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Sobolev spaces W; /2; simultaneous improvement of
functions by a homeomorphism of the circle

VLADIMIR LEBEDEV

Abstract. It is known that for every continuous real-valued
function f on the circle T there exists a change of variable, i.e.,
a self-homeomorphism h of T, such that the superposition f o h
is in the Sobolev space VV21 / 2('IF). In this paper we obtain certain
results on simultaneous improvement of functions by a single home-
omorphism. The main result is as follows: there does not exist a
self-homeomorphism h of T such that foh € VV21 / *(T) for every
f € CY%(T). Here C'/2(T) is the space of all functions on T satisfy-
ing the Lipschitz condition of order 1/2.
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1. Introduction. Given an integrable function f on the circle T =
R /277 consider its Fourier expansion:

Ft) ~Y " flk)e*,  teT.

keZ

Recall that the Sobolev space W, / *(T) is the space of all (integrable) func-
tions f satisfying

R 1/2
g = (S IFOPH) <o 1)

kEZ

In what follows, by C(T) we denote the space of all continuous complex-
valued functions on T (with the usual sup -norm). Given a modulus of
continuity w, i.e., a nondecreasing continuous function on [0, +o0c) with
w(0) = 0, by C¥(T) we denote the space of all complex-valued functions
f on T satisfying w(f,0) = O(w(9)), § — 40, where

w(f,0)= sup |[f(t1) = f(t2)l,  6=>0,

|t17t2|S5

is the modulus of continuity of f. For 0 < a < 1 we just write C'* instead

of %",
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It is known that certain properties of functions in C(T) related to their
Fourier transform can be improved by an appropriate change of variable, i.e.,
a self-homeomorphism of T. The first result in this area is due to Bohr and
P4l, who proved that for every real-valued function f in C(T) there exists a
self-homeomorphism h of T such that the superposition f oh belongs to the
space U(T) of functions with uniformly convergent Fourier series. In addi-
tion, the proof yields a condition on the decay of the Fourier coefficients of
f o h; namely, ﬁo\h € ﬂp>1 [P(Z). Subsequently, for certain function spaces,
naturally arising in harmonic analysis, the question of whether every con-
tinuous function can be transformed by a suitable homeomorphic change of
variable into a function that belongs to a given space, was studied by var-
ious authors. Some of these studies concern the possibility of simultaneous
improvement of several functions by means of a single change of variable.
For a survey on the subject see [3], [10]. More recent results are obtained
in [2], [5-8]. !

The following improved version of the Bohr—Pal theorem was obtained
in [11] (see also [5, Sec. 3], [7], [2]): for every real-valued f € C(T) there

exists a self-homeomorphism h of T such that foh € W,"*(T). (Recall

that, as is well known, W;/Q N C(T) € U(T).) It is worth noting that
while the original proof of the Bohr—Pal theorem is based on the Riemann’s
theorem on conformal mappings, subsequent investigations mostly involve
real-analytic methods.

The first result on simultaneous improvement of functions was obtained
in [4] (see also [3, Sec. 2|, [10, Sec. 4]). Namely: if K is a compact set in
C(T), then there exists a self-homeomorphism h of T such that foh € U(T)
for every f € K. Equivalently, this means that given an w one can get
foh e U(T) for every f € C¥(T). This result naturally leads to a question
whether it is possible to obtain f o h € WQI/Q(T) for every f € K. The
negative answer was obtained in [5, Th. 4], as it turned out, in general, there
is no single change of variable which will bring two real-valued functions in
C(T) into W, / ?(T). In other words there exists a complex-valued f € C(T)
such that foh & W, / ?(T) whenever h is a self-homeomorphism of T.

In this paper we obtain some further results on simultaneous improve-
ment of functions in relation with the space W, / *(T).

In Sec. 2 we consider the family of all translations S of an arbitrary

'We note that in [5] C(T) stands for the space of all real-valued continuous functions
on T.



function F' € C(T):
Sp={F(-+40),0ecT}
and show that if F' is of analytic type (see the definition in Sec.2) and F
is not in W, / *(T), then there is no homeomorphism which will bring all
functions in Sp into W, / (T).
In Sec. 3 for an arbitrary function F' € C(T) we consider the family Kp
of all convolutions of F' with probability measures:

Kr={Fs\ \eP(T)},

where P(T) is the set of all probability measures on T. We show that if
F¢Ww, / ?(T), then there is no homeomorphism which will bring all functions
in Kp into W,"*(T).

We note that both Sp and Kp are compact sets in C(T). and obviously
Sr C Kp. It is also obvious that if A € P(T), then |]*{>l<\)\(k:)| < |]3(k)|, ke
Z. Thus, if F € W,”*(T), then Sp and K are contained in W,’*(T) and
there is nothing to improve.

In Sec. 4 we obtain the main result of the paper. Namely, we show that
there is no homeomorphism which will bring all functions in C*/2(T) into
W, / ?(T). This result is the direct consequence of the result on translations
(as well as of that on convolutions) and the known fact that C'/*(T) ¢
W, / ?(T). We note that earlier it was shown [6] that if @ < 1/2 then there
exist two real-valued functions in C*(T) such that there is no single change
of variable which will bring them into W, /2 (T). The author does not know if
such a pair of functions can be found in C*/?(T). It is also worth noting that
if @ > 1/2 then the functions in C*(T) do not require an improvement since
for these o we have C*(T) C Wzl/z(']l'). The imbedding follows from the

known equivalence of the seminorm || - |;1/2 o (see (1)) and the seminorm
2

. 2 1/2

The concluding Sec. 5 contains certain remarks, open problems and the
shortest, known to the author, proof of the refined version of the Bohr—Pal
theorem.



2. Translations of a continuous function of analytic type. Let
F € C(T). For each # € T define the function Fy by Fy(t) = F(t + 0).
Consider the family Sg of translations of F"

Sp = {Fg, VRS T}

Clearly, S is a compact set in C(T).

By C*(T) we denote the class of all continuous functions of analytic type
on T, i.e., of those ' € C(T), which satisfy F(k) = 0 for all k < 0.

Clearly, if F € W,"*(T), then Sp C W,/*(T). On the other hand the

following theorem holds.

Theorem 1. Let F € CT(T). Suppose that F ¢ W21/2(T). Then there

does not exist a self-homeomorphism h of T such that foh € W21/2(’]I‘) for
every f € Sp.

To prove the theorem we need Lemma 1 below which has a technical
character and will also be used in the next section. By V(T) we denote the
class of all functions of bounded variation on T. Before we proceed to the
lemma note that the bilinear form

Bla) = 5= [ alt)du

is defined for x € C(T), y € V(T) and is invariant with respect to self-
homeomorphisms of T, namely, if h is a homeomorphism, then B(x o h,y o

h) = B(z,y). In addition we note that if z,y € W,/*(T), then ¥, _, [F(—k) ik G(k)| <
Q.

Lemma 1. Let x € C(T), y € V(T) and x,y € W;/Q(T). Then

() 3 [ e0an(t) = S a=bik (b
@ | [eo)] < Nl g

Proof. Part (ii) follows immediately from (i). To verify (i) note that

since ) .
—ikt

— dy(t) = ——

27T Te y( ) 27T T

y(t)de_ikt =iky(k),
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then (i) holds in the case when z is a trigonometric polynomial. In the
general case it suffices to approximate = by the Fejér sums:

KIN A~/
on(@)(t) = 3 ( - %)x(k)e 3
|k|<N
Indeed, by what we have already proved, we see that

1

2r Jn

o0 = ¥ (1= )a-nikan. )

[k|<N

Let N — oo. Since the sequence of the polynomials oy (z) converges uni-
formly to x, we have

1
27TT

o (@)Odn(®) = 5- [ 2(Ody(t)

and it remains to note that the right-hand side in (3) tends to the right-hand
side in (i). The lemma is proved.

Proof of Theorem 1. We have F' € C'(T) and
F(t) ~ chemt,
n>0
where, by the assumption,
Z len*n = oco. (4)
n>0

Suppose that, contrary to the assertion of the theorem, there exists a
self-homeomorphism h of T such that Fy o h € Wy/*(T) for all § € T.
Consider the sets T,,, CT, m =1,2,..., defined by

Tn={0€T: ||F90h||W21 ) < m}.

/2(T

Note that the sets T,,, m = 1,2, ..., are closed (we leave the proof to the
reader). Since at the same time

m=1
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then, using the Baire category theorem, we see that there exists an mg and
an interval I C T such that ||Fp o hle/z(T) < my for all § € I. Replacing,
2

if needed, h with h 4+ v, where v; is the center of I, one can assume that
= (=0, 0p), where 0 < §y < . Thus,

||F9 o hHWQl/Q(’I[‘) S mo for all 60 € (—(50, 50) (5)

For 0 < § < dq set
s 1 [
F°(t) = — a )
(t) 25/5 (t+ 0)do

Note that for all 6, 0 < § < &, we have F9 o h € Wy'*(T) and
| F? o h||w21/2(1r) <c¢ forall §€(0,d), (6)

where ¢ > 0 does not depend on §. To see this it suffices to use (5) and the
equivalence of the seminorms (1) and (2).

It is clear that F? is continuous and of bounded variation. So, F° o h
is also continuous and of bounded variation. Using Lemma 1 (see (ii)) and
(6), we see that for all § € (0, dp)

‘— F‘S()dF(S ‘ ‘— F5oh()d(F‘$oh)(t)§

< ||F6 © hHW;/Q(T)HF(S © hHW21/2(T) < 027 (7>

where the bar stands for the complex conjugation.

Let x5 = 251( _s5,5), Where 1(_ss) is the indicator function of the interval
(—4,6). Obviously, F¥ = F x x; and {3(k) = =52k for k£ 0. By Lemma
1 (see (i)) we obtain

—/F5 (t)dF(t) ZF5 kYik Fo (k —ZZW )2k =

kEZ k€EZ

1 sinnd
=iy |F(k)[Xs(k ]k—zZ]cn\Q( )n

keZ n>1

Thus (see (7)), for all § € (0, do)

Z| n|2<21 Smné) n<
7r

n>1




Chose a positive integer N. We see that for all § € (0, dg)

al sinnd >
Z |cn|2( > ) n < (2mc)?.
n=1

Let 6 — +0. We obtain

N

Z lcn|?n < (27¢)?,

n=1

which contradicts (4), since N was chosen arbitrarily. The theorem is
proved.

3. Convolutions of a continuous function with probability mea-
sures. Let P(T) be the class of all probability measures on T. Given a
function F' € C(T) consider the family Kp of convolutions of F' with the
measures in P(T):

Krp={Fx*X Xe P(T)}.
Clearly, Kr is a compact set in C(T). As we mentioned in the introduction,

it F' e W;/Z(T), then Kp C W;/Z(T). On the other hand the following
theorem holds.

Theorem 2. Let F € C(T). Suppose that F ¢ W;m(T). Then there

does not exist a self-homeomorphism h of T such that foh € WQ/Q(T) for
every f € Kp.

As above, for a 6 € T the function Fy is defined by Fy(t) = F(t+6). To
prove Theorem 2 we will need two lemmas.

Lemma 2. Let x € C(T). Let ¢ be a continuous mapping of T into
itself. Then for every v € Z the function Ty o ¢(v) is continuous on T and

[ i = RO ®

kEZ

Proof. The continuity of Zp o ¢(v) is obvious. To prove (8), assume
first that = is a trigonometric polynomial. Then (there is a finite number of
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nonzero summands in the sum)

xg(t) t + 0 Z zk t+9

k

Ty o 90 E /‘ zkcp 1k9‘

k

Tgo p(v E z(k eZk‘P ekl
k

and (using Parseval’s identity) we obtain (8). In the general case, given
x € C(T) we obtain (8) by approximation of = by the Fejér sums. Indeed,
by what we have already proved, we have

o [ ov@aoerwika = 3 k(1= ) 1@

|k|<N

whence

So,

and tending N — oo we obtain (8). The lemma is proved.

It is clear that for the identity homeomorphism ho(t) = ¢ we have
lle lkhOHWl/Q = |k|'/2, k € Z. The following lemma shows that the cor-

respondmg lower bound can not be improved by a change of variable.

Lemma 3. Let h be a self-homeomorphism of T. Let k € 7. Assume
that ¢*" € W,'*(T). Then ||eZkh||W1/2 > |Kk|V2.

Proof. Applying Lemma 1 (see (ii)), we obtain

i/eikxde—ikx i/eikh(t)d —ikh(t)
2w T 2T T

The lemma is proved.

<™ 52

k| =

(T)"

Proof of Theorem 2. Assume, that there exists a homeomorphism h
such that (F '« \)oh € W;/2(T) for every measure A € P(T). Let M(T)
be the Banach space of all measures p on T with the usual norm ||x|ar(r),
equal to the variation of u. Each p € M(T) is a linear combination of two



probability measures, so we see that (F'xpu)oh € WQI/Q(T) for all 4 € M(T).
Obviously the space VVQ1 / 2(']1‘) is a Banach space with respect to the norm

I ”;VQUQ(T) = [ le2emy + 11+ vy
Consider the operator @ : M(T) — W21/2(T) defined by

Qu=(Fxp)oh

Using standard argument, namely the closed graph theorem, we see that )
is a bounded operator (we leave to the reader to verify that all assumptions
of the closed graph theorem hold). Thus for each p € M(T) we have

ICE" > 1) 0 hllyyarzmy < W ) 0 RlG10 < cllllare),

where ¢ > 0 is independent of u. In particular, for y = dg, where dy is the
unit mass at 6, taking into account that Fp = F' * dg, we see that

[(F o hllyarsgy < € (9)

forall € T.
Note that for each k € Z we can find a positive integer m(k) so that

ST e ) Py] > [kl/2.

[v|<m(k)

Indeed, if ¢*" € W,/?(T) the existence of m(k) follows from Lemma 3, while
if e*n ¢ W,/?(T), the existence of m(k) is obvious.

Chose now an arbitrary positive integer N and let M (N) = max|g<n m(k).
Then for all k& € Z with |k] < N we have

ST e ) Pv] > k] /2. (10)
[V|<M(N)

At the same time, applying Lemma 2, we see that

1 2
— | (R oh()Pdo = Y |F(k)Ple* ()],
0

27
lk|<N



whence (by multiplying by |v| and summing up over |v| < M(N)) we obtain

/ 3 |Fgoh Plldo > ST IRWE S e ).
0

W|<M(N k<N WI<M(N)

Taking (9) and (10) into account, we see that

=Y \F(k)2(1k]/2),

|k|<N

which contradicts the assumptions of the theorem since N was chosen arbi-
trarily. The theorem is proved.

4. The class C'/?(T). Main result. Obviously, if & > 1/2 then
C*(T) C W;/Q(']I‘) (see (2)). On the other hand the function

F(t) = 22%/261’2“1&7

n>0

is in C'/2(T) (see, e.g., [1, Ch. XI, Sec. 6]) but is not in W;/Q(T). Thus, an
immediate consequence of Theorem 1 as well as that of Theorem 3, is the
following Theorem 3.

Theorem 3. There does not exist a self-homeomorphism h of T such
that foh € W21/2(T) for every f € CY*(T).

5. Remarks. 1. Given two real-valued functions u and v in C''/2(T),
does there exists a change of variable h such that w o h and v o h are in
W, / *(T)? (This question was already mentioned in the introduction.)

2. If F € C(T) is real-valued and 6 € T, 6 # 0, does there exists h such
that F o h and Fy o h are in W,/*(T)? What if F € CV/2(T)?

3. It is unclear if one can replace C*(T) with C(T) in Theorem 1.

4. For s > 0 the Sobolev space W3 (T) is defined as the space of integrable
functions f on T with Y, _, |F(k)|2|k|* < oo. Tt is known [5, Corollary 3]
that if K is a compact set in C(T ) then there exists a self-homeomorphism
h of T such that foh €, W5(T) for every f € K.

5. There exists a real-valued f € C(T) such that foh ¢ U, W3(T)
whenever h is a self-homeomorphism of T. This is a simple consequence of
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the inclusion (., , WsNC(T) € A(T), where A(T) is the Wiener algebra of
absolutely convergent Fourier series, and the result obtained in [9] (see also
[10, Th. 3.2]): there exists a real-valued f € C(T) such that foh ¢ A(T),
for every self-homeomorphism h.

6. We provide now the shortest, known to the author, proof of the
refined version of the Bohr—P4&l theorem. Implicitly it is contained in the
proof of Theorem 4 in [5] and is based on the same idea as the original proof
that involves the Riemann’s theorem on conformal mappings. Suppose that
f € C(T) is real-valued. Without loss of generality we may assume that
f(t) > 0 for all t € T. Consider the curve v in the complex plane C given
by ~v(t) = f(t)e", t € [0,2r]. This is a closed continuous curve without
intersections. By {2 we denote the interior domain bounded by ~. Consider
a conformal mapping G of the unit disc D = {z € C: |z| < 1} onto §2. As
is known, G extends to a homeomorphism of the closure D of D onto the
closure Q of Q and, being thus extended, G yields a homeomorphism of the
circle 0D = {z € C : |z| = 1} onto the boundary 02 of Q. Retaining the
notation G for the extension we see that the function g(t) = G(e) is of
the form g(t) = ~v(h(t)), where h is a self-homeomorphism of the segment
[0, 27]. At the same time, it is known that 7Y -, [g(n)|?n is the area of Q.

Thus, yoh € ng/z(’]l‘). It remains to observe that f o h = |y o h| and use
the fact that for an arbitrary function F the condition F € W, / *(T) implies
|F| e W, /2 (T), which is obvious since the seminorms defined by (1) and (2)
are equivalent.

A stronger result, based on the theorem on conformal mappings, is ob-
tained in [2], see also [7].
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