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Abstract. This paper develops fluid limits for nonstationary many-server loss systems with gen-
eral service-time distributions. For the zero-buffer Mt/G/n/n queuing model, we prove a func-
tional strong law of large numbers for the fraction of busy servers and characterize the limit by
a nonlinear Volterra integral equation with discontinuous coefficients induced by instantaneous
blocking. Well-posedness is established through an appropriate solution concept, yielding the time-
varying acceptance probability without heuristic approximations. We then treat the finite-buffer
Mt/G/n/(n + bn) regime, proving a functional strong law of large numbers for the triplet of frac-
tions of busy servers, occupied buffers, and cumulative departures, whose limit satisfies a coupled
system of three discontinuous Volterra equations capturing the interaction of service completions,
buffer occupancy, and admission control at the capacity boundary. We establish well-posedness and
convergence of the time-varying acceptance probability. Our theoretical results are supported by
numerical simulations for both zero and finite-buffer regimes, illustrating the convergence of tran-
sient acceptance probabilities guaranteed by our theory. Finally, we use the fluid limits to derive
optimal staffing and buffer-capacity for both time-varying loss systems.

1. Introduction

Many modern service systems operate with limited capacity, meaning customers are turned away
or lost when the system is full. Classic examples include telephone networks with a fixed number
of trunk lines [11,18,21], hospital or emergency units with limited beds [1,2,9], wireless and optical
networks with bandwidth and channel constraints [25,36,37,41], emergency services like ambulances
and self-driving cars [17]. These loss models, sometimes called Erlang loss systems, have been studied
extensively under steady-state conditions. In fact, the famous Erlang-B formula [12] developed over
a century ago for telephone traffic gives the steady-state blocking probability for an M/M/n/n
queue and remains a cornerstone result in stationary loss models. Yet real-world systems are
rarely stationary: arrival rates and service demands fluctuate over time, and service durations
are not necessarily memoryless. As a result, steady-state measures often fail to capture short-term
dynamics, leading to inefficient or unstable operational decisions. Nonstationary, non-Markovian
loss systems such as Mt/G/n/n queues are significantly more challenging to analyze, and closed-
form transient performance formulas are virtually impossible to obtain. This difficulty motivates
the use of stochastic-process approximations for performance analysis, especially in many-server
regimes where the number of servers n is large.

Fluid limits or functional strong laws of large numbers (FSLLN) provide deterministic approx-
imations to many-server queuing systems by tracking the scaled system state as n → ∞. These
limits reveal the macroscopic law of motion of complex stochastic systems. Foundational work such
as [16, 28] introduced asymptotic techniques for many-server systems and Markovian service net-
works. Subsequent research established fluid and diffusion limits under increasingly general condi-
tions, including time-varying arrivals and non-exponential service times [20,26,27,33,42]. In contrast
to these limit theorems, an extensive applied literature has developed practical approximations and
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staffing heuristics for time-varying service systems. Related work, including [14, 15, 19, 38, 39], pro-
poses pointwise-stationary (POS), modified-offered-load (MOL), and other transient approximations
aimed at dynamic staffing, capacity planning, and transient performance evaluation. These studies
underscore the need for rigorous transient characterizations that connect operational heuristics with
asymptotic theory.

1.1. Overview of Approach and Key Insights. This paper develops a rigorous fluid-limit frame-
work for analyzing time-varying many-server loss systems. Specifically, we study a sequence of sys-
tems with nonhomogeneous Poisson process (NHPP) arrivals and general service-time distributions,
where both the number of servers and the arrival rate scale linearly with system size. The resulting
limit is characterized by a nonlinear Volterra integral equation (VIE) that captures the transient
evolution of the system’s occupancy and, crucially, yields the time-dependent blocking and accep-
tance probabilities in the large-scale regime. Our work builds upon [8], which established a fluid
limit for the nonstationary many-server Mt/G/n/n loss system using a semimartingale represen-
tation of the instantaneous acceptance mechanism. We enhance that framework by introducing a
refined convergence proof based on the discontinuous Volterra equation methodology of [22], ensur-
ing well-posedness and uniqueness of the limit even under nonsmooth boundary dynamics.

A distinguishing feature of our analysis is the emergence of nonlinear Volterra equations with
discontinuous coefficients, induced by the instantaneous blocking constraint at full capacity. This
structure departs sharply from classical Markovian formulations and provides a new analytic mech-
anism to capture threshold-type, transient blocking phenomena in nonstationary systems. The
discontinuity is not merely a technical complication. It serves as the deterministic counterpart of
the system’s stochastic acceptance barrier and encodes the operational behavior of loss systems
under time-varying load.

From a methodological standpoint, our results bridge three traditions in the study of nonsta-
tionary queues: (i) steady-state or quasi-stationary approximations such as the Erlang-B, PSA,
and MOL methods [14, 15, 29, 40]; (ii) computational and moment-based approximation meth-
ods, including cumulant and truncated-ODE approaches for time-varying loss and many-server
systems [19,30,31,38,39]; and (iii) rigorous asymptotic limit theorems [16,28,33]. The fluid model
derived here serves simultaneously as a limit theorem and a computational engine. It is a deter-
ministic equation directly solvable by numerical methods, providing transient blocking probabilities
without Monte Carlo simulations. This connection between rigorous scaling limits and practical
performance computation strengthens the link between applied probability and operational analy-
sis, particularly in time-dependent service environments such as healthcare scheduling, cloud ser-
vice provisioning, and mobility-on-demand platforms. Accurate transient blocking or acceptance
probabilities support dynamic staffing and admission-control decisions under fluctuating demand.
Whereas traditional time-varying approximations assume local equilibrium, our limit provides a
theoretically consistent foundation for approximating time-varying acceptance probabilities under
nonstationary demand, which is central to time-dependent operations management.

Although our analysis focuses on NHPP arrivals, the fluid-limit structure depends only on the
arrival-rate trajectory rather than Poisson-specific properties. The same analytical framework ex-
tends naturally to renewal or Cox processes with time-dependent intensities. This generality implies
that the derived acceptance probabilities provide accurate first-order approximations for a broad
class of time-varying queuing systems, highlighting the structural robustness of the fluid-limit for-
mulation.

1.2. Contributions. We establish functional strong laws of large numbers for nonstationary many-
server loss systems under general service-time distributions. Both the zero-buffer (Mt/G/n/n)
and finite-buffer (Mt/G/n/(n+ bn)) systems are analyzed in a common framework that scales the
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number of servers and the arrival rate proportionally with system size 1. The resulting limits are
deterministic trajectories described by nonlinear Volterra integral equations (VIEs) that capture
the transient evolution of the system occupancy and yield the associated time-dependent blocking
and acceptance probabilities.
(i) Zero-buffer systems. For the Mt/G/n/n model with nonhomogeneous Poisson arrivals of rate λ(·)
and i.i.d. service times with distribution G, let Nn

t denote the number in system and N̄n
t = Nn

t /n
its scaled occupancy. We prove that when the system starts empty N̄n converges almost surely to
a deterministic function ρ (see Theorem 3.3 for a more general and precise formulation) such that
ρ solves the following discontinuous VIE:

ρt =

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du. (1.1)

where Ḡ is the service-time survival function. The integral equation above has discontinuous co-
efficients due to the indicator 1{ρu−<1}, reflecting instantaneous blocking at capacity. We refine
the convergence analysis of [8] by introducing the discontinuous Volterra solution concept of [22].
Specifically, ρ solves (1.1) if there exists an auxiliary acceptance function w(·) such that

ρt =

∫ t

0
w(u)Ḡ(t− u)λ(u)du.

which ensures well-posedness even under nonsmooth boundary dynamics. As a corollary (see Corol-
lary 3.1 for a precise formulation), we obtain that for λ-almost every t, the acceptance probability

P (N̄n
t < 1)→ w(t). (1.2)

In addition, we identify w(t) = d(t)
λ(t) ∧ 1, where d(t) is the instantaneous departure rate, which

agrees with heuristic expectations. Thus our analysis yields a rigorous FSLLN that provides a
direct functional relationship between the time-varying acceptance (or blocking) probability and
the system primitives through a deterministic limit equation (1.2).
(ii) Finite-buffer systems. We extend the analysis to the Mt/G/n/(n+ bn) model, where the buffer
size bn may scale with n so that bn/n → β ∈ [0,∞). Denote by S̄n

t , Q̄n
t , and D̄n

t the scaled
numbers of busy servers, queued customers, and cumulative departures, respectively. We prove (see
Theorem 4.3 for a more precise formulation) that the joint limit of these processes (S̄n, Q̄n, D̄n) is
given by the tuple (ρ, η,D) that satisfies a system of three coupled nonlinear VIEs:

ρt =

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du+

∫ t

0
1{ηu−>0}Ḡ(t− u)d(u)du,

ηt =

∫ t

0
1{ρu−=1}1{ηu−<β}λ(u)du−

∫ t

0
1{ηu−>0}d(u)du,

Dt =

∫ t

0
1{ρu−<1}G(t− u)λ(u)du+

∫ t

0
1{ηu−>0}G(t− u)d(u)du,

where d(·) denotes the fluid departure rate. These equations jointly describe the evolution of service
completions, queue occupancy, and admission control at the boundary. As in the zero-buffer case,
they are interpreted through auxiliary acceptance functions (w1, w2, w3) ensuring existence and
uniqueness of the limit. The resulting acceptance probability satisfies

P (Q̄n
t <

bn
n
)→ w3(t),

1our analysis readily extends to time-varying piecewise constant service and buffer capacities. However, for sim-
plicity, we consider the case where both are constant.
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where w3(t) = d(t)
λ(t) ∧ 1 as in the zero-buffer case. This extension introduces significant technical

challenges beyond the zero-buffer case, requiring new arguments to handle the emerging coupled
nonlinear Volterra systems.
(iii) Analytical and operational significance. The discontinuous Volterra framework developed here
provides the first rigorous characterization of transient blocking and acceptance probabilities in
large-scale, time-varying service systems with general service-time distributions. It yields a numer-
ically tractable representation: the limit equations can be solved efficiently via numerical methods,
enabling direct computation of transient performance measures without simulation. Beyond ana-
lytical clarity, the framework serves as a practical foundation for operational decision-making. We
demonstrate its use for optimal staffing and buffer capacity design, showing how the determinis-
tic fluid model can approximate system-level performance with high accuracy. These formulations
extend naturally to dynamic versions, where time-dependent staffing or capacity policies adapt to
fluctuating demand. Overall, these results unify the transient analysis of Erlang loss and delay sys-
tems and offer a theoretically grounded computational tool for performance evaluation and dynamic
control in applications such as call centers, hospitals, and cloud-service platforms.

Together, the zero and finite-buffer results form an integrated theory of time-varying many-
server systems. The discontinuous Volterra formulation opens the door to higher-order diffusion
refinements and control-theoretic extensions.

1.3. Paper Organization. The remainder of the paper is organized as follows. Section 2 presents
the preliminaries, including notation, key probability results, weak convergence tools, and the an-
alytical framework for discontinuous Volterra integral equations (VIEs). Section 3 focuses on the
zero-buffer Mt/G/n/n system. We derive the fluid limit, prove the functional strong law of large
numbers, and establish convergence of the time-varying acceptance and blocking probabilities. Sec-
tion 4 extends the analysis to the finite-buffer Mt/G/n/(n+ bn) model. Here, we characterize the
joint fluid limit of the fractions of busy servers, occupied buffers, and departures as the solution
to a system of coupled Volterra integral equations, and we prove convergence of the corresponding
acceptance and blocking probabilities. Section 5 provides numerical experiments that illustrate the
accuracy and interpretability of the fluid-limit approximation across both zero- and finite-buffer
regimes, in addition to optimal server and capacity applications. A brief concluding Section 6 sum-
marizes the findings and outlines potential extensions, including diffusion refinements and control
applications.

2. Preliminaries and Notations

In this section we present some preliminary results that will be useful later on.

2.1. Convergence in Skorokhod Space. Let D = D[0, T ] denote the space of càdlàg (right-
continuous with left limits) functions on [0, T ]. For a function f ∈ D and a set T0 ⊆ [0, T ], we
denote its modulus of continuity on T0 as

wf (T0) = sup
s,t∈T0

|f(t)− f(s)|.

For any δ ∈ (0, T ), let
w′
f (δ) = inf

P:∥P∥≤δ
max

0<i≤|P|
wf ([ti−1, ti)),

where P runs over the set of all partitions of [0, T ], in the sense that a generic P looks like

P =
{
0 = t0, . . . , t|P| = T

}
,

and ∥P∥ denotes the mesh or norm of the partition P :

∥P∥ = max
1≤i<|P|

|ti − ti−1| .
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A function f belongs to the space D if and only if

lim
δ↓0

w′
f (δ) = 0.

For a proof and related discussion, see [3, Chapter 13]. The Skorokhod distance between two
functions f, g ∈ D is defined as

dS(f, g) = inf
λ∈Λ

max

{
sup

t∈[0,T ]
|λ(t)− t|, sup

t∈[0,T ]
|f(λ(t))− g(t)|

}
,

where Λ is the class of strictly increasing, continuous mappings of [0, T ] to itself. The topology on D
induced by this metric is known as the Skorokhod topology. It can be shown that D is not a complete
space with respect to the Skorokhod distance dS but there exists a topologically equivalent metric
d0 with respect to which D is complete. For 0 ≤ t1 < · · · < tk ≤ T , define the natural projection
πt1···tk from D to Rk as:

πt1···tk(x) = (x (t1) , . . . x (tk)) ,

and the Borel σ-field of D as D. For probability measures P on (D,D), denote by TP the set of t in
[0, T ] for which the projection πt is continuous except at points forming a set of P-measure 0. We
include some useful results from [3]:

Theorem 2.1. A sequence of probability measures {Pn} on (D,D) is tight if and only if:

lim
a→∞

lim sup
n

Pn

[
x : sup

t∈[0,T ]
|x(t)| ≥ a

]
= 0,

and for each ε > 0,
lim
δ

lim sup
n

Pn

[
x : w′

x(δ) ≥ ε
]
= 0.

Theorem 2.2. If {Pn} is tight, and if Pnπ
−1
t1···tk ⇒ Pπ−1

t1···tk holds whenever t1, . . . tk all lie in TP,
then Pn ⇒ P.

2.2. Counting Measure. Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space. Let (Nt)t≥0

be a point process given by a sequence (Tn)n≥1 of jump times, that is

Nt := N ((0, t]) =
∞∑
i=1

1{Ti≤t},

where N(·) =
∑

n≥1 δTn is the corresponding counting measure and δy stands for the Dirac measure
at y. Suppose in addition the nth jump time or arrival Tn has a corresponding mark or random
variable Zn taking values in some measurable space (E, E). Then (Tn, Zn)n≥1 is called an E-marked
point process. LetMN (·× ·) be the counting measure of the marked point process, that is, for each
C ∈ R, L ∈ E

MN (C × L) =
∞∑
i=1

1{Ti∈C}1{Zi∈L}.

This implies for measurable functions φ : (R,B(R))× (E, E)→ (R,B(R))∫ t

0

∫
E
φ(u, z)MN (du× dz) =

∞∑
i=1

φ(Ti, Zi)1{Ti≤t}.

We recall the notions of intensity measure and intensity function following [5].
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Definition 2.1. [5, Def 10.2.13] The intensity measure ν of a locally finite point process N on Rm

is defined by

C 7→ ν(C) := E[N(C)] (C ∈ B (Rm)) .

In addition, if ν is of the form ν(C) =
∫
C ζ(x)dx for some non-negative measurable function ζ :

Rm → R, the point process N is said to admit the intensity function ζ(x).

For a point process N with intensity measure ν and intensity function ζ, we introduce the
Campbell’s formula from [5, Thm 10.2.15]:

Theorem 2.3. For all measurable functions φ : Rm → R which are non-negative or ν-integrable,
the integral

∫
Rm φ(x)N(dx) is well defined and

E

[∫
Rm

φ(x)N(dx)

]
=

∫
Rm

φ(x)ν(dx) =

∫
Rm

φ(x)ζ(x)dx.

In particular,
∫

Rm φ(x)N(dx) is a.s. finite if φ is ν-integrable.

2.3. Discontinuous Volterra Integral Equation. We recall the notion of solution for discontin-
uous Volterra integral equations, as presented in [22]. First, we introduce some related notations.
For any p ∈ L∞

loc(−∞,∞) and any ϵ > 0, define:

p
ϵ
(t) = ess inf

|t−s|<ϵ
p(s), p̄ϵ(t) = ess sup

|t−s|<ϵ
p(s).

In addition, for t ∈ [0, T ] define:

p(t) = lim
ϵ→0

p
ϵ
(t), p̄(t) = lim

ϵ→0
p̄ϵ(t). (2.1)

Definition 2.2. Let p : [0,∞) → R and q : [0, T ] → R be bounded functions. Furthermore, let
a ∈ L1[0, T ]. A pair of functions x : [0, T ] → R and z : [0, T ] → R is said to be a solution of the
Volterra integral equation

x(t) +

∫ t

0
a(t− s)p(x(s))ds = q(t), 0 ≤ t ≤ T

if x and z are bounded and

p(x(t)) ≤ z(t) ≤ p̄(x(t)) a.e., 0 ≤ t ≤ T,

such that

x(t) +

∫ t

0
a(t− s)z(s)ds = q(t), 0 ≤ t ≤ T.

Remark 2.1. We point out to the reader that the assumption on p, q and a can be relaxed or
modified as done in [23, 24]. Our exposition here is chosen for simplicity and the specific processes
we encounter later.

2.4. Notations. We employ the following notations for different modes of convergence:

• p→: Convergence in probability of random variables or stochastic processes,
• ⇒: Weak convergence for probability measures or random variables,
• ∗
⇀: Weak-star convergence in general function spaces,
• D→: Convergence in the Skorokhod topology.
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3. Fluid limit for zero-buffer loss system

3.1. Setup. In this section, we introduce the zero-buffer loss queuing model. We consider a sequence
of queuing systems indexed by n, subject to the following assumptions.

Assumption 3.1. Consider a Mt/G/n/n loss queuing system; namely, a queuing system with
i. a nonhomogeneous Poisson arrival process An with rate or intensity function nλ(·), where

λ is locally integrable;
ii. general customer service times sampled independently from a distribution G with density g;
iii. the system has n servers and zero buffer or waiting space. That is, when all n servers are

busy, incoming customer arrivals are lost. Equivalently, the customers can be thought to
have 0 patience.

Remark 3.1. Note that the intensity function corresponding to the arrival process An could be ex-
tended to a more general λn for all n, such that λn/n→ λ under some topology. This generalization
should be an easy extension and not considered in this article to keep considerations simpler.

······
n servers

Arrivals

λ(t)

ρt d(t)

Departures

Figure 1. Zero-buffer loss system and its fluid model

3.2. Fraction of Occupied Servers or Scaled Number in System. Consider the Mt/G/n/n
loss system as in Assumption 3.1. Let Ti and Vi represent the arrival and service times, respectively,
of the i-th customer. Let Nn

t denote the number of occupied servers, or equivalently the number of
customers in the system at time t. Denote N̄n

t :=
Nn

t
n to be the fraction of occupied servers or the

n−scaled number of customers in the system at time t. Also, let Fn
t be the filtration generated by

{N̄n
s : s ∈ [0, t]}.
For the sake of simplicity, we first assume that the system starts empty, that is, the number of

customers in the system at time 0 is zero. In the sequel, we will relax this assumption.
Observe that the number of busy servers at time t consists of all arrivals to the system such that

all of the following conditions are met:
(i) the customer arrival occurs at or prior to time t,
(ii) the number of occupied servers upon the customer’s arrival is less than n, and
(iii) the remaining service time of this customer at time t is positive, that is, the customer is yet to
depart the system.
For the i−th customer arriving to the system, these conditions correspond to {Ti ≤ t}, {Nn

Ti− < n}
or {N̄n

Ti− < 1}, and {Vi > t − Ti} respectively. Consequently, the number of customers at time t
satisfies

Nn
t =

∞∑
i=1

1{Ti≤t}1{Nn
Ti−

<n}1{Vi>t−Ti}. (3.1)
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On scaling (3.1) by n, we obtain that the fraction of occupied servers satisfies

N̄n
t =

1

n

∞∑
i=1

1{Ti≤t}1{N̄n
Ti−

<1}1{Vi>t−Ti}. (3.2)

Crucially, observe that Nn or N̄n given by (3.1)-(3.2) are given by integral equations whose evolution
depends, in general, on its history. As such, these processes are non-Markovian and in this work we
provide a way of obtaining scaling limits of such processes arising out of loss queuing systems. To
that effect, we work with the scaled process N̄n and obtain a representation using random measures.
Denote

Wn(t, u, x) =
1

n

∞∑
i=1

1{N̄n
u−<1}1{x>t−u}1{u≤t}. (3.3)

Then relation (3.2) can be represented as

N̄n
t =

∫ t

0

∫
R
Wn(t, u, x)Mn(du, dx), (3.4)

where Mn is the counting measure associated with the marked point process of the arrival and
service time pair (Ti, Vi). Taking expectation, we have by Theorem 2.3 that

E

[∫ t

0

∫
R
Wn(t, u, x)Mn(du, dx)

]
=

∫ t

0

∫
R
Wn(t, u, x)nλ(u)g(x)dudx.

DenoteMn
∗ to be the compensated random measure:

Mn
∗ =Mn −Mn

c , (3.5)

whereMn
c (du, dx) := E [Mn(du, dx)] = nλ(u)g(x)dudx.

Having obtained an integral representation for the fraction of occupied servers in (3.4), our goal
is to exploit this relation to obtain the limit of the stochastic process {N̄n

t , t ≥ 0} as n goes to
infinity. We begin with a result proving convergence along a subsequence.

Proposition 3.1. Let Assumption 3.1 hold. Assume that the system starts empty, that is ρn0 = 0
for all n. Then
(i) For any T > 0 and any subsequence, there exists a further subsequence (rk) and a continuous,
possibly stochastic process ρ such that almost surely,

N̄ rk → ρ, (3.6)

in the uniform topology.
(ii) Moreover, given (rk), almost surely there exists a bounded, possibly stochastic process w such
that

1{N̄rk
t−<1}

∗
⇀ w(t) in L∞[0, T ]. (3.7)

(iii) Furthermore, almost surely, ρ and w defined in (3.6)-(3.7) satisfy

ρt =

∫ t

0
w(u)Ḡ(t− u)λ(u)du, t ∈ [0, T ], and (3.8)

1{ρu−<1} ≤ w(u) ≤ 1, a.e. in [0, T ].

That is, for almost all ω ∈ Ω (ρ(ω), w(ω)) as in (3.8) is a solution, interpreted according to Defini-
tion 2.2, to the following non-linear discontinuous Volterra integral equation

ρt =

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du. (3.9)
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Proof. For simplicity we will consider the initial subsequence to be (n), but the arguments below
go through for any initial subsequence.

Part (i). Applying the decomposition (3.5) in (3.4) we have

N̄n
t = Xn

t + Y n
t , (3.10)

where

Xn
t :=

∫ t

0

∫
R
Wn(t, u, x)Mn

∗ (du, dx), and Y n
t :=

∫ t

0
1{N̄n

u−<1}Ḡ(t− u)λ(u)du. (3.11)

We will analyze Xn and Y n separately, starting with the term Y n.
By the local integrability of λ from Assumption 3.1, we have from (3.11) that almost surely

sup
n

sup
t∈[0,T ]

Y n
t ≤

∫ T

0
λ(u) du <∞. (3.12)

Meanwhile Y n satisfies

Y n
t − Y n

s =

∫ t

0
1{N̄n

u−<1}Ḡ(t− u)λ(u)du−
∫ s

0
1{N̄n

u−<1}Ḡ(s− u)λ(u)du

=

∫ t

s
1{N̄n

u−<1}Ḡ(t− u)λ(u)du+

∫ s

0
1{N̄n

u−<1}
(
Ḡ(t− u)− Ḡ(s− u)

)
λ(u)du. (3.13)

Given that Ḡ is non-increasing and bounded above by 1, we can derive from (3.13) that

sup
n
|Y n

t − Y n
s | ≤

∫ t

s
λ(u)du.

Since the function Λ(t) =
∫ t
0 λ(u)du is uniformly continuous on [0, T ], it follows that Y n are equicon-

tinuous. Therefore we have
lim
δ↓0

sup
n

w′
Y n(δ) = 0. (3.14)

By (3.12), (3.14), Theorem 2.1 and Prokhorov’s theorem we can conclude that there exists ρ ∈ D
and a subsequence (nk) such that

Y nk
D→ ρ, almost surely. (3.15)

Moreover, L1[0, T ] is a separable Banach space with dual L∞[0, T ] and 1{N̄n
u−<1} ∈ L∞[0, T ]. There-

fore by [6, Thm 2.34], almost surely there is a subsubsequence (lk) ⊂ (nk) and w ∈ L∞[0, T ], possibly
depending on (lk), such that for any ϕ ∈ L1[0, T ]

lim
k→∞

∫ t

0
ϕ(u)1{N̄ lk

u−<1}du =

∫ t

0
ϕ(u)w(u)du, for all t ∈ [0, T ]. (3.16)

Note that w could still be random at this stage. In particular, choosing ϕ(·) = Ḡ(t− ·)λ(·) we have
for all t ∈ [0, T ], almost surely

lim
k→∞

∫ t

0
1{N̄ lk

u−<1}Ḡ(t− u)λ(u)du =

∫ t

0
w(u)Ḡ(t− u)λ(u)du. (3.17)

From (3.17) we identify ρ in (3.15), that is:

ρt =

∫ t

0
w(u)Ḡ(t− u)λ(u)du. (3.18)

This limiting function ρ is continuous because Ḡ and w are bounded, and λ is integrable. It follows
that the convergence in (3.15) is also under the uniform topology:

lim
k→∞

sup
t∈[0,T ]

∣∣∣Y lk
t − ρt

∣∣∣ = 0, almost surely. (3.19)
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Let us now analyze the term Xn. By (3.10)-(3.12) we have that almost surely

sup
n

sup
t∈[0,T ]

|Xn
t | ≤ sup

n
sup

t∈[0,T ]
N̄n

t + sup
n

sup
t∈[0,T ]

Y n
t ≤ 1 +

∫ T

0
λ(u) du <∞. (3.20)

Furthermore, the number of jumps of N̄n is bounded by twice that of the arrivals. Consequently
N̄n is piecewise constant with almost surely finitely many jumps in [0, T ]. Thus we have for all n,

w′
N̄n(δ) = 0, (3.21)

almost surely. Using (3.21) and (3.14) in relation (3.10) we get

lim
δ↓0

sup
n

w′
Xn(δ) = 0. (3.22)

By (3.20), (3.22) and Theorem 2.1 we obtain the tightness of (Xn)n≥1. Now recalling Wn in (3.3)
and Xn in (3.11), we have for any fixed t ∈ [0, T ]

E (Xn
t )

2 = E

[∫ t

0

∫
R
Wn(t, u, x)Mn

∗ (du, dx)

]2
≤ 1

n2
E

[∫ t

0

∫
R
Mn

∗ (du, dx)

]2
=

1

n2
Var (An

t ) =
1

n

∫ t

0
λ(u)du→ 0,

as n → ∞. Consequently for each t ∈ [0, T ], Xn
t

p−→ 0. Thus for any (t1, t2, . . . , td) ∈ [0, T ]d,
the finite dimensional vectors

(
Xn

t1 , . . . , X
n
td

) p−→ (0, . . . , 0) as a consequence of the Cramer-Wold
device [4, Thm 29.4]. By Theorem 2.2 we have that Xn converges in distribution to the constant
zero function. Since the limiting function is non-random, the convergence becomes:

Xn p−→ 0, in the uniform topology. (3.23)

From (3.23) we know that there exists a subsequence (rk) ⊂ (lk), such that

sup
t∈[0,T ]

|Xrk
t | → 0, almost surely. (3.24)

Combining the above arguments together, for this sequence (rk), we thus obtain from (3.10),
(3.19) and (3.24) that almost surely

N̄ rk = Xrk + Y rk → ρ, (3.25)

in the uniform topology, where ρ is identified by (3.18). This completes the proof of Part (i).

Part (ii). This has already been shown above in (3.16).

Part (iii). The function ρ has been identified by (3.18). It remains to show constraint for the
function w. We now observe that for sequence (N̄n) the set

{
N̄n

u− < 1
}

is identical to the set{
N̄n

u− ≤ 1− 1
n

}
. This is because N̄n only takes values in

{
i
n : i = 1, . . . , n

}
. Therefore, we can

rewrite (3.10) as

N̄n
t = Xn

t +

∫ t

0
1{N̄n

u−≤1−1/n}Ḡ(t− u)λ(u)du.

Notice that by Proposition 3.1, ρ ≤ 1. Our next objective is to discover the function w in (3.8).
Since ρ is continuous, fix ε > 0 and choose N large enough such that for all k > N we have rk > 3

ε ,
and

∥∥N̄ rk − ρ
∥∥
T
< ε

3 almost surely. Then it is readily checked that

1{ρu−≤1−ε} ≤ 1{N̄rk
u−≤1−1/rk} ≤ 1{ρu−<1+ε}.

Therefore for any ϕ ≥ 0 such that ϕ ∈ L1[0, T ] we have almost surely∫ t

0
ϕ(u)1{ρu−≤1−ε}du ≤

∫ t

0
ϕ(u)1{N̄rk

u−≤1−1/rk}du ≤
∫ t

0
ϕ(u)1{ρu−<1+ε}du.
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Note that limε↓0 1{ρu−<1−ε} = 1{ρu−<1} and limε↓0 1{ρu−<1+ε} = 1{ρu−≤1} = 1. Consequently taking
k →∞ and then ε ↓ 0 we have by the dominated convergence theorem and (3.7) that almost surely:∫ t

0
ϕ(u)1{ρu−<1}du ≤

∫ t

0
w(u)ϕ(u)du ≤

∫ t

0
ϕ(u)du.

Since ϕ is arbitrary in L1[0, T ], we have almost surely

1{ρu−<1} ≤ w(u) ≤ 1, a.e. in [0, T ].

Recall the notations defined in (2.1). It is easily checked that 1{ρu−<1} = 1{ρu−<1} and 1̄{ρu−<1} =

1{ρu−≤1} = 1. Therefore, by (3.8) and Definition 2.2 we conclude that (ρ, w) is a solution to the
discontinuous Volterra equation (3.9).

□

We have established a fluid limit for N̄n
t along a subsequence when the system starts empty. Now,

we extend our considerations to a more general case.

Assumption 3.2. Let the conditions under Assumption 3.1 hold. In addition let the number of
customers in the system at time 0: Nn

0 , satisfy

lim
n→∞

Nn
0

n
= ρ0, almost surely,

where ρ0 ∈ [0, 1]. Moreover, assume that the remaining service times of each of the initially occupied
servers follow the distribution Fn satisfying

lim
n→∞

sup
t
|Fn(t)− F (t)| = 0,

for some limiting distribution F .

Proposition 3.2. Let Assumption 3.2 hold. Then
(i) For any T > 0 and any subsequence of N̄n, there exists a further subsequence N̄ rk and a real-
valued continuous, possibly stochastic process ρ such that almost surely,

N̄ rk → ρ, (3.26)

in the uniform topology.
(ii) Moreover, given (rk), almost surely there exists a bounded, possibly stochastic process w such
that

1{N̄rk
t−<1}

∗
⇀ w(t) in L∞[0, T ]. (3.27)

(iii) Furthermore, almost surely, ρ and w defined in (3.26)-(3.27) satisfy

ρt = ρ0F̄ (t) +

∫ t

0
w(u)Ḡ(t− u)λ(u)du, t ∈ [0, T ], and (3.28)

1{ρu−<1} ≤ w(u) ≤ 1, a.e. in [0, T ].

That is, for almost all ω ∈ Ω (ρ(ω), w(ω)) as in (3.28) is a solution, interpreted according to
Definition 2.2, to the following non-linear discontinuous Volterra integral equation

ρt = ρ0F̄ (t) +

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du. (3.29)

Proof. At time 0, the number of customers in service is Nn
0 . Let the remaining service times for the

customers in service be
(
V 0
i

)
1≤i≤Nn

0
. Then, similar to (3.4) we have:

N̄n
t =

1

n

Nn
0∑

i=1

1{V 0
i >t} +

∫ t

0

∫
R
Wn(t, u, x)Mn(du, dx). (3.30)
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Observe that
1

n

Nn
0∑

i=1

1{V 0
i >t} =

Nn
0

n

1

Nn
0

Nn
0∑

i=1

1{V 0
i >t}. (3.31)

By Assumption 3.2, thanks to Glivenko-Cantelli theorem

lim
n→∞

sup
t

∣∣∣∣∣∣ 1

Nn
0

Nn
0∑

i=1

1{V 0
i >t} − F̄ (t)

∣∣∣∣∣∣ = 0, almost surely.

Therefore from the decomposition (3.31) we have

lim
n→∞

sup
t

∣∣∣∣∣∣ 1n
Nn

0∑
i=1

1{V 0
i >t} − ρ0F̄ (t)

∣∣∣∣∣∣ = 0, almost surely. (3.32)

Since we already analyzed the second term in (3.30) involving integration with respect to Mn in
Proposition 3.1, we obtain our desired result from (3.32). □

Now, we establish the existence of a unique ρ that satisfies (3.29) in the sense of Definition 2.2.
Consequently, we obtain a unique fluid limit of the fraction of occupied servers N̄n

t .

Theorem 3.1. Let Assumption 3.2 hold. Then there exists a unique solution ρ to the discontinuous
Volterra integral equation (3.29). That is, there exists a unique solution ρ such that for all t ∈ [0, T ]

ρt = ρ0F̄ (t) +

∫ t

0
z(u)Ḡ(t− u)λ(u)du, such that 0 ≤ ρt ≤ 1, (3.33)

for some z(t) that satisfies
1{ρt<1} ≤ z(t) ≤ 1 a.e. in [0, T ]. (3.34)

Proof. The existence of the solution directly follows from Proposition 3.2. In order to prove unique-
ness, let us define

σ0 = 0, τi = inf
t≥σi−1

{t : ρt = 1} and σi = inf
t≥τi
{t : ρt < 1}. (3.35)

We first show that there are at most countably many τi, σi. Denote I the index set of τi, σi. Since ρt
is continuous, by definition we know that τi+1 > σi. That is ρt < 1 for t ∈ (σi, τi+1). Additionally,
{(σi, τi+1)}i∈I are pairwise disjoint open intervals on R. Since each nonempty open interval in R
contains a rational, we can construct an injection I → Q to conclude I is a countable set.

We will prove uniqueness by contradiction. Suppose there exist two solutions (ρ1t , z1(t)) and
(ρ2t , z2(t)) satisfying (3.33) such that ρ1t ̸= ρ2t for some t ∈ [0, T ]. Denote

σ1
0 = 0, τ1i = inf

t≥σ1
i−1

{t : ρ1t = 1} and σ1
i = inf

t≥τ1i

{t : ρ1t < 1},

and similarly τ2i , σ
2
i for ρ2, respectively. Since by (3.34) we have for t ∈ {s : ρs < 1}, z(t) = 1 is the

only choice, we can conclude that the first time ρ1t differs from ρ2t can only be one of those σ1
i , σ

2
i .

Define
i0 = min{i ∈ I | σ1

i ̸= σ2
i }.

Since the index set I is countable, and N is well-ordered, the above term is well defined. Without
loss of generality we can assume σ1

i0
< σ2

i0
. Then, for t ∈ [0, σ1

i0
], we have

ρ1t = ρ0F̄ (t) +

∫ t

0
z1(u)Ḡ(t− u)λ(u)du

= ρ0F̄ (t) +

∫ t

0
z2(u)Ḡ(t− u)λ(u)du = ρ2t .
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Consequently for t ∈ [0, σ1
i0
] ∫ t

0
(z1(u)− z2(u)) Ḡ(t− u)λ(u)du = 0. (3.36)

Notice that
∂

∂t
(z1(u)− z2(u))λ(u)Ḡ(t− u) = − (z1(u)− z2(u))λ(u)g(t− u).

Since z1, z2 are bounded and λ, g ∈ L1[0, T ], by Young’s convolution inequality the function (u, t) 7→
(z1(u) − z2(u))λ(u)g(t − u) ∈ L1([0, T ] × [0, T ]). Therefore, we can apply [35, Thm 2.7] to take
derivatives of both side of (3.36) to obtain

(z1(t)− z2(t))λ(t)−
∫ t

0
(z1(u)− z2(u))λ(u)g(t− u)du = 0, a.e. in [0, T ]. (3.37)

Now observe that the only solution in L1[0, T ] to the Volterra integral equation

x(t) =

∫ t

0
x(u)g(t− u)du

is x(t) ≡ 0 (see for example [7, Thm 1.2.8]). Therefore, from (3.37) we have for t ∈ [0, σ1
i0
]

(z1(t)− z2(t))λ(t) = 0, a.e. in [0, T ]. (3.38)

Recall that σ1
i0

< σ2
i0

. This implies by continuity of ρ1 that there exists δ with 0 < δ < σ2
i0
− σ1

i0
such that

ρ1t < ρ2t = 1, for t ∈ (σ1
i0 , σ

1
i0 + δ). (3.39)

Therefore, from (3.33) we have

ρ0F̄ (t) +

∫ t

0
z1(u)λ(u)Ḡ(t− u)du < ρ0F̄ (t) +

∫ t

0
z2(u)λ(u)Ḡ(t− u)du, for t ∈ (σ1

i0 , σ
1
i0 + δ).

Plugging (3.38) into the above inequality we obtain∫ t

σ1
i0

(z1(u)− z2(u))λ(u)Ḡ(t− u)du < 0, for t ∈ (σ1
i0 , σ

1
i0 + δ).

Since λ(u)Ḡ(t − u) ≥ 0, there exists a positive measure set A ⊂ (σ1
i0
, σ1

i0
+ δ) such that u ∈ A

implies z1(u) − z2(u) < 0. However, by (3.34) and (3.39) we have for almost every t ∈ (σ1
i0
, σ2

i0
),

z1(u) = 1 ≥ z2(u). This is a contradiction. Therefore, ρt is unique. □

In Theorem 3.1 we established the unique solvability of (3.33)-(3.34) in the sense that ρt is
unique. Therefore, by Proposition 3.2 the fraction of occupied servers N̄n

t converge to this unique
ρt. By (3.34) z(t) = 1 when ρt < 1. However, z(t) remains unspecified when ρt = 1. It would be
beneficial to specify a possible value of z(t) in this regime, specifically for the purpose of numerical
experimentations. The following theorem provides a solution of z.

Theorem 3.2. Under the setting of Theorem 3.1, the pair (ρ, z) satisfying

ρt = ρ0F̄ (t) +

∫ t

0
z(u)λ(u)Ḡ(t− u)du,

z(t)λ(t) =

{
λ(t), ρt < 1,

ρ0f(t) +
∫ t
0 z(u)λ(u)g(t− u)du, ρt = 1,

(3.40)

and
1{ρt<1} ≤ z(t) ≤ 1 a.e. in [0, T ]. (3.41)

is a solution to (3.33)-(3.34). In addition, the function zλ is unique almost everywhere.
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Proof. Since z(t) is bounded and λ(t), g(t) ∈ L1[0, T ], by Young’s convolution inequality we have
∂

∂t
z(u)Ḡ(t− u)λ(u) = −z(u)λ(u)g(t− u) ∈ L1([0, T ]× [0, T ]).

Therefore, by [35, Thm 2.7] we have for t ∈ [0, T ]

ρ′t = −ρ0f(t) + z(t)λ(t)−
∫ t

0
z(u)g(t− u)λ(u)du, a.e. in [0, T ]. (3.42)

Recall that {τi, σi}i∈N are defined in (3.35). For any i = 1, 2, 3, · · · , t ∈ (τi, σi), we have ρt = 1.
Consequently ρ′t = 0 in these intervals. By (3.42) we thus have for almost every t ∈ (τi, σi)

−ρ0f(t) + z(t)λ(t)−
∫ τi

0
λ(u)g(t− u)du−

∫ t

τi

z(u)λ(u)g(t− u)du = 0. (3.43)

By [7, Thm 6.3.1] we know that for t > τi there exist a unique solution x(t) ∈ L1
loc(R+) of the

Volterra integral equation

x(t) = ρ0f(t) +

∫ τi

0
λ(u)g(t− u)du+

∫ t

τi

x(u)g(t− u)du. (3.44)

Since by (3.43) we have zλ is a solution to (3.44), by the uniqueness of the solution we can conclude
that x(t) = z(t)λ(t) for t ∈ (τi, σi). □

Remark 3.2. In the proof of Theorem 3.2 we can see that when λ(t) > 0, the solution z(t) is unique
almost surely.

Remark 3.3. Notice that if, in addition to Assumption 3.2, we assume g > 0 then λ(t) > 0 a.e.
when ρt = 1. That is, for almost every t ∈ [τi, σi] we must have λ(t) > 0, where {τi, σi}i∈N are
defined in (3.35). This can be proved by contradiction. Assume λ(t) = 0 for some positive measure
set K ⊂ [τi, σi]. Without loss of generality we can assume K = (t′, t′ + δ) ⊂ [τi, σi]. By (3.33) we
have

ρt′ = ρ0F̄ (t′) +

∫ τi

0
z(u)Ḡ(t′ − u)λ(u)du+

∫ t′

τi

z(u)Ḡ(t′ − u)λ(u)du, (3.45)

and

ρt′+δ = ρ0F̄ (t′ + δ) +

∫ τi

0
z(u)Ḡ(t′ + δ − u)λ(u)du+

∫ t′

τi

z(u)Ḡ(t′ + δ − u)λ(u)du. (3.46)

Since F̄ is non-increasing and Ḡ is strictly decreasing, by (3.45)-(3.46) we have ρt′+δ < ρt′ . This is
a contradiction since ρt = 1 for t ∈ (τi, σi).

Remark 3.4. Note that the proof of Theorem 3.2, provides a characterization for σi. Indeed, σi
equals the first time after τi that x(t) > λ(t) for a positive measure set. To see that, notice by
(3.41), for t ∈ (τi, σi) we have x(t) = z(t)λ(t) ≤ λ(t). Suppose there exist ε > 0 such that x(t) ≤ λ(t)
for almost every t ∈ [σi, σi + ε), then choose z̃ such that z̃ satisfies (3.41) and z̃(t)λ(t) = x(t) for
t ∈ [σi, σi + ε) and, z̃(t) = z(t) for t ∈ [0, σi). By (3.42) and (3.44) we know that there exists a
function ρ̃ such that

ρ̃t =

{
ρt t ∈ [0, σi)

ρ0F̄ (t) +
∫ t
0 z̃(u)λ(u)Ḡ(t− u)du t ∈ [σi, σi + ε)

,

and ρ̃′t = 0 for t ∈ [σi, σi + ε). This implies that ρ̃t = 1 in this interval. However, ρt < 1 for
t ∈ [σi, σi + ε). From the uniqueness of ρ established by Theorem 3.1 we can concluded that this is
a contradiction.

Since we have obtained the unique solvability of ρ, we can establish the fluid limit result for the
entire sequence N̄n.
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Theorem 3.3. Let Assumption 3.2 hold. Then
(i) For any T > 0, there exists a real-valued continuous deterministic process ρ such that almost
surely,

lim
n→∞

sup
t∈[0,T ]

|N̄n
t − ρt| = 0. (3.47)

(ii) Moreover, there exists a bounded function w such that almost surely

1{N̄n
t−<1}

∗
⇀ w(t) in L∞[0, T ], (3.48)

λ-almost surely in t, where w solves (3.40)-(3.41).
(iii) Furthermore, ρ and w defined in (3.47)-(3.48) satisfy

ρt = ρ0F̄ (t) +

∫ t

0
w(u)Ḡ(t− u)λ(u)du, t ∈ [0, T ], and (3.49)

1{ρu−<1} ≤ w(u) ≤ 1, a.e. in [0, T ].

That is, (ρ, w) as in (3.49) is a solution, interpreted according to Definition 2.2, to the following
non-linear discontinuous Volterra integral equation

ρt = ρ0F̄ (t) +

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du. (3.50)

Proof. Part (i). From Proposition 3.2, for any subsequence there exists a further subsequence (rk)
such that almost surely

N̄ rk
t → ρt,

in the uniform topology, where ρ solves (3.50) path by path. By Theorem 3.1, ρ is unique. Con-
sequently ρ is a deterministic function. Moreover, from the uniqueness of ρ again we can conclude
that the entire sequence N̄n converges to ρ almost surely in uniform topology.

Part (ii). By Proposition 3.2 we have for every subsequence there exists a subsubsequence (rk) and
a bounded, possibly stochastic process w such that almost surely

1{N̄rk
u−<1}λ(u)

∗
⇀ w(u)λ(u) in L∞[0, T ]. (3.51)

By Theorem 3.2 we know that this wλ is unique. Therefore the weak-star convergence in (3.51)
holds for the entire sequence.

Part (iii). This follows directly from Proposition 3.2.(iii) and Theorems 3.1-3.2. □

Note that the probability that an incoming arrival at time t will be accepted to the system is
given by P (ρnt− < 1). The following corollary provides asymptotics for this acceptance probability.

Corollary 3.1. The acceptance probability in the n-th Mt/G/n/n model P(N̄n
t− < 1) satisfies the

following convergence

P
(
N̄n

u− < 1
)
→ w(u), for λ-almost every u ∈ [0, T ],

where w is defined in Theorem 3.3.

Proof. 1{N̄n
u−<1} is piecewise constant with almost surely finitely many jumps in [0, T ] since the

number of jumps of N̄n is bounded by twice that of the arrivals. By Theorem 2.1 we obtain the
tightness of (1{N̄n

u−<1}). By (3.48) we have λ-almost surely, for any ϕ ∈ L1[0, T ]

lim
k→∞

∫ t

0
ϕ(u)1{N̄n

u−<1}du =

∫ t

0
ϕ(u)w(u)du.

By taking ϕ(·) = δ(·) we can conclude that the finite dimensional distributions of 1{N̄n
t−<1} converge

to that of w(t). By Theorem 2.2 we have 1{N̄n
u−<1} ⇒ w(u). This implies that 1{N̄n

u−<1}λ(u) ⇒
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Figure 2. Loss system with buffer and its fluid model

w(u)λ(u). By Theorem 3.2 we have wλ is unique and thus deterministic. Therefore, the convergence
becomes

1{N̄n
u−<1}λ(u)

p→ w(u)λ(u),

in the Skorokhod topology. Moreover, since the indicator functions are uniformly bounded and λ is
integrable in [0, T ], (1{N̄n

u−<1}λ(u)) are uniformly integrable. By [10, Thm 5.5.2] we have for almost
every u ∈ [0, T ],

E
[
1{N̄n

u−<1}λ(u)
]
= P

(
N̄n

u− < 1
)
λ(u)→ w(u)λ(u).

□

Remark 3.5. As noticed in (3.40), the function w(t) can be discontinuous at τi even when λ is
continuous. This means the limit of the blocking/acceptance probability is discontinuous. This
property is further reflected in the numerics below.

4. Fluid Limit for Loss System with Buffer

4.1. Setup. In this section, we introduce a time-varying many-server loss queuing model with
buffer. We work with a sequence of queuing systems indexed by n, subject to the following assump-
tions.

Assumption 4.1. We consider a Mt/G/n/n + bn loss queuing system; namely, a queuing model
with

i. a nonhomogeneous Poisson arrival process An with rate or intensity function nλ(·), where
λ is locally integrable;

ii. general customer service times sampled independently from a distribution G with density g
bounded by a constant cg > 0;

iii. the system has n servers and bn buffer spaces or waiting spaces. When the system is full,
new incoming customer arrivals are lost. Additionally, bn satisfies

lim
n→∞

bn
n
→ β. (4.1)

4.2. Characterization of Relevant Stochastic Processes. Let Sn
t and Qn

t denote the number
of customers in service and buffer, respectively, at time t. In addition, let Dn

t denote the cumulative
number of departures from the system by time t. For the scaled processes, we define

S̄n
t :=

Sn
t

n
, Q̄n

t :=
Qn

t

n
, and D̄n

t :=
Dn

t

n
,

to be the n−scaled number in service, in buffer and of departures respectively. Also, let Fn
t be the

filtration generated by {S̄n
s , Q̄

n
s : s ∈ [0, t]}. Let Ti, Vi, and Di represent respectively the arrival
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time, service time, and departure time of the i-th customer to the system. Note that a customer
who arrives to find at least one idle server has their arrival time coincide with their service start
time. However, a customer who upon arrival finds all servers busy and must first enter the buffer
to wait, has their service start time determined by the arrival and service times of prior customers.
In addition, their service entry time coincides with the departure time of a prior customer. For
this scenario, we let Vji denote the service time of the customer who enters service at time Di. For
simplicity, we initially assume that the number of customers in the system at time t = 0 is zero.
This assumption will be relaxed in the sequel.

4.2.1. Busy servers or customers in service. Observe that the number of busy servers or the number
in service at time t consists of customers from two groups:

(a) Customers admitted directly upon arrival. This scenario is similar to the setup of Section 3.
Observe that the number of customers at time t, who were directly admitted upon arrival, consists
of all arrivals to the system such that all of the following conditions are met:
(i) the customer arrival occurs at or prior to time t,
(ii) the number of occupied servers upon the customer’s arrival is less than n, and
(iii) the remaining service time of this customer at time t is positive, that is, the customer is yet to
depart the system.
For the i−th customer arriving to the system, these conditions correspond to {Ti ≤ t}, {Sn

Ti− < n}
or {S̄n

Ti− < 1}, and {Vi > t − Ti} respectively. Consequently, the number of customers at time t,
who were directly admitted upon arrival equals:

∞∑
i=1

1{Ti≤t}1{Sn
Ti−

<n}1{Vi>t−Ti}. (4.2)

(b) Customers promoted from the buffer. The customers in this scenario start service at the de-
parture time Di of some customer i. Observe that the number of customers at time t, who were
promoted from the buffers, consists of all departures such that all of the following conditions are
met:
(i) the service start time Di of this customer is at or prior to time t,
(ii) the buffer is non-empty at time Di−, and
(iii) the remaining service time of this customer at time t is positive, that is, the customer is yet to
depart the system.
For the customer promoted from buffer at time Di, these conditions correspond to {Di ≤ t},
{Qn

Di− > 0} or {Q̄n
Di− > 0}, and {Vji > t − Di} respectively. Consequently, the number of

customers at time t, who were promoted from the buffer equals:
∞∑
i=1

1{Di≤t}1{Qn
Di−

>0}1{Di+Vji
>t}. (4.3)

Therefore, by combining the two groups of customers from (4.2)-(4.3), we have the number of
customers in service at time t satisfies

Sn
t =

∞∑
i=1

1{Ti≤t}1{Sn
Ti−

<n}1{Vi>t−Ti} +

∞∑
i=1

1{Di≤t}1{Qn
Di−

>0}1{Di+Vji
>t}. (4.4)

On scaling (4.4) by n, we have in contrast to (3.2) that the scaled number of busy servers satisfy

S̄n
t =

1

n

∞∑
i=1

1{Ti≤t}1{S̄n
Ti−

<1}1{Vi>t−Ti} +
1

n

∞∑
i=1

1{Di≤t}1{Q̄n
Di−

>0}1{Di+Vji
>t}. (4.5)
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4.2.2. Occupied buffers. The number of occupied buffers equals the difference between two groups:
(a) Customers that entered the buffer. Observe that the total number of customers who entered the
buffer by time t consists of those individuals who satisfy all of the following conditions:
(i) the customer arrival occurs at or prior to time t,
(ii) the number of occupied servers upon the customer’s arrival is n, and
(iii) the buffer upon the customer’s arrival is not full.
For the i−th customer arriving to the system, these conditions correspond to {Ti ≤ t}, {Sn

Ti− = n}
or {S̄n

Ti− = 1}, and {Qn
Ti− < bn} or {Q̄n

Ti− < bn
n } respectively. Consequently, the number of

customers who entered the buffer by time t equals:
∞∑
i=1

1{Ti≤t}1{Sn
Ti−

=n}1{Qn
Ti−

<bn}. (4.6)

(b) Customers that exited the buffer. The customers in this scenario start service at the departure
time Di of some customer i. Observe that the total number of customers who departed from the
buffer by time t consists of those individuals who satisfy all of the following conditions:
(i) the service start time Di of this customer is at or prior to time t, and
(ii) the buffer is non-empty at time Di−.
For the customer departing from buffer at time Di, these conditions correspond to {Di ≤ t} and
{Qn

Di− > 0} or {Q̄n
Di− > 0} respectively. Consequently, the number of customers that exited the

buffer by time t equals:
∞∑
i=1

1{Di≤t}1{Qn
Di−

>0}. (4.7)

Therefore, by taking the difference between the two groups of customers from (4.6)-(4.7), we have
the number of customers in buffer at time t satisfies

Qn
t =

∞∑
i=1

1{Ti≤t}1{Sn
Ti−

=n}1{Qn
Ti−

<bn} −
∞∑
i=1

1{Di≤t}1{Qn
Di−

>0}. (4.8)

On scaling (4.8) by n, this yields that the scaled number in buffer satisfy

Q̄n
t =

1

n

∞∑
i=1

1{Ti≤t}1{S̄n
Ti−

=1}1{Q̄n
Ti−

< bn
n
} −

1

n

∞∑
i=1

1{Di≤t}1{Q̄n
Di−

>0}. (4.9)

4.2.3. Departures. Observe that the cumulative number of departures also include customers from
two groups:
(a) Departure of customers admitted directly upon arrival. Observe that the number of customers
at time t, who were directly admitted upon arrival and then departed from the system, consists of
those customers who satisfy all of the following conditions:
(i) the customer arrival occurs at or prior to time t,
(ii) the number of occupied servers upon the customer’s arrival is less than n, and
(iii) the customer has departed from the system by time t.
For the i−th customer arriving to the system, these conditions correspond to {Ti ≤ t}, {Sn

Ti− < n}
or {S̄n

Ti− < 1}, and {Ti + Vi ≤ t} respectively. Consequently, the number of customers at time t,
who were admitted directly upon arrival and then departed equals:

∞∑
i=1

1{Ti≤t}1{Sn
Ti−

<n}1{Ti+Vi≤t}. (4.10)

(b) Departure of customers promoted from the buffer. The customers in this scenario start service
at the departure time Di of some customer i. Observe that the number of customers at time t, who
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were promoted from the buffers and then departed from the system, consists of those customers
who satisfy all of the following conditions:
(i) the service start time Di of this customer is at or prior to time t,
(ii) the buffer is non-empty at time Di−, and
(iii) the customer has departed from the system at time t.
For the customer promoted from buffer at time Di, these conditions correspond to {Di ≤ t},
{Qn

Di− > 0} or {Q̄n
Di− > 0}, and {Di + Vji ≤ t} respectively. Consequently, the number of

customers at time t, who were promoted from the buffer and departed equals:
∞∑
i=1

1{Di≤t}1{Qn
Di−

>0}1{Di+Vji
≤t}. (4.11)

Therefore, by combining the two groups of customers from (4.10)-(4.11) we have the cumulative
departures at time t satisfies

Dn
t =

∞∑
i=1

1{Ti≤t}1{Sn
Ti−

<n}1{Vi+Ti≤t} +
∞∑
i=1

1{Qn
Di−

>0}1{Di≤t}1{Di+Vji
≤t}.

On scaling by n we have

D̄n
t =

1

n

∞∑
i=1

1{Di≤t} =
1

n

∞∑
i=1

1{Ti≤t}1{S̄n
Ti−

<1}1{Vi+Ti≤t} +
1

n

∞∑
i=1

1{Q̄n
Di−

>0}1{Di+Vji
≤t}. (4.12)

4.3. Stochastic Integral Representation. As in Section 3, we will use random measures to
obtain cleaner representations of the processes under consideration. To that effect, we define:

W s,A
n (t, u, x) =

1

n

∞∑
i=1

1{u≤t}1{S̄n
u−<1}1{x>t−u}, W s,D

n (t, u, x) =
1

n

∞∑
i=1

1{u≤t}1{Q̄n
u−>0}1{x>t−u},

W q,A
n (t, u, x) =

1

n

∞∑
i=1

1{u≤t}1{S̄n
u−=1}1{Q̄n

u−< bn
n
}, W q,D

n (t, u, x) =
1

n

∞∑
i=1

1{u≤t}1{Q̄n
u−>0},

W d,A
n (t, u, x) =

1

n

∞∑
i=1

1{u≤t}1{S̄n
u−<1}1{x≤t−u}, W d,D

n (t, u, x) =
1

n

∞∑
i=1

1{Q̄n
u−>0}1{x≤t−u}.

Using these notations, the relations (4.5), (4.9) and (4.12) can be expressed as stochastic integrals

S̄n
t =

∫ t

0

∫
R
W s,A

n (t, u, x)Mn,A(du, dx) +

∫ t

0

∫
R
W s,D

n (t, u, x)Mn,D(du, dx), (4.13)

Q̄n
t =

∫ t

0

∫
R
W q,A

n (t, u, x)Mn,A(du, dx)−
∫ t

0

∫
R
W q,D

n (t, u, x)Mn,D(du, dx), (4.14)

D̄n
t =

∫ t

0

∫
R
W d,A

n (t, u, x)Mn,A(du, dx) +

∫ t

0

∫
R
W d,D

n (t, u, x)Mn,D(du, dx), (4.15)

where Mn,A is the counting measure associated with the marked point process of the arrival and
service time pairs (Ti, Vi), and Mn,D is the counting measure associated with the marked point
process of the departure and service time pairs (Di, Vji). Since the number of cumulative departures
in [0, t] is bounded by the number of arrivals in the same interval, the departure process is a locally
finite point process. Recall Definition 2.1 and denote the intensity measure of the scaled departure
process of the n-th model to be νn. The following proposition shows that the scaled departure
process exhibits an intensity or rate function.

Proposition 4.1. Let Assumption 4.1 hold. Then,
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(i) For every n ∈ N, the intensity measure of the scaled departure process for the n-th model, νn is
absolutely continuous w.r.t. Lebesgue measure. That is, there exists a density function dn for every
νn such that

E[D̄n
t ] = νn(0, t] =

∫ t

0
dn(u)du.

(ii) There exists a bounded function d on [0, T ] and a subsequence (nk) such that

lim
k→∞

sup
t∈[0,T ]

∣∣E[D̄nk
t ]−Dt

∣∣ = 0,

where Dt =
∫ t
0 d(u)du.

(iii) Furthermore,

dnk

∗
⇀ d in L∞[0, T ].

Proof. Part (i). For any n, denote the service start time of the k-th customer to be T ′
k. Define

the departure process of the k-th customer from the i-th server by Dk,i,n
t and the corresponding

occupancy indicator of the i-th server Bk,i,n
t as following:

Dk,i,n
t = 1{T ′

k+Vk≤t}, Bk,i,n
t = 1{T ′

k≤t<T ′
k+Vk}.

Define the hazard rate

h(x) :=
g(x)

1−G(x)
, x ∈ [0,M) where M := sup{x ∈ [0,∞) : G(x) < 1}.

Note that h(u) is almost surely well-defined on [0, Vk]. Let Fk,i
t := σ{Bk,i,n

s , for 0 ≤ s < t}. We
claim that the process

Xk,i,n
t = Dk,i,n

t −
∫ t

0
Bk,i,n

u h(u− T ′
k)du, t ≥ 0, (4.16)

is a martingale w.r.t. Fk,i
t . It suffices to consider the following elements of Fk,i

s for 0 ≤ s < t:

(a) {T ′
k = r, Vk = v} for r + v ≤ s,

(b) {T ′
k = r, T ′

k + Vk > s} for r ≤ s, and
(c) {T ′

k > s}.

(a) For r + v ≤ s, we have

E
[
Xk,i,n

t | T ′
k = r, Vk = v

]
= P

(
T ′
k + Vk ≤ t | T ′

k = r, Vk = v
)
−
∫ t

r
h(u− r)P

(
u < T ′

k + Vk | T ′
k = r, Vk = v

)
du

= 1−
∫ r+v

r
h(u− r)du, (4.17)

where the last expression is the value of Xk,i,n
s on {T ′

k = r, Vk = v}.
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(b) For r ≤ s we have

E
[
Xk,i,n

t | T ′
k = r, T ′

k + Vk > s
]

= P
(
T ′
k + Vk ≤ t | T ′

k = r, T ′
k + Vk > s

)
−
∫ t

r
h(u− r)P

(
u < T ′

k + Vk | T ′
k = r, T ′

k + Vk > s
)
du

=
P (s < T ′

k + Vk ≤ t | T ′
k = r)

P
(
T ′
k + Vk > s | T ′

k = r
) −

∫ t

r
h(u− r)

P (T ′
k + Vk > u ∨ s | T ′

k = r)

P
(
T ′
k + Vk > s | T ′

k = r
) du

=
G(t− r)−G(s− r)

1−G(s− r)
−
∫ t

r
h(u− r)

1−G(u ∨ s− r)

1−G(s− r)
du, (4.18)

where using the definition of h in the last integral∫ t

r
h(u− r)

1−G(u ∨ s− r)

1−G(s− r)
du =

∫ s

r
h(u− r)du+

∫ t

s

g(u− r)

1−G(s− r)
du

=

∫ s

r
h(u− r)du+

G(t− r)−G(s− r)

1−G(s− r)
. (4.19)

Therefore, plugging (4.19) into (4.18) we have

E
[
Xk,i,n

t | T ′
k = r, T ′

k + Vk > s
]
= −

∫ s

r
h(u− r)du, (4.20)

where the right hand side is the value of Xk,i,n
s on {T ′

k = r, T ′
k + Vk > s}.

(c) Finally, consider

E
[
Xk,i,n

t | T ′
k > s

]
= P

(
T ′
k + Vk ≤ t | T ′

k > s
)
− E

[∫ t

0
h(u− T ′

k)1
(
T ′
k≤u < T ′

k + Vk

)
du

∣∣∣∣T ′
k > s

]
=

1

P
(
T ′
k > s

) (P
(
T ′
k + Vk ≤ t, T ′

k > s
)
− E

[
1{T ′

k>s}

∫ (T ′
k+Vk)∧t

T ′
k

h(u− T ′
k)du

])
. (4.21)

The last term of the numerator in (4.21) can be expressed as

E

[
1{T ′

k>s}

∫ (T ′
k+Vk)∧t

T ′
k

h(u− T ′
k)du

]
= E

[
1{T ′

k>s}E

[∫ (T ′
k+Vk)∧t

T ′
k

h(u− T ′
k)du

∣∣∣∣∣T ′
k

]]

= E

[
1{T ′

k>s}E

[∫ (T ′
k+Vk)∧t−T ′

k

0
h(u)du

∣∣∣∣∣T ′
k

]]
, (4.22)

where elementary integration yields:

E

[∫ (T ′
k+Vk)∧t−T ′

k

0
h(u)du

∣∣∣∣∣T ′
k = r

]
= E

[
− log

{
1−G

((
T ′
k + Vk

)
∧ t− T ′

k

)}
| T ′

k = r
]

= G(t− r). (4.23)

Plugging (4.23) into (4.22) we have

E

[
1{T ′

k>s}

∫ (T ′
k+Vk)∧t

T ′
k

h(u− T ′
k)du

]
= E

[
G(t− T ′

k)1{T ′
k>s}

]
= P

(
T ′
k + Vk ≤ t, T ′

k > s
)
. (4.24)

Using (4.24) in (4.21) we obtain
E
[
Xk,i,n

t | T ′
k > s

]
= 0, (4.25)

which is exactly the value of Xk,i,n
s on {T ′

k > s}.
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Combining our conclusions from cases (a)-(c) given by relations (4.17), (4.20) and (4.25) we can
conclude that

E
[
Xk,i,n

t | Fs

]
= Xk,i,n

s .

This proves our claim that Xk,i,n
t given by (4.16) is a martingale w.r.t. Fk,i

t . Consequently we have

νn(0, t] = E
[
D̄n

t

]
= E

 1

n

∑
i,k

Dk,i,n
t

 = E

 1

n

∑
i,k

∫ t

0
Bk,i,n

u h(u− T ′
k)du

 . (4.26)

Since our integrands are non-negative, by Tonelli’s theorem, we interchange expectation and integral
to obtain

νn(0, t] =

∫ t

0
E

 1

n

∑
i,k

Bk,i,n
u h(u− T ′

k)

 du. (4.27)

This implies that νn is absolutely continuous w.r.t. Lebesgue measure. Denoted

dn(u) = E

 1

n

∑
i,k

Bk,i,n
u h(u− T ′

k)

 ,

be the intensity function in (4.27).

Part (ii). Since dn are non-negative, and∫ t

0
dn(u)du = E

[
D̄n

t

]
≤
∫ T

0
λ(u)du <∞, (4.28)

are uniformly bounded, by Helly’s selection theorem there exists a bounded non-decreasing func-
tion D and a subsequence (nk) such that the pointwise convergence

∫ t
0 dnk

(u)du → Dt holds.
Furthermore, since D is continuous, then the convergence is uniform (see for example [34, Sec
0.1]). It remains to show that Dt is absolute continuous with a non-negative density d. Since∑

iB
k,i,n
t = 1{T ′

k≤t<T ′
k+Vk}, from (4.26) we have for any n

νn(s, t] = E

 1

n

∑
i,k

∫ t

s
Bk,i,n

u h(u− T ′
k)du

 = E

[
1

n

∑
k

∫ t

s
1{T ′

k≤u<T ′
k+Vk}h(u− T ′

k)du

]
.

Therefore,

νn(s, t] =
1

n
E

[∑
k

∫ (T ′
k+Vk)∧t

T ′
k∨s

h(u− T ′
k)du

]
=

1

n
E

[∑
k

E

[∫ (T ′
k+Vk)∧t−T ′

k

(T ′
k∨s)−T ′

k

h(u)du | T ′
k

]]

=
1

n
E

[∑
k

E
[
log
(
1−G

((
s− T ′

k

)
∨ 0
))
− log

(
1−G

((
T ′
k + Vk

)
∧ t− T ′

k

))
| T ′

k

]]
.

Using (4.23) the above equation becomes

νn(s, t] =
1

n
E

[∑
k

log
(
1−G

((
s− T ′

k

)
∨ 0
))

+G(t− T ′
k)

]
. (4.29)

Denote Ak = log(1 − G((s − T ′
k) ∨ 0)) + G(t − T ′

k). Recall in Assumption 4.1 that g(x) ≤ cg. For
s < T ′

k we have

Ak = log(1−G(0)) +G(t− T ′
k) ≤ G(t− T ′

k) ≤ G(t− s) ≤ cg(t− s), (4.30)
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where the last inequality follows from mean value theorem. On the other hand, since log(x) ≤ x−1,
for s ≥ T ′

k we have

Ak = log(1−G(s− T ′
k)) +G(t− T ′

k) ≤ −G(s− T ′
k) +G(t− T ′

k) ≤ cg(t− s). (4.31)

Combining (4.29)-(4.31) we obtain

νn(s, t] ≤
1

n
E

[ ∞∑
k=1

1{T ′
k≤t}

]
cg(t− s),

Since E[
∑∞

k=1 1{T ′
k≤t}] ≤ E[An

t ] ≤
∫ t
0 nλ(u)du, we have for any n,

νn(s, t] ≤ cg(t− s)

∫ T

0
λ(u)du. (4.32)

Therefore

Dt −Ds ≤ cg(t− s)

∫ T

0
λ(u)du. (4.33)

By (4.33), for ε > 0 there exists δ = ε/(cg
∫ T
0 λ(u)du) such that for any finite set of disjoint intervals

(a1, b1) , . . . , (aK , bK) satisfying
∑K

j=1 (bj − aj) < δ,

K∑
j=1

∣∣Dbj −Daj

∣∣ ≤ cg

∫ T

0
λ(u)du

K∑
j=1

(bj − aj) < ε.

By [13, Prop 3.32], we conclude that D is absolutely continuous w.r.t. Lebesgue measure. By
Radon–Nikodym theorem there exists a density function d such that Dt =

∫ t
0 d(u)du. Finally,

notice from (4.32)-(4.33) we know that dnk
and d are bounded by cg

∫ T
0 λ(u)du. This completes the

proof of Part (ii).

Part (iii). The convergence
∫ t
0 dnk

(u)du→ Dt implies that for any 0 ≤ s < t ≤ T we have

lim
k→∞

∫ t

s
dnk

(u)du = lim
k→∞

∫ t

0
1[s,t)dnk

(u)du =

∫ t

0
1[s,t)d(u)du.

This can be extended to any step function q to give

lim
k→∞

∫ t

0
q(u)dnk

(u)du =

∫ t

0
q(u)d(u)du.

Since step functions are dense in L1, we can conclude that for any ϕ ∈ L1[0, T ]

lim
k→∞

∫ t

0
ϕ(u)dnk

(u)du =

∫ t

0
ϕ(u)d(u)du.

□

Thanks to the existence of the density functions dn from Proposition 4.1, we can characterize the
intensities of the random measures under consideration.

Lemma 4.1. Let Assumption 4.1 hold. The intensity measures of the marked point processesMn,A

and Mn,D are

Mn,A
c (du, dx) = E

[
Mn,A(du, dx)

]
= nλ(u)g(x)dudx,

Mn,D
c (du, dx) = E

[
Mn,D(du, dx)

]
= ndn(u)g(x)dudx. (4.34)
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Proof. The first part is trivial and has already been utilized in Section 3. We show only for Mn,D

here. Observe that

Mn,D(C × L) =

∞∑
i

1C(Di)1L(Vji),

and hence

Mn,D
c (C × L) = E

[
Mn,D(C × L)

]
=

∞∑
i

E [1C(Di)1L(Vji)] .

Note that Di and Vji are independent. Thus we have

Mn,D
c (C × L) =

∞∑
i=1

E [1C(Di)]E [1L(Vji)] = E

[ ∞∑
i=1

1C(Di)

]
P(Vj1 ∈ L) = nνn(C)

∫
L
g(x)dx.

(4.35)
Applying Proposition 4.1 to (4.35) we obtain that

Mn,D
c (C × L) =

∫
C×L

ndn(u)g(x)dudx,

which proves our desired result. □

We now exploit the intensities obtained in Lemma 4.1 to obtain the limit of the stochastic
processes (S̄n, Q̄n, D̄n) as n goes to infinity. We again begin with a result proving convergence
along a subsequence.

Proposition 4.2. Let Assumption 4.1 hold. Assume that the system starts empty, that is, the
number of customers at time 0 is zero. Then
(i) For any T > 0 and for any subsequence, there exists a further subsequence (rk) and continuous,
possibly stochastic processes ρ, η,D such that almost surely

S̄rk
t → ρt, Q̄rk

t → ηt, D̄rk
t → Dt, (4.36)

in the uniform topology.
(ii) Moreover, given (rk), almost surely there exist bounded, possibly stochastic processes w1, w2, w3

such that

1{S̄rk
t−<1}

∗
⇀ w1(t), 1{Q̄rk

t−>0}
∗
⇀ w2(t), 1{Q̄rk

t−< bn
n
}

∗
⇀ w3(t), in L∞[0, T ]. (4.37)

(iii) Furthermore, almost surely, (ρ, η,D,w1, w2, w3) defined in (4.36)-(4.37) satisfy

ρt =

∫ t

0
w1(u)Ḡ(t− u)λ(u)du+

∫ t

0
w2(u)Ḡ(t− u)d(u)du, (4.38)

ηt =

∫ t

0
(1− w1(u))w3(u)λ(u)du−

∫ t

0
w2(u)d(u)du, (4.39)

Dt =

∫ t

0
w1(u)G(t− u)λ(u)du+

∫ t

0
w2(u)G(t− u)d(u)du, (4.40)

and for almost every t ∈ [0, T ]

1{ρt<1} ≤ w1(t) ≤ 1, 1{ηt>0} ≤ w2(t) ≤ 1, 1{ηt<β} ≤ w3(t) ≤ 1.

That is, for almost all ω ∈ Ω, (ρ(ω), η(ω), D,w1(ω), w2(ω), w3(ω)) as in (4.38)-(4.40) is a solution,
interpreted according to Definition 2.2, to the following non-linear discontinuous Volterra integral
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equation

ρt =

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du+

∫ t

0
1{ηu−>0}Ḡ(t− u)d(u)du,

ηt =

∫ t

0
1{ρu−=1}1{ηu−<β}λ(u)du−

∫ t

0
1{ηu−>0}d(u)du,

Dt =

∫ t

0
1{ρu−<1}G(t− u)λ(u)du+

∫ t

0
1{ηu−>0}G(t− u)d(u)du. (4.41)

Proof. For simplicity we will consider the initial subsequence to be (n), but the arguments below
go through for any initial subsequence.

Part (i). We prove only the results for S̄n and ρ as the other parts are similar. By Campbell’s
formula and Lemma 4.1 we have for a fixed t ∈ [0, T ], for all measurable functions Wn(t, u, x) :
R× R→ R

E

[∫ t

0

∫
R
Wn(t, u, x)Mn,A(du, dx)

]
=

∫ t

0

∫
R
Wn(t, u, x)nλ(u)g(x)dudx,

E

[∫ t

0

∫
R
Wn(t, u, x)Mn,D(du, dx)

]
=

∫ t

0

∫
R
Wn(t, u, x)ndn(u)g(x)dudx. (4.42)

DenoteMn,A
∗ andMn,D

∗ to be the compensated random measures:

Mn,A
∗ =Mn,A −Mn,A

c , Mn,D
∗ =Mn,D −Mn,D

c , (4.43)

whereMn,A
c andMn,D

c are as defined in (4.34).
Arrivals affecting number in service: We first investigate the stochastic integrals with respect to
the random measure Mn,A. By the decomposition (4.43) and Lemma 4.1, the first term in (4.13)
becomes:

S̄n,A
t := Xs,n,A

t + Y s,n,A
t , (4.44)

where

Xs,n,A
t :=

∫ t

0

∫
R
W s,A

n (t, u, x)Mn,A
∗ (du, dx), and Y s,n,A

t :=

∫ t

0
1{S̄n

u−<1}Ḡ(t− u)λ(u)du.

We can follow the same argument as in the proof of Proposition 3.1 to conclude similar to how we
obtained (3.16) that for any subsequence (lk), there exists a subsubsequence (rk) ⊂ (lk), such that
for any ϕ ∈ L1[0, T ] there exists w1(u) ∈ L∞[0, T ] and almost surely

lim
k→∞

∫ t

0
ϕ(u)1{S̄rk

u−<1}du =

∫ t

0
ϕ(u)w1(u)du. (4.45)

Furthermore, using similar arguments to how we obtained (3.25) we get almost surely

S̄rk,A
t = Xs,rk,A

t + Y s,rk,A
t →

∫ t

0
w1(u)Ḡ(t− u)λ(u)du := Y s,A. (4.46)

in the uniform topology.
Departures affecting number in service: In this part we look at the stochastic integrals with respect
to the random measureMn,D in (4.13). Similar to (4.44) we have

S̄n,D
t = Xs,n,D

t + Y s,n,D
t , (4.47)

where

Xs,n,D
t =

∫ t

0

∫
R
W s,D

n (t, u, x)Mn,D
∗ (du, dx) and Y s,n,D

t =

∫ t

0
1{Q̄n

u−>0}Ḡ(t− u)dn(u)du. (4.48)
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We first analyze the term Y s,n,D. Since the cumulative departures are upper bounded by the
cumulative arrivals, by (4.48) and the integrability of λ we have

Y s,n,D
t ≤

∫ t

0
dn(u)du ≤

∫ t

0
λ(u)du <∞. (4.49)

Note that

Y s,n,D
t − Y s,n,D

s =

∫ t

s
1{Q̄n

u−>0}Ḡ(t− u)dn(u)du+

∫ s

0
1{Q̄n

u−>0}
(
Ḡ(t− u)− Ḡ(s− u)

)
dn(u)du.

Since Ḡ is non-increasing and bounded above by 1, we have

sup
n

∣∣∣Y s,n,D
t − Y s,n,D

s

∣∣∣ ≤ sup
n

∫ t

s
dn(u)du ≤ cg(t− s)

∫ T

0
λ(u)du,

where the last inequality follows from (4.32). This Lipschitz continuity implies that Y s,n,D
t is

equicontinuous. Therefore we have

lim
δ↓0

sup
n

w′
Y s,n,D(δ) = 0. (4.50)

By (4.49), (4.50), Theorem 2.1 and Prokhorov’s theorem we can conclude that there exists Y s,D ∈ D
and a subsequence (nk) such that almost surely

Y s,nk,D D→ Y s,D, almost surely. (4.51)

Since indicators are uniformly bounded, by [6, Thm 2.34], almost surely there exists a subsequence
(lk) ⊂ (nk) and w2(u) ∈ L∞[0, t], possibly depending on (lk), such that for any ϕ ∈ L1[0, T ]

lim
k→∞

∫ t

0
ϕ(u)1{Q̄lk

u−>0}du =

∫ t

0
ϕ(u)w2(u)du, for all t ∈ [0, T ]. (4.52)

Note that w2 could still be random at this stage. In addition from Proposition 4.1.(iii) we have that
there exists a bounded function d such that for any ϕ ∈ L1[0, T ] almost surely

lim
k→∞

∫ t

0
ϕ(u)dlk(u)du =

∫ t

0
ϕ(u)d(u)du, for all t ∈ [0, T ]. (4.53)

Recall Y s,n,D from (4.48). By triangle inequality∣∣∣∣Y s,lk,D
t −

∫ t

0
w2(u)Ḡ(t− u)d(u)du

∣∣∣∣
≤
∣∣∣∣∫ t

0
1{Q̄lk

u−>0}Ḡ(t− u) (dlk(u)− d(u)) du

∣∣∣∣+ ∣∣∣∣∫ t

0

(
1{Q̄lk

u−>0} − w2(u)

)
Ḡ(t− u)d(u)du

∣∣∣∣ , (4.54)

where the right hand side converges to 0 as k →∞ almost surely, thanks to (4.52) and (4.53). Thus
(4.54) yields for all t ∈ [0, T ], almost surely

lim
k→∞

Y s,lk,D
t =

∫ t

0
w2(u)Ḡ(t− u)d(u)du. (4.55)

This means we can identify Y s,D in (4.51) from (4.55), that is:

Y s,D
t =

∫ t

0
w2(u)Ḡ(t− u)d(u)du. (4.56)

This limiting function Y s,D is continuous because Ḡ and w2 are bounded, and d is integrable. It
follows that the convergence in (4.51) is also under the uniform topology:

lim
k→∞

sup
t∈[0,T ]

∣∣∣Y s,lk,D
t − Y s,D

t

∣∣∣ = 0, almost surely. (4.57)
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Let us now analyze the term Xs,n,D. Similar to the argument in (3.20)-(3.21) one can also conclude
that Xs,n,D

t are uniformly bounded for all t ∈ [0, T ] and

sup
n

w′
S̄n,D(δ) = 0. (4.58)

Using (4.47), (4.58) and (4.50) we obtain

lim
δ↓0

sup
n

w′
Xs,n,D(δ) = 0. (4.59)

The uniform boundedness and (4.59) together imply that {Xs,n,D
t }n≥1 is tight. Consider the process

Zn
t =

∫ t

0

∫
R
Mn,D

∗ (du, dx) =

∫ t

0

∫
R
Mn,D(du, dx)−

∫ t

0

∫
R
Mn,D

c (du, dx). (4.60)

Since
∫ t
0

∫
RM

n,D
c (du, dx) =

∫ t
0

∫
R dn(u)g(x)dudx is a continuous function with bounded variation,

by [32, Thm 26, Chapter 2] it has 0 quadratic variation. It follows that the quadratic variation of
Zn coincides with the quadratic variation of the pure jump processMn,D([0, ·]× R), i.e.

[Zn, Zn]t =

∞∑
i=1

(
1{Di≤t}1R(Vji)

)2
=

∫ t

0

∫
R
Mn,D(du, dx). (4.61)

Consequently by [32, Thm 29, Chapter 2], and (4.48), (4.60) we have[
Xs,n,D, Xs,n,D

]
t
=

∫ t

0

∫
R

(
W s,D

n (t, u, x)
)2

d[Zn, Zn]t =

∫ t

0

∫
R

(
W s,D

n (t, u, x)
)2Mn,D(du, dx).

By [32, Cor 3, Chapter 2] and (4.42) we conclude that

E
(
Xs,n,D

T

)2
= E

([
Xs,n,D, Xs,n,D

]
T

)
= E

[∫ T

0

∫
R

(
W s,D

n (t, u, x)
)2Mn,D(du, dx)

]
≤ 1

n

∫ T

0

∫
R
g(x)dn(u)dudx ≤

1

n

∫ T

0
λ(u)du→ 0,

as n→∞, where we utilize (4.28) in the last inequality. Similar to the argument leading to (3.23)
we obtained that

Xs,n,D p−→ 0, in the uniform topology. (4.62)
From (4.62) we know that there exists a subsequence (rk) ⊂ (lk) such that

sup
t∈[0,T ]

|Xs,rk,D| → 0, almost surely. (4.63)

For this sequence (rk) we thus obtain from (4.47), (4.57) and (4.63) that almost surely

S̄rk,D
t = Xs,rk,D

t + Y s,rk,D
t → Y s,D. (4.64)

in the uniform topology, where the function Y s,D is identified by (4.56).

Conclusion: Let us denote for t ∈ [0, T ]

ρt = Y s,A
t + Y s,D

t =

∫ t

0
w1(u)Ḡ(t− u)λ(u)du+

∫ t

0
w2(u)Ḡ(t− u)d(u)du.

Combining (4.46) and (4.64) we conclude that almost surely

S̄rk = S̄rk,A + S̄rk,D → ρ,

in the uniform topology, which is the desired convergence result for S̄n in (4.36).
Number in buffer and departures: Similar arguments yield convergence of Q̄n and Dn in (4.36), in
addition to the corresponding representations of the limits in (4.39) and (4.40).
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For the first term on the right hand side of (4.39), since 1{S̄rk
u−=1} = 1 − 1{S̄rk

u−<1}, by a diago-

nalization argument one can get for any ϕ ∈ L1[0, T ]

lim
k→∞

∫ t

0
1{S̄rk=1}1{Q̄rk<brk/rk}

ϕ(u) =

∫ t

0
(1− w1(u))w3(u)ϕ(u)du, almost surely.

For the left hand side of (4.40), recall from (4.60) that

D̄n
t =

1

n

∫ t

0

∫
R
Mn,D

c (du, dx) +
1

n
Zn
t =

∫ t

0
dn(u)du+

1

n
Zn
t . (4.65)

By Proposition 4.1 we know that for the subsequence (lk) and d in (4.53), we have for t ∈ [0, T ]∫ t

0
dlk(u)du→ Dt =

∫ t

0
d(u)du,

in the uniform topology. By [32, Cor 3, Chapter 2], (4.42) and (4.61) we conclude that

E

(
1

n
Zn
t

)2

=
1

n2
E([Zn, Zn]t) =

1

n2
E

[∫ t

0

∫
R
Mn,D(du, dx)

]
≤ 1

n

∫ t

0

∫
R
g(x)dn(u)du dx ≤

1

n

∫ t

0
λ(u)du→ 0.

By a similar argument leading to (4.63), we obtain that there exists a subsequence (rk) ⊂ (lk) such
that

sup
t∈[0,T ]

∣∣∣∣ 1rkZrk
t

∣∣∣∣→ 0, almost surely. (4.66)

Combining (4.65)-(4.66) we can conclude that D̄rk converge to Dt =
∫ t
0 d(u)du almost surely in the

uniform topology. This completes the proof of Part (i).

Part (ii). The weak* convergence of 1{Q̄lk
u−>0} has already been shown above in (4.52), and the

counterpart of 1{S̄lk
u−<1} and 1{Q̄lk

u−<bn/n}
are similar.

Part (iii). The functions ρ, η,D have been identified in the proof of Part (i). It remains to show
the constraints for functions w1, w2, w3. We now observe that the set

{
S̄n
u− < 1

}
is identical to the

set
{
S̄n
u− ≤ 1− 1

n

}
. This is because S̄n only takes values in

{
i
n : i = 1, . . . , n

}
. Therefore, (4.44)

can be rewritten as

S̄n,A
t = Xs,n,A

t +

∫ t

0
1{S̄n

u−≤1− 1
n
}Ḡ(t− u)λ(u)du.

Next, we try to find out w1. Recall the convergence stated in (4.36) in the uniform topology.
Consequently fix ε > 0 and choose N large enough such that for all k > N we have rk > 3

ε ,∥∥S̄rk − ρ
∥∥
T
< ε

3 almost surely. Then it is readily checked that

1{ρu−≤1−ε} ≤ 1{S̄rk
u−≤1−1/rk} ≤ 1{ρu−<1+ε}. (4.67)

Therefore for any such that ϕ ∈ L1[0, T ] we have∫ t

0
ϕ(u)1{ρu−≤1−ε}du ≤

∫ t

0
ϕ(u)1{S̄rk

u−≤1−1/rk}du ≤
∫ t

0
ϕ(u)1{ρu−<1+ε}du, for all t ∈ [0, T ].

Note that limε↓0 1{ρu−<1−ε} = 1{ρu−<1} and limε↓0 1{ρu−<1+ε} = 1{ρu−≤1} = 1. Consequently taking
k →∞ and then ε ↓ 0 we have by the dominated convergence theorem and (4.45) that:∫ t

0
ϕ(u)1{ρu−<1}du ≤

∫ t

0
w1(u)ϕ(u)du ≤

∫ t

0
ϕ(u)du, for all t ∈ [0, T ].
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Since ϕ is arbitrary we have almost surely

1{ρu−<1} ≤ w1(u) ≤ 1, a.e. in [0, T ]. (4.68)

Observe that one can also replace {Q̄rk
u− < brk/rk} by {Q̄rk

u− ≤ brk/rk − 1/rk} and {Q̄rk
u− > 0} by

{Q̄rk
u− ≥ 1/rk}. Similar to (4.67), for any ε > 0 one can choose large enough N such that for all

k > N we have rk > 3
ε ,
∥∥Q̄rk − y

∥∥
T
< ε

3 and ∥brk/rk − β∥ < ε
3 almost surely. Then it is readily

checked that almost surely

1{ηu−≤β−ε} ≤ 1{Q̄rk
u−≤brk/rk−1/rk} ≤ 1{ηu−<β+ε}, (4.69)

1{ηu−>ε} ≤ 1{Q̄rk
u−≥1/rk} ≤ 1. (4.70)

Similar to the argument leading to (4.68), from (4.70) we can conclude that almost surely for any
ϕ ∈ L1[0, T ] ∫ t

0
ϕ(u)1{ηu−>0}du ≤

∫ t

0
w2(u)ϕ(u)du ≤

∫ t

0
ϕ(u)du, for all t ∈ [0, T ],

and almost surely
1{ηu−>0} ≤ w2(u) ≤ 1, a.e. in [0, T ].

From (4.69) we can conclude that for any ϕ ∈ L1[0, T ]

1{ηu−<β} ≤
∫ t

0
w3(u)ϕ(u)du ≤

∫ t

0
ϕ(u)du,

and almost surely
1{ηu−<β} ≤ w3(u) ≤ 1, a.e. in [0, T ].

Therefore, by (4.38)-(4.40) and Definition 2.2 we conclude that (ρ, η, d, w1, w2, w3) is the solution
to the discontinuous Volterra equation (4.41). □

We have established a fluid limit for (S̄n, Q̄n, D̄n) along a subsequence when the system starts
empty. Now, we extend our considerations to a more general case.

Assumption 4.2. Let the conditions under Assumption 4.1 hold. In addition, let the number of
customers in the system at time 0: Nn

0 , satisfy the following asymptotic result:

lim
n→∞

∣∣∣∣Nn
0

n
− r0

∣∣∣∣ = 0, almost surely,

where r0 ∈ (0, 1+ β]. Moreover, assume that the empirical distribution Fn of the remaining service
times of the initial occupied servers satisfy

lim
n→∞

sup
t
|Fn(t)− F (t)| = 0, almost surely

for some distribution F .

Proposition 4.3. Let Assumption 4.2 hold. Then
(i) For any T > 0 and for any subsequence of (n), there exists a further subsequence rk and real-
valued continuous, possibly stochastic processes ρ, η,D such that almost surely

S̄rk
t → ρt, Q̄rk

t → ηt, D̄rk
t → Dt, (4.71)

in the uniform topology.
(ii) Moreover, given (rk), almost surely there exist bounded, possibly stochastic processes w1, w2, w3

such that

1{S̄rk
t−<1}

∗
⇀ w1(t), 1{Q̄rk

t−>0}
∗
⇀ w2(t), 1{Q̄rk

t−<brk/rk}
∗
⇀ w3(t), in L∞[0, T ]. (4.72)
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(iii) Furthermore, almost surely, (ρ, η,D,w1, w2, w3) defined in (4.71)-(4.72) satisfy

ρt = min{r0, 1}F̄ (t) +

∫ t

0
w1(u)Ḡ(t− u)λ(u)du+

∫ t

0
w2(u)Ḡ(t− u)d(u)du, (4.73)

ηt = max{r0 − 1, 0}+
∫ t

0
(1− w1(u))w3(u)λ(u)du−

∫ t

0
w2(u)d(u)du, (4.74)

Dt = min{r0, 1}F (t) +

∫ t

0
w1(u)G(t− u)λ(u)du+

∫ t

0
w2(u)G(t− u)d(u)du, (4.75)

and for almost every t ∈ [0, T ]

1{ρt<1} ≤ w1(t) ≤ 1, 1{ηt>0} ≤ w2(t) ≤ 1, 1{ηt<β} ≤ w3(t) ≤ 1.

That is, for almost all ω ∈ Ω (ρ(ω), η(ω), D,w1(ω), w2(ω), w3(ω)) as in (4.73)-(4.75) is a solution,
interpreted according to Definition 2.2, to the following non-linear discontinuous Volterra integral
equation

ρt = min{r0, 1}F̄ (t) +

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du+

∫ t

0
1{ηu−>0}Ḡ(t− u)d(u)du,

ηt = max{r0 − 1, 0}+
∫ t

0
1{ρu−=1}1{ηu−<β}λ(u)du−

∫ t

0
1{ηu−>0}d(u)du,

Dt = min{r0, 1}F (t) +

∫ t

0
1{ρu−<1}G(t− u)λ(u)du+

∫ t

0
1{ηu−>0}G(t− u)d(u)du. (4.76)

Proof. At time 0, the number of customers in service is min{Nn
0 , n} and the number of customers

in buffer is max{Nn
0 − n, 0}. Let the remaining service times for the customers in service to be(

V 0
i

)
1≤i≤min{Nn

0 ,n}. Then, similar to (4.13)-(4.15) we have:

S̄n
t =

1

n

min{Nn
0 ,n}∑

i=1

1{V 0
i >t} +

∫ t

0

∫
R
W s,A

n (t, u, x)Mn,A(du, dx) +

∫ t

0

∫
R
W s,D

n (t, u, x)Mn,D(du, dx),

Q̄n
t =

1

n
max{Nn

0 − n, 0}+
∫ t

0

∫
R
W q,A

n (t, u, x)Mn,A(du, dx)−
∫ t

0

∫
R
W q,D

n (t, u, x)Mn,D(du, dx),

D̄n
t =

1

n

min{Nn
0 ,n}∑

i=1

1{V 0
i ≤t} +

∫ t

0

∫
R
W d,A

n (t, u, x)Mn,A(du, dx) +

∫ t

0

∫
R
W d,D

n (t, u, x)Mn,D(du, dx).

Observing that

1

n

min{Nn
0 ,n}∑

i=1

1{V 0
i >t} =

min{Nn
0 , n}

n

min{Nn
0 ,n}∑

i=1

1{V 0
i >t}

min{Nn
0 , n}

.

By Assumption 4.2 and (4.1) we have that

lim
n→∞

sup
t

∣∣∣∣∣∣ 1n
min{Nn

0 ,n}∑
i=1

1{V 0
i >t} −min{r0, 1}F̄ (t)

∣∣∣∣∣∣ = 0, almost surely. (4.77)

Similarly

lim
n→∞

sup
t

∣∣∣∣∣∣ 1n
min{Nn

0 ,n}∑
i=1

1{V 0
i ≤t} −min{r0, 1}F (t)

∣∣∣∣∣∣ = 0, almost surely (4.78)

and obviously

lim
n→∞

∣∣∣∣ 1n max{Nn
0 − n, 0} −max{r0 − 1, 0}

∣∣∣∣ = 0. (4.79)
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Since we already analyzed the integration w.r.tMn,A andMn,D in Proposition 4.2, by (4.77)-(4.79)
we get the desired results. □

Now, we establish the existence of a unique (ρ, η,D) that satisfies (4.76) in the sense of Defini-
tion 2.2. Consequently, we obtain a unique fluid limit of the fraction of busy servervs, fraction of
occupied buffers and the n−scaled cumulative departure rate.

Theorem 4.1. Let Assumption 4.2 hold. Then there exists a unique solution to the discontinuous
Volterra integral equation (4.76), that is, there exist a unique solution (ρ, η, d) such that for t ∈ [0, T ]

ρt = min{r0, 1}F̄ (t) +

∫ t

0
z1(u)Ḡ(t− u)λ(u)du+

∫ t

0
z2(u)Ḡ(t− u)d(u)du, (4.80)

ηt = max{r0 − 1, 0}+
∫ t

0
(1− z1(u))z3(u)λ(u)du−

∫ t

0
z2(u)d(u)du, (4.81)

Dt = min{r0, 1}F (t) +

∫ t

0
z1(u)G(t− u)λ(u)du+

∫ t

0
z2(u)G(t− u)d(u)du, (4.82)

for some (z1, z2, z3) that satisfies for almost every t ∈ [0, T ]

1{ρt<1} ≤ z1(t) ≤ 1, (4.83)

1{ηt>0} ≤ z2(t) ≤ 1, (4.84)

1{ηt<β} ≤ z3(t) ≤ 1, and (4.85)
0 ≤ ρt ≤ 1, 0 ≤ ηt ≤ β, ηt(1− ρt) = 0. (4.86)

Proof. The existence of the solution directly follows from Proposition 4.3. Before we prove the
uniqueness, let us first talk about the differentiability of the processes of interest. Since

∫ t
0 d(u)du ≤∫ t

0 λ(u)du ≤ ∞ for t ∈ [0, T ], d ∈ L1[0, T ]. For bounded x(t), since d(t), λ(t), g(t) ∈ L1[0, T ], by
Young’s convolution inequality we have

∂

∂t
x(u)G(t− u)λ(u) = x(u)λ(u)g(t− u) ∈ L1([0, T ]× [0, T ]),

∂

∂t
x(u)G(t− u)d(u) = x(u)d(u)g(t− u) ∈ L1([0, T ]× [0, T ]).

Therefore, by [35, Thm 2.7] we can differentiate both side of (4.82) for t ∈ (0, T )

d(t) = min{r0, 1}f(t) +
∫ t

0

(
z1(u)λ(u) + z2(u)d(u)

)
g(t− u)du, a.e. in [0, T ]. (4.87)

Differentiating both side of (4.80) and plugging in (4.87) we obtain

ρ′t = −min{r0, 1}f(t) +
(
z1(t)λ(t) + z2(t)d(t)

)
−
∫ t

0

(
z1(u)λ(u) + z2(u)d(u)

)
g(t− u)du

=
(
z1(t)λ(t) + z2(t)d(t)

)
− d(t), a.e. in [0, T ]. (4.88)

By (4.86) we know that when ηt > 0, ρt = 1. Hence, in order to prove the uniqueness of (ρ, η, d),
we can divide the situations into four states:

(1) ρt < 1, ηt = 0.
(2) ρt = 1, ηt = 0.
(3) ρt = 1, 0 < ηt < β.
(4) ρt = 1, ηt = β.

Denote δki = inft>γk−1
i
{t : (ρt, ηt) ∈ state i} to be the k-th time (ρt, ηt) entering the i-th state, and

γki = inft>δki
{t : (ρt, ηt) /∈ state i} denote the k-th time (ρt, ηt) leaving the i-th state, i = 1, 2, 3, 4
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and k = 1, 2, 3, · · · . With a similar argument after (3.35) we can conclude that there are at most
countable many k. We discuss each state in the following for any k ∈ N.

State 1 : ρt < 1, ηt = 0. We need to identify ρ, d and γk1 in this state. From (4.83) we have for
t ∈ (δk1 , γ

k
1 ), z1(t) = 1, a.e.. Plugging this into (4.81) we have

ηt = ηδk1
−
∫ t

δk1

z2(u)d(u)du.

Since η is continuous, for t ∈ (δk1 , γ
k
1 ) we have ηt = ηδk1

= 0. Therefore, we can conclude that
z2(t)d(t) = 0, a.e.. Substituting z1 and z2d with their values in (4.80) and (4.87) we have for
t ∈ (δk1 , γ

k
1 )

ρt = min{r0, 1}F̄ (t) +

∫ δk1

0

(
z1(u)λ(u) + z2(u)d(u)

)
Ḡ(t− u)du+

∫ t

δk1

Ḡ(t− u)λ(u)du,

and

d(t) = min{r0, 1}f(t)+
∫ δk1

0

(
z1(u)λ(u) + z2(u)d(u)

)
g(t−u)du+

∫ t

δk1

λ(u)g(t−u)du, a.e. in [0, T ].

We can see that γk1 = inft>δk1
{ρt = 1} is unique if δk1 and z1(u)λ(u) + z2(u)d(u) is known for

u ∈ [0, δk1 ). The next state can only be state 2.
State 2 : ρt = 1, ηt = 0. We need to identify d and γk2 in this state. From (4.85) we have for

t ∈ (δk2 , γ
k
2 ), z3(t) = 1, a.e.. Plugging this into (4.81) we have

ηt = ηδk2
+

∫ t

δk2

(1− z1(u))λ(u)du−
∫ t

δk2

z2(u)d(u)du. (4.89)

Since η is continuous, for t ∈ (δk2 , γ
k
2 ) we have ηt = ηδk2

= 0. Therefore,∫ t

δk2

(1− z1(u))λ(u)du−
∫ t

δk2

z2(u)d(u)du = 0.

Since t is arbitrary, we can conclude that for t ∈ (δk2 , γ
k
2 )

z1(t)λ(t) + z2(t)d(t) = λ(t), a.e. in [0, T ]. (4.90)

Plugging (4.90) into (4.87) we get

d(t) = min{r0, 1}f(t)+
∫ δk2

0

(
z1(u)λ(u) + z2(u)d(u)

)
g(t−u)du+

∫ t

δk2

λ(u)g(t−u)du, a.e. in [0, T ].

To identify γk2 we can plug (4.90) into (4.88). Since ρ′t = 0 for t ∈ (δk2 , γ
k
2 ), we have

ρ′t = λ(t)− d(t) = 0, a.e. in [0, T ]. (4.91)

Define
δk2,1 = sup

t>δk2

{t : λ(s) ≥ d(s), for a.e. s ∈ (δk2 , t)}

the first time after δk2 that λ(t) < d(t) for a positive measure set, and

δk2,3 = sup
t>δk2

{t : λ(s) ≤ d(s), for a.e. s ∈ (δk2 , t)}

denote the first time after δk2 that λ(t) > d(t) for a positive measure set. Since (4.91) is true for
t ∈ (δk2 , γ

k
2 ), γk2 = min[δk2,1, δ

k
2,3]. If γk2 = δk2,1, the next state will be state 1. Indeed, since ηt
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is continuous, there exist small enough ε > 0 s.t. for t ∈ (δk2,1, δ
k
2,1 + ε), 0 ≤ ηt < β and thus

z3(t) = 1, a.e.. Consequently (4.89) is true in this interval. Applying Leibniz rule to (4.89) we have

η′t = (1− z1(t))λ(t)− z2(t)d(t), a.e. in [0, T ]. (4.92)

Since ηδk2,1
= 0 and ηt ≥ 0 is continuous, there exist ε′ > 0 such that y′t ≥ 0 for t ∈ (δk2,1, δ

k
2,1 + ε′).

By (4.92) we have
z1(t)λ(t) + z2(t)d(t) ≤ λ(t), a.e. in [0, T ].

By the definition of δk2,1 there exist a positive measure set K ⊂ (δk2,1, δ
k
2,1 + ε′) s.t. λ(t) < d(t) for

t ∈ K. Plugging this into the above inequality we have for t ∈ K

z1(t)λ(t) + z2(t)d(t) < d(t), a.e. in [0, T ]. (4.93)

Therefore, by (4.88) and (4.93) we have

ρ′t < 0, for a.e. t ∈ K

By Fundamental Theorem of Calculus we have ρt < 1 for t ∈ (δk2,1, δ
k
2,1 + ε′), which is exactly state

1. Similarly, if γk2 = δk2,3, the next state will be state 3. We can see that γk2 is unique if δk2 and
z1(u)λ(u) + z2(u)d(u) is known for u ∈ [0, δk2 ).

State 3 : ρt = 1, 0 < ηt < β. We need to identify y, d and γk3 in this state. From (4.84) and (4.85)
we know that for t ∈ (δk3 , γ

k
3 )

z2(t) = 1, z3(t) = 1, a.e. in [0, T ]. (4.94)

Plugging (4.94) into (4.88), we have

ρ′t = z1(t)λ(t) ≥ 0, a.e. in [0, T ].

Since ρt ≤ 1, we have ρ′t = 0 for t ∈ (δk3 , γ
k
3 ). Consequently

z1(t)λ(t) = 0, for a.e. t ∈ (δk3 , γ
k
3 ) (4.95)

Therefore, plugging (4.94)-(4.95) into (4.87) we obtain for almost every t ∈ [0, T ]

d(t) = min{r0, 1}f(t) +
∫ δk3

0

(
z1(u)λ(u) + z2(u)d(u)

)
g(t− u)du+

∫ t

δk3

d(u)g(t− u)du, (4.96)

By [7, Thm 6.3.1] there exist a unique solution d(t) to the Volterra integral equation (4.96) for
t ∈ (δk3 , γ

k
3 ). With this solution and (4.94), (4.95) we can obtain

ηt = ηδk3
+

∫ t

δk3

λ(u)− d(u)du.

Define δk3,2 = inft>δk3
{t : ηt = 0} and δk3,4 = inft>δk3

{t : ηt = β}. Then γk3 = min[δk3,2, δ
k
3,4]. If

γk3 = δk3,2, the next state will be state 2. If γk3 = δk3,4, the next state will be state 4. We can see that
γk3 is unique if δk3 , ηδk3 and z1(u)λ(u) + z2(u)d(u) is known for u ∈ [0, δk3 ).

State 4 : ρt = 1, ηt = β. We need to identify d and γk4 in this state. From (4.84) we have for
t ∈ (δk4 , γ

k
4 ), z2(t) = 1, a.e.. Similar to the argument leading to (4.95) we obtain

z1(t)λ(t) = 0 for a.e. t ∈ (δk4 , γ
k
4 ). (4.97)

Substituting z1λ and z2 with their values in (4.87) we have for almost every t ∈ [0, T ]

d(t) = min{r0, 1}f(t) +
∫ δk4

0

(
z1(u)λ(u) + z2(u)d(u)

)
g(t− u)du+

∫ t

δk4

d(u)g(t− u)du, (4.98)
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By [7, Thm 6.3.1] again there exist a unique solution d(t) to the Volterra integral equation (4.98)
for t ∈ (δk4 , γ

k
4 ). Plugging this solution, (4.97) and z2(t) = 1 into (4.81) we have

β = ηδk4
+

∫ t

δk4

z3(u)λ(u)− d(u)du. (4.99)

Differentiating both side of (4.99) we get

z3(t)λ(t) = d(t) for a.e. t ∈ (δk4 , γ
k
4 ).

It is easy to see that when d(t) > λ(t), there does not exist z3(t) satisfies (4.85). Therefore,

γk4 = sup
t>δk4

{t : d(s) ≤ λ(s), for a.e. s ∈ (δk4 , t)}.

We can see that γk4 is unique if δk4 and z1(u)λ(u) + z2(u)d(u) is known for u ∈ [0, δk4 ). The next
state can only be State 3.

Note that in every state above one can obtain unique (ρt, ηt, d(t)). Additionally, in every state
above one can obtain almost surely either (z1(t), z2(t)) or z1(u)λ(u) + z2(u)d(u) and thus unique
γki , i = 1, 2, 3, 4. Since k is arbitrary, we construct a unique solution (ρt, ηt, d(t)) to the system
(4.80)-(4.86). Indeed, if there exist two different solution ρ1t , ηt,1, d1(t) and ρ2t , ηt,2, d2(t) satisfying
(4.80)-(4.82), the first time they differ must be one of those δki or γki . However, this violates the
uniqueness established above in each state and leads to a contradiction. Therefore, we obtain the
uniqueness of ρ, η, d and the resulting solution satisfies (4.80)-(4.82) and

State 1, z1(t) = 1, z2(t)d(t) = 0, z3(t) = 1,
State 2, z1(t)λ(t) + z2(t)d(t) = λ(t), z3(t) = 1,
State 3, z1(t)λ(t) = 0, z2(t) = 1, z3(t) = 1,
State 4, z1(t)λ(t) = 0, z2(t) = 1, z3(t)λ(t) = d(t).

□

Similar to Theorem 3.2, we now provide possible solutions to the auxiliary functions (z1, z2, z3).

Theorem 4.2. Under the setting of Theorem 4.2, the solution to (4.80)-(4.86) satisfies
z1(t) = 1, z2(t)d(t) = 0, z3(t) = 1, ρt < 1, ηt = 0
z1(t)λ(t) + z2(t)d(t) = λ(t), z3(t) = 1, ρt = 1, ηt = 0
z1(t)λ(t) = 0, z2(t) = 1, z3(t) = 1, ρt = 1, 0 < ηt < β
z1(t)λ(t) = 0, z2(t) = 1, z3(t)λ(t) = d(t), ρt = 1, ηt = β

(4.100)

In particular, the tuple (ρ, η, d, z1, z2, z3) satisfying (4.80)-(4.85) and
z1(t) = 1, z2(t) = 0, z3(t) = 1, ρt < 1, ηt = 0
z1(t) = 1, z2(t) = 0, z3(t) = 1, ρt = 1, ηt = 0
z1(t) = 0, z2(t) = 1, z3(t) = 1, ρt = 1, 0 < ηt < β
z1(t) = 0, z2(t) = 1, z3(t) = d(t)/λ(t) ∧ 1, ρt = 1, ηt = β

is a solution to the system (4.80)-(4.86). Moreover, the functions z1λ + z2d and z3λ are unique
almost surely.

Proof. From the proof of Theorem 4.1 we have (z1, z2, z3) satisfy
State 1, z1(t) = 1, z2(t)d(t) = 0, z3(t) = 1,
State 2, z1(t)λ(t) + z2(t)d(t) = λ(t), z3(t) = 1,
State 3, z1(t)λ(t) = 0, z2(t) = 1, z3(t) = 1,
State 4, z1(t)λ(t) = 0, z2(t) = 1, z3(t) = d(t)/λ(t) ∧ 1.

It is easy to see that z1λ+ z2d and z3λ are unique almost surely. Choosing z1 = 1, z2 = 0 in state
2 and, z1 = 0 in state 3 and 4, we get our desired result. □
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Theorem 4.3. Let Assumption 4.2 hold. Then
(i) For any T > 0, there exist real-valued continuous deterministic processes ρ, η,D such that almost
surely

lim
n→∞

sup
t∈[0,T ]

∣∣S̄n
t − ρt

∣∣ = 0, lim
n→∞

sup
t∈[0,T ]

∣∣Q̄n
t − ηt

∣∣ = 0, lim
n→∞

sup
t∈[0,T ]

∣∣D̄n
t −Dt

∣∣ = 0. (4.101)

(ii) Moreover, there exist bounded functions w1, w2, w3 such that almost surely

1{S̄n
t−<1}λ(t) + 1{Q̄n

t−>0}d(t)
∗
⇀ w1(t)λ(t) + w2(t)d(t), and

1{Q̄n
t−<bn/n}λ(t)

∗
⇀ w3(t)λ(t), in L∞[0, T ], (4.102)

where w1, w2, w3 satisfy (4.100).
(iii) Furthermore, (ρ, η,D,w1, w2, w3) defined in (4.101)-(4.102) satisfy

ρt = min{r0, 1}F̄ (t) +

∫ t

0
w1(u)Ḡ(t− u)λ(u)du+

∫ t

0
w2(u)Ḡ(t− u)d(u)du, (4.103)

ηt = max{r0 − 1, 0}+
∫ t

0
(1− w1(u))w3(u)λ(u)du−

∫ t

0
w2(u)d(u)du, (4.104)

Dt = min{r0, 1}F (t) +

∫ t

0
w1(u)G(t− u)λ(u)du+

∫ t

0
w2(u)G(t− u)d(u)du, (4.105)

and for almost every t ∈ [0, T ]

1{ρt<1} ≤ w1(t) ≤ 1, 1{ηt>0} ≤ w2(t) ≤ 1, 1{ηt<β} ≤ w3(t) ≤ 1.

That is, (ρ, η, d, w1, w2, w3) as in (4.103)-(4.105) is a solution, interpreted according to Defini-
tion 2.2, to the following non-linear discontinuous Volterra integral equation

ρt = min{r0, 1}F̄ (t) +

∫ t

0
1{ρu−<1}Ḡ(t− u)λ(u)du+

∫ t

0
1{ηu−>0}Ḡ(t− u)d(u)du, (4.106)

ηt = max{r0 − 1, 0}+
∫ t

0
1{ρu−=1}1{ηu−<β}λ(u)du−

∫ t

0
1{ηu−>0}d(u)du, (4.107)

Dt = min{r0, 1}F (t) +

∫ t

0
1{ρu−<1}G(t− u)λ(u)du+

∫ t

0
1{ηu−>0}G(t− u)d(u)du. (4.108)

Proof. Part (i). From Proposition 4.3, for any subsequence there exists a further subsequence (rk)
such that almost surely

S̄rk
t → ρt, Q̄rk

t → ηt, D̄rk
t → Dt,

in the uniform topology, where (ρ, η,D) solve (4.106)-(4.108) path by path. By Theorem 4.1,
(ρ, η,D) is unique. Consequently, the limiting functions (ρ, η,D) are deterministic. Moreover, by
the uniqueness of (ρ, η,D) again we can conclude that the entire sequence (S̄n, Q̄n, D̄n) converges
to (ρ, η,D) almost surely in the uniform topology.

Part (ii). By Proposition 4.3 we have for every subsequence there exists a subsubsequence (rk) and
bounded, possibly stochastic processes w1, w2, w3 such that almost surely

1{S̄rk
t−<1}

∗
⇀ w1(t), 1{Q̄rk

t−>0}
∗
⇀ w2(t), 1{Q̄rk

t−<brk/rk}
∗
⇀ w3(t), in L∞[0, T ].

Consequently,

1{S̄rk
t−<1}λ(t) + 1{Q̄rk

t−>0}d(t)
∗
⇀ w1(t)λ(t) + w2(t)d(t), and

1{Q̄rk
t−<brk/rk}

λ(t)
∗
⇀ w3(t)λ(t), in L∞[0, T ]. (4.109)
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By Theorem 4.2 we know that w1λ+w2d and w3λ is unique. Therefore the weak-star convergence
in (4.109) hold for the entire sequence.

Part (iii). This follows directly from Proposition 4.3.(iii) and Theorem 4.1-4.2. □

Similar to Corollary 3.1, an asymptotic result of the acceptance probability can be obtained. We
state the following result without proof.

Corollary 4.1. The acceptance probability of the n-th Mt/G/n/n+bn model P(Q̄n
t− < bn

n ) satisfies
the following convergence

P

(
Q̄n

u− <
bn
n

)
→ w3(u), for λ-almost every u ∈ [0, T ],

where w3 is defined in Theorem 4.3.

Remark 4.1. Similar to Remark 3.5, the function w3 can be discontinuous even when λ is continuous.

5. Numerics and Operational Perspectives

5.1. Numerical Methods for Discontinuous VIE. This section outlines a simple procedure
to numerically solve the discontinuous VIEs (3.50) and (4.106)-(4.108), using an explicit Euler
discretization. The main computational challenge lies in updating the auxiliary functions z or
(z1, z2, z3) in tandem with the solution trajectories ρ or (ρ, η, d) at each iteration. Algorithm 1
details the steps to solve (3.50) following the solution framework described in Theorems 3.1-3.2,
while Algorithm 2 extends this to the coupled system (4.106)-(4.108) using Theorems 4.1 - 4.2.
Algorithm 1 VIE for Zero-Buffer Loss System

1: Input: Initial value ρt0 , time points t0, t1, . . . , tN , functions f, g, F̄, Ḡ, λ.
2: Initialization: Set z(t0) = 0.
3: for i = 0 to N − 1 do

▷ Determine z values for time ti+1 based on state at ti
4: if ρti < 1 then
5: zti+1 ← 1
6: else if ρti = 1 then
7: zti+1 ← min

(
1

λ(ti)

(
ρ0f(ti) +

∑i
j=1 z(tj)λ(tj)g(ti − tj)

)
, 1
)

8: end if
▷ Update state for time ti+1 by discretizing integral equations

9: ρti+1 ← ρ0F̄ (ti+1) +
∑i+1

j=1 z(tj)λ(tj)Ḡ(ti+1 − tj)
10: end for
11: Output: The sequence of values for ρ and z.

Algorithm 2 VIE for Loss System with Buffer

1: Input: Initial value r0 or (ρt0 , ηt0), threshold β, time points t0, t1, . . . , tN , functions f, g, F̄, Ḡ, λ.
2: Initialization: Set (z1t0 , z

2
t0 , z

3
t0 , d(t0)) = (0, 0, 0, 0).

3: for i = 0 to N − 1 do
▷ Determine z values for time ti+1 based on state at ti

4: if ρti < 1 and ηti = 0 then
5: (z1ti+1

, z2ti+1
, z3ti+1

)← (1, 0, 1)
6: else if ρti = 1 and ηti = 0 then
7: (z1ti+1

, z2ti+1
, z3ti+1

)← (1, 0, 1)
8: else if ρti = 1 and 0 < ηti < β then
9: (z1ti+1

, z2ti+1
, z3ti+1

)← (0, 1, 1)
10: else if ρti = 1 and ηti = β then
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11: (z1ti+1
, z2ti+1

)← (0, 1)

12: z3ti+1
← min(d(ti)/λ(ti), 1)

13: end if
▷ Update state for time ti+1 by discretizing integral equations

14: dti+1 ← min(r0, 1)f(ti+1) +
∑i+1

j=1

(
z1(tj)λ(tj) + z2(tj)d(tj)

)
g(ti+1 − tj)

15: ρti+1 ← min(r0, 1)F̄ (ti+1) +
∑i+1

j=1

(
z1(tj)λ(tj) + z2(tj)d(tj)

)
Ḡ(ti+1 − tj)

16: ηti+1 ← max(r0 − 1, 0) +
∑i+1

j=1

[
(1− z1(tj))z

3(tj)λ(tj)− z2(tj)d(tj)
]

17: end for
18: Output: The sequences of values for (ρ, η, d) and (z1, z2, z3).

5.1.1. Example 1: Zero-buffer Loss System. We first solve the VIE (3.29) using Algorithm 1. The
simulated system has n = 150 servers and Lognormal(−0.5, 2) service times. Two types of arrival
rates are used: periodic with λ(t) = 2/3(1 + sin(2πt/10)) as in Figure 3a, and episodic with λ(t) =
0.005 · t(T − t) as in Figure 4a. The simulated trajectory N̄n closely matches the fluid-limit solution
ρ, as in Figures 3b and 4b, confirming the convergence in Theorem 3.3. Repeating the simulation
over R = 200 replications shows that the empirical blocking probability B̄n(t) aligns well with the
theoretical 1 − w(t), supporting Corollary 3.1. Figures 3c-3d and 4c-4d illustrate this relationship
for n = 150 and n = 5000 for both arrival types.

(a) (b)

(c) (d)

Figure 3. Zero-Buffer Loss Queue with Periodic Arrival Rate

5.1.2. Example 2: Finite-buffer Loss System. Next, we solve the VIE system (4.76) using Algo-
rithm 2. Again, the system has n = 150 servers and Lognormal(−0.5, 1.2) service times, with two
types of arrival rates: periodic with λ(t) = 2

3(1.5 + sin(2πt10 )) as in Figure 5a and episodic with
λ(t) = 0.005 · t(T − t) as in Figure 6a. The simulated trajectories S̄n and Q̄n track the theoretical
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(a) (b)

(c) (d)

Figure 4. Zero-Buffer Loss Queue with Episodic Arrival Rate

(ρ, η) closely, as in Figures 5b and 6b, confirming the convergence in Theorem 4.3. Similarly, the
blocking probability B̄n(t) aligns with 1−w3(t), validating the finite-buffer fluid approximation in
Corollary 4.1. This is illustrated in Figures 5c-5d and 6c-6d for n = 150 and n = 5000 both arrival
types.

Remark 5.1. As noted in Remark 3.5 and 4.1, the auxiliary functions w and w3 may exhibit disconti-
nuities. In the numerical results, this discontinuity becomes evident as system size n increases (e.g.,
n = 5000). For smaller systems, the blocking probability appears smoother, but the underlying
discontinuity emerges clearly in the large-system limit.

5.2. Operational Perspectives. Finite capacity is a defining characteristic of many real-world
service systems, such as call centers, emergency departments, and cloud resource pools. Such
systems exhibit non-stationary queuing dynamics due to time-varying arrivals and general service
times, making accurate transient analysis crucial for operational insights.

Our fluid limits for the zero-buffer Mt/G/n/n and finite-buffer Mt/G/n/n + bn provide first-
order approximations of the system occupancy, queue length, departure process, and acceptance
probabilities as n→∞. These deterministic approximations offer a tractable foundation for opera-
tional optimization: they allow one to compute time-varying blocking probabilities directly and to
optimize server and buffer capacities against transient performance constraints.

5.2.1. Staffing Optimization in Zero-Buffer Systems. Consider a sequence of non-stationary
Mt/G/cn/cn loss systems, with cn = ⌊nc⌋ servers and arrivals satisfying Assumption 3.2. For
simplicity, assume that the system starts empty. Let the scaled number in the system or the pro-
portion of occupied servers in the n−th system be N̄n

t and the n−scaled cumulative departure
process be D̄n

t . Then similar to the treatise done in Section 3 and Theorem 3.2, we let the patient
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(a) (b)

(c) (d)

Figure 5. Finite Buffer Loss Queue with Periodic Arrival Rate

(a) (b)

(c) (d)

Figure 6. Finite Buffer Loss Queue with Episodic Arrival Rate
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reader work out the details to conclude that

lim
t→∞

sup
t∈[0,T ]

∣∣N̄n
t − ρt

∣∣ = 0, lim
t→∞

sup
t∈[0,T ]

∣∣D̄n
t −Dt

∣∣ = 0,

almost surely where D(t) is the fluid cumulative departure rate given by Dt =
∫ t
0 d(u)du and d(·)

is the fluid instantaneous departure rate whose dynamics is presented below. In addition, ρt solves
the discontinuous non-linear VIE given by

ρt =

∫ t

0
1{ρu−<c}Ḡ(t− u)λudu. (5.1)

We note that the number of servers could be time-varying with cn(t) = ⌊nc(t)⌋ in which case
our results will remain valid as long as the capacity constraint 1{ρu−<cu} is incorporated in (5.1).
However for simplicity we consider c(·) to be constant. Under Definition 2.2, (5.1) can be equivalently
expressed as

ρt =

∫ t

0
wc(u)Ḡ(t− u)λ(u)du, (5.2)

where

wc(t) =

{
1, if ρt < c,
d(t)
λ(t) ∧ 1, if ρt = c,

(5.3)

and

d(t) =

∫ t

0
wc(u)g(t− u)λ(u)du. (5.4)

Furthermore the acceptance probability converges uniformly

lim
n→∞

sup
t∈[0,T ]

∣∣P (N̄n
t < cn)− wc(t)

∣∣ = 0. (5.5)

Equations (5.2)-(5.4) and the convergence result (5.5) direct server capacity optimization while
maintaining the transient blocking probability above a given threshold. This is particularly relevant
in emergency departments or call centers where it is important from a managerial perspective to
minimize the total number of blocked patients or customers. Summarizing, we solve the following
problem in the fluid limit

min c, such that inf
t∈[0,T ]

wc(t) ≥ 1− α,

where α is the maximum allowable instantaneous blocking probability. Since the infimum of the
acceptance probability w increases as the capacity c increases, the problem admits a unique optimal
solution to the above constrained optimization problem. Therefore we can apply standard root-
finding techniques (e.g. the bisection method) to obtain the optimal server capacity c∗. For each
value of c, we solve the discontinuous VIE by Algorithm 1 to get inft∈[0,T ]wc(t), and stop searching
once inft∈[0,T ]wc∗(t) = 1 − α. Numerical results are presented in Figures 7 and 8, respectively, for
periodic and episodic arrival rates, and for two choices of α.

5.2.2. Joint Staffing and Buffer Capacity Optimization. Now consider a sequence of non-stationary
Mt/G/cn/cn + bn loss queuing systems, where cn = ⌊nc⌋, buffer size bn = ⌊nβ⌋, and arrivals satisfy
Assumption 4.1. Similar to the previous case, server and buffer size could be time-varying with
cn(t) = ⌊nc(t)⌋ and bn(t) = ⌊nβ(t)⌋, and our results would still hold valid as long as c(·) and β(·)
are piecewise constant. However, for simplicity, we do not consider those generalizations and also
assume that the system starts empty. Let the scaled number being served or the proportion of
occupied servers be N̄n

t , the scaled number waiting in buffer be Q̄n
t and the n−scaled cumulative
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(a) Blocking probability ≤α = 0.1 (b) Blocking probability ≤α = 0.2

Figure 7. Optimal server capacity in zero-buffer loss queue with periodic arrival rate.

(a) Blocking probability ≤α = 0.1 (b) Blocking probability ≤α = 0.2

Figure 8. Optimal server capacity in zero-buffer loss queue with episodic arrival rate.

departure process be D̄n
t . Then similar to the treatise done in Section 4 and Theorem 4.3, we let
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the patient reader work out the details to conclude that

lim
t→∞

sup
t∈[0,T ]

∣∣N̄n
t − ρt

∣∣ = 0, lim
t→∞

sup
t∈[0,T ]

∣∣Q̄n
t − ηt

∣∣ = 0 lim
t→∞

sup
t∈[0,T ]

∣∣D̄n
t −Dt

∣∣ = 0,

almost surely where D(t) is the fluid cumulative departure rate given by Dt =
∫ t
0 d(u)du and d(·)

is the fluid instantaneous departure rate whose dynamics is presented below. In addition, the fluid
limits (ρ, η, d) solves a coupled discontinuous nonlinear VIE system which interpreted according to
Definition 2.2 reads

ρt =

∫ t

0
w1
c,β(u)Ḡ(t− u)λ(u)du+

∫ t

0
w2
c,β(u)Ḡ(t− u)d(u)du,

ηt =

∫ t

0
(1− w1

c,β(u))w
3
c,β(u)λ(u)du−

∫ t

0
w2
c,β(u)d(u)du,

Dt =

∫ t

0
w1
c,β(u)G(t− u)λ(u)du+

∫ t

0
w2
c,β(u)G(t− u)d(u)du, (5.6)

where the auxiliary functions w1
c,β , w2

c,β , w3
c,β evolve similar to (5.7):

w1
c,β(t) = 1, w2

c,β(t) = 0, w3
c,β(t) = 1, ρt < c, ηt = 0

w1
c,β(t) = 1, w2

c,β(t) = 0, w3
c,β(t) = 1, ρt = c, ηt = 0

w1
c,β(t) = 0, w2

c,β(t) = 1, w3
c,β(t) = 1, ρt = c, 0 < ηt < β

w1
c,β(t) = 0, w2

c,β(t) = 1, w3
c,β(t) = d(t)/λ(t) ∧ 1, ρt = c, ηt = β (5.7)

The acceptance probability again satisfies

lim
n→∞

sup
t∈[0,T ]

∣∣P (Q̄n
t < bn)− w3

c,β(t)
∣∣ = 0. (5.8)

Using equations (5.6)-(5.3) and the convergence result (5.8), we can formulate a joint staffing-buffer
optimization problem in the fluid limit constrained to maintain the transient blocking probability
above a threshold:

min v · c+ (1− v) · β, such that inf
t∈[0,T ]

w3
c,β(t) ≥ 1− α,

where v weights the relative cost of servers and buffer space, and α denotes the maximum allow-
able instantaneous blocking probability. For each c, the infimum of the acceptance probability w3

increases with buffer size β. Thus, there exists a unique βc such that inft∈[0,T ]w
3
c,βc

(t) = 1−α. We
can perform a grid search for c and apply standard root-finding techniques (e.g., bisection method)
to determine the optimal βc for each c. At each c and β, we solve the discontinuous VIE system
using Algorithm 2 to obtain inft∈[0,T ]w

3
c,β(t). The search terminates when inft∈[0,T ]w

3
c,βc

(t) = 1−α.
The optimal solution is the capacity c∗ that minimizes v · c∗ + (1− v) · βc∗ during the grid search.
Numerical results are presented in Figure 9. It is important to note that this solution provides
a rudimentary approach to solving the constrained optimization problem. While there may be
more effective optimization techniques available, the focus of this paper is not on exploring such
alternative solutions.

6. Conclusion

This paper developed a unified fluid-limit framework for nonstationary many-server loss systems
with general service-time distributions. In the first part, we established a functional strong law of
large numbers for the zero-buffer Mt/G/n/n model via a discontinuous Volterra integral equation
representation. The second part extended this analysis to the finite-buffer Mt/G/n/(n+ bn) model,
showing that the joint dynamics of servers, buffer occupancy, and departures satisfy a coupled
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(a) (b)

Figure 9. Optimal server and buffer capacity with periodic and episodic arrival rates.

system of discontinuous Volterra equations. In both regimes, we proved existence and uniqueness
of the limiting trajectories and convergence of the associated time-varying acceptance and blocking
probabilities.

The results demonstrate that deterministic fluid models can accurately describe transient behavior
in large-scale, non-Markovian, time-varying loss systems. The discontinuous Volterra structure cap-
tures admission control and boundary effects within a mathematically rigorous and computationally
tractable framework, bridging the gap between asymptotic theory and operational approximation.

Beyond theoretical insight, the model provides a practical basis for performance evaluation and
real-time decision-making. We showed how the fluid limit can be used for optimal staffing and buffer
capacity design, and the same structure can naturally extend to dynamic control settings. Future
work may pursue diffusion refinements, stochastic perturbation analysis, and optimization-based
control formulations, further integrating transient queuing dynamics into the broader landscape of
stochastic operations management.
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