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Abstract. We construct a geodesic net in the plane with four boundary (unbalanced) vertices that has 25
balanced vertices and that is irreducible, i.e. it does not contain nontrivial subnets.

This net is novel and remarkable for several reasons: (1) It increases the previously known maximum

for balanced vertices of nets of this kind from 16 to 25. (2) It is, to our knowledge, the first such net that
includes balanced vertices whose incident edges are not exhibiting symmetries of any kind. (3) The approach

taken in the construction is quite promising as it might have the potential for generalization. This would

allow to construct a series of irreducible geodesic nets with four boundary vertices and an arbitrary number
of balanced vertices, answering a conjecture that the number of balanced vertices is in fact unbounded for

nets with four boundary vertices. This would stand in stark contrast to the previously proven theorem that

for three boundary vertices, there can be at most one single balanced vertex.

1. Introduction

Given two points in a Riemannian manifold, any geodesic segment connecting the two is a critical point of
the length functional on the space of curves connecting them. We can generalize this approach to consider
embedded graphs connecting a given set of three or more boundary points. The critical points of the length
functional on such a space of embedded graphs are geodesic nets. For a graph to be a geodesic net, every edge
must be a geodesic segment. Additionally, except for the boundary vertices (also called unbalanced vertices),
all other vertices of a geodesic net must be balanced vertices, as described in the following combinatorial
definition.

Definition 1.1. Let S be a finite set of points in a Riemannian manifold M . Given a connected, finite
graph G = (V,E) embedded in M and a subset of vertices S ⊂ V , we call G a geodesic net with boundary
vertex set S if:

(i) Every edge in E is a geodesic segment.
(ii) At each of the remaining vertices v ∈ V \S (the “balanced vertices”) the following balancing condition

holds: The sum of all unit vectors in the tangent space TvM directed along all edges from v to the
opposite end of each edge is equal to zero.

As such, geodesic nets are a generalization of geodesic segments (which can be viewed as one-edge geodesic
nets), and also a 1-dimensional analog of minimal surfaces. Their study, both regarding classification and
regarding quantitative questions, is an area with a wealth of unanswered questions and open conjectures (see
[NP23] for an overview of several of them). One of these questions is due to Gromov (see [Gro09], p.799,
where he considers a more general concept of edge-extremal graphs).

Question 1.2 (M. Gromov). Can the number of balanced vertices of a geodesic net in the Euclidean plane
be bounded above in terms of the number of unbalanced vertices?

Note that this question naturally assumes that we do not allow degree two balanced vertices, as such
vertices could be added and removed along any geodesic segment at will. Furthermore, we do not allow
weighted edges with integer multiplicity (see [NP23] for comparisons between geodesic nets and geodesic
multinets), and we are focusing on connected geodesic nets.

While we will focus on the Euclidean plane further below, it is worth noting what happens in the context
of other geometries. To that end, consider the following more general version of Question 1.2.
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Question 1.3. For certain geometries, can the number of balanced vertices of a geodesic net be bounded
above in terms of the number of unbalanced vertices?

One archetypical geometry to consider Question 1.3 in is the round 2-sphere. In this case, the answer is
“no” and rather trivially so: Combining an arbitrary number of great circles leads to geodesic nets with no
unbalanced but an arbitrarily large number of balanced vertices (at the intersections of the great circles).
On the other hand, there are other fascinating questions about the possible shapes of geodesic nets on the
round sphere. Questions of existence of geodesic nets with certain shapes are considered in [HM96] and
[Hep99]. In a more general setup, [Ade20] considers bounds on the number of balanced vertices of certain
geodesic nets in manifolds homeomorphic to the n-sphere.

Another archetype is the plane endowed with a Riemannian metric. If we require that the curvature is
everywhere nonpositive, it is immediate that nets with zero, one or two unbalanced vertices have no balanced
vertices (in the case of two unbalanced vertices, the only option is a geodesic segment connecting the two
since we do not allow degree two balanced vertices). This makes the case of three unbalanced vertices the
first of particular interest.

If three boundary vertices in the flat plane form a triangle with all interior angles less than 2π/3, then
we can add their Fermat point to get a shaped gedoesic net with a single balanced vertex. One set of
conditions under which such a “generalized Fermat point” exists in non-flat metrics is considered in [Ngu25].

As it turns out, one such balanced point is the maximal number for three boundary points on a plane
with nonpositive curvature, as was shown in [Par21]. In other words, in this particular situation the answer
to Question 1.3 is “yes”.

Theorem 1.4. Each geodesic net with three unbalanced vertices (of arbitrary degree) on the plane endowed
with a Riemannian metric of non-positive curvature has at most one balanced vertex. (Furthermore, this
statement is not true if we allow for positive curvature.)

The natural follow-up scenario are geodesic nets with four boundary vertices. Very little is known with
regards to the above question, even in the Euclidean plane. We will now focus on that geometry, i.e. we
return to Question 1.2.

As an example, consider the geodesic net shown on the left of Figure 1.1, as constructed in [Par21]. While
it does demonstrate that a quite significant number of balanced vertices are possible, it isn’t particularly
complex as it is an overlay of seven simpler tree-shaped geodesic nets, as shown on the right of the figure.

This observation motivated the definition of irreducible geodesic nets in [Par22].

Definition 1.5. (i) Given two geodesic nets G′ and G, we say that G′ is a subnet of G if G′ is a
subgraph of G and the boundary vertex set of G′ is a subset of the boundary vertex set of G.

(ii) A geodesic net G is irreducible if for any geodesic net G′:

G′ is a subnet of G =⇒ G′ = G or G′ consists of a single point

In other words, a geodesic net is irreducible if it has only trivial subnets. This means, for example, that
the net on the left of Figure 1.1 is not irreducible, but each of the nets on the right is.

[Par22] provides the construction of an irreducible geodesic net with four boundary vertices that isn’t
just a tree and has 16 balanced vertices (see the top of Figure 1.2). It also includes the remark that it is
“tempting to conjecture that [the] example [constructed there] is one of a series of similar examples with
arbitrary large number of balanced vertices”. This is alluding to Conjecture 3.2.2 in [NP23], namely:

Conjecture 1.6. There exist geodesic nets in the Euclidean plane with 4 unbalanced vertices and an arbi-
trarily large number of balanced vertices. (Moreover, we will not be surprised if this assertion is already true
in the case when the set of unbalanced vertices coincides with the set of vertices of a square).
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Figure 1.1. Example of a geodesic net with 4 boundary vertices and 27 balanced vertices
on the Euclidean plane with the boundary vertices highlighted, as constructed in Section 7
of [Par21]. Despite its seemingly complex structure, it is just an overlay of 7 simpler nets
as seen on the right.

In other words, this conjecture claims that the answer to Question 1.2 is “No” for four or more unbalanced
vertices1. This would stand in stark contrast to the bound for three unbalanced vertices in Theorem 1.4.

Note that Conjecture 1.6 doesn’t require the respective nets to be irreducible. But given that irreducible
nets are the “building blocks” of any possible net, their study is particularly promising when it comes to
finding such a series of nets.

Seeing that the example in [Par22] has four boundary vertices and 16 balanced vertices, the following
question is posed in Section 3.2 of [NP23] in the sense of a “stepping stone” to proving Conjecture 1.6.

Question 1.7. Is there an irreducible geodesic net with 4 unbalanced vertices in the Euclidean plane with
more than 16 balanced vertices? If not, prove that such a geodesic net does not exist.

The main purpose of the present paper is to show that the answer to this question is yes.

Main Theorem. There exists an irreducible geodesic net with 4 boundary vertices and 25 balanced vertices.

This geodesic net can be seen at the bottom of Figure 1.2. We will provide its construction in Section 2,
and then prove that it fulfills the conditions of the Main Theorem. There are three important but technical
lemmas that we will use in the process. For better readability of the main construction, their proofs are
deferred and can be found separately in Section 4.

By comparing the two nets in Figure 1.2, namely the one previously constructed in [Par22] and the one
constructed below, it is not hard to notice that these nets have a very similar structure, as if they are the
first two steps in a series of nets. We consider this the second noteworthy result of this paper.

More specifically, the genesis of the net constructed below provides interesting approaches and methods
that might be useful in the quest for finding a series of geodesic nets with four boundary vertices and an
ever increasing number of balanced vertices (i.e. an answer to Conjecture 1.6). We will take a closer look at
this in Section 3 in the hope that it might inform future research on the topic.

1It is worth noting that [NP23] also mentions a different conjecture that it is possible to bound the number of balanced

vertices in terms of the number of unbalanced vertices and an additional quantity called the total imbalance. For more details,

including the definition of total imbalance, see that article.
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some angles
exaggerated

some angles
exaggerated

Figure 1.2. Two irreducible geodesic nets with 4 boundary vertices. At the top, the
example with 16 balanced vertices, constructed in [Par22]. At the bottom, the example
with 25 balanced vertices that we construct in the present paper. Note that in both cases,
some edges may seem to coincide due to angles being extremely small. This is why some
angles are slightly exaggerated in the zoom-ins.
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2. Construction of the Net

2.1. Conventions. The net will be symmetric under rotation by π/2, and also symmetric under reflection
along the horizontal, vertical, and the two diagonal lines. We will make heavy use of these symmetries in
the arguments, sometimes without explicit reference.

The construction of the net will use indices i ∈ {1, 2, 3, 4}. In the spirit of the rotational symmetry, we
will use cyclical indexing modulo 4, e.g. for an index i = 4, we have i+ 1 = 1.

For two points p, q ∈ R2, pq denotes the straight line segment between p and q whereas d(p, q) denotes
their Euclidean distance. Finally, ∠pqr denotes the counterclockwise angle from p to r at q.

2.2. Overview. The geodesic net that is about to be constructed is shown in its entirety at the bottom of
Figure 1.2. All vertices except for the four labelled boundary vertices are balanced.

2.3. The Two Angles α and β. The construction of the net will use specific angles α and β. These two
angles are chosen based on the following lemma.

Lemma 2.1. There is a unique solution (α, β) to the following system of equations under the constraint
that α ∈ (π, 13π

12 ) and β ∈ (0, π
2 ):

1 + cosβ + cosα+ cos
13π

12
+ cos

11π

6
= 0,

sinβ + sinα+ sin
13π

12
+ sin

11π

6
= 0,

The proof of this lemma is deferred to Section 4.

2.4. Construction of Inner Dodecagon: To start, we will construct the unique dodecagon (up to ro-
tation) with points {b1, a11, a12, b2, a21, a22, b3, a31, a32, b4, a41, a42} as shown in Figure 2.1, using these con-
straints:

• The interior angle at each bi is 2π/3.
• The interior angle at each ai1 and ai2 is 11π/12.
• d(bi, ai1) = d(ai2, bi+1) = 1 (note the modulo convention above)

• d(ai1, ai2) =
√
6·(1−tan(α))

tan(α)·tan(β)−1

For α and β given by Lemma 2.1, we get d(ai1, ai1) ≈ 0.7533. Naturally, the net could be scaled arbitrarily,
as long as the ratio between the two distances used is maintained.

a11 a12b1

a42

a41

b4

a32 a31
b3

a22

a21

b2

Figure 2.1. The dodecagon defined at the beginning of the construction
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2.5. Construction of the Balanced Vertices in the Interior of the Dodecagon. Denote by p the
center of the dodecagon. For example, p is the intersection of b1b3 and b2b4.

For each i ∈ {1, 2, 3, 4}, define the point fi as the Fermat point of the triangle ai1a12p, and connect fi
with an edge to each of the three corners of this triangle. An example for i = 2 can be seen in Figure 2.2.

Recall that the Fermat point is the unique point x in a triangle such that the angle at x between any two
corners of the triangle is 2π/3. It exists as long as all interior angles of the triangle are less than 2π/3. For
this triangle, it is apparent that the angles are significantly smaller (less than π/2 in fact), so fi is indeed
well-defined.

2.6. Construction of the Four Boundary Vertices. For each i ∈ {1, 2, 3, 4}, we fix a boundary vertex
di through the following constraints. An example of the construction for i = 2 is given in Figure 2.2, denoted
in red.

• ai1diai2 is an isosceles triangle.
• The interior angles at ai1 and ai2 are equal to β.
• The triangle lies outside the dodecagon.

Note that β is provided by Lemma 2.1, which means that β ∈ (0, π/2). Therefore, each di is uniquely
well-defined.

a22

a21

p d2f2

b3

b2

β

Figure 2.2. Construction of interior vertices p and f2 as well as the boundary vertex d2
with relevant connections to scale. The angle β is labeled.

2.7. Construction of Additional Balanced Vertices. For each i ∈ {1, 2, 3, 4} we define additional
balanced vertices ci, ei as follows.

Define ci as the point of intersection of a(i−1)2di and and ai1d(i−1). We connect ci with an edge to all four
of these vertices.

We will later use the following fact about angles:

Lemma 2.2. For each i ∈ {1, 2, 3, 4}, consider the edge from ai1 to ci, and the edge from ai1 to ai2. The
larger angle between these two edges at ai1 is equal to α as given by Lemma 2.1.

The proof of this lemma is postponed to Section 4.

Define ei as the Fermat point of the triangle cidid(i−1) and connect ei with an edge to the three corners
of this triangle.

An example of the situation surrounding bi, ci and ei is given in Figure 2.3 for i = 2.

While the ci can be added without a problem, the existence of ei depends on the following lemma:

Lemma 2.3. All three interior angles of the triangle cidid(i−1) are less than 2π/3 (and therefore, their
Fermat point ei exists).

The proof of this lemma is deferred to Section 4.
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b2
c2

e2

d1

d2

d1

d2

a12

a12

a21

a21

Figure 2.3. Construction of vertices c2 and e2 with relevant connections to scale.

2.8. Proof of irreducible geodesic net properties. For the constructed net to be an irreducible geodesic
net with four boundary vertices, the following properties must be fulfilled:

• None of the edges overlap, i.e. every edge has weight one.
• Except for the four boundary vertices, all vertices are balanced.
• The only subnets are trivial one-point subnets.

The first property is clear based on the construction of the net (the existence of edges with weight 2 or
more would require that some of the drawn segments are parallel, which is not the case). We will now prove
the second and third properties.

Lemma 2.4. Except for the boundary vertex set S = {d1, d2, d3, d4}, all vertices of the constructed geodesic
net are balanced.

Proof. Most of the non-boundary vertices can easily be shown to be balanced:

• Due to the symmetry of the construction, p is a degree 4 balanced vertex where two straight lines
intersect orthogonally.

• At ci, six edges meet. Four of them form an intersection of two straight lines by construction. The
other two lead to the Fermat points bi and ei. Due to the symmetry of the net, they also form a
straight line. Thus, ci is a degree 6 balanced vertex.

• Each bi is a Fermat point. More specifically, the dodecagon was designed such that the interior angle
at bi is 2π/3. Due to the reflective symmetry of the net, the other two angles at bi are equal to each
other and therefore also 2π/3.

• Each ei and fi is a Fermat point by virtue of the construction. It follows that each of them is a
degree 3 balanced vertex.

Proving that the vertices aij are balanced, on the other hand, is very much non-trivial. Making these
vertices balanced was the reason for choosing α and β as provided by 2.1.

Without loss of generality (due to rotational and reflective symmetry), we will argue that a32 is balanced.
A close-up of a32 is shown in Figure 2.4, where the vertices with apostrophes denote the direction of the
original vertices relative to a32.
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a32

d3

b4

c4

a31

f3

βα

Figure 2.4. Close-up structure of vertex a32 with angles exaggerated.

Notice that the direction (as a unit vector) of each edge emanating from a32 can be written in the form
of (cos θ, sin θ), where θ ∈ [0, 2π) is the usual polar coordinate angle. As in all figures so far, we orient the
net so that the edge from a32 to a31 is horizontal. If we denote by θq the respective angle for the edge from
a32 to the vertex q, we can write:

• θa31
= 0, by choice,

• θd3
= β, since d3 was defined specifically through this angle,

• θc4 = α, by Lemma 2.2,
• θb4 = 2π − 11π

12 = 13π
12 , since 11π

12 is the interior angle of the dodecagon here,

• θf3 = 2π− π
6 = 11π

6 , since π
6 is the interior angle of the isosceles triangle a32f3a31 whose angle at f3

is 2π/3 (f3 is a Fermat point).

Adding these unit vectors together gives the following conditions on a32 to be balanced:

1 + cosβ + cosα+ cos
13π

12
+ cos

11π

6
= 0,

0 + sinβ + sinα+ sin
13π

12
+ sin

11π

6
= 0,

These are exactly the equations that were chosen to define the angles α and β. It follows that a32 is balanced.

□

We will now consider the last property to prove.

Lemma 2.5. The geodesic net as constructed is irreducible, i.e. it has no non-trivial subnets.

Proof. Denote the net as constructed by G and let G′ be a subnet of G. As a first case, assume that at least
one edge incident to a32 (shown in figure 2.4) is not contained in G′.

Generally, this would leave the following options for a G′ and its relation to a32:

(1) G′ does not contain a32.
(2) G′ contains a32 and exactly one edge incident to it. This is impossible since degree 1 vertices can’t

be balanced.
(3) G′ contains a32 and exactly two edges incident to it. This is impossible since it would require the

two edges to form a straight line but no such subset of edges exist.
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(4) G′ contains a32 and exactly three edges incident to it. This is impossible since it would require three
edges with mutual angles being 2π/3 but no such subset of edges exists (see the previous proof for
the exact angles).

(5) G′ contains a32 and exactly four edges incident to it. This is impossible since it would require the
four edges to form two straight lines but no such subset of edges exist.

Only the first option is therefore possible. We will argue that it implies that G′ is trivial.

For that purpose, assume that G′ does not contain a32 (and therefore no edges incident to it). This means
that the neighbor a31 would lose one of its edges. By an argument analogous to the one above, a31 must not
be in G′ at all. This means that its neighbor b3 (a degree 3 Fermat point) would lose one of its edges and
its remaining two edges can’t balance b3. Therefore, b3 can’t be in G′. We can now continue analogously
around the entire dodecagon to conclude that none of the bi and aij are in G′.

p as well as the four fi are now disconnected from the boundary vertices and can’t be in G′.

At this point, each ci lost three of its edges, all on one side (compare figure 2.3) which means none of the
ci can remain in G′ by just using the remaining three edges. Lastly, each Fermat point ei now lost one of its
edges and therefore can’t be in G′. At this point, only the di are left. Since G′ must be connected, it must
now be a trivial geodesic net consisting of a single di.

The same argument can be repeated under the assumption that any other aij is missing at least one edge.
This means that for G′ to be nontrivial, it must contain all of the aij and all edges incident to those vertices.
By “inverting” the above argument, we could now argue that the entire dodecagon must be in G′, that then
also all other vertices must be in G′, and finally arrive at the point that G′ = G.

This proves that G is indeed irreducible. □

3. Towards a series of nets

In the context of Conjecture 1.6, we consider the present construction quite promising as it makes use of
several properties and methods some of which were (to our knowledge) not previously employed. They could
help with the construction of a series of geodesic nets as needed to prove the Conjecture. In the following,
we would like to highlight a few of them.

3.1. Using “irregular” vertices. It is an inherent property of degree 3 and degree 4 balanced vertices
that they are highly regular in their geometry: Degree 3 vertices must look like a Fermat point with equal
angles between edges, whereas degree 4 vertices are always just the intersection of two straight lines. In other
words, only at degree 5 and above can the incident edges have an irregular distribution, where “irregular”
means that the incident edges do not exhibit any rotational or reflective symmetries.

This leads us to an important qualitative distinction between the example previously constructed in [Par22]
and the present one. Namely, while the former does make use of degree 5 vertices, these vertices do have a
reflective symmetry. The present example, however, includes irregular vertices as shown in figure 2.4 that
have no symmetries (neither as a whole, nor for subsets of three or four edges).

We consider this a quite promising development, since such irregular vertices are a lot more versatile as a
tool to balance a net. In our case, we used them as the main “wiggle room” when finding a candidate net
through gradient descent (see below).

3.2. “Canceling” imbalance at the centre. There is another geometric approach that wasn’t employed
in [Par22]. The present net has a vertex in the centre at which some of the imbalance that is produced by
vertices arranged around the centre is being “canceled” by joining edges there. This is quite useful, and it
seems highly likely that any series in the sense of the Conjecture would need to make use of this approach.
We think this is the case since the four boundary vertices – due to their position relative to the “ring” of
vertices – can only handle a limited amount of imbalance per vertex.
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It seems to be a promising approach for future constructions to employ this “cancelation at the centre”
several (likely: an ever increasing number of) times to allow for more vertices in the ”ring” region.

3.3. Using gradient descent to find candidate nets. While we provide a proof that the net as con-
structed is balanced, we originally discovered its shape through an algorithmic approach.

Based on the shape of the net constructed in [Par22], we developed a dodecagon (instead of octagon)
based shape at the centre, adding additional Fermat-point-like vertices to achieve a roughly balanced net
based on visual inspection.

Specifically, we fixed a dodecagon of bi and aij with the same angles as as in figure 2.1, but (for now)
with all equal sides. We then added the fi as Fermat points towards the centre. All these vertices were kept
fixed. We then introduced the ci as points that lie on the two lines through b1/b3 and b2/b4, but kept their
distance from the centre p as a parameter t = d(ci, p). Once t is chosen and the ci are fixed, each di was also
fixed. For example, d2 lies on the intersection of the extended line segments a12c2 and a31c3. Lastly, the ei
as Fermat points were fixed as well.

This means that for any given value of t > d(bi, p) that makes the di well-defined, we get a unique net,
always of the same topology. All bi, ei and fi are balanced as Fermat points, all ci are balanced as degree
six balanced vertices. Only the aij were not necessarily balanced, leaving us necessary “wiggle room”.

Using computer software, we devised a tool that computed an approximation of the imbalance imb(aij)
for any given value of t. For a vertex v, imb(v) refers to the norm of the sum of all edge-unit-vectors at v,
i.e. v is balanced if and only if imb(v) = 0 (see also [NP23]). After some experimentation, we observed that,
indeed, for a small range of t-values, the approximation of imb(aij) appeared to be very close to zero.

We then moved on to further empirical verification using gradient descent. Consider the total imbalance
of all non-boundary vertices, i.e.:

L =
∑

v ̸∈{d1,d2,d3,d4}

imb(v)

If we fix all but one vertex v0 and consider L(v0) as a function of the position of this single vertex, one can
see that L is smooth, and that L ≥ 0 with equality if and only if G is a geodesic net where only the four di
are unbalanced vertices.

This is why we used a step-by-step gradient descent with L as a loss function as follows: We first fixed
the positions of all vertices close to those of the seemingly-balanced net from above. Using an algorithm in
python, we then went through all non-boundary vertices cyclically, each time adjusting the position of the
vertex based on its sum of incident unit vectors. This algorithm produced very strong empirical evidence
that the given topology can in fact produce a balanced net. Namely, for a wide variety of step sizes and
even for completely “off-the-chart” initial positions for the vertices, the net seemed to stabilize in a balanced
configuration.

Equipped with this empirical backing, we then embarked on a proof based on the idea that matching
angles α and β as required by Lemma 2.1 can be chosen to get a truly balanced net.

The gradient descent algorithm and an animation showing the process for one example can be found in
the Github repository https://github.com/zhr98971/GeoNet, under the files named algorithm 4 25.ipynb

and animation 4 25.gif respectively.

3.4. Attempts at generalizing the construction. The two geodesic nets in Figure 1.2 appear to be quite
similar. Specifically, note that they have an octagon and dodecagon “ring” of vertices respectively. This
leads to a natural follow-up question.

Question 3.1. Does there exist a series Gn, n ≥ 2 of geodesic nets similar in shape to those in Figure 1.2,
so that each Gn has a “ring” of 4n vertices (i.e. so that the two nets in the figure are G2 and G3 of such a
series)?

https://github.com/zhr98971/GeoNet
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So far we considered several possible structures of such geodesic nets, especially those with 8n+4 vertices
in the “ring”, and used the same optimization techniques involving the loss function L and gradient descent.
While these attempts so far only resulted in the algorithm converging towards what appear to be multinets
(i.e. geodesic nets with integer-weighted edges), we are cautiously optimistic that an “inductive construction”
in the sense of the above question can be found. This would provide a series as desired by Conjecture 1.6.

4. Auxiliary Proofs

There are three rather technical proofs that we previously deferred to this section.

Proof. (of Lemma 2.1) Rearrange the equations as follows:

cosβ = − 1− cosα− cos
13π

12
− cos

11π

6
,

sinβ = − sinα− sin
13π

12
− sin

11π

6
.

We have the given restriction that β ∈ (0, π
2 ), which implies that the above equations are true if and only if

the following equations are true:

β = f(α) := arccos

(
−1− cosα− cos

13π

12
− cos

11π

6

)
,

β = g(α) := arcsin

(
− sinα− sin

13π

12
− sin

11π

6

)
.

The functions f and g that we just defined are only well-defined if these inequalities are true:

−1 ≤ −1− cosα− cos
13π

12
− cos

11π

6
≤ 1

−1 ≤ − sinα− sin
13π

12
− sin

11π

6

(∗)
≤ 1

Due to the restriction that α ∈ (π, 13π/12), the first expression is decreasing in α. Verifying the values at
α = π and α = 13π/12, it follows that the bounds are fulfilled.

On the other hand, the second expression is increasing in α. Its minimum at α = π is within the lower
bound. The upper bound (marked with (∗)) is only fulfilled up to α = K := π−arcsin

(
−1− sin 13π

12 − sin 11π
6

)
<

13π/12.

Therefore, there is no solution (α, β) for the system of equations with α ∈ (K, 13π/2). Consequently, we
can focus on α ∈ (π,K] to see if there is a unique solution for that range.

Claim 1: The functions f and g are well defined, continuous on [π,K] and C1 on α ∈ (π,K).

Proof of Claim 1: We established that f and g are well-defined up to α = K above. It is now immediate
that they are continous and C1 as claimed, since both of them are defined through a combination of functions
having those properties.

Claim 2: There is a unique value α0 ∈ (π,K) such that f(α0) = g(α0).

Proof of Claim 2: For the function h(α) := f(α)−g(α), note that h(π) ≈ 0.6092 whereas h(K) ≈ −0.0704.
By the Intermediate Value Theorem (which applies thanks to Claim 1), an α0 ∈ (π,K) such that h(α0) = 0
exists.

For the uniqueness, it is a rather tedious but straightforward process to verify that for α ∈ (0,K):

h′(α) =
sinα√

1−
(
−1− cosα− cos 13π

2 − cos 11π
6

)2 − cosα√
1−

(
− sinα− sin 13π

2 − sin 11π
6

)2 < 0

So h is injective in the given range and there is indeed only one such α0.
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Now that Claim 2 is proven, recall that (α, β) is a solution to the original system of equations if and only
if β = f(α) = g(α). Therefore (α0, f(α0)) = (α0, g(α0)) is the unique solution as required by the lemma. □

Remark. The exact solution (α, β) yielded by this lemma is in fact known to us. It was found using a Python
script involving the package sympy. However, the expressions of the two angles are rather complicated and
tedious, and establishing that they do in fact solve the system of equations requires significant brute-force
work spreading across several pages. This is why we are only proving the existence of the solution here.

Proof. (of Lemma 2.2) Due to symmetry, we will focus on the case i = 2 which is shown in Figure 4.1. Note
that some angles are slightly exaggerated for better visibility.

b2

d2

b3

a22

a21

c3

c2

a31

a12

a′22

a′21

a′31

a′12

a′′22

a′′21

β

α′

a′′31

a′′12

Figure 4.1. Exaggerated local structure of the geodesic net in Figure 2.1.

We define the following additional points as seen in the figure:

• a′22 is the intersection of the line through d2 and a22 with a31a12.
• a′21 is the intersection of the line through d2 and a21 with a31a12.
• a′31 is the intersection of the line through a22 and a21 with a31d2.
• a′12 is the intersection of the line through a22 and a21 with a12d2.
• a′′12, a

′′
21, a

′′
22, a

′′
31 are the orthogonal projections onto a31a12 of a′12, a21, a22, a

′
31 respectively.

Define the angle α′ := ∠c2a21a22. To prove the lemma, we need to establish that α′ = α (recall that α is
provided by Lemma 2.1 and – like β – was used in the construction of the net).
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We will do so through the following equations:

d(a′31, a22)

d(a31, a′22)
=

d(a21, a22)

d(a′21, a
′
22)

(1)

d(a21, a22) =

√
6 · (1− tan(α))

tan(α) · tan(β)− 1
(2)

d(a′21, a
′
22) =

√
6 · (1− tan(α))

tan(α) · tan(β)− 1
+

√
6 · cot(β)(3)

d(a31, a
′
22) =

√
6

2
· (1− cot(β))(4)

d(a′31, a22) =

√
6

2
·
(
1− cot

(
3

2
π − α′

))
(5)

Before proving each of these equations, we will show that they imply that α′ = α as desired.

Plugging the other four equations into the first one yields

√
6
2 · (1− cot( 32π − α′))

√
6
2 · (1− cot(β))

=

√
6·(1−tan(α))

tan(α)·tan(β)−1
√
6·(1−tan(α))

tan(α)·tan(β)−1 +
√
6 · cot(β)

.(6)

After some elementary simplification, equation 6 becomes:

1− cot

(
3

2
π − α′

)
= 1− tan(α).(7)

Using the cotangent angle difference identity given by cot(θ − φ) = cot(θ) cot(φ)+1
cot(φ)−cot(θ) , we have:

cot

(
3

2
π − α′

)
=

cot
(
3
2π

)
cot(α′) + 1

cot(α′)− cot
(
3
2π

) =
0 · cot(α′) + 1

cot(α′)− 0
= tan(α′).(8)

We can use this to simplify the LHS of equation 7 to get:

1− tan(α′) = 1− tan(α).(9)

and therefore tanα′ = tanα. Generally, due to the periodicity of the tangent, the two angle arguments could
differ. However, α ∈ (π, 13π

12 ) ⊂ (π, 3π/2) by choice in Lemma 2.1, and it is apparent from the construction
that α′ is a reflex angle also in the range (π, 3π/2). Since the tangent is injective in this range, we get α = α′.
This is the desired result.

We are left to argue equations (1) to (5). Equation (1) follows directly from the Intercept Theorem and

the fact that a31a12 and a′31a
′
12 are two parallel line segments intersecting rays emanating from d2. Equation

(2) is true since we defined this to be the distance during the construction of the dodecagon. Equations (3),
(4) and (5) warrant individual proofs.

Proof of equations (3) and (4): Note that ∠c2a21a22 = 2π−α′. Notice that the net admits a reflective
symmetry on (d2, d4) and (d1, d3), so clearly ∠c2a21a22 = ∠c3a22a21 = 2π − α′.

Let a′22 be the intersect of the extension of (d2, a22) onto (a12, a31), and let a′′22 be the unique point on
(a12, a31) such that (a22, a

′′
22) ⊥ (a12, a31); define a′21 and a′′21 similarly (see Figure 4.1). Since (a12, a31) ∥

(a22, a21), we have ∠a′′22a
′
22a22 = ∠a21a22d2 = β by definition.

Recall that by construction, d(a31, b3) = d(b3, a22) = 1, and ∠a31b3a22 = 2
3π radians. It then naturally

follows that d(a31, a22) = 1 ·
√
3 =

√
3 (well known triangle ratio).

Further notice that the net admits a reflective symmetry on (b1, b3). This means that the points a31, a
′′
22, a22

form a right angle isosceles triangle with ∠a31a′′22a22 = π
2 . This means that d(a31, a

′′
22) = d(a′′22, a22) =

√
3√
2

(well known triangle ratio).
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For simplicity, denoteM := d(a′′22, a
′
22). Then using the above found values, we must have tan(β) =

√
3/

√
2

M ,

meaning M =
√
6
2 · cot(β). Since a′′21 and a′′22 are perpendicular extensions from a21 and a22 respectively,

we must have d(a21, a22) = L by definition. Thus, d(a′21, a
′
22) = d(a′21, a

′′
21) + d(a′′21, a

′′
22) + d(a′′22, a

′
22) =

2 ·M + L = L +
√
6 · cot(β) =

√
6·(1−tan(α))

tan(α)·tan(β)−1 +
√
6 · cot(β), and d(a31, a

′
22) =

√
3√
2
−M =

√
6
2 · (1 − cot(β)).

These are equations (3) and (4) respectively.

Proof of equation (5): Let a′31 be the intersect of the extension of (a21, a22) onto (d2, a31), and let a′′31
be the unique point on (a12, a31) such that (a′31, a

′′
31) ⊥ (a12, a31); define a′12 and a′′12 similarly (see Figure

4.1).

Since ∠c3a22a21 = 2π − α′, we must have ∠c3a22a′′22 = 3
2π − α′. By reflective symmetry on (b1, b3), we

also have ∠a′31a31a
′′
31 = ∠c3a31a′′22 = ∠c3a22a′′22 = 3

2π − α′. Since the vertices a′31a
′′
31a

′′
22a22 clearly form a

rectangle, we thus have d(a′′31, a
′
31) = d(a′′22, a22) =

√
3√
2
.

For simplicity, denote N := d(a31, a
′′
31). Then using the above found values, we must have tan( 32π−α′) =

√
3/

√
2

N , meaning N =
√
6
2 · cot( 32π − α′). Thus, we have d(a′31, a22) = d(a′′31, a

′′
22) =

√
3√
2
− N =

√
6
2 · (1 −

cot( 32π − α′)). This is equation (5). □

Proof. (of Lemma 2.3) Without loss of generality, consider the case i = 2. We need to show that the three
angles of the triangle c2d2d1 are less than 2π/3. Since it will be used below, recall that p denotes the center
of the entire net.

Due to symmetry, the triangle c2d2d1 is isosceles. Additionally, the triangle c2d2d1 lies inside the triangle
pd2d1 which is also isosceles. It follows that ∠d2c2d1 > ∠d2pd1 = π/2. Therefore, the two equal angles of
the triangle c2d2d1 are ∠d2d1c2 = ∠c2d2d1 = 1

2 (2π − ∠d2c2d1) < π/4 < 2π/3 as required.

It remains to show that ∠d2c2d1 < 3π/2. This will follow from the following chain of (in)equalities:

∠d2c2d1
(i)
= ∠a21c2a12

(ii)
< ∠a21b2a12

(iii)
= 2π/3

(i) is true since these two angles are opposite angles (remember that c2 was defined as the intersection of
the line segments d2a12 and d1a21).

(ii) is true because c2 lies on the line through p and b2 (by symmetry) and d(c2, p) > d(b2, p). This
inequality is due to the following: ∠c2a21a22 = α < 13π

12 by Lemma 2.2, and ∠b2a21a22 = 13π/12 by
construction. Therefore, c2 lies outside the dodecagon, further away from the center p than b2.

(iii) is true since we initially fixed this interior angle of the dodecagon to exactly this value. □
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