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ISOPARAMETRIC HYPERSURFACES IN S" x R™ AND H" x R™

HUIXIN TAN!, YUQUAN XIE?*, AND WENJIAO YAN?

ABSTRACT. We first show that every isoparametric hypersurface in S x R™ or H" x R™
possesses a constant angle function with respect to the canonical product structure.
Exploiting this rigidity, we achieve a complete classification of isoparametric and ho-
mogeneous hypersurfaces in these product spaces. Furthermore, in the product of any
two real space forms, we prove that a hypersurface with both constant angle and con-
stant principal curvatures must be isoparametric. Consequently, for hypersurfaces in
S™ x R™ and H™ x R™, the conditions of having constant angle and constant principal
curvatures are equivalent to being isoparametric.

1. INTRODUCTION

A smooth non-constant function F' : M — R on a Riemannian manifold M is
called transnormal if there exists a smooth function b : R — R such that [|[VF|? =
b(F'), where VF denotes the gradient of F. If in addition, there exists a continuous
function a : R — R such that the Laplacian satisfies AF = a(F'), then F is said to
be isoparametric (cf. [42]). The regular level sets ¥ = F~1(t) are correspondingly
referred to as transnormal or isoparametric hypersurfaces, respectively. As observed by
Elie Cartan, the transnormal condition implies that the level hypersurfaces are parallel,
while the isoparametric condition further guarantees that these parallel hypersurfaces
have constant mean curvatures. Moreover, in real space forms, Cartan proved that a
hypersurface is isoparametric if and only if it has constant principal curvatures.

The classification of isoparametric hypersurfaces in the Euclidean space R™ and
hyperbolic space H" was completed by Cartan [3] and Segre [35] as early as in 1938.
By contrast, the S™ case remained a subtle and long-standing problem—indeed, S. T.
Yau listed it as Problem 34 in “Open Problems in Geometry” [34]. After decades of
contributions from numerous mathematicians [1, 4-8 15, 16, 22, 23, 25, 27-31, 36—
38], a complete classification on the unit sphere S* was finally achieved in 2020 [9]. A
natural continuation of this classical theme is to study the classification of isoparametric
hypersurfaces in the Riemannian product of two real space forms, M7 x M} (ci,c; €
{1,0, —1}).

In order to classify isoparametric and homogeneous hypersurfaces in the product
manifold S? x S, Urbano [41] introduced in 2019 a natural product structure P on the
tangent bundle of S? x S?, together with an associated angle function C' defined on an
oriented hypersurface Y. These constructions, in fact, extend verbatim to any product
of two real space forms M7 x M (c1,c; € {1,0,—1}). Concretely, if a tangent vector
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decomposes as (v, vy) according to the product splitting, the structure P is defined by:

P:X(M: x M) — X(M x M)
('Ul,UQ) — (’Ul,—’UQ).

With respect to the product metric, this tensor field satisfies P2 = Id, and is parallel.
Let ¥ C M/ x M} be an orientable hypersurface with unit normal vector field N. With
respect to the product metric, the associated angle function C' is defined by

C:¥ — [-1,1]
x — (PN(zx), N(x)),

which measures the projection of the normal vector onto the +1-eigenspaces of P. The
extreme values C' = £1 correspond to normals entirely contained in one factor, while
|C'| < 1 indicates a genuine tilt between the two factors.

Recent works establish the following rigidity for isoparametric hypersurfaces:

Theorem ([11, 17, 18, 41]) In each of the spaces S* x §?, §? x R?, §? x H?, H? x H?,
H? x R?, S" xR, and H" x R (with n > 2), all isoparametric hypersurfaces have constant
angle.

In this paper, we extend these results to higher dimension Euclidean factors:

Theorem 1.1. Let X be a connected isoparametric hypersurface in S X R™ or H™ x R™.
Then the associated angle function C' is constant along 3.

Remark 1.2. In a forthcoming paper, shall investigate the remaining product types
S™x S™, S" x H™, and H™ x H™, and establish a corresponding constant—angle property
for isoparametric hypersurfaces in these settings.

Remark 1.3. The case n > 2 in Theorem 1.1 is proved in Section 5. The argument
used there does not apply when n = 1; nevertheless, Fxample 3.5 together with Theorem
1.4-(iii) yields a direct verification that X has constant angle function in the n = 1 case.

Urbano [41] obtained a complete classification of isoparametric hypersurfaces in
S? xS? by constructing an efficient global frame adapted to the natural complex structures
on S%. Several subsequent works followed his strategy to treat other product models.
In 2018 Julio—Batalla [24] classified isoparametric hypersurfaces with constant principal
curvatures in S* x R?; later, dos Santos-dos Santos [13] treated the case M2 x MZ2
with ¢; # c. Gao-Ma—Yao [17] removed the constant principal curvatures assumption
in [13] and completed the classification; in a related work [18] they developed refined
geometric tools to treat H? x H2. All these approaches crucially exploit the fact that
every two-dimensional real space form carries a natural complex structure, and therefore
their arguments do not generalize to higher dimensions (for instance, among all spheres
only S? and S° admit almost complex structures, while whether S° carries a complex
structure remains the well-known Hopf problem [39, 40]).

It is also noteworthy that Ge-Radeschi [19] obtained a foliated diffeomorphism classi-
fication of codimension one singular Riemannian foliations (e.g. isoparametric foliation)
on all closed simply connected 4-manifolds (including S? x S?). In addition, Qian-Tang
[32] provided an isoparametric hypersurface in S™ x S™ and computed its curvature prop-
erties as well as the spectrum of the Laplace—Beltrami operator. More recently, Cui [10]
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provided further examples of isoparametric hypersurfaces by restricting certain isopara-
metric functions on S?**! to the product S® x S".

From another perspective, building upon the local classification of constant an-
gle hypersurfaces in [12], de Lima and Pipoli [11] obtained a complete classification of
isoparametric hypersurfaces in S” x R and H"” x R. They proved the following result:

Theorem ([11]) Isoparametric hypersurfaces in M x R (¢ = £1) are precisely one of
the following:

(i) horizontal slice M x {to};
(ii) a vertical cylinder over a complete isoparametric hypersurface in M7 ;
(iii) a parabolic bowl in H™ x R.
The classification above is based on the concept of (M, ¢)-graphs. However, a direct
extension of this construction to vector-valued functions produces submanifolds of higher

codimension rather than hypersurfaces, thus does not apply when the Euclidean factor
has dimension m > 1.

We adopt a different approach. Inspired by Miyaoka [26] and through a focused
analysis along the special principal direction V' = PN — C'N, we establish the following
classification of isoparametric hypersurfaces in M x R™ (¢ = £1). (Note that when
n = 1, only the case S' x R™ needs to be considered, as H' does not exist.)

Theorem 1.4. Let 3 be a connected complete isoparametric hypersurface in M x R™
(c==£1, m >2), ie., in S*" X R™ or H* x R™. Up to ambient isometry, 3 is one of
the following:

(i) K1 x R™, where K is an isoparametric hypersurface in M. For n = 1 this
reduces to {p} x R™, p € S';

(il) M x Ky, where Ky is an isoparametric hypersurface in R™;
(iii) ®(R™) C S' x R™, where ®: R™ — S! x R™ s the immersion defined by
T (cos(m,x0>, sin(z, xo), x),
with (-,-) denoting the standard inner product on R™ and xo € R™\ {0} fized;
(iv) U(R™™ 1) C H" x R™, where U: R"™™~1 — H" x R™ is given by
(t,z,9) = (p(t,2), a(t,p)),
with
p(t, ) = cosh (t\/g)%(x) + sinh (t\/g) N, (),
a(t,y) = 12(y) + V1 =Ny,

where vy (x) is a horosphere in H" with unit normal N,,, v (y) is an affine
hyperplane in R™ with constant unit normal N,,, and € € (0,1) is a constant.

Remark 1.5. In a forthcoming paper, we shall generalize this classification to the re-
maining product types S™ x S, S" x H™ and H" x H™.

As mentioned earlier, in real space forms, isoparametric hypersurfaces coincide with
hypersurfaces having constant principal curvatures. However, these two notions are no
longer equivalent in general Riemannian manifolds. For example, Rodriguez-Vazquez
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[33] constructed non-isoparametric hypersurfaces with constant principal curvatures in
the torus T™ (n > 3), while Ge-Tang-Yan [21] exhibited isoparametric hypersurfaces in
CP™ whose principal curvatures are not constant.

As the second main result of this paper, we consider hypersurfaces in the product
manifold M[ x M, and establish the following theorem.

c2)

Theorem 1.6. Let X be a connected hypersurface in M x M. If ¥ has constant angle
and constant principal curvatures, then it is isoparametric.

Combining Theorems 1.1, 1.4, with 1.6, we immediately obtain the following char-
acterization.

Corollary 1.7. Let X be a connected complete hypersurface in S* XR™ or H"xR™. Then
Y3 is isoparametric if and only if it has constant angle and constant principal curvatures.

Furthermore, by combining Corollary 1.7 with Theorem 1.4, we obtain a classifica-
tion of homogeneous hypersurfaces in S” x R™ and H" x R™. This result generalizes
that of [11], which corresponds to the case m = 1.

Corollary 1.8. Let ¥ be a homogeneous hypersurface in M" x R™ (¢ = +£1, m > 2),
i.e., in S" X R™ or H® x R™. Up to ambient isometries, ¥ is one of the following:

(i) K1 x R™, where Ky is a homogeneous hypersurface in M. In the case n = 1,
this reduces to {p} x R™ with p € S*;
(il) M x Ky, where Ky is a homogeneous hypersurface in R™;
(iii) The hypersurface described in Theorem 1.4-(iii);
(iv) The hypersurface described in Theorem 1.4-(iv).

The paper is organized as follows. In Section 3, we prove Theorem 1.4 and verify
the homogeneity of the hypersurfaces listed therein. Section 4 is devoted to the proof of
Theorem 1.6. Finally, due to its length and technical nature, the proof of Theorem 1.1
is presented separately in Section 5.

2. PRELIMINARIES

Let X be an orientable hypersurface in the product manifold M x M7 with global
unit normal vector field N. For any vector field X € X(M x M), we denote by X" its
horizontal component tangent to M” and by X" its vertical component tangent to M.
Let A be the shape operator of ¥ associated with N, and H the mean curvature of X.
The natural projection maps are given by

m s M x M — M

c1?

Tyt M x M — M

c2)

(z,y) — =, (,y) — y.
For each (z,y) € ¥, we define
Ly =m(m'@NT) and 8, =m(m ' (x)NT),

which represent the projections of ¥ into the horizontal and vertical factors, respectively.



ISOPARAMETRIC HYPERSURFACES IN S§" x R™ AND H" x R™ 5

Decompose the unit normal vector as N = (N" N?). The angle function C is then
accordingly given by

(2.1) C'=(PN,N) = [N"|? = [[N"|* = C} - (3,

where

1+C , 1-C
Gy = NVl ===

Gy = [N ==

Now we introduce a special tangent vector field V' on ¥, which will play an important
role in the subsequent verification. It is defined by

(2.2) V=PN-CN=((1-C)N"~(1+C)N").

It follows immediately that ||[V]|? = 1 — C?. Differentiating (2.1) and using the fact that
P is parallel, we obtain, for any tangent vector field X on X,

X(C)=(Vx(PN),N)+ (PN,VxN)
= —2(AX,V) = =2(X, AV).
Hence, the gradient of C' is given by
(2.3) VEC = —2AV.

In the product M x R™(¢ = =+1), the Riemannian curvature tensor R, of the
product manifold M x R™ is given by

(24)  R(X,Y)Z =c((X", ZMY" — (Y" Z"X"), VXY, Z€X(M! xR™),

3. CLASSIFICATION OF ISOPARAMETRIC HYPERSURFACES

In this section, we aim to prove Theorem 1.4. For the fluency of expression, we begin
by preparing two propositions to characterize the focal points and principal frames of

transnormal hypersurfaces with constant angle in general Riemannian product manifolds
M1 X Mg.

Proposition 3.1. Let X be a connected complete transnormal hypersurface in the Rie-
mannian product My X Msy. If the angle function C' is constant with —1 < C' < 1, then
for any (xo,y0) € X, the slices ¥, and X, are transnormal hypersurfaces in My and
My, respectively.

Moreover, if (z,y) € My x My is a focal point of 3, then x is a focal point in M
and y is a focal point in Ms. Conversely, if x is a focal point in My ory is a focal point
in My, then (z,y) is a focal point in My x M.

Proof. Without loss of generality, let ¥ = F~1(t) be a regular level set of a transnormal
function F : My x My — R satisfying | VF||> = b(F). Denote by V" and V" the gradients
on M; and M, respectively.

For fixed points xq € M; and yy € M, define
Fo My — R, F,: M, — R,
y — F(xo,y), ©— F(2,10)-
Then X,, = F,'(t) and ¥,, = F, *(t). A straightforward computation yields

IV Foy (0)II* = IV F (o, )|
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1-C , 1-C
= —5 IV p)|? = ——b(F(x0.9)).

and the corresponding relation for F, is analogous. Moreover, by (2.2)

2 ; 1
EXP(0,y0) ﬁt(ov N ) = €XDP(z0,y0) mt((l - C)N — V)
= tN,

FPexpizg ) (- o tV)

and similarly,

1
h
(N ,O) = eXp(xovyO) 71 I Ot((l + C)N + V)

1 tVtN

1+C

2
€XP(20,40) 1+ Ct

= eXpexp(zo,yo)

Since —1 < C < 1, we have |V||? = 1 — C?* # 0. Hence V is a nonvanishing
tangent vector field on the complete hypersurface ¥. Therefore, exp(,, )tV defines a

diffeomorphism for each ¢, and the differential of exp, tN* (resp., exp, tN ") has the

same rank as that of exp,, ,) V. The desired conclusion follows.

O

Remark 3.2. When C = 1, we have N = (N",0). Thus, for any (zo,y0) € 2, X, = M
and ¥, is a transnormal hypersurface in My. Consequently, (x,y) € My x M, is a focal
point if and only if y € My is a focal point. The case C' = —1 is analogous.

Proposition 3.3. Let X be a connected complete transnormal hypersurface with constant
angle function C in a Riemannian product M x M3*, and set V. = PN — CN. If
—1 < C <1, then at any point (z,y) € X, there exists a local orthonormal frame

1
—————V, (X1,0),...,(X,-1,0), (0,Y,),...,(0,Yqtm—
{ s (600 (60,0 013 (0o
with respect to which the shape operator A of ¥ satisfies
AV =0,
(A(0,Y,),(0,Y3)) = Aabap, a,B=mn,...,n+m—2.
Here, \;/Cy (i = 1,...,n — 1) are the principal curvatures of ¥, in M7, and A,/Cs

(¢ =m,...,n+m —2) are the principal curvatures of X, in M3*. Moreover, the mean
curvature of ¥ is given by H = S 1 m=2 )\,

Proof. Denote by V, V" and V" the Levi-Civita connections on M? x M, M and
M, respectively. Since the hypersurface ¥ has a constant angle function C, for any
X € X(X,) and Y € X(X,), we have

1
(VAN N™ oy = 5X(N’l, N™p, =0,
1
(VYN N\, = §Y<N””,N”)M2 =0.
Hence, the shape operators Ayn of X, C M{* and Ay» of ¥, C MJ" satisfy

CiAN X = =V N" + (VAN NPy, Nt = -V ND
CyAneY = —=VUN® + (VSN N*), N¥ = =V N".
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At each point (z,y) € ¥, let {(X;,0)}!-] be eigenvectors of Ay corresponding to
eigenvalues \;/Cy, and {(0,Y,)}"£"2 be eigenvectors of Ayv corresponding to eigenval-
ues \,/Cy, respectively. Then we have

(A(X;,0),(X;,0)) = —(Vix,0 (N, NY), (X;,0)) = (Vi N" X;)up
= <ClANhXi,Xj>M{L = )\261]
for any 7,5 = 1,...,n — 1 and similarly,
<A(0v Ya)? (07 Yﬁ)> = _<V(O7Ya)<Nh’ Nv)v (O’ Yﬂ)) - _<v11)/an7 Y6>M§”
- <02ANUY0¢7 YB)MZT” = Aaéaﬁ

for any a, 8 =n,...,n+m — 2. Therefore, equation (3.1) follows. O

Now, we proceed to complete the proof of Theorem 1.4.

Proof of Theorem 1.4. According to Theorem 1.1, the isoparametric hypersurface
Y possesses a constant angle function C. The cases C' =1 and C' = —1 correspond to
(i) and (ii), respectively; hence we assume —1 < C' < 1 in the sequel.

We first consider the case n = 1, i.e., S' x R™, which leads to parts (i)-(iii) of the
classification. Recall the following result from [20].

Lemma 3.4 ([20]). Let 7 : E — B be a Riemannian submersion with minimal fibers.
Given any (properly) isoparametric function f on B, then F := fomw is a (properly)
isoparametric function on E.

The universal cover 7 : R — S, 7(z) = e¥~'*, has discrete (hence minimal) fibers,
and the induced covering map

7:R™! 5 S x R™

(z,y) — (7(x),y)
is a Riemannian submersion with minimal fibers. By Lemma 3.4, it suffices to find
an isoparametric function F on R™*! satisfying F' = f o 7, where f is an isoparametric

function on S! x R™. Notice that the periodicity of 7 implies that F(x+2km,y) = F(z,y)
for all z € R and k € Z.

If the foliation determined by F' admits a focal manifold Yy, the classification in
R™+ implies that X is either a single point or an affine subspace of dimension at most
m — 1. Moreover, for any (z,y) € Yo, the entire line R x {y} C 3o; otherwise ¥
would decompose into disjoint union of lower-dimensional affine subspaces, which does
not occur in the classification. Consequently, F(x + 2km,y) = F(z,y) for any y € R™,
and the identity F(x,y) = F(2',y) holds for all 2,2’ € R, thereby proving Theorem
1.4-(i).

If F admits no focal manifold, the classification in R™*! implies that its regular
level sets must be hyperplanes. The periodicity condition allows one to choose F(z,y) =
sin (z — k(y, Yo)), where yy is a unit vector in R”. When x = 0, a connected component
of the regular level set of F' corresponds to Theorem 1.4-(i); when k # 0, each connected
component of a regular level set of F' can be parameterized as in Theorem 1.4-(iii).

Next, consider n > 2, which leads to parts (i), (ii), and (iv). The constancy of C
implies that C and C5 are also constant. Denote by I’ the isoparametric function on
M x R™ associated with X.
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Case 1: S" x R™ (n > 2). For any (x,y) € X, Proposition 3.1 shows that ¥, and
¥, are regular level sets of transnormal functions on R™ and S", respectively, and hence
are isoparametric by [26, Theorem 1.5-(1)]. However, isoparametric hypersurfaces in S"
have focal points that occur infinitely often along each normal geodesic. Using
sin Cyt
eXP () N = (:c cos Ct + mcilNh, Y+ tN”) ,
1
it follows that ¥, would have infinitely many focal points in R™, contradicting their

classification. Therefore, no isoparametric hypersurfaces with —1 < C' < 1 exist in
S™ x R™.

Case 2: H" x R™. By [26, Theorem 1.1], the possible topological types of H" x R™ are
as follows:

(i) If the transnormal system has no focal submanifold: an R-bundle or S'-bundle
over a hypersurface .

(ii) If there is one focal submanifold: either a vector bundle over the unique focal
submanifold ¥ or a DDBD structure.

(iii) If there are two focal submanifolds: a DDBD structure.

where DDBD (Double Disc Bundle Decomposition) structure means that the ambient
manifold is constructed by glueing two disc bundles over two submanifolds along the
boundaries.

The S'-bundle case is excluded since eXP(zy) N # (7, y) for any t # 0.

The DDBD structure is also impossible. If H" x R™ admitted a DDBD structure,
then for any point (z,y) € X, the normal geodesic would intersect the focal manifold
infinitely many times, yielding infinitely many focal points along it. By Proposition 3.1,
this implies that >, also has infinitely many focal points along the normal geodesic in
R™ contradicting the known focal structure of isoparametric hypersurfaces in R™.

As for the remaining two cases, we first show that ¥, is an isoparametric hypersur-
face in H", since the isoparametricity of ¥, in R™ follows from a similar discussion as in
Case 1. Furthermore, we will see that >, is isometric to X, and X, is isometric to X,
for any (z,y), (/,y') € %.

In case H" x R™ is a vector bundle over its unique focal submanifold i, let ¥ C
H" x R™ be the tube of constant radius ¢ around . For any (z,y) € X, we have

exXP(,.y) 7o (0, N¥) =exp tN,

t
1-C exp(z,y)(_l_cv)

2t Boay
oDy oV 0) =exp,, iy N,

Hence >, C R™ lies at distance CLQ from its focal submanifold along the unit normal
Nv/Csy, and ¥, C H" lies at distance C% along N" /C4. Moreover, 3, has constant mean

curvature Hy,, = (Cy/t for some integer £ € {1,...,m —1}. Using Proposition 3.3, since
¥ has a constant angle function C' € (—1,1),

Hy(z,y) = CiHs, (z) + C2Hs, (y),

and since Hy, Hy,, C; and C; are constant, so is Hy,. Let X, denote the parallel
hypersurface at distance ¢ from X, and X, ; the parallel hypersurface at distance ¢ from
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>, C H". Noting that

2
eXp(w,y) 7Ct(Nh7 O) = expexp(x,y) lJr#CtV tNa

1+
we obtain
Nh
HEC t(x,y) = ClHEy,t<eXpa:t> +CQHZ h(y)
1 C]_ eXPg t%l
Since Hy,, , and Hy, , are both constant, so is Hy, ,. Hence ¥, is an isoparametric

cxpztc—1
hypersurface in H". Moreover, since an isoparametric hypersurface with a single focal
submanifold in H" or R™ is uniquely determined (up to isometry) by its distance to
the focal submanifold, it follows that ¥, is isometric to ¥, and X, to X, for any

(z,y), (2, y') € 2.

In case H" x R™ is an R-bundle over the hypersurface ¥, in this case, ¥ C R™ has
no focal points. It follows that >, also has no focal points, thus are hyperplanes with
vanishing mean curvatures. Then an analogous discussion as the previous case shows
that 3, C H" is isoparametric. Moreover, for any (z,y) € X, ¥, C H" is one of the
following:

(i) a totally geodesic hyperplane (\; = 0),

(ii) an equidistant hypersurface (0 < |\;| < Cy), or

(iii) a horosphere (\; = £C1),
while 3, C R™ is a hyperplane (A, = 0). In these cases, principal curvatures at
(x,y),(2',y") € ¥ are the same. Since isoparametric hypersurfaces in H" and R™ with-

out focal submanifolds are uniquely determined by their principal curvatures, we again
conclude that >, and ¥, are pairwise isometric.

Next, we consider the flow along V:
eXP(y ) tV = (expm((l - C)tNh), expy( —(1+ C’)tN”)).
From Proposition 3.3, we have

A(X;,0) = My (X5, 0) + 03a(0,Yy),
A(0,Y,) = 04i(Xi,0) + A%(0,Ya),
where (0y,) is an (n—1) x (m—1) matrix. Let A; denote the shape operator at exp, ,, tV'.

Since X, and >, are isometric to Dexp, (—(1+C)tN"Y) and Yoy, (1—cyenn), respectively, we
may assume

A(Xi,0) = praNiipei (X5, 0) + Prioraqas(0, Ys),
A(0,Yy) = 4va0ivPij (Xja 0) + qvaX}/%qvﬁ(Ov Y@),

where (p;;) and (gn3) are orthogonal matrices of orders n — 1 and m — 1. Differentiating

A((J)u(X,Y)) = =N at ¢ = 0 yields

(3:2) ) = (= 1C + {1 S OR

(2



10 H. X. TAN, Y. Q. XIE, AND W. J. YAN

If ¥, and ¥, focalize simultaneously, we can view X as a tube of radius s around
the focal submanifold, giving

S n— S
A;[::)\];[:C&(:Otha, A]B+1:"':Alecltanha,
C?
A}%:"':)‘%:f’ )\Ql:...:xg—l:o,

for some k € {1,...,n—1} and £ € {1,...,m — 1}. However, equation (3.2) contradicts
the above equations for all s.

If ¥ has no focal points, the classification implies that ¥, is a hyperplane in R™, i.e.,

i = 0. Substituting this into (3.2), we obtain that A}, = --- = X' = +C}. Therefore,
the only remaining case is that X, is a hyperplane in R™ and Y, is a horosphere in H"
for any (z,y) € X, with 0;, = 0, leading directly to the expression in Theorem 1.4-(iv).

O

Example 3.5. From the proof of Theorem 1.4, the hypersurfaces described in case (iii)
arise as connected components of the level sets of

F:S!'xR™ = R, F(eV='* y) = sin (m—ko(y,yo)),
where 7, is a fixed unit vector in R™ and k € R.

A direct computation yields

VF = ((cos(x = k(y, yo)), —rcos(z — £{y, %) )0 )
and hence
IVF|> = (14 %)(1 — F?), AF = —(1+r*)F.
Thus, F is an isoparametric function on St x R™.
All values of F except +1 are regular. Moreover, F'~1(£1) are also connected

isoparametric hypersurfaces parameterized as in Theorem 1.4-(iii). For each t € (—1,1),
F~Y(t) consists of two connected components.

Consider 3 = F~(¢) for t € [-1,1]. Its unit normal vector is
1

N = sgn|( cos(x — Kk(y, ——(1, —KYp),

g ( ( (y y0>)) m( Yo)

1—x2

14k2

Hessian of F satisfies V2F |y, = 0, implying that ¥ is totally geodesic in S' x R™.

Indeed,

and the angle function is C' = . A straightforward computation shows that the

. —1 Kyl
ViF = — k(y, 0 .
an = niow) (1 20)

Choose an orthonormal frame {vy,...,v,,} on X, where v; = (0,Y;) fori=1,... m—1
and
4 sl sen(x)
U = T = sgn (cos(@ — k(Y 40)) ) ( T, Sy ).
For i,j <m — 1, since Y; L yy and ||yo|| = 1, one verifies

V?F|s(vi, ;) =0, V2F[s(v;,0m) = 0,
and hence V2F|y = 0.
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We now show that each connected component of a level set of F' is homogeneous in
St x R™. When k = 0, F = sinz, corresponding to case (i) of Theorem 1.4. Hence we
assume k # 0.

Let 3 be a connected component of ¥ = F~1(t) for ¢ # +1. Denote by Isomg(S! x
R™) the identity component of the isometry group of S' x R™, which is isomorphic to
SO(2) x (R™ x SO(m)), where SO(2) is the special orthogonal group of degree 2 and

R™ % SO(m) is the special Euclidean group in m dimensions. Represent y € R™ by <‘7{>
and consider the subgroup

K = (K1, K3) C Isom(S' x R™),
where

100
0 0 1

B e SO(m), B yo = yo, (b, yo) = 0}>
and
V71000
KQ = { 0 [m %?JO

QGR}.
0 0 1

Since K7 and Ky commute and Ky N Ky = {Id}, we have K = K x Ko, i.e.,

V=10 0
K:{ 0 B b—l—%yo

0 0 1

Byo = yo, (b,y0) =0, B € SO(m), 0 € R}.

Define
¢ : Isomy (St x R™) — SO(2) x R?,

(7 (5 1)) = (8700w, 00),

Evidently, ¢ is continuous. Since K = ¢~ (D) with D = {(eV=1%,1,0/k) | 6 € R} closed
in SO(2) x R?, K is a closed subgroup of Isom(S' x R™).

Finally, ¥ is an orbit of K. For (x,y), (z/,vy") € Xy, we have 2/ — 2 = k(¥ — y, yo)-
Moreover, since y and ' + (y — ¢/, yo)yo lie in the same hyperplane perpendicular to yo,
we can choose B € SO(m) and b € R™ such that BTy, = yo and By + b + x:zyo =1
Then

eﬁ(x’—w) 0 0
0 B b+ 2ty |€K
0 0 1

maps (z,y) to (¢/,y’). Thus, K acts transitively on ¥y and preserves it, proving that 3,
is a homogeneous hypersurface in St x R™. The same argument applies when ¢ = £1.

O

Example 3.6. The isoparametric function corresponding to case (iv) of Theorem 1.4 is

F:H"xR" R,  F(z,y) = (z,u).exp (aly — yo,v0)),
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where u = (ug, . .. ,u,) is a nonzero lightlike vector in Lorentz space L™ with ug > 0,
(-, ) denotes the Lorentz inner product, v is a fixed unit vector in R™ y, € R™, and
a € R.

A direct computation gives
VF = ((u+ (z,u)Lz) exp(aly — yo, o)), avo(z, u)r exp(afy — yo, vo))),
hence
IVF|* = (1+a*)F?, AF = (n+ a®)F.
Thus, F' is an isoparametric function, and all its level sets are regular.

For fixed y € R™, the equation F(z,y) = t gives (x,u), = t exp(—a(y — Yo, Vo)),
representing a horosphere in ]HI" Centered at the lightlike Vector u. For fixed x € H",
one obtains (y — yo, v9) = > through w1th
unit normal vg.

Let ¥ = F~!(t) for t € (—00,0). Its unit normal and angle function are
1 u+ (T, u)pz 1 — a?
N = ( ’ , av >, C= :
V1+ a? (z, u) ’ 1+ a?

The cases a = 0 and |a| — oo correspond to Theorem 1.4-(i) and -(ii), respectively; thus
we focus on a # 0.

For tangent vectors X = (X" X?) and Y = (Y" Y?) of H* x R™, the Hessian of F

is
VAF(X,Y) =(X" Y"F 4+ a*(X", vo)(Y", v) F
+aexp (aly = yo,v0) ) (X", u" )Y, 00) + (Y, 0T (X", 0p)),
where u' = u + (u, z)px is the projection of u onto T,H".

Choose an orthonormal frame {(X71,0),...,(X,-1,0),(0,Y1),...,(0,Y,—1), V/||V]}
on X, where V= PN — CN and
A (sl
IV \/1 +a (z, u)L

 —sgn(a)uo ).

Under this frame,

tly1 0 0
VZF|lg=] 0 0 0
0 0 0

Since the second fundamental form I = V2F|g, the principal distributions are

— o
Vi, =span{(X;,0) |i=1,...,n— 1},
Vo =span{(0,Y;) | j=1,...,m — 1},
V3 = span {V'}.

with corresponding principal curvatures and multiplicities:

Distribution Principal curvature Multiplicity

1
)% _— n—1
! 1+ a?
Vo 0 m— 1

Vs 0 1
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n—1
V1+a?
(X, X)I(Y,Y) — [I(X,Y)?

<X,X><}/,Y>—<X,Y>2 7

yielding the following table of sectional curvatures:

Hence the mean curvature of X is H = For any principal directions X, Y,

the sectional curvature is

KZ(X, Y) = KH"XR"L(X; Y) +

Y €
o Vi WV
CL2 CL2
— 0 —
Vi 1+ a? 1+ a2
Vs 0 0 0
2
a
G R -

Thus the Ricel and scalar curvatures are

(n—1)a?

——, X eV UV, —1)a?
RicsX ={ 1+a? G S Uty
1+a?

0, X eV,
Clearly, ¥ is not Einstein when a # 0.

To show ¥ is homogeneous, define the subgroup
G = (G1,Gy) C Isomg(H" x R™) = SO (1,n) x (R™ x SO(m)),
where SO (1,n) denotes the identity component of the Lorentz group and

B 0 0
Glz{ 0 Im SV

B € SO*(1,n), B'u=e"%u, s € R},

0 0 1
L 0 0\ R

GQ:{ 0 B b||BeSO(m), B v = vy, (b,vo):O}.
0 0 1

An analogous discussion as in Example 3.5 shows that G; and Gy commute, and thus

G = Gy x Gq, ie.,
B Q 0
G:{ 0 B b+ sy
0 O 1
B b

n : Isomg(H" x R™) — R, (B, (0 1) ) — ((BTu,u)L, (B g, v0), (b, vo>>.

Evidently, 1 is continuous. Then G = n~}(D) with D = {(e7%%,1,s) | s € R} closed in
R3; hence G is a closed subgroup of Isomg(H" x R™).

Finally, for (z,y),(2’,y) € ¥ = F7(t) C H* x R™, (2/,u), = <a:,u>LeXp< —

aly — vy, v0>). Then the transitivity of the isometric SO*(1,n)-action on H" yields the
existence of By € SO*(1,n) such that Byz = 2/, and thus

@Tu =e “u, B€ SO*(L,n), s €R,
BTvy = vy, (b,v) =0, B € SO(m) '

Define

(Boz,uy = (o, Biu)y = {z.u)s exp (— aly — y.w)).
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which implies Bl'u = exp ( —aly' — y,v0>)u. Similarly, there exist By € SO(m) and
bo € R™ such that Boy + by + (v — y,v0)vo = ', (bo,v9) = 0, thus Boyuo = vo. Then

By 0 0
g=10 By by+{ —yv)u| €G
0 0 1

maps (x,y) to (2’,y"). Thus G acts transitively on ¥, and since F' is G-invariant, G
preserves Y. Therefore, 3 is a homogeneous hypersurface in H" x R™.

4

4. PROOF OF THEOREM 1.6
Proposition 4.1. Let ¥ be an orientable hypersurface in M} x M. Then
(i) for any (X,Y) € X(X), the covariant derivative of V' is given by
(4.1) Vixy)V =CAX)Y) - PTAXY),
where PT : X(X) — X(X) denotes the tangential projection of P onto X;

(i) if X has constant angle and constant principal curvatures, then for any principal
vector field (X,Y') orthogonal to V', one has

(4.2) Vi(X,Y) =0.
Proof. (i) Recall that P is parallel and that V = PN — C'N. Then we have
ViV = PVxyN = (Vixy)C)N = CVixy)N.
By taking the tangential component of this expression, we obtain equation (4.1). When

M x M = S* x S?, the result coincides with Lemma 1 in [41].

(ii) We consider the flow of the vector field V', denoted by f; : ¥ — X, which is
defined by fi(7,y) = exp(,,(tV). Let A be the shape operator at the point (z,y) € %,
and A; the shape operator at f;(z,y). For convenience, we introduce the functions C;(t)
and S;(t) (i = 1,2) as follows:

cost, ¢; >0, sint, ¢ >0,
Cl(t) = 17 G = 07 Sl<t) = t, C = O,
cosht, ¢; <0, sinht, ¢; <O.

Assume that (X,Y) is a principal direction corresponding to the principal curvature
A, and that it is orthogonal to V. A straightforward computation shows that

Cy (Cy(1—C)t
(fo)«(X.Y) =(X,Y)< (G " (32(02(1+C)t)>

4.3
- o [ ES@a=00
’ —C%Sg (Co(1+ON) )
Differentiating this with respect to t at t = 0, we obtain
d
VAXY) = -1 (f)(X,Y) =M1 - O)X, (1 + C)Y).
t=0
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On the other hand, from equation (4.1) we have
ViV = CAX,Y) = PTAX,Y) = A( - (1= O)X, (14 C)Y).
Hence, it follows that

VHX,Y) = [V,(X,Y)] + Viky,V = 0.

Now, we proceed to complete the proof of Theorem 1.6.
Proof of Theorem 1.6.
When C = 1, we have N = (N",0), and hence X reduces to the product ¥; x M™

c2?
where ¥; is a hypersurface in M7 with constant principal curvatures. The desired
conclusion follows immediately. The case C' = —1 is completely analogous and will be

omitted. From now on, we focus on the case —1 < C < 1, that is, C;,Cs # 0.

In the flat case ¢; = ¢3 = 0, namely R x R™ = R"™™ the statement holds trivially.
Thus, we only need to consider the case ¢ + ¢35 > 0.

We employ the same notations and computations as in the proof of Proposition 4.1-
(ii). Under the assumption that 3 has a constant angle function C, we observe from
(2.3) that AV = 0. Assume that (X,Y) is a principal direction corresponding to the
principal curvature A and orthogonal to V. From At((ft)*(X, Y)) = —V().x )V, it
follows that

A, ((X, Y) ( GG -On) Cy (Co(1+ O )

ey ( &S (G- O))

(4.4) — 582 (Co(1+ CO)t) ))

=—(X,Y) < —c1C18; (C1(1 - O)t)

2CaSs (Co(1 + O)1) )
€1 (CL(1— C))

+A(X,Y) ( Cs (Cy(1 4 O)1) ) '

We distinguish the following two possibilities:
(1) There exists a principal direction (X, Y’) orthogonal to V' with X # 0 and Y # 0;

(2) No such direction exists.

Case (1). The equation (4.4) can be rewritten as

Ri()A(X,0) + Ba(t) A(0,Y) = ——— RL(1)(X,0) + o

— Ry(5)(0,Y),

where

Ri(t) =Cy (C1(1 - C)t) — 251 (C1(1—C)),
(4.5) !

Ry(t) = Cy (Co(1+ O)t) + 2232 (Co(1+CN).
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By Proposition 4.1-(ii), the shape operator A is invariant along the direction of V| i.e.,
Ay = A. Thus, we may write

(4.6) a1 (X, X) = (4:(X,0), (X,0)), (Y, Y) = (A(X,0),(0,Y)),

(4.7) Bi{X, X) = (A(0,Y),(X,0)),  B(Y,Y) = (A(0,Y),(0,Y)),

where «;, 5; € R for i =1, 2.

Substituting these into (4.4) and comparing coefficients, we obtain
(4.8) Ry(t)on + Ra(t)By = 1 — CR/( );

(4.9) Ry(t)az + Ry(t) By = ——=Ry(1).

1+ C
We now discuss equations (4.8)—(4.9) for different values of ¢; (i = 1,2).

Case A: ¢; # cy. In this situation, it follows directly that ay = [; = 0, and the
equations (4.8) and (4.9) simplifies to
1
——— Rt Ry(t 7}%’
1_0 1()7 2()ﬁ2 1+C ()
Evaluating at t = 0 gives oy = 2 = A. Substituting equation (4.5) into equations (4.10)
yields

(4.10) Ry(t)ay

)\2 + ch

2 2
s -op =0, AT
1

(4.11) ;i

S:(Co(1+CO)t) =

Since Cy # 0, for any possible values of pair (c1,cs), none of the terms in (4.11)
can vanish identically unless trivial or contradictory conditions occur. Therefore, Case
A cannot occur within Case (1).

Case B: ¢; = ¢y = ¢ # 0. Differentiating equations (4.8) and (4.9) at ¢ = 0, and using
C? = ﬁ and C3 = %, we obtain the following equalities from the first and second
derivatlves

(4.12) M(14C) —cCi(1—C) = 2)ay,
(4.13) (N 4+ cC3) (1 + C) = 2)ay,

(4.14) C(1—C%a; = \C(1—C?),
(4.15) C(1—C?%ay = 0.

Under the assumption —1 < C' < 1, if C' # 0, then (4.14)-(4.15) imply oy = A
and ay = 0. Substituting these into (4.12)- (4.13) yields C' = 0, a contradiction. Hence
C = 0 in this case.

With C' = 0, consider the parallel hypersurfaces ¥; = ¢,(3) of ¥ given by the
immersion g; : X — M7 <M, g/(z,y) = exp(,,tN. For simplicity, write C(t) = C:(t) =

Cy(t) and S(t) = S1(t) = Sa(t). Then it follows from At((gt)*(X, Y)) = —Vi).x NV

ha
- A <(X,Y)<C(Clt) c(CQt)> A(X, Y)< e 15((;215)))

— _(X,Y) ( C1S(Cht) +AX,Y) < C(Cht)

C28(Cat) ) C(Cat) ) '
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Using C' = 0, we get

=S (%) +XC (5
AX,Y) =2 t( ) (“E) (X.Y).
¢ (%) - V28 ()
Since AV = 0 by (2.3), the mean curvature H(t) of ¥; = ¢;(X) is

e 58 () e ()
0T B o) -vBs(h)

Therefore, ¥ is an isoparametric hypersurface.

Case (2). The argument is parallel to Case (1). For any principal direction (X,Y)
orthogonal to V', we obtain
1
=S1(Cht)
— AX.Y C1
ey )~ A

A, <( Xy < Ci(Cit)
—CQOQSQ(CQt) ) + A(X7 Y) <

) ( —010181(0175)
Since X has only two types of principal directions apart from V', we find
010181(0175) ;\i— )\Cl (Cﬂf) (X, O)
Ci(Cht) — 0—181(0115)

7;S2(Cht) ))

C1(Cyt)
= — (XY C2(02t)>'

A(X,0) =

CQCQSQ (Czt) + )\CQ (Czt)

A(0,Y) =
(0.Y) Ca(Cot) — 2-85(Cat)

(0,Y).

Hence, each parallel hypersurface ¥; has constant mean curvature, and thus X is isopara-
metric.

O

5. PROOF OF THEOREM 1.1

As noted in Remark 1.3, we restrict attention to the case n > 2. Since the angle
function is continuous, it suffices to show that it is locally constant. Hence, we consider
only the case —1 < C' < 1. For convenience, set C; = 7. Clearly,

Cy =V1—12, C=2r%-1, 0<71<l1.

We will choose an orthonormal frame along the parallel hypersurface of ¥ and
compute the coefficient matrix of the Jacobi field with respect to this frame. Then, by
analyzing the linear system satisfied by the mean curvature of the parallel hypersurface
and its derivatives, we derive a nontrivial algebraic equation in 7, which in turn shows
that the angle function C' must be constant.

Let N, denote the unit normal vector of ¥ at p € ¥, and define the normal expo-
nential map @, : ¥ — M7 x R™ by ®,.(p) = exp,(rN,). Then there exists a sufficiently
small 6 > 0 such that, for all » € (—6,0), the map ®, is well defined and 3, = ®,.(X) is
an embedded hypersurface in M x R™ at distance r from ¥. Fix p € ¥, and let 7,(r),
7 € (=6, 6), be the geodesic in M x R™ satisfying 4,(0) = p and 7,,(0) = N,,. The vector
field N(r) = v,(r) along 7, is parallel, and hence remains normal to X, at ,(r).
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We now choose unit orthonormal vector fields Ui (r),. .., Uy,(r) parallel along ~,
such that the horizontal components of U;(r) (i = 1,...,m — 1) vanish, i.e., Ul'(r) = 0,
and

Cy Ch )
Um =(—=N y —N" .
() = (G N0 G N
Together with N(r), we extend these to obtain a unit orthonormal parallel frame
N(r), Ui(r), ..y Uppm—1(r)

along ~,. By orthogonality, for i = m + 1,...,n+ m — 1, the vector fields U;(r) have
vanishing vertical components.

For each j =1,...,n+m — 1, let (;(r) be the Jacobi field along ~, satisfying
¢i(0) =U;(0),  ¢;(0) = —AU;(0),

and
(5.1) G+ Re(7: G)vp = 0,
where the Riemann curvature tensor R, is defined in (2.4). To compute (5.1), we de-

compose (;(r) in the orthonormal frame {U;(r)}74" ! as

n+m—1

G(r) = Z: bij(r)Us(r),

where b;;(r) are smooth functions on (—4,6) for j = 1,...,n +m — 1. Meanwhile, the
shape operator A with respect to the orthonormal basis {U;(0)}"! is given by
n+m—1
AU;(0) = z; a;U;(0).

We now decompose equation (5.1) into its horizontal and vertical components:
"+ REG™ G =0, G RGN =0,
Using the known solutions of Jacobi fields in M* and R™, we obtain
bij(r) = 0ij — agjr, i <m,
{bij(r) = 0;C7(r) — aiSz(r), i >m,
where S.-(r) and C,(r) are defined by

1
ﬁ sm(\/ cT? 7’) , c>0, . {cos(x/ cT? 7“) , c >0,
(r) =

;2 sinh(@r) . c<0, cosh(\/—m'2 7“) , ¢<0.
vV —cT

Moreover, these functions satisfy the first-order differential relations

(5.3) Si(r) = C.(r), CL(r) = —cr2S.(r).

(5.2)

Sy (r) =

In fact, the matrix B(r) = (b;;j(r)) given in equation (5.2) can be written as the
block matrix

Oij — QijT" — T
(5.4) B(r) = < —a;jS;(r) | 05C-(r) — a;;S-(r) ) '
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By Jacobi field theory, B(r) is nonsingular for all » € (=6, ), and the shape operator
of X, is given by
A, =—B'(r)B(r)™" (cf. [2, Theorem 10.2.1]).
Hence, the mean curvature H(r) is given by
d
H(r)=tr A, = —tr(B'(r)B(r) ') = — - (det B(r))/ det B(r).
r
Defining D(r) := det B(r) and differentiating, we obtain
D'(r)+ H(r)D(r) =0,
that is,
D'(r)=—H(r)D(r).
By differentiating this equation repeatedly, for all £ € N we have
(5.5) 0= D* D (r) + ¢u(r)D(r),

where

ou(r) = o (H(r), H'(r),..., HY(r)).

Recalling the structure of the matrix B(r) in (5.4), we observe that the highest
power of r in the explicit expression for D(r) is m. Hence, there exist coefficients agk
(¢ =0,...,m) such that

n—1 m

(5.6) DW(r) =33 agri S (r)Cr 1 (r),

=0 q=0
where D®)(r) denotes the k-th derivative of D(r).
Substituting (5.6) into (5.5) and letting k vary from 1 to (m + 1)n — 1, we obtain
(5.7) O‘o k1 = —0(0).

Using (5.3) together with (5.6), we compute

n—1 m el m
DEV(r) =33 qad yrt ' SEr)CF T () + 30 D af S () Cr (r)
=0 q=0 =0 4=0
n—1 m
= 3> afurtn = 1 er? S () Cr ()
=0 q=0
m—1
[T ((a+ 1ast +at,) o+ o) o)
q=0

S (m (0 D25+ (4 athyy — (n— Oeral )
+((C+Dafsy = (n = Oer’a ) ™) SEr)Cr ()

+ (ml((q +1aftyy, —er?al )t —erlanty ) SyHr).

=0

Therefore, for £ =0, . .q. ,n—1and ¢ =0,...,m, the coefficients satisfy

(5.8) Wi = (g + Dag)! + (0 + Daf,y, — (n = Oer’aly,

where we set o/"“—Ofor all=0,...,n—1 and a’il’k:ai’k:Ofor allg=0,...,m
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From the recursive relation (5.8) among the coefficients af ,, we may write

n—1 m

(5.9) 0‘8,k+1 = Z ZPZH,é a?,o,

{=0 q=0

where each coefficient pf 11,0 depends only on the parameters ¢, k,¢,n,m,c, and 7.

Since ag, = D(0) = 1 and af ;. coincides with ¢4(0) in equation (5.7), we conclude
that the vector

_ 0 0 1 m—1 m m T m~+1)n—1
o = (041,07 s Q105 Q0,055 Q1,00 Xp,00 - - - 7Oén71,0) € R™HY
satisfies a linear system of the form M¢ = v, according to (5.7), where

V= (_¢1 (0) - pg,O? sy _gb(erl)nfl(O) — p(()m+1)n70)T - R(m-ﬁ-l)n—l.

In the following, we shall see that the matrix M exhibits fundamentally different
properties depending on whether n is odd or even. For odd n, we further denote by M*
the ((m+1)n —1) x ((m+ 1)n — 1) matrix obtained from M?® in Proposition 5.5-(ii) by
removing its first column. For any n, let M, and M} denote the matrices obtained by
replacing the «-th column of M and M?®, respectively, with the vector v.

We establish key properties of M and M?® (for s > (m~+1)n), in particular deriving a
non-trivial algebraic expression in 7. Since the full proof is rather technical, it is deferred
to the end of this section.

Proposition 5.1. The matrices M (for even n) and M* (for odd n and any s > (m +
1)n) satisfy the following properties:

(i) rank M = (m + 1)n — 2 and rank M* = (m + 1)n — 2;

(ii) There exists v € {1,...,(m+ 1)n — 1} such that
20 20 (mLn—1 % %
det ML = (-1)7BQCTT’YO — Z (—1)751¢Z<0)07T%,
i=1
where By # 0, and Bi, ..., Bentin—1 as well as v > -+ > Ymy1yn—1 > 0 are
integers;
(i)
s s (m+1)n_2 i i
det M, = —(—1)2 Bs¢5(0)c2 77 — Z (—=1)2 Bip;(0)c2 77
i=1
where Bs # 0, B1, ..., Bumtiyn—2 as well as y1 > -+ > Ynp1m—2 > 7s > 0 are all
integers.

Proof of Theorem 1.1.

We will primarily apply the non-trivial algebraic expression in 7 implied by M and
M? as established in Proposition 5.1, and prove Theorem 1.1 proceeding case by case.

Case 1: n > 2 and n is even. By Proposition 5.1-(i), det M = 0. Since &, satisfies
M¢ = v, it follows that det M; = 0 for all ¢ = 1,...,(m + 1)n — 1. Moreover, by
Proposition 5.1-(ii), there exists an index ¢ € {1,...,(m + 1)n — 1} such that
o] jal] (m+1)n_1 ol i
det M, = (—1)2 fpc2 77° — Z (—=1)2 Bip;(0)c2 77 = 0.

=1
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This yields a nontrivial algebraic equation in 7, and hence 7 is constant.

Case 2: n > 2 and n is odd. If there exists sop > (m + 1)n with ¢4,(0) # 0, then,
analogously to Case 1, Proposition 5.1-(i) and (iii) imply that

det M =0
is a nontrivial algebraic equation in 7, so 7 is constant.

Otherwise, if ¢4(0) = 0 for all s > (m + 1)n, then equation (5.5) shows that D(r)
is polynomial near » = 0. However, from equation (5.4), D(r) = det B(r) cannot be
polynomial near » = 0, so this case is excluded.

O

5.1. Proof of Proposition 5.1. We first derive the recurrence relation in k for the
coefficients pf ., , in equation (5.9). For n > 4, combining equations (5.8) and (5.9), we
obtain the following explicit computation:

n—1 m

O‘o k1l — Z Zpk eae 1
¢=0 q=0
n—2 m
_Zpkoam + Z Zpkéau + Zpkn e 1,1
(=1 q=0
m m—1
q—1 q q q m m
Do 9,0 t Z Pro0%1,0 T Pko%1 0
=1 q=0
n—2 m n—1m-—1 n—3m—1
-1 __q q q q 2 q
Z Phe @00+ Y D Phealago— D D pipp(n—1—0craf,
— n—3
m m m 2 . m
+ Z Pro—1tagy — ZPMH(” —1—AL)cr Qo
(=2 £=0
m m—1
q—1 q q 2 q m 2 . m
+ Zpk,nflqoén—l,O - Z Prp—1CT On_20 = Prpn-1CT Oy 29
q=1 q=0
n—1 m
_ q—1 q q 2 q
=> > (Pk,z q+ Dol = Phppr(n—1—L)er ) Q-
(=0 q=0
For convenience, setting p{ , = 0if ¢ = —1 or £ = —1,n, we have
q _ q—1 q 2,.q
(5.10) DPit1e = 4Pre T gpk,éfl —(n—=1-"{)cr YSWARE

forany g =0,...,mand £ =0,...,n— 1.

Remark 5.2. Forn = 2 andn = 3, the computations are entirely analogous and remain
relatively straightforward. Although we omit the explicit calculations for brevity, these
low-dimensional cases reproduce the formula in equation (5.10) exactly. This confirms
that equation (5.10) holds for all integers n > 2.

More specifically, we have p870 = 1 and pj, = 0 for all other (/,q), since a870 =1
and equation (5.9). Taking £ = 0 in (5.10), we obtain

pi,o = p[l),l = 17 p({,é =0 for (67Q) 7& (Oa 1)7 (170)
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Similarly, when k£ = 1, we find that

—(n —1er?, if (4,q) = (0,0),
) if (&‘J) = (072)7(1’1)7(270)7

(5.11) P, =12
0, otherwise.

By applying the recurrence relation (5.10) and mathematical induction, we obtain
the following basic characterization of pf ,:

Proposition 5.3. When n > 2 and for any k > 2, ¢ =0,....m, £ =0,...,n —1,
the identity pf., = of ,(n)c*T* holds with s = 5(k — q — (). Furthermore, the following
assertions also hold:

(i) ofy(n) =0, for s € Z or s < 0.
(ii) of4(n) = k!, for s = 0.
(iii) of ,(n) is a polynomial of degree deg o} ,(n) > s with (—1)°* as its leading coeffi-

cient sign for s € 7.

Proof. (i) If s ¢ Z, then k — q — { is odd. As discussed above, pj, = 1 and pj, = 0
forall ¢ =1,...,n—1and ¢ =0,...,m. Since the parity of kK — ¢ — ¢ is preserved in
equation (5.10), it follows that pj, = 0 for all s ¢ Z.

If s <0, then ¢ + ¢ > k. By induction, we will show that pz,z = 0 also holds in this
case.

For k = 2, by equation (5.11), we have
p5, =0, forall ¢,¢ with ¢+ ¢ > 2.

Now assume that for some k& > 2, pjL, = 0 for all (g, ) satisfying ¢ + ¢ > k. Then
for any ¢, ¢ with ¢ + ¢ > k + 1, equation (5.10) gives

pZ+1,e = QPZTZI + gpi,z& —(n—1- 5)07219%,@“-
By the induction hypothesis, pZ}l = Pio1 = Py = Osince (q—1)+L > k, g+({—1) > &,
and g + (¢ + 1) > k. Therefore, pi,, , = 0, as required.

(ii) It suffices to show that pj , , = k! for all such k,q. When & = 2, equation (5.11)
gives ]D%2 =2

Suppose that for some integer & > 2, the identity pj., , = k! holds for all . Then,
for any ¢ satisfying k 4+ 1 > 2 + ¢, equation (5.10) implies

1
Phitktrqg=4Phpi1q+ (k+1=q@)pi) ,—(n—1—(k+1~ Q))CT2pz,k+2fq
=(k+ 1),

where the last equality uses pZ’_,;Ll_q = Pi_q = k! from the induction hypothesis and
Phira_q = 0 from (i). Hence, the result follows by induction.

(iii) Equivalently, it suffices to show that for any k& > 2,
deg oy ,(n) > s, where { = k — q — 2s,

for all integers s and ¢ satisfying 0 < s < %(k: —q).
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To prove this, we start with £ = 2 and proceed by induction. From equatlon ( A1),
the only term satlsfymg the condition is pf ; = —(n — 1)er®. Hence degojy(n) = s = 1,
verifying the claim for k = 2.

Assume now that for some k > 2, one has deg ag, k—q_2s(n) = s for all integers ¢, s
satisfying 0 < s < £(k — ¢), and that the leading coefficient has sign (—1)*. For k + 1,
take any such ¢, s Wlth 0<s< (k: +1—¢q) and set £ = k + 1 — g — 2s. By equation
(5.10), we obtain

2
Phiie = qpkz +Upfg = (n—1—=0)cTpf oy
—1
:qak,z (n)c*r 2
S 23

= ol ()T

s, 2s

+ EJH ()T —(n—1— E)ag’@rl(n)c T

where
ofpre(n) =qof () + Lo, ((n) — (n—1—= 0ol (n).

By the induction hypothesis, we have deg Jg’_ﬁl(n) =degoj, ; = sanddego], , = s—1,
with respective leading coefficient signs (—1)%, (—1)%, and (—1)*"1. It then follows that
degof,, ,(n) > s and its leading coefficient has sign (—1)*, which completes the proof.

O

To study the rank properties of M and M*® (s > (m + 1)n), we adopt a row-wise
perspective. Define the matrix M = [—v,, M| where v, = v — 1, and

vs = (—¢1(0), ..., —Pmt1yn-1(0))".

Let M7 (resp., M?) denote the matrix obtained from M by replacing its ¢-th column

with v, (resp., v4). Under this setting, each row of the matrix M is a row vector of the
form

T _ 0 0 1 1 m m
Lk*l - (pk,()v e 7pk7n717 pk,()? e 7pk,n717 R pk,07 e 7pk,n71>7 k Z 27

where each segment pf ,,...,p{,_; corresponds to ¢ =0,...,m.

Define e; € R" by
e = (P8,0ap8,17 e ,pgyn_l) =(1,0,...,0).

Next, we define an (m + 1)n x (m + 1)n matrix @ as follows:

K I
K 21
K 31

(5.12) Q= :
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where [ is the n X n identity matrix and K is the n x n 7-Kac matrix

0 1 0o .- 0 0 0
—(n —1)cr? 0 2 .. 0 0 0
0 —(n—2)r* 0 --- 0 0 0
K = : : Do : : :
0 0 0o --- 0 n—2 0
0 0 0 - —2cr? 0 n-1
0 0 o --- 0 —cr? 0

Then, for £ > 2, using the recurrence equation (5.10), the rows of M satisfy
L= Lp1Q = (e1,0,...,0)Q".

Regarding the properties of the 7-Kac matrix, we recall the following lemma estab-
lished in [11, 14].
Lemma 5.4. ([11, 14]) The 7-Kac matriz K of order n has the following propertues:

(i) It has n simple eigenvalues N, ..., \n_1, which are

M= (n—1-20)—cr, £€{0,...,n—1}.
In particular Ay is real if ¢ <0, and purely imaginarg if ¢ > 0;

(i) Its rank is n, if n is even, and n— 1 if n is odd. In particular, K is nonsignular
if and only if n is even,

(iii) The coordinates of e; € R™ with respect to the basis of its eigenvectors are all
different from zero.

We now relate ) to the 7-Kac matrix K, in particular its eigenvectors. Direct
computation gives

det Q = (det K)™*,
and thus by Lemma 5.4-(ii), @ is nonsingular if and only if n is even.

Let {zo,...,z,_1} C R™ be the eigenvectors of K. For £ = 0,...,n — 1, we define

the following vector in R(™+1n:
zoe = (24,0,...,0), x10=1(0,240,...,0), ..., Zme=1(0,...,0,2).
Then, we have
TpoQ = NTho + Tpp10, kE=0,...,m—1, T Q) = NTp.

More generally, for any integer £ > 0 and 0 < ¢ < m, by induction,

i min{k,m—i} k o
(513) I@g@ = Z " )\é Liyte-
t=0

Proposition 5.5. Let €, = (e1,0,...,0) € R with n > 2. Then
(i) If n is even, for any positive integer s, the set
{£Q" |i=s,...,s+(m+1)n—1}

is linearly independent.
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(ii) If n is odd, for any integer s > (m + 1)n, define the ordered sets
A=1{&Q" |i=2,...,(m+1)n—1}, A, =AU{EQ%}.
Let M be the matriz with rows given by the vectors in A, and denote its columns
by C1,...,Cing1yn- Then the following hold:
(a) A is linearly independent, whereas A is linearly dependent.
(b) For ¢ = 0,1, the column Cy,11 lies in the span of the columns {Cynioi41 |
i=1,...,(n—1)/2}.
Proof. (i) When n is even, the previous calculations show that @ is invertible, so it
suffices to consider s = 0.
Consider the vector equation

(m+1)n—1

(5-14) Z ,ngle =0
k=0

in the variables i, ..., tim+1yn—1-

Without loss of generality, by Lemma 5.4-(iii), we may write
n—1
€1 =Y oy,
=0

where a; # 0 forall £ =0,...,n — 1.

From equation (5.13), we obtain

—1 min{k,m} (k’

Hence, the system (5.14) is equivalent to the linear system

>/\lz_t,ukag$t’g =0.

(m+1)n—1 L
(5.15) 3 <t>ng—tuk:0, t=0,....m, £=0,... n—1.
k=0

The coefficient matrix = of (5.15) is a generalized Vandermonde matrix with
det= =[N — N i) (m+1)?
1<J
By Lemma 5.4, the eigenvalues )\, are distinct, so det = # 0 and = is invertible. Hence,
pur =0 forall k=0,...,(m+ 1)n — 1, completing the proof of (i).

(ii)-(a) Similar to (i), for any s > (m+1)n, we consider the following vector equation
in the variables pa, ..., fim+1yn—1, ts:

(m+1)n—1

Y mea Q'+ peQ’ =0,
k=2

which is equivalent to the linear system

(5.16) Z (t)Afkt”’“ + (j)x;tus =0, t=0,....,m, £=0,...,n—1.

k=2
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Since n is odd, Lemma 5.4-(i) gives A(,—1y/2 = 0. Thus, (5.16) is a linear system of

(m + 1)n — 2 equations in (m + 1)n — 1 unknowns. Its coefficient matrix = has block
form

[1]

I
[11 [1] [1]

T

[S]NEEN)
—

[1]

i
L

where the block Z; is the (m + 1) x ((m + 1)n — 1) matrix

)\% )\? )\;} L )\gm+1)n71 )\2
2 3A2 4N} o ((m+ Dn— AT gyt
m+1)n— m+1)n—3 s\ \s—
o= 1 3\ 67 - (Y ()X
o o0 0 --- ("”*,2"‘1)A§m+1)(”‘1) (;)Az—m

In particular,

_ (0 O
o7 == (2, 9).

Hence, rank = < (m + 1)n — 2, implying that the set A is linearly dependent.

To prove that A is independent, _remove the last column of = (corresponding to
is) to form =. Expanding the block = SES in equation (5.17) and applying generalized
Vandermonde determinant properties, we obtain

detZ2= [ (= ) T AMHY 2o

i<j i#(n—1)/2
i,j7#(n—1)/2 (n=v/

Hence, = is nonsingular, and A is linearly independent.

(ii)-(b) By equation (5.12) and induction, we have

K J 1K1 J 12K3-2 ... J 17 [i—m
1 2 m
0 K J 2TKj—1 . < J 2ij—m+1
. 1 m—1
(5.18) Q=1 . . . , : :
0 0 0 (i ) mUKi—1
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or equivalently,
<]>dej‘d, q=p+d, 1<d<m,

) q=0p,
0, otherwise,

where p? = p(p+1)---(p+d—1) is the rising factorial and Q’[p, q] is the element in
the p-th row and ¢-th column of the matrix Q’.

Similar to above argument in (ii)-(a), the last row will be immaterial. Without loss of
generality, assume s = (m+1)n. By equation (5.18), we note that Cyni1, Cgnias - - - Clgri)n
are the columns of the matrix whose rows are

e1 (2) K>, ¢ <3> K31 . e <(m * 1)72) Kmthn=a,
q q q

We claim that the set {Cy,10:41 |1 =0,...,(n —1)/2} spans a space of dimension
(m+1)n—g
2

n 24 ]
Zw( ”q>e1K2ﬂ —0,
=1 q

for ¢ =0, 1.

(n —1)/2. Consider the vector equation in n := { J variables py, . . ., fq:

which is equivalent to the linear system

n 2 )
(5.19) <J+Q>A§%:o, (=0,....n—1
— q

J

The coefficient matrix of the linear system (5.19) is

2 4 2n _
q q q
24+q 44q 2n+q\ |95
_ A2 AL A2

q q q

2 4 27 ;
(3 (9P (7
q q q

By Lemma 5.4-(i), A(z—1),2 = 0, and the nonzero eigenvalues occur in pairs £,
hence rank = < (n — 1)/2. Taking the first (n — 1)/2 columns and rows corresponding
to distinct eigenvalues gives a submatrix = with

_ (n—3)/2
det=Z =[N =X ] M #0.
i<j =0
Therefore, we obtain that rank = = "T_l and the claim is proved.

Finally, by Proposition 5.3-(i) and (i), the submatrix consisting of the first 25+

nonzero rows of the matrix formed by the column vectors {Cypioi01 |1 =1,..., %51} is
a lower triangular matrix, whose diagonal entries are (2 + ¢)!,(4+¢)!,...,(¢+n — 1)L
Therefore, the vectors {Cypi0i41 |7 =1,..., ”T’l} are linearly independent, and Cy, 44

lies in their span. This completes the proof.
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4

Proof of Proposition 5.1. (i) When n is even. By Proposition 5.3-(i), we observe

that all odd rows of matrix M form a matrix with ™D rows but only (min _ 4

2
(m+1)n
2

nonzero columns. Hence, the rank of the odd rows is at most — 1, implying

rank M < (m+ 1)n — 2.
On the other hand, applying Proposition 5.5-(i) with s = 2, the augmented matrix
M has rank (m + 1)n — 1, which shows
rank M > (m+ 1)n — 2.
Combining the bounds, we conclude that rank M = (m + 1)n — 2.

When n is odd. Consider s = (m + 1)n in Proposition 5.5-(ii). The augmented
matrix M® then has rank (m+ 1)n —2. Moreover, by Proposition 5.5-(ii)-(b) with ¢ = 0,
the first column C] lies in the span of C3,Cs, ..., C,. Therefore,

rank M® = rank M*® = (m + 1)n — 2.
(ii) By Proposition 5.5-(i), the augmented matrix M has rank (m+1)n — 1. Hence,
there exists an index ¢ € {1,...,(m + 1)n — 1} such that
det M # 0.

By Proposition 5.3-(iii), there exist a nonzero integer By and a positive integer vy > 0
such that

det MLT = (_1)70/2/80 0’70/27_’)/0.

Next, performing a Laplace expansion along the «-th column of det M?, we ob-

tain the form described in (ii), with constant coefficients {5 ,(jj”"‘l and exponents
{" ,ﬁ”j””‘l. Meanwhile, Proposition 5.3 implies that all 7; are even, each f3; is an

integer, and that the sequence of ~; is strictly increasing in .

Finally, the positivity of v(m41)n—1 follows from the estimate:

(m+1)n—2 m n—1
Y(m4+1)n—1 > Z (Z — 1) + Z Z (q(n — 1) _ ] + 2)
i=1 q=0 j=1

1
= 2<m2(2n2 —2n+1) + m(2n* — 2n — 3)) +1>0.

(iii) Define the matrices M?, M7, and M®® analogously to M,, M7, and M?,
respectively. It follows from Proposition 5.5-(ii) that

det MP" =0, forall:=1,...,(m+1)n—1
In particular, for ¢« = n, this yields
det M" = 0.
Substituting into the identity
det M? = det M>™ + det M5

immediately gives
det M? = det M>°.
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Applying the same methodology as in the proof of part (ii) then produces the as-
serted expression for det M,,.

Finally, we verify that 8, # 0. Indeed, (3, is the determinant of the submatrix
obtained by removing the last row and the n-th column from A*®. Proposition 5.5-(ii)
ensures that this submatrix is nonsingular, and hence 3, # 0.

O
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