp

= (1− c)r +Kcr∥φ∥rp, (4.2)
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where r and K are the applicable Pythagorean parameters.
Write A := K∥φ∥rp. By elementary calculus, the expression

(1− c)r +Acr

is critical when

0 = r(1− c)r−1(−1) + rAcr−1

(1− c)r−1 = Acr−1

c =
1

1 +A1/(r−1)
.

Thus the expression (4.2) takes the minimum value

Ar/(r−1)

(1 +A1/(r−1))r
+

A

(1 +A1/(r−1))r
,

and hence it suffices to show this quantity is less than 1.
Indeed, it is elementary to see that for any B > 0 we have

Br
(
1 +

1

B

)
< Br

(
1 +

1

B

)r
Br−1 +Br < (1 +B)r

Br−1 +Br

(1 +B)r
< 1.

Substituting B = A1/(r−1), we conclude

∥1− cf∥rp ⩽
Ar/(r−1)

(1 +A1/(r−1))r
+

A

(1 +A1/(r−1))r
< 1.

More generally, for f(0) ̸= 0, apply the above argument to f(z)/f(0), and make the corresponding change
to the definition of A.

Conversely, if f(0) = 0, then the Mean Value Property for subharmonic functions immediately yields the
minimal choice c = 0.

Proposition 4.11. Let 2 < p < ∞ and n ∈ N. Suppose that f ∈ Hp has inner part J , with J(0) ̸= 0. Let
also w1, . . . , wk be the roots (counting multiplicities) of qn,p[f ] in D, then

|w1 · · ·wk| ⩾
1

|J(0)|

1−

(
(p− 1)∥f − f(0)∥2p

|f(0)|2 + (p− 1)∥f − f(0)∥2p

)p/2
1/2

.

Proof. First note that

∥1− q0,p[f ]f∥pp ⩾ ∥1− qn,p[f ]f∥pp ⩾ 1− |w1 · · ·wkJ(0)|2,

and apply the upper bound for ∥1− q0,p[f ]f∥pp from Lemma 4.10. For 2 < p <∞, the parameters are r = 2
and K = p− 1, and the bound simplifies to

∥1− q0,p[f ]f∥2p ⩽
A

A+ 1
, where A =

(p− 1)∥f − f(0)∥2p
|f(0)|2

.

Straightforward computation now yields the desired result.
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5 Concluding Remarks and Open Questions
We end with a few comments and questions.

Remark 5.1 (The cases 0 < p ≤ 1 and p = ∞). As is well known, the solution of extremal problems similar
to problems considered in this paper need not be unique in Hp for 0 < p ⩽ 1 and p = ∞. Nevertheless, it
would be interesting to see what one can say about metric projections and OPAs in those spaces. Birkhoff-
James orthogonality does not hold for 0 < p < 1, since the dual space is trivial. Along the same lines,
it is natural to ask if the tools developed here can give a new unified proof of Beurling’s Theorem for all
0 < p < ∞, versus diverting the proof to the case p = 2 via factorization of Hp functions as is done in [32,
p. 98]. We also note that for p = ∞, as soon as any OPA vanishes in D, it must vanish identically by the
Maximum Principle.

Remark 5.2 (Outer factor in the extremal function). When p = 2, the projection of 1 onto a nontrivial
closed z-invariant subspace gives a constant times an inner function, while for 1 < p < ∞ (p ̸= 2), we get a
non-constant outer function times an inner function. It would be interesting to gain a better understanding
of why a non-constant outer function appears in the projection in the Banach space setting, versus the
Hilbert space setting.

Remark 5.3 (Universality). The continuity of metric projections implies that, given any compact set K,
the mapping Qn : H

p \ {0} → C(K), which takes a function f to its OPA qn,p[f ], is continuous. This was
a key ingredient for establishing the existence of functions in H2 whose optimal polynomial approximants
have universal approximation properties on subsets of the unit circle with zero arclength measure (see [9,
Proposition 2.1]). The second main ingredient in proving the universality result is the following formula,
which describes the explicit dependence of an OPA on its outer part (see [9, Proposition 2.2]): If g is an inner
function in H2 and f ∈ H2 \ {0}, then qn,2[fg] = g(0)qn,2[f ]. Thus, it is natural to examine the analogous
result for the Hp setting, which could provide results about universality in the Hp setting.

Remark 5.4 (Dynamics of zeros). It would also be interesting to study the interplay between the dynamics
of the zeros of Hp functions and the corresponding extremal problem (3.9). Moving a zero of a Blaschke
product J closer to the unit circle gives rise to a smaller distance between 1 and the corresponding z-invariant
subspace generated by J (as seen from the distance formula in Theorem 3.3). For example, if J has zeros
a1, a2, . . ., then infh∈Hp ∥1 − Jh∥pp = 1 − |a1a2 · · · |2. So, if a zero a1 wanders closer to the unit circle, the
corresponding distance decreases. Along the same lines, it would be interesting to study the zeros of the
first degree OPA as p varies, for a fixed f . It is known, for instance, that if f is a bounded analytic function,
then the linear OPA for 1/f varies uniformly with p [20, Lemma 3.1.1]; moreover, if f is inner, then the
root of this linear OPA is bounded from the origin by an amount depending only on p [19, Theorem 5.1.3].
Recall also that in H2 and in certain other Dirichlet-type Hilbert spaces, as long as 1/f is not analytic in the
closed disk, although the zeros of the OPAs stay outside the closed unit disk, a Jentzsch-type phenomenon
occurs [10]: that is, every point on the unit circle is a limit of the zeros of the OPAs of 1/f . Does such a
Jentzsch-type phenomenon occur in Hp for p ̸= 2?

Remark 5.5 (Bergman spaces). Finally, the notion of z-invariant subspaces and corresponding extremal
problems as considered in Sections 3 and 4 can easily be reformulated for Bergman spaces of analytic
functions. Recall that for 0 < p <∞, the Bergman space Ap is defined as

Ap :=

{
f ∈ Hol(D) : ∥f∥pAp :=

∫
D
|f(z)|p dA(z) <∞

}
,

where dA is normalized area measure on the unit disk. For 1 ⩽ p < ∞, Ap is a Banach space. The
lattice of z-invariant subspaces is much more complicated in Ap than in Hp, and elements of this lattice
are not necessarily singly-generated (see [2, 34]). Moreover, there is no factorization of Ap functions as
transparent as the factorization of functions in Hardy spaces. However, the notion of an inner function has

15



been meaningfully extended to Bergman spaces: a function G ∈ Ap is called Ap-inner if for n = 0, 1, 2, . . .,
we have ∫

D
(|G(z)|p − 1) zn dA(z) = 0.

Thus, if G is an Ap-inner function and we consider the z-invariant subspace M = [G]Ap , one can investigate
metric projections of 1 onto M in a way that is analogous to investigating metric projections of 1 onto
z-invariant subspaces in Hp. Following results in [33] for p = 2, the orthogonal projection of 1 onto [G]A2

is given by G(0)G, as is true within the analogous setup in H2. Therefore, it is natural to guess that for
1 < p <∞ (p ̸= 2), the metric projection of 1 onto [G]Ap gives a cyclic vector times G, in analogue with the
conclusion of Theorem 3.4 (here, a function f ∈ Ap being cyclic means that [f ]Ap = Ap).
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