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Abstract. We first show that every isoparametric hypersurface in Sn×Rm or Hn×Rm

possesses a constant angle function with respect to the canonical product structure.
Exploiting this rigidity, we achieve a complete classification of isoparametric and ho-
mogeneous hypersurfaces in these product spaces. Furthermore, in the product of any
two real space forms, we prove that a hypersurface with both constant angle and con-
stant principal curvatures must be isoparametric. Consequently, for hypersurfaces in
Sn ×Rm and Hn ×Rm, the conditions of having constant angle and constant principal
curvatures are equivalent to being isoparametric.

1. Introduction

A smooth non-constant function F : M → R on a Riemannian manifold M is
called transnormal if there exists a smooth function b : R → R such that ∥∇F∥2 =
b(F ), where ∇F denotes the gradient of F . If, in addition, there exists a continuous
function a : R → R such that the Laplacian satisfies ∆F = a(F ), then F is said to
be isoparametric (cf. [42]). The regular level sets Σ = F −1(t) are correspondingly
referred to as transnormal or isoparametric hypersurfaces, respectively. As observed by
Élie Cartan, the transnormal condition implies that the level hypersurfaces are parallel,
while the isoparametric condition further guarantees that these parallel hypersurfaces
have constant mean curvatures. Moreover, in real space forms, Cartan proved that a
hypersurface is isoparametric if and only if it has constant principal curvatures.

The classification of isoparametric hypersurfaces in the Euclidean space Rn and
hyperbolic space Hn was completed by Cartan [3] and Segre [35] as early as in 1938.
By contrast, the Sn case remained a subtle and long-standing problem—indeed, S. T.
Yau listed it as Problem 34 in “Open Problems in Geometry” [34]. After decades of
contributions from numerous mathematicians [1, 4–8, 15, 16, 22, 23, 25, 27–31, 36–
38], a complete classification on the unit sphere Sn was finally achieved in 2020 [9]. A
natural continuation of this classical theme is to study the classification of isoparametric
hypersurfaces in the Riemannian product of two real space forms, Mn

c1 × Mm
c2 (c1, c2 ∈

{1, 0, −1}).
In order to classify isoparametric and homogeneous hypersurfaces in the product

manifold S2 × S2, Urbano [41] introduced in 2019 a natural product structure P on the
tangent bundle of S2 × S2, together with an associated angle function C defined on an
oriented hypersurface Σ. These constructions, in fact, extend verbatim to any product
of two real space forms Mn

c1 × Mm
c2 (c1, c2 ∈ {1, 0, −1}). Concretely, if a tangent vector
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decomposes as (v1, v2) according to the product splitting, the structure P is defined by:

P : X(Mn
c1 × Mm

c2 ) −→ X(Mn
c1 × Mm

c2 )
(v1, v2) 7−→ (v1, −v2).

With respect to the product metric, this tensor field satisfies P 2 = Id, and is parallel.
Let Σ ⊂ Mn

c1 ×Mm
c2 be an orientable hypersurface with unit normal vector field N . With

respect to the product metric, the associated angle function C is defined by

C : Σ −→ [−1, 1]
x 7−→ ⟨PN(x), N(x)⟩,

which measures the projection of the normal vector onto the ±1-eigenspaces of P . The
extreme values C = ±1 correspond to normals entirely contained in one factor, while
|C| < 1 indicates a genuine tilt between the two factors.

Recent works establish the following rigidity for isoparametric hypersurfaces:

Theorem ([11, 17, 18, 41]) In each of the spaces S2 × S2, S2 × R2, S2 × H2, H2 × H2,
H2 ×R2, Sn ×R, and Hn ×R (with n ≥ 2), all isoparametric hypersurfaces have constant
angle.

In this paper, we extend these results to higher dimension Euclidean factors:

Theorem 1.1. Let Σ be a connected isoparametric hypersurface in Sn ×Rm or Hn ×Rm.
Then the associated angle function C is constant along Σ.

Remark 1.2. In a forthcoming paper, shall investigate the remaining product types
Sn × Sm, Sn ×Hm, and Hn ×Hm, and establish a corresponding constant–angle property
for isoparametric hypersurfaces in these settings.

Remark 1.3. The case n ≥ 2 in Theorem 1.1 is proved in Section 5. The argument
used there does not apply when n = 1; nevertheless, Example 3.5 together with Theorem
1.4-(iii) yields a direct verification that Σ has constant angle function in the n = 1 case.

Urbano [41] obtained a complete classification of isoparametric hypersurfaces in
S2×S2 by constructing an efficient global frame adapted to the natural complex structures
on S2. Several subsequent works followed his strategy to treat other product models.
In 2018 Julio–Batalla [24] classified isoparametric hypersurfaces with constant principal
curvatures in S2 × R2; later, dos Santos–dos Santos [13] treated the case M2

c1 × M2
c2

with c1 ̸= c2. Gao–Ma–Yao [17] removed the constant principal curvatures assumption
in [13] and completed the classification; in a related work [18] they developed refined
geometric tools to treat H2 × H2. All these approaches crucially exploit the fact that
every two-dimensional real space form carries a natural complex structure, and therefore
their arguments do not generalize to higher dimensions (for instance, among all spheres
only S2 and S6 admit almost complex structures, while whether S6 carries a complex
structure remains the well-known Hopf problem [39, 40]).

It is also noteworthy that Ge-Radeschi [19] obtained a foliated diffeomorphism classi-
fication of codimension one singular Riemannian foliations (e.g. isoparametric foliation)
on all closed simply connected 4-manifolds (including S2 × S2). In addition, Qian-Tang
[32] provided an isoparametric hypersurface in Sn ×Sn and computed its curvature prop-
erties as well as the spectrum of the Laplace–Beltrami operator. More recently, Cui [10]
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provided further examples of isoparametric hypersurfaces by restricting certain isopara-
metric functions on S2n+1 to the product Sn × Sn.

From another perspective, building upon the local classification of constant an-
gle hypersurfaces in [12], de Lima and Pipoli [11] obtained a complete classification of
isoparametric hypersurfaces in Sn × R and Hn × R. They proved the following result:

Theorem ([11]) Isoparametric hypersurfaces in Mn
c × R (c = ±1) are precisely one of

the following:
(i) horizontal slice Mn

c × {t0};
(ii) a vertical cylinder over a complete isoparametric hypersurface in Mn

c ;
(iii) a parabolic bowl in Hn × R.

The classification above is based on the concept of (Ms, ϕ)-graphs. However, a direct
extension of this construction to vector-valued functions produces submanifolds of higher
codimension rather than hypersurfaces, thus does not apply when the Euclidean factor
has dimension m > 1.

We adopt a different approach. Inspired by Miyaoka [26] and through a focused
analysis along the special principal direction V = PN − CN , we establish the following
classification of isoparametric hypersurfaces in Mn

c × Rm (c = ±1). (Note that when
n = 1, only the case S1 × Rm needs to be considered, as H1 does not exist.)

Theorem 1.4. Let Σ be a connected complete isoparametric hypersurface in Mn
c × Rm

(c = ±1, m ≥ 2), i.e., in Sn × Rm or Hn × Rm. Up to ambient isometry, Σ is one of
the following:

(i) K1 × Rm, where K1 is an isoparametric hypersurface in Mn
c . For n = 1 this

reduces to {p} × Rm, p ∈ S1;
(ii) Mn

c × K2, where K2 is an isoparametric hypersurface in Rm;
(iii) Φ(Rm) ⊂ S1 × Rm, where Φ: Rm → S1 × Rm is the immersion defined by

x 7→
(

cos⟨x, x0⟩, sin⟨x, x0⟩, x
)
,

with ⟨·, ·⟩ denoting the standard inner product on Rm and x0 ∈ Rm \ {0} fixed;
(iv) Ψ(Rn+m−1) ⊂ Hn × Rm, where Ψ: Rn+m−1 → Hn × Rm is given by

(t, x, y) 7→
(
p(t, x), q(t, y)

)
,

with
p(t, x) = cosh

(
t
√

ε
)
γ1(x) + sinh

(
t
√

ε
)
Nγ1(x),

q(t, y) = γ2(y) + t
√

1 − εNγ2 ,

where γ1(x) is a horosphere in Hn with unit normal Nγ1, γ2(y) is an affine
hyperplane in Rm with constant unit normal Nγ2, and ε ∈ (0, 1) is a constant.

Remark 1.5. In a forthcoming paper, we shall generalize this classification to the re-
maining product types Sn × Sm, Sn × Hm and Hn × Hm.

As mentioned earlier, in real space forms, isoparametric hypersurfaces coincide with
hypersurfaces having constant principal curvatures. However, these two notions are no
longer equivalent in general Riemannian manifolds. For example, Rodŕıguez-Vázquez
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[33] constructed non-isoparametric hypersurfaces with constant principal curvatures in
the torus Tn (n ≥ 3), while Ge-Tang-Yan [21] exhibited isoparametric hypersurfaces in
CP n whose principal curvatures are not constant.

As the second main result of this paper, we consider hypersurfaces in the product
manifold Mn

c1 × Mm
c2 , and establish the following theorem.

Theorem 1.6. Let Σ be a connected hypersurface in Mn
c1 ×Mm

c2 . If Σ has constant angle
and constant principal curvatures, then it is isoparametric.

Combining Theorems 1.1, 1.4, with 1.6, we immediately obtain the following char-
acterization.

Corollary 1.7. Let Σ be a connected complete hypersurface in Sn×Rm or Hn×Rm. Then
Σ is isoparametric if and only if it has constant angle and constant principal curvatures.

Furthermore, by combining Corollary 1.7 with Theorem 1.4, we obtain a classifica-
tion of homogeneous hypersurfaces in Sn × Rm and Hn × Rm. This result generalizes
that of [11], which corresponds to the case m = 1.

Corollary 1.8. Let Σ be a homogeneous hypersurface in Mn
c × Rm (c = ±1, m ≥ 2),

i.e., in Sn × Rm or Hn × Rm. Up to ambient isometries, Σ is one of the following:
(i) K1 × Rm, where K1 is a homogeneous hypersurface in Mn

c . In the case n = 1,
this reduces to {p} × Rm with p ∈ S1;

(ii) Mn
c × K2, where K2 is a homogeneous hypersurface in Rm;

(iii) The hypersurface described in Theorem 1.4-(iii);
(iv) The hypersurface described in Theorem 1.4-(iv).

The paper is organized as follows. In Section 3, we prove Theorem 1.4 and verify
the homogeneity of the hypersurfaces listed therein. Section 4 is devoted to the proof of
Theorem 1.6. Finally, due to its length and technical nature, the proof of Theorem 1.1
is presented separately in Section 5.

2. Preliminaries

Let Σ be an orientable hypersurface in the product manifold Mn
c1 × Mm

c2 with global
unit normal vector field N . For any vector field X ∈ X(Mn

c1 × Mm
c2 ), we denote by Xh its

horizontal component tangent to Mn
c1 and by Xv its vertical component tangent to Mm

c2 .
Let A be the shape operator of Σ associated with N , and H the mean curvature of Σ.
The natural projection maps are given by

π1 : Mn
c1 × Mm

c2 −→ Mn
c1 , π2 : Mn

c1 × Mm
c2 −→ Mm

c2 ,

(x, y) 7−→ x, (x, y) 7−→ y.

For each (x, y) ∈ Σ, we define

Σy = π1
(
π−1

2 (y) ∩ Σ
)

and Σx = π2
(
π−1

1 (x) ∩ Σ
)
,

which represent the projections of Σ into the horizontal and vertical factors, respectively.



ISOPARAMETRIC HYPERSURFACES IN Sn × Rm AND Hn × Rm 5

Decompose the unit normal vector as N = (Nh, N v). The angle function C is then
accordingly given by
(2.1) C = ⟨PN, N⟩ = ∥Nh∥2 − ∥N v∥2 = C2

1 − C2
2 ,

where

C1 = ∥Nh∥ =
√

1 + C

2 , C2 = ∥N v∥ =
√

1 − C

2 .

Now we introduce a special tangent vector field V on Σ, which will play an important
role in the subsequent verification. It is defined by

(2.2) V = PN − CN =
(
(1 − C)Nh, −(1 + C)N v

)
.

It follows immediately that ∥V ∥2 = 1 − C2. Differentiating (2.1) and using the fact that
P is parallel, we obtain, for any tangent vector field X on Σ,

X(C) = ⟨∇X(PN), N⟩ + ⟨PN, ∇XN⟩
= −2⟨AX, V ⟩ = −2⟨X, AV ⟩.

Hence, the gradient of C is given by
(2.3) ∇ΣC = −2AV.

In the product Mn
c × Rm(c = ±1), the Riemannian curvature tensor Rc of the

product manifold Mn
c × Rm is given by

(2.4) Rc(X, Y )Z = c
(
⟨Xh, Zh⟩Y h − ⟨Y h, Zh⟩Xh

)
, ∀ X, Y, Z ∈ X(Mn

c × Rm).

3. Classification of Isoparametric Hypersurfaces

In this section, we aim to prove Theorem 1.4. For the fluency of expression, we begin
by preparing two propositions to characterize the focal points and principal frames of
transnormal hypersurfaces with constant angle in general Riemannian product manifolds
M1 × M2.

Proposition 3.1. Let Σ be a connected complete transnormal hypersurface in the Rie-
mannian product M1 × M2. If the angle function C is constant with −1 < C < 1, then
for any (x0, y0) ∈ Σ, the slices Σx0 and Σy0 are transnormal hypersurfaces in M2 and
M1, respectively.

Moreover, if (x, y) ∈ M1 × M2 is a focal point of Σ, then x is a focal point in M1
and y is a focal point in M2. Conversely, if x is a focal point in M1 or y is a focal point
in M2, then (x, y) is a focal point in M1 × M2.

Proof. Without loss of generality, let Σ = F −1(t) be a regular level set of a transnormal
function F : M1×M2 → R satisfying ∥∇F∥2 = b(F ). Denote by ∇h and ∇v the gradients
on M1 and M2, respectively.

For fixed points x0 ∈ M1 and y0 ∈ M2, define
Fx0 : M2 −→ R,

y 7−→ F (x0, y),
Fy0 : M1 −→ R,

x 7−→ F (x, y0).

Then Σx0 = F −1
x0 (t) and Σy0 = F −1

y0 (t). A straightforward computation yields

∥∇vFx0(y)∥2 = ∥∇vF (x0, y)∥2
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= 1 − C

2 ∥∇F (x0, y)∥2 = 1 − C

2 b
(
F (x0, y)

)
,

and the corresponding relation for Fy0 is analogous. Moreover, by (2.2)

exp(x0,y0)
2

1 − C
t(0, N v) = exp(x0,y0)

1
1 − C

t
(
(1 − C)N − V

)
= expexp(x0,y0)(− 1

1−C
tV ) tN,

and similarly,

exp(x0,y0)
2

1 + C
t(Nh, 0) = exp(x0,y0)

1
1 + C

t
(
(1 + C)N + V

)
= expexp(x0,y0)

1
1+C

tV tN.

Since −1 < C < 1, we have ∥V ∥2 = 1 − C2 ̸= 0. Hence V is a nonvanishing
tangent vector field on the complete hypersurface Σ. Therefore, exp(x0,y0) tV defines a
diffeomorphism for each t, and the differential of expy0 tN v (resp., expx0 tNh) has the
same rank as that of exp(x0,y0) tN . The desired conclusion follows.

□

Remark 3.2. When C ≡ 1, we have N = (Nh, 0). Thus, for any (x0, y0) ∈ Σ, Σy0 = M1
and Σx0 is a transnormal hypersurface in M2. Consequently, (x, y) ∈ M1 × M2 is a focal
point if and only if y ∈ M2 is a focal point. The case C ≡ −1 is analogous.

Proposition 3.3. Let Σ be a connected complete transnormal hypersurface with constant
angle function C in a Riemannian product Mn

1 × Mm
2 , and set V = PN − CN . If

−1 < C < 1, then at any point (x, y) ∈ Σ, there exists a local orthonormal frame{
1√

1 − C2
V, (X1, 0), . . . , (Xn−1, 0), (0, Yn), . . . , (0, Yn+m−2)

}
with respect to which the shape operator A of Σ satisfies

(3.1)


AV = 0,

⟨A(Xi, 0), (Xj, 0)⟩ = λiδij, i, j = 1, . . . , n − 1,

⟨A(0, Yα), (0, Yβ)⟩ = λαδαβ, α, β = n, . . . , n + m − 2.

Here, λi/C1 (i = 1, . . . , n − 1) are the principal curvatures of Σy in Mn
1 , and λα/C2

(α = n, . . . , n + m − 2) are the principal curvatures of Σx in Mm
2 . Moreover, the mean

curvature of Σ is given by H = ∑n+m−2
i=1 λi.

Proof. Denote by ∇, ∇h, and ∇v the Levi-Civita connections on Mn
1 × Mm

2 , Mn
1 , and

Mm
2 , respectively. Since the hypersurface Σ has a constant angle function C, for any

X ∈ X(Σy) and Y ∈ X(Σx), we have

⟨∇h
XNh, Nh⟩M1 = 1

2X⟨Nh, Nh⟩M1 = 0,

⟨∇v
Y N v, N v⟩M2 = 1

2Y ⟨N v, N v⟩M2 = 0.

Hence, the shape operators ANh of Σy ⊂ Mn
1 and ANv of Σx ⊂ Mm

2 satisfy

C1ANhX = −∇h
XNh + ⟨∇h

XNh, Nh⟩M1Nh = −∇h
XNh,

C2ANvY = −∇v
Y N v + ⟨∇v

Y N v, N v⟩M2N v = −∇v
Y N v.
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At each point (x, y) ∈ Σ, let {(Xi, 0)}n−1
i=1 be eigenvectors of ANh corresponding to

eigenvalues λi/C1, and {(0, Yα)}n+m−2
α=n be eigenvectors of ANv corresponding to eigenval-

ues λα/C2, respectively. Then we have
⟨A(Xi, 0), (Xj, 0)⟩ = −⟨∇(Xi,0)(Nh, N v), (Xj, 0)⟩ = −⟨∇h

Xi
Nh, Xj⟩Mn

1

= ⟨C1ANhXi, Xj⟩Mn
1

= λiδij

for any i, j = 1, . . . , n − 1 and similarly,
⟨A(0, Yα), (0, Yβ)⟩ = −⟨∇(0,Yα)(Nh, N v), (0, Yβ)⟩ = −⟨∇v

Yα
N v, Yβ⟩Mm

2

= ⟨C2ANvYα, Yβ⟩Mm
2

= λαδαβ

for any α, β = n, . . . , n + m − 2. Therefore, equation (3.1) follows. □

Now, we proceed to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. According to Theorem 1.1, the isoparametric hypersurface
Σ possesses a constant angle function C. The cases C = 1 and C = −1 correspond to
(i) and (ii), respectively; hence we assume −1 < C < 1 in the sequel.

We first consider the case n = 1, i.e., S1 × Rm, which leads to parts (i)–(iii) of the
classification. Recall the following result from [20].

Lemma 3.4 ([20]). Let π : E → B be a Riemannian submersion with minimal fibers.
Given any (properly) isoparametric function f on B, then F := f ◦ π is a (properly)
isoparametric function on E.

The universal cover π : R → S1, π(x) = e
√

−1x, has discrete (hence minimal) fibers,
and the induced covering map

π̃ : Rm+1 −→ S1 × Rm

(x, y) 7−→ (π(x), y)
is a Riemannian submersion with minimal fibers. By Lemma 3.4, it suffices to find
an isoparametric function F on Rm+1 satisfying F = f ◦ π̃, where f is an isoparametric
function on S1×Rm. Notice that the periodicity of π̃ implies that F (x+2kπ, y) = F (x, y)
for all x ∈ R and k ∈ Z.

If the foliation determined by F admits a focal manifold Σ0, the classification in
Rm+1 implies that Σ0 is either a single point or an affine subspace of dimension at most
m − 1. Moreover, for any (x, y) ∈ Σ0, the entire line R × {y} ⊂ Σ0; otherwise Σ0
would decompose into disjoint union of lower-dimensional affine subspaces, which does
not occur in the classification. Consequently, F (x + 2kπ, y) = F (x, y) for any y ∈ Rm,
and the identity F (x, y) = F (x′, y) holds for all x, x′ ∈ R, thereby proving Theorem
1.4-(ii).

If F admits no focal manifold, the classification in Rm+1 implies that its regular
level sets must be hyperplanes. The periodicity condition allows one to choose F (x, y) =
sin (x − κ⟨y, y0⟩), where y0 is a unit vector in Rm. When κ = 0, a connected component
of the regular level set of F corresponds to Theorem 1.4-(i); when κ ̸= 0, each connected
component of a regular level set of F can be parameterized as in Theorem 1.4-(iii).

Next, consider n ≥ 2, which leads to parts (i), (ii), and (iv). The constancy of C
implies that C1 and C2 are also constant. Denote by F the isoparametric function on
Mn

c × Rm associated with Σ.
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Case 1: Sn × Rm (n ≥ 2). For any (x, y) ∈ Σ, Proposition 3.1 shows that Σx and
Σy are regular level sets of transnormal functions on Rm and Sn, respectively, and hence
are isoparametric by [26, Theorem 1.5-(1)]. However, isoparametric hypersurfaces in Sn

have focal points that occur infinitely often along each normal geodesic. Using

exp(x,y) tN =
(

x cos C1t + sin C1t

C1
Nh, y + tN v

)
,

it follows that Σx would have infinitely many focal points in Rm, contradicting their
classification. Therefore, no isoparametric hypersurfaces with −1 < C < 1 exist in
Sn × Rm.

Case 2: Hn ×Rm. By [26, Theorem 1.1], the possible topological types of Hn ×Rm are
as follows:

(i) If the transnormal system has no focal submanifold: an R-bundle or S1-bundle
over a hypersurface Σ.

(ii) If there is one focal submanifold: either a vector bundle over the unique focal
submanifold Σ̃ or a DDBD structure.

(iii) If there are two focal submanifolds: a DDBD structure.
where DDBD (Double Disc Bundle Decomposition) structure means that the ambient
manifold is constructed by glueing two disc bundles over two submanifolds along the
boundaries.

The S1-bundle case is excluded since exp(x,y) tN ̸= (x, y) for any t ̸= 0.
The DDBD structure is also impossible. If Hn × Rm admitted a DDBD structure,

then for any point (x, y) ∈ Σ, the normal geodesic would intersect the focal manifold
infinitely many times, yielding infinitely many focal points along it. By Proposition 3.1,
this implies that Σx also has infinitely many focal points along the normal geodesic in
Rm, contradicting the known focal structure of isoparametric hypersurfaces in Rm.

As for the remaining two cases, we first show that Σy is an isoparametric hypersur-
face in Hn, since the isoparametricity of Σx in Rm follows from a similar discussion as in
Case 1. Furthermore, we will see that Σx is isometric to Σx′ and Σy is isometric to Σy′

for any (x, y), (x′, y′) ∈ Σ.

In case Hn × Rm is a vector bundle over its unique focal submanifold Σ̃, let Σ ⊂
Hn × Rm be the tube of constant radius t around Σ̃. For any (x, y) ∈ Σ, we have

exp(x,y)
2t

1−C
(0, N v) = expexp(x,y)(− t

1−C
V ) tN,

exp(x,y)
2t

1+C
(Nh, 0) = exp

exp(x,y)( t
1+C

V )
tN.

Hence Σx ⊂ Rm lies at distance t
C2

from its focal submanifold along the unit normal
N v/C2, and Σy ⊂ Hn lies at distance t

C1
along Nh/C1. Moreover, Σx has constant mean

curvature HΣx = ℓC2/t for some integer ℓ ∈ {1, . . . , m − 1}. Using Proposition 3.3, since
Σ has a constant angle function C ∈ (−1, 1),

HΣ(x, y) = C1HΣy(x) + C2HΣx(y),

and since HΣ, HΣx , C1 and C2 are constant, so is HΣy . Let Σt denote the parallel
hypersurface at distance t from Σ, and Σy,t the parallel hypersurface at distance t from
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Σy ⊂ Hn. Noting that

exp(x,y)
2

1 + C
t(Nh, 0) = expexp(x,y)

1
1+C

tV tN,

we obtain

HΣC1t
(x, y) = C1HΣy,t

(
expx t

Nh

C1

)
+ C2HΣ

expx t Nh
C1

(y).

Since HΣC1t
and HΣ

expx t Nh
C1

are both constant, so is HΣy,t . Hence Σy is an isoparametric

hypersurface in Hn. Moreover, since an isoparametric hypersurface with a single focal
submanifold in Hn or Rm is uniquely determined (up to isometry) by its distance to
the focal submanifold, it follows that Σx is isometric to Σx′ and Σy to Σy′ for any
(x, y), (x′, y′) ∈ Σ.

In case Hn × Rm is an R-bundle over the hypersurface Σ, in this case, Σ ⊂ Rm has
no focal points. It follows that Σx also has no focal points, thus are hyperplanes with
vanishing mean curvatures. Then an analogous discussion as the previous case shows
that Σy ⊂ Hn is isoparametric. Moreover, for any (x, y) ∈ Σ, Σy ⊂ Hn is one of the
following:

(i) a totally geodesic hyperplane (λi = 0),
(ii) an equidistant hypersurface (0 < |λi| < C1), or
(iii) a horosphere (λi = ±C1),

while Σx ⊂ Rm is a hyperplane (λα = 0). In these cases, principal curvatures at
(x, y), (x′, y′) ∈ Σ are the same. Since isoparametric hypersurfaces in Hn and Rm with-
out focal submanifolds are uniquely determined by their principal curvatures, we again
conclude that Σx and Σy are pairwise isometric.

Next, we consider the flow along V :

exp(x,y) tV =
(

expx

(
(1 − C)tNh

)
, expy

(
− (1 + C)tN v

))
.

From Proposition 3.3, we have

A(Xi, 0) = λi
H(Xi, 0) + σiα(0, Yα),

A(0, Yα) = σαi(Xi, 0) + λα
R(0, Yα),

where (σiα) is an (n−1)×(m−1) matrix. Let At denote the shape operator at exp(x,y) tV .
Since Σy and Σx are isometric to Σexpy(−(1+C)tNv) and Σexpx((1−C)tNh), respectively, we
may assume

At(Xi, 0) = pkiλ
k
Hpkj(Xj, 0) + pkiσkαqαβ(0, Yβ),

At(0, Yα) = qγασiγpij(Xj, 0) + qγαλγ
Rqγβ(0, Yβ),

where (pij) and (qαβ) are orthogonal matrices of orders n − 1 and m − 1. Differentiating
At

(
(ft)∗(X, Y )

)
= −∇(ft)∗(X,Y )N at t = 0 yields

∑
i

(λi
H)2 = (n − 1)C2

1 + (1 + C)2

(1 − C)2

∑
α

(λα
R)2.(3.2)
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If Σy and Σx focalize simultaneously, we can view Σ as a tube of radius s around
the focal submanifold, giving

λ1
H = · · · = λk

H = C1 coth s

C1
, λk+1

H = · · · = λn−1
H = C1 tanh s

C1
,

λ1
R = · · · = λℓ

R = C2
2

s
, λℓ+1

R = · · · = λm−1
R = 0,

for some k ∈ {1, . . . , n − 1} and ℓ ∈ {1, . . . , m − 1}. However, equation (3.2) contradicts
the above equations for all s.

If Σ has no focal points, the classification implies that Σx is a hyperplane in Rm, i.e.,
λi

R = 0. Substituting this into (3.2), we obtain that λ1
H = · · · = λn−1

H = ±C1. Therefore,
the only remaining case is that Σx is a hyperplane in Rm and Σy is a horosphere in Hn

for any (x, y) ∈ Σ, with σiα = 0, leading directly to the expression in Theorem 1.4-(iv).
□

Example 3.5. From the proof of Theorem 1.4, the hypersurfaces described in case (iii)
arise as connected components of the level sets of

F : S1 × Rm → R, F (e
√

−1x, y) = sin
(
x − κ⟨y, y0⟩

)
,

where y0 is a fixed unit vector in Rm and κ ∈ R.
A direct computation yields

∇F =
(

cos(x − κ⟨y, y0⟩), −κ cos(x − κ⟨y, y0⟩)y0
)
,

and hence
∥∇F∥2 = (1 + κ2)(1 − F 2), ∆F = −(1 + κ2)F.

Thus, F is an isoparametric function on S1 × Rm.
All values of F except ±1 are regular. Moreover, F −1(±1) are also connected

isoparametric hypersurfaces parameterized as in Theorem 1.4-(iii). For each t ∈ (−1, 1),
F −1(t) consists of two connected components.

Consider Σ = F −1(t) for t ∈ [−1, 1]. Its unit normal vector is

N = sgn
(

cos(x − κ⟨y, y0⟩)
) 1√

1 + κ2
(1, −κy0),

and the angle function is C = 1−κ2

1+κ2 . A straightforward computation shows that the
Hessian of F satisfies ∇2F |Σ = 0, implying that Σ is totally geodesic in S1 × Rm.

Indeed,

∇2F = sin
(
x − κ⟨y, y0⟩

)(−1 κyT
0

κy0 −κ2y0y
T
0

)
.

Choose an orthonormal frame {v1, . . . , vm} on Σ, where vi = (0, Yi) for i = 1, . . . , m − 1
and

vm = V

∥V ∥
= sgn

(
cos(x − κ⟨y, y0⟩)

)(
|κ|√
1+κ2 , sgn(κ)√

1+κ2 y0

)
.

For i, j ≤ m − 1, since Yj ⊥ y0 and ∥y0∥ = 1, one verifies
∇2F |Σ(vi, vj) = 0, ∇2F |Σ(vi, vm) = 0,

and hence ∇2F |Σ = 0.
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We now show that each connected component of a level set of F is homogeneous in
S1 × Rm. When κ = 0, F = sin x, corresponding to case (i) of Theorem 1.4. Hence we
assume κ ̸= 0.

Let Σ0 be a connected component of Σ = F −1(t) for t ̸= ±1. Denote by Isom0(S1 ×
Rm) the identity component of the isometry group of S1 × Rm, which is isomorphic to
SO(2) × (Rm ⋊ SO(m)), where SO(2) is the special orthogonal group of degree 2 and

Rm ⋊SO(m) is the special Euclidean group in m dimensions. Represent y ∈ Rm by
(

y
1

)
and consider the subgroup

K = ⟨K1, K2⟩ ⊂ Isom0(S1 × Rm),

where

K1 =


1 0 0

0 B b
0 0 1


∣∣∣∣∣∣B ∈ SO(m), BT y0 = y0, ⟨b, y0⟩ = 0

,

and

K2 =


e

√
−1θ 0 0
0 Im

θ
κ
y0

0 0 1


∣∣∣∣∣∣θ ∈ R

.

Since K1 and K2 commute and K1 ∩ K2 = {Id}, we have K ∼= K1 × K2, i.e.,

K =


e

√
−1θ 0 0
0 B b + θ

κ
y0

0 0 1


∣∣∣∣∣∣BT y0 = y0, ⟨b, y0⟩ = 0, B ∈ SO(m), θ ∈ R

.

Define

ϕ : Isom0(S1 × Rm) −→ SO(2) × R2,(
e

√
−1θ,

(
B b
0 1

))
7−→

(
e

√
−1θ, ⟨BT y0, y0⟩, ⟨b, y0⟩

)
.

Evidently, ϕ is continuous. Since K = ϕ−1(D) with D = {(e
√

−1θ, 1, θ/κ) | θ ∈ R} closed
in SO(2) × R2, K is a closed subgroup of Isom(S1 × Rm).

Finally, Σ0 is an orbit of K. For (x, y), (x′, y′) ∈ Σ0, we have x′ − x = κ⟨y′ − y, y0⟩.
Moreover, since y and y′ + ⟨y − y′, y0⟩y0 lie in the same hyperplane perpendicular to y0,
we can choose B ∈ SO(m) and b ∈ Rm such that BT y0 = y0 and By + b + x′−x

κ
y0 = y′.

Then e
√

−1(x′−x) 0 0
0 B b + x′−x

κ
y0

0 0 1

∈ K

maps (x, y) to (x′, y′). Thus, K acts transitively on Σ0 and preserves it, proving that Σ0
is a homogeneous hypersurface in S1 × Rm. The same argument applies when t = ±1.

□

Example 3.6. The isoparametric function corresponding to case (iv) of Theorem 1.4 is

F : Hn × Rm → R, F (x, y) = ⟨x, u⟩L exp
(
a⟨y − y0, v0⟩

)
,
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where u = (u0, . . . , un) is a nonzero lightlike vector in Lorentz space Ln+1 with u0 > 0,
⟨·, ·⟩L denotes the Lorentz inner product, v0 is a fixed unit vector in Rm, y0 ∈ Rm, and
a ∈ R.

A direct computation gives
∇F =

(
(u + ⟨x, u⟩Lx) exp(a⟨y − y0, v0⟩), av0⟨x, u⟩L exp(a⟨y − y0, v0⟩)

)
,

hence
∥∇F∥2 = (1 + a2)F 2, ∆F = (n + a2)F.

Thus, F is an isoparametric function, and all its level sets are regular.
For fixed y ∈ Rm, the equation F (x, y) = t gives ⟨x, u⟩L = t exp(−a⟨y − y0, v0⟩),

representing a horosphere in Hn centered at the lightlike vector u. For fixed x ∈ Hn,
one obtains ⟨y −y0, v0⟩ = 1

a
ln t

⟨x,u⟩L
, defining an affine hyperplane in Rm through y0 with

unit normal v0.
Let Σ = F −1(t) for t ∈ (−∞, 0). Its unit normal and angle function are

N = 1√
1 + a2

(
u + ⟨x, u⟩Lx

⟨x, u⟩L
, av0

)
, C = 1 − a2

1 + a2 .

The cases a = 0 and |a| → ∞ correspond to Theorem 1.4-(i) and -(ii), respectively; thus
we focus on a ̸= 0.

For tangent vectors X = (Xh, Xv) and Y = (Y h, Y v) of Hn ×Rm, the Hessian of F
is

∇2F (X, Y ) =⟨Xh, Y h⟩F + a2⟨Xv, v0⟩⟨Y v, v0⟩F

+ a exp
(
a⟨y − y0, v0⟩

)(
⟨Xh, u⊤⟩⟨Y v, v0⟩ + ⟨Y h, u⊤⟩⟨Xv, v0⟩

)
,

where u⊤ = u + ⟨u, x⟩Lx is the projection of u onto TxHn.
Choose an orthonormal frame {(X1, 0), . . . , (Xn−1, 0), (0, Y1), . . . , (0, Ym−1), V/∥V ∥}

on Σ, where V = PN − CN and
V

∥V ∥
= 1√

1 + a2

(
|a|u + ⟨x, u⟩Lx

⟨x, u⟩L
, −sgn(a)v0

)
.

Under this frame,

∇2F |Σ =

t In−1 0 0
0 0 0
0 0 0

 .

Since the second fundamental form II = − 1
∥∇F ∥∇2F |Σ, the principal distributions are

V1 = span {(Xi, 0) | i = 1, . . . , n − 1},

V2 = span {(0, Yj) | j = 1, . . . , m − 1},

V3 = span {V } .

with corresponding principal curvatures and multiplicities:

Distribution Principal curvature Multiplicity

V1
1√

1 + a2
n − 1

V2 0 m − 1
V3 0 1



ISOPARAMETRIC HYPERSURFACES IN Sn × Rm AND Hn × Rm 13

Hence the mean curvature of Σ is H = n − 1√
1 + a2

. For any principal directions X, Y ,
the sectional curvature is

KΣ(X, Y ) = KHn×Rm(X, Y ) + II(X, X)II(Y, Y ) − II(X, Y )2

⟨X, X⟩⟨Y, Y ⟩ − ⟨X, Y ⟩2 ,

yielding the following table of sectional curvatures:

X ∈
Y ∈ V1 V2 V3

V1 − a2

1 + a2 0 − a2

1 + a2

V2 0 0 0

V3 − a2

1 + a2 0 −

Thus the Ricci and scalar curvatures are

RicΣX =


−(n − 1)a2

1 + a2 , X ∈ V1 ∪ V3,

0, X ∈ V2,

R = −n(n − 1)a2

1 + a2 .

Clearly, Σ is not Einstein when a ̸= 0.

To show Σ is homogeneous, define the subgroup
G = ⟨G1, G2⟩ ⊂ Isom0(Hn × Rm) ∼= SO+(1, n) × (Rm ⋊ SO(m)),

where SO+(1, n) denotes the identity component of the Lorentz group and

G1 =


B 0 0

0 Im sv0
0 0 1


∣∣∣∣∣∣ B ∈ SO+(1, n), BT u = e−asu, s ∈ R

,

G2 =


In 0 0

0 B̃ b
0 0 1


∣∣∣∣∣∣ B̃ ∈ SO(m), B̃T v0 = v0, ⟨b, v0⟩ = 0

.

An analogous discussion as in Example 3.5 shows that G1 and G2 commute, and thus
G ∼= G1 × G2, i.e.,

G =


B 0 0

0 B̃ b + sv0
0 0 1


∣∣∣∣∣∣ BT u = e−asu, B ∈ SO+(1, n), s ∈ R,

B̃T v0 = v0, ⟨b, v0⟩ = 0, B̃ ∈ SO(m)

.

Define

η : Isom0(Hn × Rm) → R3,
(

B,

(
B̃ b̃
0 1

))
7→
(
⟨BT u, u⟩L, ⟨B̃T v0, v0⟩, ⟨b̃, v0⟩

)
.

Evidently, η is continuous. Then G = η−1(D) with D = {(e−as, 1, s) | s ∈ R} closed in
R3; hence G is a closed subgroup of Isom0(Hn × Rm).

Finally, for (x, y), (x′, y′) ∈ Σ = F −1(t) ⊂ Hn × Rm, ⟨x′, u⟩L = ⟨x, u⟩L exp
(

−
a⟨y′ − y, v0⟩

)
. Then the transitivity of the isometric SO+(1, n)-action on Hn yields the

existence of B0 ∈ SO+(1, n) such that B0x = x′, and thus
⟨B0x, u⟩L = ⟨x, BT

0 u⟩L = ⟨x, u⟩L exp
(

− a⟨y′ − y, v0⟩
)
,
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which implies BT
0 u = exp

(
− a⟨y′ − y, v0⟩

)
u. Similarly, there exist B̃0 ∈ SO(m) and

b0 ∈ Rm such that B̃0y + b0 + ⟨y′ − y, v0⟩v0 = y′, ⟨b0, v0⟩ = 0, thus B̃0v0 = v0. Then

g =

B0 0 0
0 B̃0 b0 + ⟨y′ − y, v0⟩v0
0 0 1

 ∈ G

maps (x, y) to (x′, y′). Thus G acts transitively on Σ, and since F is G-invariant, G
preserves Σ. Therefore, Σ is a homogeneous hypersurface in Hn × Rm.

□

4. Proof of Theorem 1.6

Proposition 4.1. Let Σ be an orientable hypersurface in Mn
c1 × Mm

c2 . Then
(i) for any (X, Y ) ∈ X(Σ), the covariant derivative of V is given by

∇Σ
(X,Y )V = CA(X, Y ) − P ⊤A(X, Y ),(4.1)

where P ⊤ : X(Σ) → X(Σ) denotes the tangential projection of P onto Σ;
(ii) if Σ has constant angle and constant principal curvatures, then for any principal

vector field (X, Y ) orthogonal to V , one has

∇Σ
V (X, Y ) = 0.(4.2)

Proof. (i) Recall that P is parallel and that V = PN − CN . Then we have

∇(X,Y )V = P∇(X,Y )N −
(
∇(X,Y )C

)
N − C∇(X,Y )N.

By taking the tangential component of this expression, we obtain equation (4.1). When
Mn

c1 × Mm
c2 = S2 × S2, the result coincides with Lemma 1 in [41].

(ii) We consider the flow of the vector field V , denoted by ft : Σ → Σ, which is
defined by ft(x, y) = exp(x,y)(tV ). Let A be the shape operator at the point (x, y) ∈ Σ,
and At the shape operator at ft(x, y). For convenience, we introduce the functions Ci(t)
and Si(t) (i = 1, 2) as follows:

Ci(t) =


cos t, ci > 0,

1, ci = 0,

cosh t, ci < 0,

Si(t) =


sin t, ci > 0,

t, ci = 0,

sinh t, ci < 0.

Assume that (X, Y ) is a principal direction corresponding to the principal curvature
λ, and that it is orthogonal to V . A straightforward computation shows that

(4.3)
(ft)∗(X, Y ) =(X, Y )

(
C1 (C1(1 − C)t)

C2 (C2(1 + C)t)

)

− A(X, Y )
( 1

C1
S1 (C1(1 − C)t)

− 1
C2

S2 (C2(1 + C)t)

)
.

Differentiating this with respect to t at t = 0, we obtain

[V, (X, Y )] = − d

dt

∣∣∣∣∣∣
t=0

(ft)∗(X, Y ) = λ((1 − C)X, −(1 + C)Y ).
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On the other hand, from equation (4.1) we have

∇Σ
(X,Y )V = CA(X, Y ) − P ⊤A(X, Y ) = λ

(
− (1 − C)X, (1 + C)Y

)
.

Hence, it follows that

∇Σ
V (X, Y ) = [V, (X, Y )] + ∇Σ

(X,Y )V = 0.

□

Now, we proceed to complete the proof of Theorem 1.6.
Proof of Theorem 1.6.

When C = 1, we have N = (Nh, 0), and hence Σ reduces to the product Σ1 × Mm
c2 ,

where Σ1 is a hypersurface in Mn
c1 with constant principal curvatures. The desired

conclusion follows immediately. The case C = −1 is completely analogous and will be
omitted. From now on, we focus on the case −1 < C < 1, that is, C1, C2 ̸= 0.

In the flat case c1 = c2 = 0, namely Rn ×Rm = Rn+m, the statement holds trivially.
Thus, we only need to consider the case c2

1 + c2
2 > 0.

We employ the same notations and computations as in the proof of Proposition 4.1-
(ii). Under the assumption that Σ has a constant angle function C, we observe from
(2.3) that AV = 0. Assume that (X, Y ) is a principal direction corresponding to the
principal curvature λ and orthogonal to V . From At

(
(ft)∗(X, Y )

)
= −∇(ft)∗(X,Y )N , it

follows that

(4.4)

At

(
(X, Y )

(
C1 (C1(1 − C)t)

C2 (C2(1 + C)t)

)

−A(X, Y )
( 1

C1
S1 (C1(1 − C)t)

− 1
C2

S2 (C2(1 + C)t)

))

= − (X, Y )
(

−c1C1S1 (C1(1 − C)t)
c2C2S2 (C2(1 + C)t)

)

+ A(X, Y )
(

C1 (C1(1 − C)t)
C2 (C2(1 + C)t)

)
.

We distinguish the following two possibilities:

(1) There exists a principal direction (X, Y ) orthogonal to V with X ̸= 0 and Y ̸= 0;
(2) No such direction exists.

Case (1). The equation (4.4) can be rewritten as

R1(t)At(X, 0) + R2(t)At(0, Y ) = − 1
1 − C

R′
1(t)(X, 0) + 1

1 + C
R′

2(t)(0, Y ),

where

(4.5)
R1(t) = C1 (C1(1 − C)t) − λ

C1
S1 (C1(1 − C)t) ,

R2(t) = C2 (C2(1 + C)t) + λ

C2
S2 (C2(1 + C)t) .
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By Proposition 4.1-(ii), the shape operator A is invariant along the direction of V , i.e.,
At = A. Thus, we may write

α1⟨X, X⟩ = ⟨At(X, 0), (X, 0)⟩, α2⟨Y, Y ⟩ = ⟨At(X, 0), (0, Y )⟩,(4.6)
β1⟨X, X⟩ = ⟨At(0, Y ), (X, 0)⟩, β2⟨Y, Y ⟩ = ⟨At(0, Y ), (0, Y )⟩,(4.7)

where αi, βi ∈ R for i = 1, 2.
Substituting these into (4.4) and comparing coefficients, we obtain

R1(t)α1 + R2(t)β1 = − 1
1 − C

R′
1(t),(4.8)

R1(t)α2 + R2(t)β2 = 1
1 + C

R′
2(t).(4.9)

We now discuss equations (4.8)–(4.9) for different values of ci (i = 1, 2).

Case A: c1 ̸= c2. In this situation, it follows directly that α2 = β1 = 0, and the
equations (4.8) and (4.9) simplifies to

R1(t)α1 = − 1
1 − C

R′
1(t), R2(t)β2 = 1

1 + C
R′

2(t).(4.10)

Evaluating at t = 0 gives α1 = β2 = λ. Substituting equation (4.5) into equations (4.10)
yields

(4.11) λ2 + c1C
2
1

C1
S1(C1(1 − C)t) = 0,

λ2 + c2C
2
2

C2
S2(C2(1 + C)t) = 0.

Since C1 ̸= 0, for any possible values of pair (c1, c2), none of the terms in (4.11)
can vanish identically unless trivial or contradictory conditions occur. Therefore, Case
A cannot occur within Case (1).

Case B: c1 = c2 = c ̸= 0. Differentiating equations (4.8) and (4.9) at t = 0, and using
C2

1 = 1+C
2 and C2

2 = 1−C
2 , we obtain the following equalities from the first and second

derivatives:
λ2(1 + C) − cC2

1(1 − C) = 2λα1,(4.12)
(λ2 + cC2

2)(1 + C) = 2λα2,(4.13)
C(1 − C2)α1 = λC(1 − C2),(4.14)
C(1 − C2)α2 = 0.(4.15)

Under the assumption −1 < C < 1, if C ̸= 0, then (4.14)-(4.15) imply α1 = λ
and α2 = 0. Substituting these into (4.12)- (4.13) yields C = 0, a contradiction. Hence
C = 0 in this case.

With C = 0, consider the parallel hypersurfaces Σt = gt(Σ) of Σ given by the
immersion gt : Σ → Mn

c ×Mm
c , gt(x, y) = exp(x,y) tN . For simplicity, write C(t) = C1(t) =

C2(t) and S(t) = S1(t) = S2(t). Then it follows from At

(
(gt)∗(X, Y )

)
= −∇(gt)∗(X,Y )N

that

At

(
(X, Y )

(
C(C1t)

C(C2t)

)
− A(X, Y )

( 1
C1

S(C1t)
1

C2
S(C2t)

))

= −(X, Y )
(

C1S(C1t)
C2S(C2t)

)
+ A(X, Y )

(
C(C1t)

C(C2t)

)
.
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Using C = 0, we get

At(X, Y ) =
c√
2S
(

t√
2

)
+ λC

(
t√
2

)
C
(

t√
2

)
−

√
2λS

(
t√
2

)(X, Y ).

Since AV = 0 by (2.3), the mean curvature H(t) of Σt = gt(Σ) is

H(t) =
n+m−2∑

i=1

c√
2S
(

t√
2

)
+ λiC

(
t√
2

)
C
(

t√
2

)
−

√
2λiS

(
t√
2

) .

Therefore, Σ is an isoparametric hypersurface.

Case (2). The argument is parallel to Case (1). For any principal direction (X, Y )
orthogonal to V , we obtain

At

(
(X, Y )

(
C1(C1t)

C2(C2t)

)
− A(X, Y )

( 1
C1

S1(C1t)
1

C2
S2(C2t)

))

= − (X, Y )
(

−c1C1S1(C1t)
−c2C2S2(C2t)

)
+ A(X, Y )

(
C1(C1t)

C2(C2t)

)
.

Since Σ has only two types of principal directions apart from V , we find

At(X, 0) = c1C1S1(C1t) + λC1(C1t)
C1(C1t) − λ

C1
S1(C1t)

(X, 0).

At(0, Y ) = c2C2S2(C2t) + λC2(C2t)
C2(C2t) − λ

C2
S2(C2t)

(0, Y ).

Hence, each parallel hypersurface Σt has constant mean curvature, and thus Σ is isopara-
metric.

□

5. Proof of Theorem 1.1

As noted in Remark 1.3, we restrict attention to the case n ≥ 2. Since the angle
function is continuous, it suffices to show that it is locally constant. Hence, we consider
only the case −1 < C < 1. For convenience, set C1 = τ . Clearly,

C2 =
√

1 − τ 2, C = 2τ 2 − 1, 0 < τ < 1.

We will choose an orthonormal frame along the parallel hypersurface of Σ and
compute the coefficient matrix of the Jacobi field with respect to this frame. Then, by
analyzing the linear system satisfied by the mean curvature of the parallel hypersurface
and its derivatives, we derive a nontrivial algebraic equation in τ , which in turn shows
that the angle function C must be constant.

Let Np denote the unit normal vector of Σ at p ∈ Σ, and define the normal expo-
nential map Φr : Σ → Mn

c × Rm by Φr(p) = expp(rNp). Then there exists a sufficiently
small δ > 0 such that, for all r ∈ (−δ, δ), the map Φr is well defined and Σr = Φr(Σ) is
an embedded hypersurface in Mn

c × Rm at distance r from Σ. Fix p ∈ Σ, and let γp(r),
r ∈ (−δ, δ), be the geodesic in Mn

c ×Rm satisfying γp(0) = p and γ′
p(0) = Np. The vector

field N(r) = γ′
p(r) along γp is parallel, and hence remains normal to Σr at γp(r).
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We now choose unit orthonormal vector fields U1(r), . . . , Um(r) parallel along γp

such that the horizontal components of Ui(r) (i = 1, . . . , m − 1) vanish, i.e., Uh
i (r) = 0,

and
Um(r) =

(
−C2

C1
Nh(r), C1

C2
N v(r)

)
.

Together with N(r), we extend these to obtain a unit orthonormal parallel frame

N(r), U1(r), . . . , Un+m−1(r)

along γp. By orthogonality, for i = m + 1, . . . , n + m − 1, the vector fields Ui(r) have
vanishing vertical components.

For each j = 1, . . . , n + m − 1, let ζj(r) be the Jacobi field along γp satisfying

ζj(0) = Uj(0), ζ ′
j(0) = −AUj(0),

and

(5.1) ζ ′′
j + Rc(γ′

p, ζj)γ′
p = 0,

where the Riemann curvature tensor Rc is defined in (2.4). To compute (5.1), we de-
compose ζj(r) in the orthonormal frame {Ui(r)}n+m−1

i=1 as

ζj(r) =
n+m−1∑

i=1
bij(r)Ui(r),

where bij(r) are smooth functions on (−δ, δ) for j = 1, . . . , n + m − 1. Meanwhile, the
shape operator A with respect to the orthonormal basis {Ui(0)}n+m−1

i=1 is given by

AUj(0) =
n+m−1∑

i=1
aijUi(0).

We now decompose equation (5.1) into its horizontal and vertical components:

ζh
j

′′ + Rh
c (γ′h, ζh

j )γ′h = 0, ζv
j

′′ + Rv
c(γ′v, ζv

j )γ′v = 0.

Using the known solutions of Jacobi fields in Mn
c and Rm, we obtain

(5.2)

bij(r) = δij − aijr, i ≤ m,

bij(r) = δijCτ (r) − aijSτ (r), i > m,

where Sτ (r) and Cτ (r) are defined by

Sτ (r) :=


1√
cτ 2

sin
(√

cτ 2 r
)

, c > 0,

1√
−cτ 2

sinh
(√

−cτ 2 r
)

, c < 0,
Cτ (r) :=

cos
(√

cτ 2 r
)

, c > 0,

cosh
(√

−cτ 2 r
)

, c < 0.

Moreover, these functions satisfy the first-order differential relations

(5.3) S ′
τ (r) = Cτ (r), C ′

τ (r) = −cτ 2Sτ (r).

In fact, the matrix B(r) = (bij(r)) given in equation (5.2) can be written as the
block matrix

B(r) =
(

δij − aijr −aijr
−aijSτ (r) δijCτ (r) − aijSτ (r)

)
.(5.4)
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By Jacobi field theory, B(r) is nonsingular for all r ∈ (−δ, δ), and the shape operator
of Σr is given by

Ar = −B′(r)B(r)−1 (cf. [2, Theorem 10.2.1]).
Hence, the mean curvature H(r) is given by

H(r) = tr Ar = − tr
(
B′(r)B(r)−1

)
= − d

dr
(det B(r))/ det B(r).

Defining D(r) := det B(r) and differentiating, we obtain
D′(r) + H(r)D(r) = 0,

that is,
D′(r) = −H(r)D(r).

By differentiating this equation repeatedly, for all k ∈ N we have
(5.5) 0 = D(k+1)(r) + ϕk(r)D(r),
where

ϕk(r) = ϕk

(
H(r), H ′(r), . . . , H(k)(r)

)
.

Recalling the structure of the matrix B(r) in (5.4), we observe that the highest
power of r in the explicit expression for D(r) is m. Hence, there exist coefficients αq

ℓ,k

(q = 0, . . . , m) such that

(5.6) D(k)(r) =
n−1∑
ℓ=0

m∑
q=0

αq
ℓ,krqSℓ

τ (r)C n−1−ℓ
τ (r),

where D(k)(r) denotes the k-th derivative of D(r).
Substituting (5.6) into (5.5) and letting k vary from 1 to (m + 1)n − 1, we obtain

(5.7) α0
0,k+1 = −ϕk(0).

Using (5.3) together with (5.6), we compute

D(k+1)(r) =
n−1∑
ℓ=0

m∑
q=0

qαq
ℓ,krq−1Sℓ

τ (r)Cn−1−ℓ
τ (r) +

n−1∑
ℓ=0

m∑
q=0

αq
ℓ,krqℓSℓ−1

τ (r)Cn−ℓ
τ (r)

−
n−1∑
ℓ=0

m∑
q=0

αq
ℓ,krq(n − 1 − ℓ)cτ 2Sℓ+1

τ (r)Cn−2−ℓ
τ (r)

=
m−1∑

q=0

(
(q + 1) αq+1

0,k + αq
1,k

)
rq + αm

1,krm

Cn−1
τ (r)

+
n−2∑
ℓ=1

m−1∑
q=0

(
(q + 1)αq+1

ℓ,k + (ℓ + 1)αq
ℓ+1,k − (n − ℓ)cτ 2αq

ℓ−1,k

)
rq

+
(
(ℓ + 1)αm

ℓ+1,k − (n − ℓ)cτ 2αm
ℓ−1,k

)
rm
)

Sℓ
τ (r)Cn−1−ℓ

τ (r)

+
m−1∑

q=0
((q + 1)αq+1

n−1,k − cτ 2αq
n−2,k)rq − cτ 2αm

n−2,krm

Sn−1
τ (r).

Therefore, for ℓ = 0, . . . , n − 1 and q = 0, . . . , m, the coefficients satisfy
(5.8) αq

ℓ,k+1 = (q + 1)αq+1
ℓ,k + (ℓ + 1)αq

ℓ+1,k − (n − ℓ)cτ 2αq
ℓ−1,k,

where we set αm+1
ℓ,k = 0 for all ℓ = 0, . . . , n − 1 and αq

−1,k = αq
n,k = 0 for all q = 0, . . . , m.
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From the recursive relation (5.8) among the coefficients αq
ℓ,k, we may write

(5.9) α0
0,k+1 =

n−1∑
ℓ=0

m∑
q=0

pq
k+1,ℓ αq

ℓ,0,

where each coefficient pq
k+1,ℓ depends only on the parameters q, k, ℓ, n, m, c, and τ .

Since α0
0,0 = D(0) = 1 and α0

0,k+1 coincides with ϕk(0) in equation (5.7), we conclude
that the vector

ξ0 = (α0
1,0, . . . , α0

n−1,0, α1
0,0, . . . , αm−1

n−1,0, αm
0,0, . . . , αm

n−1,0)T ∈ R(m+1)n−1

satisfies a linear system of the form Mξ = ν, according to (5.7), where
ν = (−ϕ1(0) − p0

2,0, . . . , −ϕ(m+1)n−1(0) − p0
(m+1)n,0)T ∈ R(m+1)n−1.

In the following, we shall see that the matrix M exhibits fundamentally different
properties depending on whether n is odd or even. For odd n, we further denote by M s

the ((m + 1)n − 1) × ((m + 1)n − 1) matrix obtained from M̃ s in Proposition 5.5-(ii) by
removing its first column. For any n, let Mι and M s

ι denote the matrices obtained by
replacing the ι-th column of M and M s, respectively, with the vector ν.

We establish key properties of M and M s (for s ≥ (m+1)n), in particular deriving a
non-trivial algebraic expression in τ . Since the full proof is rather technical, it is deferred
to the end of this section.

Proposition 5.1. The matrices M (for even n) and M s (for odd n and any s ≥ (m +
1)n) satisfy the following properties:

(i) rank M = (m + 1)n − 2 and rank M s = (m + 1)n − 2;
(ii) There exists ι ∈ {1, . . . , (m + 1)n − 1} such that

det Mι = (−1)
γ0
2 β0c

γ0
2 τ γ0 −

(m+1)n−1∑
i=1

(−1)
γi
2 βiϕi(0)c

γi
2 τ γi ,

where β0 ̸= 0, and β1, . . . , β(m+1)n−1 as well as γ0 > · · · > γ(m+1)n−1 > 0 are
integers;

(iii)

det M s
n = −(−1)

γs
2 βsϕs(0)c

γs
2 τ γs −

(m+1)n−2∑
i=1

(−1)
γi
2 βiϕi(0)c

γi
2 τ γi ,

where βs ̸= 0, β1, . . . , β(m+1)n−2 as well as γ1 > · · · > γ(m+1)n−2 > γs > 0 are all
integers.

Proof of Theorem 1.1.
We will primarily apply the non-trivial algebraic expression in τ implied by M and

M s as established in Proposition 5.1, and prove Theorem 1.1 proceeding case by case.

Case 1: n ≥ 2 and n is even. By Proposition 5.1-(i), det M = 0. Since ξ0 satisfies
Mξ = ν, it follows that det Mi = 0 for all i = 1, . . . , (m + 1)n − 1. Moreover, by
Proposition 5.1-(ii), there exists an index ι ∈ {1, . . . , (m + 1)n − 1} such that

det Mι = (−1)
γ0
2 β0c

γ0
2 τ γ0 −

(m+1)n−1∑
i=1

(−1)
γi
2 βiϕi(0)c

γi
2 τ γi = 0.



ISOPARAMETRIC HYPERSURFACES IN Sn × Rm AND Hn × Rm 21

This yields a nontrivial algebraic equation in τ , and hence τ is constant.

Case 2: n ≥ 2 and n is odd. If there exists s0 ≥ (m + 1)n with ϕs0(0) ̸= 0, then,
analogously to Case 1, Proposition 5.1-(i) and (iii) imply that

det M s0
n = 0

is a nontrivial algebraic equation in τ , so τ is constant.
Otherwise, if ϕs(0) = 0 for all s ≥ (m + 1)n, then equation (5.5) shows that D(r)

is polynomial near r = 0. However, from equation (5.4), D(r) = det B(r) cannot be
polynomial near r = 0, so this case is excluded.

□

5.1. Proof of Proposition 5.1. We first derive the recurrence relation in k for the
coefficients pq

k+1,ℓ in equation (5.9). For n ≥ 4, combining equations (5.8) and (5.9), we
obtain the following explicit computation:

α0
0,k+1 =

n−1∑
ℓ=0

m∑
q=0

pq
k,ℓα

q
ℓ,1

=
m∑

q=0
pq

k,0α
q
0,1 +

n−2∑
ℓ=1

m∑
q=0

pq
k,ℓα

q
ℓ,1 +

m∑
q=0

pq
k,n−1α

q
n−1,1

=
m∑

q=1
pq−1

k,0 qαq
0,0 +

m−1∑
q=0

pq
k,0α

q
1,0 + pm

k,0α
m
1,0

+
n−2∑
ℓ=1

m∑
q=1

pq−1
k,ℓ qαq

ℓ,0 +
n−1∑
ℓ=2

m−1∑
q=0

pq
k,ℓ−1ℓα

q
ℓ,0 −

n−3∑
ℓ=0

m−1∑
q=0

pq
k,ℓ+1(n − 1 − ℓ)cτ 2αq

ℓ,0

+
n−1∑
ℓ=2

pm
k,ℓ−1ℓα

m
ℓ,0 −

n−3∑
ℓ=0

pm
k,ℓ+1(n − 1 − ℓ)cτ 2αm

ℓ,0

+
m∑

q=1
pq−1

k,n−1qαq
n−1,0 −

m−1∑
q=0

pq
k,n−1cτ 2αq

n−2,0 − pm
k,n−1cτ 2αm

n−2,0

=
n−1∑
ℓ=0

m∑
q=0

(
pq−1

k,ℓ q + pq
k,ℓ−1ℓ − pq

k,ℓ+1(n − 1 − ℓ)cτ 2
)

αq
ℓ,0.

For convenience, setting pq
k,ℓ = 0 if q = −1 or ℓ = −1, n, we have

(5.10) pq
k+1,ℓ = q pq−1

k,ℓ + ℓ pq
k,ℓ−1 − (n − 1 − ℓ)cτ 2pq

k,ℓ+1,

for any q = 0, . . . , m and ℓ = 0, . . . , n − 1.

Remark 5.2. For n = 2 and n = 3, the computations are entirely analogous and remain
relatively straightforward. Although we omit the explicit calculations for brevity, these
low-dimensional cases reproduce the formula in equation (5.10) exactly. This confirms
that equation (5.10) holds for all integers n ≥ 2.

More specifically, we have p0
0,0 = 1 and pq

0,ℓ = 0 for all other (ℓ, q), since α0
0,0 = 1

and equation (5.9). Taking k = 0 in (5.10), we obtain

p1
1,0 = p0

1,1 = 1, pq
1,ℓ = 0 for (ℓ, q) ̸= (0, 1), (1, 0).
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Similarly, when k = 1, we find that

(5.11) pq
2,ℓ =


−(n − 1)cτ 2, if (ℓ, q) = (0, 0),
2, if (ℓ, q) = (0, 2), (1, 1), (2, 0),
0, otherwise.

By applying the recurrence relation (5.10) and mathematical induction, we obtain
the following basic characterization of pq

k,ℓ:

Proposition 5.3. When n ≥ 2 and for any k ≥ 2, q = 0, . . . , m, ℓ = 0, . . . , n − 1,
the identity pq

k,ℓ = σq
k,ℓ(n)csτ 2s holds with s = 1

2(k − q − ℓ). Furthermore, the following
assertions also hold:

(i) σq
k,ℓ(n) = 0, for s ̸∈ Z or s < 0.

(ii) σq
k,ℓ(n) = k!, for s = 0.

(iii) σq
k,ℓ(n) is a polynomial of degree deg σq

k,ℓ(n) ≥ s with (−1)s as its leading coeffi-
cient sign for s ∈ Z+.

Proof. (i) If s /∈ Z, then k − q − ℓ is odd. As discussed above, p0
0,0 = 1 and pq

0,ℓ = 0
for all ℓ = 1, . . . , n − 1 and q = 0, . . . , m. Since the parity of k − q − ℓ is preserved in
equation (5.10), it follows that pq

k,ℓ = 0 for all s /∈ Z.
If s < 0, then q + ℓ > k. By induction, we will show that pq

k,ℓ = 0 also holds in this
case.

For k = 2, by equation (5.11), we have

pq
2,ℓ = 0, for all q, ℓ with q + ℓ > 2.

Now assume that for some k ≥ 2, pq
k,ℓ = 0 for all (q, ℓ) satisfying q + ℓ > k. Then

for any q, ℓ with q + ℓ > k + 1, equation (5.10) gives

pq
k+1,ℓ = q pq−1

k,ℓ + ℓ pq
k,ℓ−1 − (n − 1 − ℓ)cτ 2pq

k,ℓ+1.

By the induction hypothesis, pq−1
k,ℓ = pq

k,ℓ−1 = pq
k,ℓ+1 = 0 since (q−1)+ℓ > k, q+(ℓ−1) > k,

and q + (ℓ + 1) > k. Therefore, pq
k+1,ℓ = 0, as required.

(ii) It suffices to show that pq
k,k−q = k! for all such k, q. When k = 2, equation (5.11)

gives p0
2,2 = 2.

Suppose that for some integer k ≥ 2, the identity pq
k,k−q = k! holds for all q. Then,

for any q satisfying k + 1 ≥ 2 + q, equation (5.10) implies

pq
k+1,k+1−q = q pq−1

k,k+1−q + (k + 1 − q) pq
k,k−q − (n − 1 − (k + 1 − q))cτ 2pq

k,k+2−q

= (k + 1)!,

where the last equality uses pq−1
k,k+1−q = pq

k,k−q = k! from the induction hypothesis and
pq

k,k+2−q = 0 from (i). Hence, the result follows by induction.
(iii) Equivalently, it suffices to show that for any k ≥ 2,

deg σq
k,ℓ(n) ≥ s, where ℓ = k − q − 2s,

for all integers s and q satisfying 0 < s ≤ 1
2(k − q).
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To prove this, we start with k = 2 and proceed by induction. From equation (5.11),
the only term satisfying the condition is p0

2,0 = −(n − 1)cτ 2. Hence deg σ0
2,0(n) = s = 1,

verifying the claim for k = 2.
Assume now that for some k ≥ 2, one has deg σq

k, k−q−2s(n) ≥ s for all integers q, s

satisfying 0 < s ≤ 1
2(k − q), and that the leading coefficient has sign (−1)s. For k + 1,

take any such q, s with 0 < s ≤ 1
2(k + 1 − q) and set ℓ = k + 1 − q − 2s. By equation

(5.10), we obtain

pq
k+1,ℓ = q pq−1

k,ℓ + ℓ pq
k,ℓ−1 − (n − 1 − ℓ)cτ 2pq

k,ℓ+1

= q σq−1
k,ℓ (n)csτ 2s + ℓ σq

k,ℓ−1(n)csτ 2s − (n − 1 − ℓ)σq
k,ℓ+1(n)csτ 2s

= σq
k+1,ℓ(n)csτ 2s,

where

σq
k+1,ℓ(n) = q σq−1

k,ℓ (n) + ℓ σq
k,ℓ−1(n) − (n − 1 − ℓ)σq

k,ℓ+1(n).

By the induction hypothesis, we have deg σq−1
k,ℓ (n) = deg σq

k,ℓ−1 = s and deg σq
k,ℓ+1 = s−1,

with respective leading coefficient signs (−1)s, (−1)s, and (−1)s−1. It then follows that
deg σq

k+1,ℓ(n) ≥ s and its leading coefficient has sign (−1)s, which completes the proof.
□

To study the rank properties of M and M s (s ≥ (m + 1)n), we adopt a row-wise
perspective. Define the matrix M̃ = [−ντ , M ] where ντ = ν − νϕ and

νϕ = (−ϕ1(0), . . . , −ϕ(m+1)n−1(0))T .

Let M τ
ι (resp., Mϕ

ι ) denote the matrix obtained from M by replacing its ι-th column
with ντ (resp., νϕ). Under this setting, each row of the matrix M̃ is a row vector of the
form

L̃k−1 =
(
p0

k,0, . . . , p0
k,n−1, p1

k,0, . . . , p1
k,n−1, . . . , pm

k,0, . . . , pm
k,n−1

)
, k ≥ 2,

where each segment pq
k,0, . . . , pq

k,n−1 corresponds to q = 0, . . . , m.
Define e1 ∈ Rn by

e1 = (p0
0,0, p0

0,1, . . . , p0
0,n−1) = (1, 0, . . . , 0).

Next, we define an (m + 1)n × (m + 1)n matrix Q as follows:

(5.12) Q =



K I
K 2I

K 3I
. . . . . .

K (m − 1)I
K mI

K


,
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where I is the n × n identity matrix and K is the n × n τ -Kac matrix

K =



0 1 0 · · · 0 0 0
−(n − 1)cτ 2 0 2 · · · 0 0 0

0 −(n − 2)cτ 2 0 · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · 0 n − 2 0
0 0 0 · · · −2cτ 2 0 n − 1
0 0 0 · · · 0 −cτ 2 0


.

Then, for k ≥ 2, using the recurrence equation (5.10), the rows of M̃ satisfy

L̃k = L̃k−1Q = (e1, 0, . . . , 0)Qk+1.

Regarding the properties of the τ -Kac matrix, we recall the following lemma estab-
lished in [11, 14].

Lemma 5.4. ([11, 14]) The τ -Kac matrix K of order n has the following propertues:
(i) It has n simple eigenvalues λ0, . . . , λn−1, which are

λℓ = (n − 1 − 2ℓ)
√

−cτ, ℓ ∈ {0, . . . , n − 1}.

In particular λℓ is real if c < 0, and purely imaginarg if c > 0;
(ii) Its rank is n, if n is even, and n − 1 if n is odd. In particular, K is nonsignular

if and only if n is even;
(iii) The coordinates of e1 ∈ Rn with respect to the basis of its eigenvectors are all

different from zero.

We now relate Q to the τ -Kac matrix K, in particular its eigenvectors. Direct
computation gives

det Q = (det K)m+1,

and thus by Lemma 5.4-(ii), Q is nonsingular if and only if n is even.
Let {x0, . . . , xn−1} ⊂ Rn be the eigenvectors of K. For ℓ = 0, . . . , n − 1, we define

the following vector in R(m+1)n:
x0,ℓ = (xℓ, 0, . . . , 0), x1,ℓ = (0, xℓ, 0, . . . , 0), . . . , xm,ℓ = (0, . . . , 0, xℓ).

Then, we have
xk,ℓQ = λℓxk,ℓ + xk+1,ℓ, k = 0, . . . , m − 1, xm,ℓQ = λℓxm,ℓ.

More generally, for any integer k ≥ 0 and 0 ≤ i ≤ m, by induction,

(5.13) xi,ℓQ
k =

min{k,m−i}∑
t=0

(
k

t

)
λ k−t

ℓ xi+t,ℓ.

Proposition 5.5. Let ẽ1 = (e1, 0, . . . , 0) ∈ R(m+1)n with n ≥ 2. Then
(i) If n is even, for any positive integer s, the set

{ẽ1Q
i | i = s, . . . , s + (m + 1)n − 1}

is linearly independent.
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(ii) If n is odd, for any integer s ≥ (m + 1)n, define the ordered sets

Λ = {ẽ1Q
i | i = 2, . . . , (m + 1)n − 1}, Λs = Λ ∪ {ẽ1Q

s}.

Let M̃ s be the matrix with rows given by the vectors in Λs, and denote its columns
by C1, . . . , C(m+1)n. Then the following hold:
(a) Λ is linearly independent, whereas Λs is linearly dependent.
(b) For q = 0, 1, the column Cqn+1 lies in the span of the columns {Cqn+2i+1 |

i = 1, . . . , (n − 1)/2}.

Proof. (i) When n is even, the previous calculations show that Q is invertible, so it
suffices to consider s = 0.

Consider the vector equation

(5.14)
(m+1)n−1∑

k=0
µkẽ1Q

k = 0

in the variables µ0, . . . , µ(m+1)n−1.
Without loss of generality, by Lemma 5.4-(iii), we may write

ẽ1 =
n−1∑
ℓ=0

aℓx0,ℓ,

where aℓ ̸= 0 for all ℓ = 0, . . . , n − 1.
From equation (5.13), we obtain

n−1∑
ℓ=0

(m+1)n−1∑
k=0

min{k,m}∑
t=0

(
k

t

)
λk−t

ℓ µkaℓxt,ℓ = 0.

Hence, the system (5.14) is equivalent to the linear system

(5.15)
(m+1)n−1∑

k=0

(
k

t

)
λ k−t

ℓ µk = 0, t = 0, . . . , m, ℓ = 0, . . . , n − 1.

The coefficient matrix Ξ of (5.15) is a generalized Vandermonde matrix with

det Ξ =
∏
i<j

(λj − λi)(m+1)2
.

By Lemma 5.4, the eigenvalues λℓ are distinct, so det Ξ ̸= 0 and Ξ is invertible. Hence,
µk = 0 for all k = 0, . . . , (m + 1)n − 1, completing the proof of (i).

(ii)-(a) Similar to (i), for any s ≥ (m+1)n, we consider the following vector equation
in the variables µ2, . . . , µ(m+1)n−1, µs:

(m+1)n−1∑
k=2

µkẽ1Q
k + µsẽ1Q

s = 0,

which is equivalent to the linear system

(5.16)
(m+1)n−1∑

k=2

(
k

t

)
λ k−t

ℓ µk +
(

s

t

)
λ s−t

ℓ µs = 0, t = 0, . . . , m, ℓ = 0, . . . , n − 1.
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Since n is odd, Lemma 5.4-(i) gives λ(n−1)/2 = 0. Thus, (5.16) is a linear system of
(m + 1)n − 2 equations in (m + 1)n − 1 unknowns. Its coefficient matrix Ξ has block
form

Ξ =



Ξ0
Ξ1
...

Ξn−3
2

Ξn−1
2

Ξn+1
2...

Ξn−1


,

where the block Ξℓ is the (m + 1) × ((m + 1)n − 1) matrix

Ξℓ =



λ2
ℓ λ3

ℓ λ4
ℓ · · · λ

(m+1)n−1
ℓ λs

ℓ

2λℓ 3λ2
ℓ 4λ3

ℓ · · · ((m + 1)n − 1)λ(m+1)n−2
ℓ sλs−1

ℓ

1 3λℓ 6λ2
ℓ · · ·

(
(m+1)n−1

2

)
λ

(m+1)n−3
ℓ

(
s
2

)
λs−2

ℓ

... ... ... . . . ... ...
0 0 0 · · ·

(
(m+1)n−1

m

)
λ

(m+1)(n−1)
ℓ

(
s
m

)
λs−m

ℓ


.

In particular,

(5.17) Ξn−1
2

=
(

O O
Im−1 O

)
.

Hence, rank Ξ ≤ (m + 1)n − 2, implying that the set Λs is linearly dependent.

To prove that Λ is independent, remove the last column of Ξ (corresponding to
µs) to form Ξ̃. Expanding the block Ξ̃n−1

2
in equation (5.17) and applying generalized

Vandermonde determinant properties, we obtain

det Ξ̃ =
∏
i<j

i,j ̸=(n−1)/2

(λj − λi)(m+1)2 ·
∏

i̸=(n−1)/2
λ

(m+1)2

i ̸= 0.

Hence, Ξ̃ is nonsingular, and Λ is linearly independent.
(ii)-(b) By equation (5.12) and induction, we have

(5.18) Qj =



Kj

(
j

1

)
11Kj−1

(
j

2

)
12Kj−2 · · ·

(
j

m

)
1mKj−m

0 Kj

(
j

1

)
21Kj−1 · · ·

(
j

m − 1

)
2m−1Kj−m+1

... ... ... . . . ...

0 0 0 · · ·
(

j

1

)
m1Kj−1

0 0 0 · · · Kj


,
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or equivalently,

Qj[p, q] =



(
j

d

)
pdKj−d, q = p + d, 1 ≤ d ≤ m,

Kj, q = p,

0, otherwise,

where pd = p(p + 1) · · · (p + d − 1) is the rising factorial and Qj[p, q] is the element in
the p-th row and q-th column of the matrix Qj.

Similar to above argument in (ii)-(a), the last row will be immaterial. Without loss of
generality, assume s = (m+1)n. By equation (5.18), we note that Cqn+1, Cqn+2, . . . , C(q+1)n
are the columns of the matrix whose rows are

e1

(
2
q

)
K2−q, e1

(
3
q

)
K3−q, . . . , e1

(
(m + 1)n

q

)
K(m+1)n−q,

for q = 0, 1.
We claim that the set {Cqn+2i+1 | i = 0, . . . , (n − 1)/2} spans a space of dimension

(n − 1)/2. Consider the vector equation in n̄ :=
⌊

(m+1)n−q
2

⌋
variables µ1, . . . , µn̄:

n̄∑
j=1

µj

(
2j + q

q

)
e1K

2j = 0,

which is equivalent to the linear system

(5.19)
n̄∑

j=1

(
2j + q

q

)
λ2j

ℓ µj = 0, ℓ = 0, . . . , n − 1.

The coefficient matrix of the linear system (5.19) is

Ξ =



(
2 + q

q

)
λ2

0

(
4 + q

q

)
λ4

0 · · ·
(

2n̄ + q

q

)
λ2n̄

0(
2 + q

q

)
λ2

1

(
4 + q

q

)
λ4

1 · · ·
(

2n̄ + q

q

)
λ2n̄

1

... ... . . . ...(
2 + q

q

)
λ2

n−1

(
4 + q

q

)
λ4

n−1 · · ·
(

2n̄ + q

q

)
λ2n̄

n−1


.

By Lemma 5.4-(i), λ(n−1)/2 = 0, and the nonzero eigenvalues occur in pairs ±λ,
hence rank Ξ ≤ (n − 1)/2. Taking the first (n − 1)/2 columns and rows corresponding
to distinct eigenvalues gives a submatrix Ξ̃ with

det Ξ̃ =
∏
i<j

(λ2
j − λ2

i ) ·
(n−3)/2∏

ℓ=0
λ2

ℓ ̸= 0.

Therefore, we obtain that rank Ξ = n−1
2 and the claim is proved.

Finally, by Proposition 5.3-(i) and (ii), the submatrix consisting of the first n−1
2

nonzero rows of the matrix formed by the column vectors {Cqn+2i+1 | i = 1, . . . , n−1
2 } is

a lower triangular matrix, whose diagonal entries are (2 + q)!, (4 + q)!, . . . , (q + n − 1)!.
Therefore, the vectors {Cqn+2i+1 | i = 1, . . . , n−1

2 } are linearly independent, and Cqn+1
lies in their span. This completes the proof.



28 H. X. TAN, Y. Q. XIE, AND W. J. YAN

□

Proof of Proposition 5.1. (i) When n is even. By Proposition 5.3-(i), we observe
that all odd rows of matrix M form a matrix with (m+1)n

2 rows but only (m+1)n
2 − 1

nonzero columns. Hence, the rank of the odd rows is at most (m+1)n
2 − 1, implying

rank M ≤ (m + 1)n − 2.

On the other hand, applying Proposition 5.5-(i) with s = 2, the augmented matrix
M̃ has rank (m + 1)n − 1, which shows

rank M ≥ (m + 1)n − 2.

Combining the bounds, we conclude that rank M = (m + 1)n − 2.
When n is odd. Consider s = (m + 1)n in Proposition 5.5-(ii). The augmented

matrix M̃ s then has rank (m+1)n−2. Moreover, by Proposition 5.5-(ii)-(b) with q = 0,
the first column C1 lies in the span of C3, C5, . . . , Cn. Therefore,

rank M s = rank M̃ s = (m + 1)n − 2.

(ii) By Proposition 5.5-(i), the augmented matrix M̃ has rank (m + 1)n − 1. Hence,
there exists an index ι ∈ {1, . . . , (m + 1)n − 1} such that

det M τ
ι ̸= 0.

By Proposition 5.3-(iii), there exist a nonzero integer β0 and a positive integer γ0 > 0
such that

det M τ
ι = (−1)γ0/2β0 cγ0/2τ γ0 .

Next, performing a Laplace expansion along the ι-th column of det Mϕ
ι , we ob-

tain the form described in (ii), with constant coefficients {βk}(m+1)n−1
k=1 and exponents

{γk}(m+1)n−1
k=1 . Meanwhile, Proposition 5.3 implies that all γi are even, each βi is an

integer, and that the sequence of γi is strictly increasing in i.
Finally, the positivity of γ(m+1)n−1 follows from the estimate:

γ(m+1)n−1 ≥
(m+1)n−2∑

i=1
(i − 1) +

m∑
q=0

n−1∑
j=1

(
q(n − 1) − j + 2

)
= 1

2

(
m2(2n2 − 2n + 1) + m(2n2 − 2n − 3)

)
+ 1 > 0.

(iii) Define the matrices M s
ι , M s,τ

ι , and M s,ϕ
ι analogously to Mι, M τ

ι , and Mϕ
ι ,

respectively. It follows from Proposition 5.5-(ii) that
det M s,τ

ι = 0, for all ι = 1, . . . , (m + 1)n − 1.

In particular, for ι = n, this yields
det M s,τ

n = 0.

Substituting into the identity
det M s

n = det M s,τ
n + det M s,ϕ

n

immediately gives
det M s

n = det M s,ϕ
n .
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Applying the same methodology as in the proof of part (ii) then produces the as-
serted expression for det Mn.

Finally, we verify that βs ̸= 0. Indeed, βs is the determinant of the submatrix
obtained by removing the last row and the n-th column from M s. Proposition 5.5-(ii)
ensures that this submatrix is nonsingular, and hence βs ̸= 0.

□
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