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Abstract. It is known that for every continuous real-valued
function f on the circle T there exists a change of variable, i.e.,
a self-homeomorphism h of T, such that the superposition f ◦ h

is in the Sobolev space W
1/2
2 (T). In this paper we obtain certain

results on simultaneous improvement of functions by a single home-
omorphism. The main result is as follows: there does not exist a

self-homeomorphism h of T such that f ◦ h ∈ W
1/2
2 (T) for every

f ∈ C1/2(T). Here C1/2(T) is the space of all functions on T satisfy-
ing the Lipschitz condition of order 1/2.
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1. Introduction. Given an integrable function f on the circle T =
R/2πZ consider its Fourier expansion:

f(t) ∼
∑
k∈Z

f̂(k)eikt, t ∈ T.

Recall that the Sobolev space W
1/2
2 (T) is the space of all (integrable) func-

tions f satisfying

∥f∥
W

1/2
2 (T) =

(∑
k∈Z

|f̂(k)|2|k|
)1/2

< ∞. (1)

In what follows, by C(T) we denote the space of all continuous complex-
valued functions on T (with the usual sup -norm). Given a modulus of
continuity ω, i.e., a nondecreasing continuous function on [0,+∞) with
ω(0) = 0, by Cω(T) we denote the space of all complex-valued functions
f on T satisfying ω(f, δ) = O(ω(δ)), δ → +0, where

ω(f, δ) = sup
|t1−t2|≤δ

|f(t1)− f(t2)|, δ ≥ 0,

is the modulus of continuity of f . For 0 < α ≤ 1 we just write Cα instead
of Cδα .
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It is known that certain properties of functions in C(T) related to their
Fourier transform can be improved by an appropriate change of variable, i.e.,
a self-homeomorphism of T. The first result in this area is due to Bohr and
Pál, who proved that for every real-valued function f in C(T) there exists a
self-homeomorphism h of T such that the superposition f ◦h belongs to the
space U(T) of functions with uniformly convergent Fourier series. In addi-
tion, the proof yields a condition on the decay of the Fourier coefficients of

f ◦h; namely, f̂ ◦ h ∈
⋂

p>1 l
p(Z). Subsequently, for certain function spaces,

naturally arising in harmonic analysis, the question of whether every con-
tinuous function can be transformed by a suitable homeomorphic change of
variable into a function that belongs to a given space, was studied by var-
ious authors. Some of these studies concern the possibility of simultaneous
improvement of several functions by means of a single change of variable.
For a survey on the subject see [3], [10]. More recent results are obtained
in [2], [5–8]. 1

The following improved version of the Bohr–Pál theorem was obtained
in [11] (see also [5, Sec. 3], [7], [2]): for every real-valued f ∈ C(T) there

exists a self-homeomorphism h of T such that f ◦ h ∈ W
1/2
2 (T). (Recall

that, as is well known, W
1/2
2 ∩ C(T) ⊆ U(T).) It is worth noting that

while the original proof of the Bohr–Pál theorem is based on the Riemann’s
theorem on conformal mappings, subsequent investigations mostly involve
real-analytic methods.

The first result on simultaneous improvement of functions was obtained
in [4] (see also [3, Sec. 2], [10, Sec. 4]). Namely: if K is a compact set in
C(T), then there exists a self-homeomorphism h of T such that f ◦h ∈ U(T)
for every f ∈ K. Equivalently, this means that given an ω one can get
f ◦ h ∈ U(T) for every f ∈ Cω(T). This result naturally leads to a question

whether it is possible to obtain f ◦ h ∈ W
1/2
2 (T) for every f ∈ K. The

negative answer was obtained in [5, Th. 4], as it turned out, in general, there
is no single change of variable which will bring two real-valued functions in
C(T) into W

1/2
2 (T). In other words there exists a complex-valued f ∈ C(T)

such that f ◦ h /∈ W
1/2
2 (T) whenever h is a self-homeomorphism of T.

In this paper we obtain some further results on simultaneous improve-
ment of functions in relation with the space W

1/2
2 (T).

In Sec. 2 we consider the family of all translations SF of an arbitrary

1We note that in [5] C(T) stands for the space of all real-valued continuous functions
on T.
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function F ∈ C(T):
SF = {F (·+ θ), θ ∈ T}

and show that if F is of analytic type (see the definition in Sec.2) and F

is not in W
1/2
2 (T), then there is no homeomorphism which will bring all

functions in SF into W
1/2
2 (T).

In Sec. 3 for an arbitrary function F ∈ C(T) we consider the family KF

of all convolutions of F with probability measures:

KF = {F ∗ λ, λ ∈ P (T)},

where P (T) is the set of all probability measures on T. We show that if

F /∈ W
1/2
2 (T), then there is no homeomorphism which will bring all functions

in KF into W
1/2
2 (T).

We note that both SF and KF are compact sets in C(T). and obviously

SF ⊆ KF . It is also obvious that if λ ∈ P (T), then |F̂ ∗ λ(k)| ≤ |F̂ (k)|, k ∈
Z. Thus, if F ∈ W

1/2
2 (T), then SF and KF are contained in W

1/2
2 (T) and

there is nothing to improve.
In Sec. 4 we obtain the main result of the paper. Namely, we show that

there is no homeomorphism which will bring all functions in C1/2(T) into

W
1/2
2 (T). This result is the direct consequence of the result on translations

(as well as of that on convolutions) and the known fact that C1/2(T) ⊈
W

1/2
2 (T). We note that earlier it was shown [6] that if α < 1/2 then there

exist two real-valued functions in Cα(T) such that there is no single change

of variable which will bring them into W
1/2
2 (T). The author does not know if

such a pair of functions can be found in C1/2(T). It is also worth noting that
if α > 1/2 then the functions in Cα(T) do not require an improvement since

for these α we have Cα(T) ⊆ W
1/2
2 (T). The imbedding follows from the

known equivalence of the seminorm ∥ · ∥
W

1/2
2 (T) (see (1)) and the seminorm

∥|f |∥
W

1/2
2 (T) =

(∫ ∫
[0,2π]2

|f(x)− f(y)|2

|x− y|2
dxdy

)1/2

. (2)

The concluding Sec. 5 contains certain remarks, open problems and the
shortest, known to the author, proof of the refined version of the Bohr–Pál
theorem.
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2. Translations of a continuous function of analytic type. Let
F ∈ C(T). For each θ ∈ T define the function Fθ by Fθ(t) = F (t + θ).
Consider the family SF of translations of F :

SF = {Fθ, θ ∈ T}.

Clearly, SF is a compact set in C(T).
By C+(T) we denote the class of all continuous functions of analytic type

on T, i.e., of those F ∈ C(T), which satisfy F̂ (k) = 0 for all k < 0.

Clearly, if F ∈ W
1/2
2 (T), then SF ⊆ W

1/2
2 (T). On the other hand the

following theorem holds.

Theorem 1. Let F ∈ C+(T). Suppose that F /∈ W
1/2
2 (T). Then there

does not exist a self-homeomorphism h of T such that f ◦ h ∈ W
1/2
2 (T) for

every f ∈ SF .

To prove the theorem we need Lemma 1 below which has a technical
character and will also be used in the next section. By V (T) we denote the
class of all functions of bounded variation on T. Before we proceed to the
lemma note that the bilinear form

B(x, y) =
1

2π

∫
T
x(t)dy(t)

is defined for x ∈ C(T), y ∈ V (T) and is invariant with respect to self-
homeomorphisms of T, namely, if h is a homeomorphism, then B(x ◦ h, y ◦
h) = B(x, y). In addition we note that if x, y ∈ W

1/2
2 (T), then

∑
k∈Z |x̂(−k) ik ŷ(k)| <

∞.

Lemma 1. Let x ∈ C(T), y ∈ V (T) and x, y ∈ W
1/2
2 (T). Then

(i)
1

2π

∫
T
x(t)dy(t) =

∑
k∈Z

x̂(−k) ik ŷ(k);

(ii)

∣∣∣∣ 12π
∫
T
x(t)dy(t)

∣∣∣∣ ≤ ∥x∥
W

1/2
2 (T)∥y∥W 1/2

2 (T).

Proof. Part (ii) follows immediately from (i). To verify (i) note that
since

1

2π

∫
T
e−iktdy(t) = − 1

2π

∫
T
y(t)de−ikt = iky(k),
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then (i) holds in the case when x is a trigonometric polynomial. In the
general case it suffices to approximate x by the Fejér sums:

σN(x)(t) =
∑
|k|≤N

(
1− |k|

N

)
x̂(k)eikt.

Indeed, by what we have already proved, we see that

1

2π

∫
T
σN(x)(t)dy(t) =

∑
|k|≤N

(
1− |k|

N

)
x̂(−k) ik ŷ(k). (3)

Let N → ∞. Since the sequence of the polynomials σN(x) converges uni-
formly to x, we have

1

2π

∫
T
σN(x)(t)dy(t) →

1

2π

∫
T
x(t)dy(t)

and it remains to note that the right-hand side in (3) tends to the right-hand
side in (i). The lemma is proved.

Proof of Theorem 1. We have F ∈ C(T) and

F (t) ∼
∑
n≥0

cne
int,

where, by the assumption, ∑
n≥0

|cn|2n = ∞. (4)

Suppose that, contrary to the assertion of the theorem, there exists a
self-homeomorphism h of T such that Fθ ◦ h ∈ W

1/2
2 (T) for all θ ∈ T.

Consider the sets Tm ⊆ T, m = 1, 2, . . . , defined by

Tm = {θ ∈ T : ∥Fθ ◦ h∥W 1/2
2 (T) ≤ m}.

Note that the sets Tm, m = 1, 2, . . . , are closed (we leave the proof to the
reader). Since at the same time

T =
∞⋃

m=1

Tm,
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then, using the Baire category theorem, we see that there exists an m0 and
an interval I ⊆ T such that ∥Fθ ◦ h∥W 1/2

2 (T) ≤ m0 for all θ ∈ I. Replacing,

if needed, h with h + γI , where γI is the center of I, one can assume that
I = (−δ0, δ0), where 0 < δ0 ≤ π. Thus,

∥Fθ ◦ h∥W 1/2
2 (T) ≤ m0 for all θ ∈ (−δ0, δ0). (5)

For 0 < δ < δ0 set

F δ(t) =
1

2δ

∫ δ

−δ

F (t+ θ)dθ.

Note that for all δ, 0 < δ < δ0, we have F δ ◦ h ∈ W
1/2
2 (T) and

∥F δ ◦ h∥
W

1/2
2 (T) ≤ c for all δ ∈ (0, δ0), (6)

where c > 0 does not depend on δ. To see this it suffices to use (5) and the
equivalence of the seminorms (1) and (2).

It is clear that F δ is continuous and of bounded variation. So, F δ ◦ h
is also continuous and of bounded variation. Using Lemma 1 (see (ii)) and
(6), we see that for all δ ∈ (0, δ0)∣∣∣∣ 12π

∫
T
F δ(t)dF δ(t)

∣∣∣∣ = ∣∣∣∣ 12π
∫
T
F δ ◦ h(t)d(F δ ◦ h)(t)

∣∣∣∣ ≤
≤ ∥F δ ◦ h∥

W
1/2
2 (T)∥F

δ ◦ h∥
W

1/2
2 (T) ≤ c2, (7)

where the bar stands for the complex conjugation.
Let χδ =

1
2δ
1(−δ,δ), where 1(−δ,δ) is the indicator function of the interval

(−δ, δ). Obviously, F δ = F ∗ χδ and χ̂δ(k) =
1
2π

sin kδ
kδ

for k ̸= 0. By Lemma
1 (see (i)) we obtain

1

2π

∫
T
F δ(t)dF δ(t) =

∑
k∈Z

F̂ δ(k)ikF̂ δ(k) = i
∑
k∈Z

|F̂ δ(k)|2k =

= i
∑
k∈Z

|F̂ (k)|2|χ̂δ(k)|2k = i
∑
n≥1

|cn|2
(

1

2π

sinnδ

nδ

)2

n.

Thus (see (7)), for all δ ∈ (0, δ0)∑
n≥1

|cn|2
(

1

2π

sinnδ

nδ

)2

n ≤ c2.
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Chose a positive integer N . We see that for all δ ∈ (0, δ0)

N∑
n=1

|cn|2
(
sinnδ

nδ

)2

n ≤ (2πc)2.

Let δ → +0. We obtain

N∑
n=1

|cn|2n ≤ (2πc)2,

which contradicts (4), since N was chosen arbitrarily. The theorem is
proved.

3. Convolutions of a continuous function with probability mea-
sures. Let P (T) be the class of all probability measures on T. Given a
function F ∈ C(T) consider the family KF of convolutions of F with the
measures in P (T):

KF = {F ∗ λ, λ ∈ P (T)}.

Clearly, KF is a compact set in C(T). As we mentioned in the introduction,

if F ∈ W
1/2
2 (T), then KF ⊆ W

1/2
2 (T). On the other hand the following

theorem holds.

Theorem 2. Let F ∈ C(T). Suppose that F /∈ W
1/2
2 (T). Then there

does not exist a self-homeomorphism h of T such that f ◦ h ∈ W
1/2
2 (T) for

every f ∈ KF .

As above, for a θ ∈ T the function Fθ is defined by Fθ(t) = F (t+ θ). To
prove Theorem 2 we will need two lemmas.

Lemma 2. Let x ∈ C(T). Let φ be a continuous mapping of T into
itself. Then for every ν ∈ Z the function x̂θ ◦ φ(ν) is continuous on T and

1

2π

∫ 2π

0

|x̂θ ◦ φ(ν)|2dθ =
∑
k∈Z

|x̂(k)|2|êikφ(ν)|2. (8)

Proof. The continuity of x̂θ ◦ φ(ν) is obvious. To prove (8), assume
first that x is a trigonometric polynomial. Then (there is a finite number of
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nonzero summands in the sum)

xθ(t) = x(t+ θ) =
∑
k

x̂(k)eik(t+θ),

whence
xθ ◦ φ(t) =

∑
k

x̂(k)eikφ(t)eikθ.

So,

x̂θ ◦ φ(ν) =
∑
k

x̂(k)êikφ(ν)eikθ,

and (using Parseval’s identity) we obtain (8). In the general case, given
x ∈ C(T) we obtain (8) by approximation of x by the Fejér sums. Indeed,
by what we have already proved, we have

1

2π

∫ 2π

0

|(σN(x)θ ◦ φ)∧(ν)|2dθ =
∑
|k|≤N

|x̂(k)|2
(
1− |k|

N

)2

|êikφ(ν)|2

and tending N → ∞ we obtain (8). The lemma is proved.

It is clear that for the identity homeomorphism h0(t) = t we have
∥eikh0∥

W
1/2
2 (T) = |k|1/2, k ∈ Z. The following lemma shows that the cor-

responding lower bound can not be improved by a change of variable.

Lemma 3. Let h be a self-homeomorphism of T. Let k ∈ Z. Assume
that eikh ∈ W

1/2
2 (T). Then ∥eikh∥

W
1/2
2 (T) ≥ |k|1/2.

Proof. Applying Lemma 1 (see (ii)), we obtain

|k| =
∣∣∣∣ 12π

∫
T
eikxde−ikx

∣∣∣∣ = ∣∣∣∣ 12π
∫
T
eikh(t)de−ikh(t)

∣∣∣∣ ≤ ∥eikh∥2
W

1/2
2 (T)

.

The lemma is proved.

Proof of Theorem 2. Assume, that there exists a homeomorphism h
such that (F ∗ λ) ◦ h ∈ W

1/2
2 (T) for every measure λ ∈ P (T). Let M(T)

be the Banach space of all measures µ on T with the usual norm ∥µ∥M(T),
equal to the variation of µ. Each µ ∈ M(T) is a linear combination of two
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probability measures, so we see that (F ∗µ)◦h ∈ W
1/2
2 (T) for all µ ∈ M(T).

Obviously the space W
1/2
2 (T) is a Banach space with respect to the norm

∥ · ∥◦
W

1/2
2 (T)

= ∥ · ∥L2(T) + ∥ · ∥
W

1/2
2 (T).

Consider the operator Q : M(T) → W
1/2
2 (T) defined by

Qµ = (F ∗ µ) ◦ h

Using standard argument, namely the closed graph theorem, we see that Q
is a bounded operator (we leave to the reader to verify that all assumptions
of the closed graph theorem hold). Thus for each µ ∈ M(T) we have

∥(F ∗ µ) ◦ h∥
W

1/2
2 (T) ≤ ∥(F ∗ µ) ◦ h∥◦

W
1/2
2 (T)

≤ c∥µ∥M(T),

where c > 0 is independent of µ. In particular, for µ = δθ, where δθ is the
unit mass at θ, taking into account that Fθ = F ∗ δθ, we see that

∥(Fθ ◦ h∥W 1/2
2 (T) ≤ c (9)

for all θ ∈ T.
Note that for each k ∈ Z we can find a positive integer m(k) so that∑

|ν|≤m(k)

|êikh(ν)|2|ν| ≥ |k|/2.

Indeed, if eikh ∈ W
1/2
2 (T) the existence of m(k) follows from Lemma 3, while

if eikh ̸∈ W
1/2
2 (T), the existence of m(k) is obvious.

Chose now an arbitrary positive integerN and letM(N) = max|k|≤N m(k).
Then for all k ∈ Z with |k| ≤ N we have∑

|ν|≤M(N)

|êikh(ν)|2|ν| ≥ |k|/2. (10)

At the same time, applying Lemma 2, we see that

1

2π

∫ 2π

0

|F̂θ ◦ h(ν)|2dθ ≥
∑
|k|≤N

|F̂ (k)|2|êikh(ν)|2,

9



whence (by multiplying by |ν| and summing up over |ν| ≤ M(N)) we obtain

1

2π

∫ 2π

0

∑
|ν|≤M(N)

|F̂θ ◦ h(ν)|2|ν|dθ ≥
∑
|k|≤N

|F̂ (k)|2
∑

|ν|≤M(N)

|êikh(ν)|2|ν|.

Taking (9) and (10) into account, we see that

c2 ≥
∑
|k|≤N

|F̂ (k)|2(|k|/2),

which contradicts the assumptions of the theorem since N was chosen arbi-
trarily. The theorem is proved.

4. The class C1/2(T). Main result. Obviously, if α > 1/2 then

Cα(T) ⊆ W
1/2
2 (T) (see (2)). On the other hand the function

F (t) =
∑
n≥0

2−n/2ei2
nt,

is in C1/2(T) (see, e.g., [1, Ch. XI, Sec. 6]) but is not in W
1/2
2 (T). Thus, an

immediate consequence of Theorem 1 as well as that of Theorem 3, is the
following Theorem 3.

Theorem 3. There does not exist a self-homeomorphism h of T such
that f ◦ h ∈ W

1/2
2 (T) for every f ∈ C1/2(T).

5. Remarks. 1. Given two real-valued functions u and v in C1/2(T),
does there exists a change of variable h such that u ◦ h and v ◦ h are in
W

1/2
2 (T) ? (This question was already mentioned in the introduction.)
2. If F ∈ C(T) is real-valued and θ ∈ T, θ ̸= 0, does there exists h such

that F ◦ h and Fθ ◦ h are in W
1/2
2 (T) ? What if F ∈ C1/2(T) ?

3. It is unclear if one can replace C+(T) with C(T) in Theorem 1.
4. For s > 0 the Sobolev spaceW s

2 (T) is defined as the space of integrable

functions f on T with
∑

k∈Z |f̂(k)|2|k|2s < ∞. It is known [5, Corollary 3]
that if K is a compact set in C(T), then there exists a self-homeomorphism
h of T such that f ◦ h ∈

⋂
s<1/2W

s
2 (T) for every f ∈ K.

5. There exists a real-valued f ∈ C(T) such that f ◦ h /∈
⋃

s>1/2W
s
2 (T)

whenever h is a self-homeomorphism of T. This is a simple consequence of
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the inclusion
⋃

s>1/2W
s
2 ∩C(T) ⊆ A(T), where A(T) is the Wiener algebra of

absolutely convergent Fourier series, and the result obtained in [9] (see also
[10, Th. 3.2]): there exists a real-valued f ∈ C(T) such that f ◦ h ̸∈ A(T),
for every self-homeomorphism h.

6. We provide now the shortest, known to the author, proof of the
refined version of the Bohr–Pál theorem. Implicitly it is contained in the
proof of Theorem 4 in [5] and is based on the same idea as the original proof
that involves the Riemann’s theorem on conformal mappings. Suppose that
f ∈ C(T) is real-valued. Without loss of generality we may assume that
f(t) > 0 for all t ∈ T. Consider the curve γ in the complex plane C given
by γ(t) = f(t)eit, t ∈ [0, 2π]. This is a closed continuous curve without
intersections. By Ω we denote the interior domain bounded by γ. Consider
a conformal mapping G of the unit disc D = {z ∈ C : |z| < 1} onto Ω. As
is known, G extends to a homeomorphism of the closure D of D onto the
closure Ω of Ω and, being thus extended, G yields a homeomorphism of the
circle ∂D = {z ∈ C : |z| = 1} onto the boundary ∂Ω of Ω. Retaining the
notation G for the extension we see that the function g(t) = G(eit) is of
the form g(t) = γ(h(t)), where h is a self-homeomorphism of the segment
[0, 2π]. At the same time, it is known that π

∑
n≥0 |ĝ(n)|2n is the area of Ω.

Thus, γ ◦ h ∈ W
1/2
2 (T). It remains to observe that f ◦ h = |γ ◦ h| and use

the fact that for an arbitrary function F the condition F ∈ W
1/2
2 (T) implies

|F | ∈ W
1/2
2 (T), which is obvious since the seminorms defined by (1) and (2)

are equivalent.
A stronger result, based on the theorem on conformal mappings, is ob-

tained in [2], see also [7].
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les séries de Fourier, in: Topics in Modern Harmonic Analysis, Vol.
II, Ist. Naz. Alta Mat. Francesco Severi, Roma, 1983, 955–990.

11
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