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FLUID LIMITS FOR TIME-VARYING MANY-SERVER QUEUES WITH
FINITE CAPACITY

MINGRUI WANG AND PRAKASH CHAKRABORTY

ABSTRACT. This paper develops fluid limits for nonstationary many-server loss systems with gen-
eral service-time distributions. For the zero-buffer M;/G/n/n queuing model, we prove a func-
tional strong law of large numbers for the fraction of busy servers and characterize the limit by
a nonlinear Volterra integral equation with discontinuous coefficients induced by instantaneous
blocking. Well-posedness is established through an appropriate solution concept, yielding the time-
varying acceptance probability without heuristic approximations. We then treat the finite-buffer
M:/G/n/(n + bs) regime, proving a functional strong law of large numbers for the triplet of frac-
tions of busy servers, occupied buffers, and cumulative departures, whose limit satisfies a coupled
system of three discontinuous Volterra equations capturing the interaction of service completions,
buffer occupancy, and admission control at the capacity boundary. We establish well-posedness and
convergence of the time-varying acceptance probability. Our theoretical results are supported by
numerical simulations for both zero and finite-buffer regimes, illustrating the convergence of tran-
sient acceptance probabilities guaranteed by our theory. Finally, we use the fluid limits to derive
optimal staffing and buffer-capacity for both time-varying loss systems.

1. INTRODUCTION

Many modern service systems operate with limited capacity, meaning customers are turned away
or lost when the system is full. Classic examples include telephone networks with a fixed number
of trunk lines [11,18,21], hospital or emergency units with limited beds [1,2,9]|, wireless and optical
networks with bandwidth and channel constraints [25,36,37,41], emergency services like ambulances
and self-driving cars [17]. These loss models, sometimes called Erlang loss systems, have been studied
extensively under steady-state conditions. In fact, the famous Erlang-B formula [12] developed over
a century ago for telephone traffic gives the steady-state blocking probability for an M/M/n/n
queue and remains a cornerstone result in stationary loss models. Yet real-world systems are
rarely stationary: arrival rates and service demands fluctuate over time, and service durations
are not necessarily memoryless. As a result, steady-state measures often fail to capture short-term
dynamics, leading to inefficient or unstable operational decisions. Nonstationary, non-Markovian
loss systems such as M;/G/n/n queues are significantly more challenging to analyze, and closed-
form transient performance formulas are virtually impossible to obtain. This difficulty motivates
the use of stochastic-process approximations for performance analysis, especially in many-server
regimes where the number of servers n is large.

Fluid limits or functional strong laws of large numbers (FSLLN) provide deterministic approx-
imations to many-server queuing systems by tracking the scaled system state as n — oo. These
limits reveal the macroscopic law of motion of complex stochastic systems. Foundational work such
as |16, 28| introduced asymptotic techniques for many-server systems and Markovian service net-
works. Subsequent research established fluid and diffusion limits under increasingly general condi-
tions, including time-varying arrivals and non-exponential service times [20,26,27,33,42|. In contrast
to these limit theorems, an extensive applied literature has developed practical approximations and
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staffing heuristics for time-varying service systems. Related work, including [14,15,19, 38, 39|, pro-
poses pointwise-stationary (POS), modified-offered-load (MOL), and other transient approximations
aimed at dynamic staffing, capacity planning, and transient performance evaluation. These studies
underscore the need for rigorous transient characterizations that connect operational heuristics with
asymptotic theory.

1.1. Overview of Approach and Key Insights. This paper develops a rigorous fluid-limit frame-
work for analyzing time-varying many-server loss systems. Specifically, we study a sequence of sys-
tems with nonhomogeneous Poisson process (NHPP) arrivals and general service-time distributions,
where both the number of servers and the arrival rate scale linearly with system size. The resulting
limit is characterized by a nonlinear Volterra integral equation (VIE) that captures the transient
evolution of the system’s occupancy and, crucially, yields the time-dependent blocking and accep-
tance probabilities in the large-scale regime. Our work builds upon [8], which established a fluid
limit for the nonstationary many-server M;/G/n/n loss system using a semimartingale represen-
tation of the instantaneous acceptance mechanism. We enhance that framework by introducing a
refined convergence proof based on the discontinuous Volterra equation methodology of [22], ensur-
ing well-posedness and uniqueness of the limit even under nonsmooth boundary dynamics.

A distinguishing feature of our analysis is the emergence of nonlinear Volterra equations with
discontinuous coefficients, induced by the instantaneous blocking constraint at full capacity. This
structure departs sharply from classical Markovian formulations and provides a new analytic mech-
anism to capture threshold-type, transient blocking phenomena in nonstationary systems. The
discontinuity is not merely a technical complication. It serves as the deterministic counterpart of
the system’s stochastic acceptance barrier and encodes the operational behavior of loss systems
under time-varying load.

From a methodological standpoint, our results bridge three traditions in the study of nonsta-
tionary queues: (i) steady-state or quasi-stationary approximations such as the Erlang-B, PSA,
and MOL methods [14, 15,29, 40]; (ii) computational and moment-based approximation meth-
ods, including cumulant and truncated-ODE approaches for time-varying loss and many-server
systems [19,30,31,38,39]; and (iii) rigorous asymptotic limit theorems [16,28,33|. The fluid model
derived here serves simultaneously as a limit theorem and a computational engine. It is a deter-
ministic equation directly solvable by numerical methods, providing transient blocking probabilities
without Monte Carlo simulations. This connection between rigorous scaling limits and practical
performance computation strengthens the link between applied probability and operational analy-
sis, particularly in time-dependent service environments such as healthcare scheduling, cloud ser-
vice provisioning, and mobility-on-demand platforms. Accurate transient blocking or acceptance
probabilities support dynamic staffing and admission-control decisions under fluctuating demand.
Whereas traditional time-varying approximations assume local equilibrium, our limit provides a
theoretically consistent foundation for approximating time-varying acceptance probabilities under
nonstationary demand, which is central to time-dependent operations management.

Although our analysis focuses on NHPP arrivals, the fluid-limit structure depends only on the
arrival-rate trajectory rather than Poisson-specific properties. The same analytical framework ex-
tends naturally to renewal or Cox processes with time-dependent intensities. This generality implies
that the derived acceptance probabilities provide accurate first-order approximations for a broad
class of time-varying queuing systems, highlighting the structural robustness of the fluid-limit for-
mulation.

1.2. Contributions. We establish functional strong laws of large numbers for nonstationary many-
server loss systems under general service-time distributions. Both the zero-buffer (M;/G/n/n)
and finite-buffer (M;/G/n/(n + by,)) systems are analyzed in a common framework that scales the
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number of servers and the arrival rate proportionally with system size !. The resulting limits are
deterministic trajectories described by nonlinear Volterra integral equations (VIEs) that capture
the transient evolution of the system occupancy and yield the associated time-dependent blocking
and acceptance probabilities.

(i) Zero-buffer systems. For the M;/G/n/n model with nonhomogeneous Poisson arrivals of rate A(-)
and i.i.d. service times with distribution G, let NJ* denote the number in system and Nj* = NJ*/n
its scaled occupancy. We prove that when the system starts empty N™ converges almost surely to
a deterministic function p (see Theorem 3.3 for a more general and precise formulation) such that
p solves the following discontinuous VIE:

pr = /0 1p_ <13G(t — w)A(u)du. (1.1)

where G is the service-time survival function. The integral equation above has discontinuous co-
efficients due to the indicator 1y, .1y, reflecting instantaneous blocking at capacity. We refine
the convergence analysis of [8] by introducing the discontinuous Volterra solution concept of [22].
Specifically, p solves (1.1) if there exists an auxiliary acceptance function w(-) such that

pr = /0 w(u)G(t —u)A(u)du.

which ensures well-posedness even under nonsmooth boundary dynamics. As a corollary (see Corol-
lary 3.1 for a precise formulation), we obtain that for A-almost every ¢, the acceptance probability
P(N < 1) = w(t). (1.2)
In addition, we identify w(t) = % A 1, where d(t) is the instantaneous departure rate, which
agrees with heuristic expectations. Thus our analysis yields a rigorous FSLLN that provides a
direct functional relationship between the time-varying acceptance (or blocking) probability and
the system primitives through a deterministic limit equation (1.2).
(i1) Finite-buffer systems. We extend the analysis to the M;/G/n/(n+ b,) model, where the buffer
size b, may scale with n so that b,/n — B € [0,00). Denote by S, QF, and D} the scaled
numbers of busy servers, queued customers, and cumulative departures, respectively. We prove (see
Theorem 4.3 for a more precise formulation) that the joint limit of these processes (S™, Q", D") is
given by the tuple (p,n, D) that satisfies a system of three coupled nonlinear VIEs:

t t
Pt = /0 1{Pu7<1}G(t — u))\(u)du + /0 1{77u7>0}G(t — u)d(u)du’
t t
N = /0 Lo =131, <pyMu)du — /0 10, s0yd(u)du,

t t
D, = / 1ipn_ <3 G(t — u)A(u)du + / 1,500 G(t — u)d(u)du,
0 0

where d(-) denotes the fluid departure rate. These equations jointly describe the evolution of service
completions, queue occupancy, and admission control at the boundary. As in the zero-buffer case,
they are interpreted through auxiliary acceptance functions (w!,w?, w?) ensuring existence and

uniqueness of the limit. The resulting acceptance probability satisfies
- b
P < 22) > w(t)

Lour analysis readily extends to time-varying piecewise constant service and buffer capacities. However, for sim-

plicity, we consider the case where both are constant.
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where w?(t) = % A 1 as in the zero-buffer case. This extension introduces significant technical
challenges beyond the zero-buffer case, requiring new arguments to handle the emerging coupled
nonlinear Volterra systems.
(111) Analytical and operational significance. The discontinuous Volterra framework developed here
provides the first rigorous characterization of transient blocking and acceptance probabilities in
large-scale, time-varying service systems with general service-time distributions. It yields a numer-
ically tractable representation: the limit equations can be solved efficiently via numerical methods,
enabling direct computation of transient performance measures without simulation. Beyond ana-
lytical clarity, the framework serves as a practical foundation for operational decision-making. We
demonstrate its use for optimal staffing and buffer capacity design, showing how the determinis-
tic fluid model can approximate system-level performance with high accuracy. These formulations
extend naturally to dynamic versions, where time-dependent staffing or capacity policies adapt to
fluctuating demand. Overall, these results unify the transient analysis of Erlang loss and delay sys-
tems and offer a theoretically grounded computational tool for performance evaluation and dynamic
control in applications such as call centers, hospitals, and cloud-service platforms.

Together, the zero and finite-buffer results form an integrated theory of time-varying many-
server systems. The discontinuous Volterra formulation opens the door to higher-order diffusion
refinements and control-theoretic extensions.

1.3. Paper Organization. The remainder of the paper is organized as follows. Section 2 presents
the preliminaries, including notation, key probability results, weak convergence tools, and the an-
alytical framework for discontinuous Volterra integral equations (VIEs). Section 3 focuses on the
zero-buffer M;/G /n/n system. We derive the fluid limit, prove the functional strong law of large
numbers, and establish convergence of the time-varying acceptance and blocking probabilities. Sec-
tion 4 extends the analysis to the finite-buffer M;/G/n/(n + b,) model. Here, we characterize the
joint fluid limit of the fractions of busy servers, occupied buffers, and departures as the solution
to a system of coupled Volterra integral equations, and we prove convergence of the corresponding
acceptance and blocking probabilities. Section 5 provides numerical experiments that illustrate the
accuracy and interpretability of the fluid-limit approximation across both zero- and finite-buffer
regimes, in addition to optimal server and capacity applications. A brief concluding Section 6 sum-
marizes the findings and outlines potential extensions, including diffusion refinements and control
applications.

2. PRELIMINARIES AND NOTATIONS

In this section we present some preliminary results that will be useful later on.

2.1. Convergence in Skorokhod Space. Let D = D[0,7] denote the space of cadlag (right-
continuous with left limits) functions on [0,7]. For a function f € D and a set Ty C [0,T], we
denote its modulus of continuity on T as

wy(To) = sup |f(t) = f(s)l.

s,teTp

For any 0 € (0,7), let

wt(6) = inf max wr(|ti_1,t)),
#00) PiPli<s 0<i<|P| rltim1, 1))

where P runs over the set of all partitions of [0, 7], in the sense that a generic P looks like
P={0=to,....t;p =T},
and ||P|| denotes the mesh or norm of the partition P:

P[]l = max_[t; —t;—1].
1<i<|P|
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A function f belongs to the space D if and only if

lim w'(§) = 0.
(Slﬁ)lwf() 0

For a proof and related discussion, see [3, Chapter 13|. The Skorokhod distance between two
functions f,g € D is defined as

ds(f,g) = inf maX{ sup |A(t) —t|, sup If(A(t))—g(t)l},

AeA te[0,7) te[0,7)

where A is the class of strictly increasing, continuous mappings of [0, 7] to itself. The topology on D
induced by this metric is known as the Skorokhod topology. It can be shown that D is not a complete
space with respect to the Skorokhod distance dg but there exists a topologically equivalent metric
do with respect to which D is complete. For 0 < ¢; < --- <ty < T, define the natural projection
Tyt from D to RF as:

ﬂ—tl"'tk(x) = (.%' (tl) yeoo &L (tk)) s

and the Borel o-field of D as D. For probability measures P on (D, D), denote by Tp the set of ¢ in
[0, T] for which the projection 7; is continuous except at points forming a set of P-measure 0. We
include some useful results from [3]:

Theorem 2.1. A sequence of probability measures {P,} on (D, D) is tight if and only if:

lim limsupP,, |z : sup |z(t)| >a| =0,
a—=oe n te[0,T]
and for each € > 0,
li(lsrnlimsup P [z w,(0) > €] =0.

n

Theorem 2.2. If {P,} is tight, and if P’nﬂ-i.l..tk = Pﬂ-l;'l"tk holds whenever t1, ...t all lie in Tp,
then P, = P.

2.2. Counting Measure. Let (Q,F,F = (Ft)t>0,P) be a filtered probability space. Let (N¢)¢>0
be a point process given by a sequence (T},),>1 of jump times, that is

Ny = N((Ovt]) = Z 1{Ti§t}a
=1

where N(-) = )", -, 07, is the corresponding counting measure and 4, stands for the Dirac measure

at y. Suppose in addition the n'® jump time or arrival T}, has a corresponding mark or random
variable Z,, taking values in some measurable space (E,E). Then (T}, Zy,)n>1 is called an E-marked
point process. Let MY (- x -) be the counting measure of the marked point process, that is, for each
CeR,Le€

o0

MN(C X L) = Linecyliziery-

=1
This implies for measurable functions ¢ : (R, B(R)) x (E, &) — (R, B(R))

t 00
/ /Ew(u, MY (du x dz) = Zcp(Ti, Zi) i <ty-
0

i=1

We recall the notions of intensity measure and intensity function following [5].
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Definition 2.1. [5, Def 10.2.13] The intensity measure v of a locally finite point process N on R™
is defined by

C s v(C) :=E[N(C)] (CeBR™).

In addition, if v is of the form v(C) = fCC(:t:)dx for some non-negative measurable function C :
R™ — R, the point process N is said to admit the intensity function ((z).

For a point process N with intensity measure v and intensity function ¢, we introduce the
Campbell’s formula from [5, Thm 10.2.15]:

Theorem 2.3. For all measurable functions @ : R™ — R which are non-negative or v-integrable,
the integral [q,, p(x)N(dx) is well defined and

| [ etantan)] = [ ptawtan = [ et

In particular, [gm @(x)N(dz) is a.s. finite if o is v-integrable.

2.3. Discontinuous Volterra Integral Equation. We recall the notion of solution for discontin-
uous Volterra integral equations, as presented in [22]. First, we introduce some related notations.

For any p € LS (—00,00) and any € > 0, define:
p (t) = essinf p(s), pe(t) = esssup p(s).
- [t—s|<e [t—s|<e
In addition, for ¢ € [0, 7] define:
B(t) = limp (t), p(t) =1lim pe(t). (2.1)
e—0—¢€ e—0

Definition 2.2. Let p : [0,00) — R and q : [0,T7] — R be bounded functions. Furthermore, let
a € LY[0,T]. A pair of functions x : [0,T] — R and z : [0,T] — R is said to be a solution of the
Volterra integral equation

such that

x(t) + /0 a(t —s)z(s)ds =q(t), 0<t<T.

Remark 2.1. We point out to the reader that the assumption on p,q and a can be relaxed or
modified as done in [23,24]. Our exposition here is chosen for simplicity and the specific processes
we encounter later.

2.4. Notations. We employ the following notations for different modes of convergence:

p . .1 . .

—: Convergence in probability of random variables or stochastic processes,
=: Weak convergence for probability measures or random variables,

* . .

—: Weak-star convergence in general function spaces,

o 2 Convergence in the Skorokhod topology.
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3. FLUID LIMIT FOR ZERO-BUFFER LOSS SYSTEM

3.1. Setup. In this section, we introduce the zero-buffer loss queuing model. We consider a sequence
of queuing systems indexed by n, subject to the following assumptions.

Assumption 3.1. Consider a M;/G/n/n loss queuing system; namely, a queuing system with

i. a nonhomogeneous Poisson arrival process A™ with rate or intensity function nA(-), where
A is locally integrable;
1. general customer service times sampled independently from a distribution G with density g;
i11. the system has n servers and zero buffer or waiting space. That is, when all n servers are
busy, incoming customer arrivals are lost. Equivalently, the customers can be thought to
have O patience.

Remark 3.1. Note that the intensity function corresponding to the arrival process A™ could be ex-
tended to a more general A, for all n, such that \,,/n — X under some topology. This generalization
should be an easy extension and not considered in this article to keep considerations simpler.

Arrivals

H

A(t)

R

Departures

—_—

pr )

n servers

FiGurE 1. Zero-buffer loss system and its fluid model

3.2. Fraction of Occupied Servers or Scaled Number in System. Consider the M;/G/n/n
loss system as in Assumption 3.1. Let T; and V; represent the arrival and service times, respectively,
of the i-th customer. Let N{* denote the number of occupied servers, or equivalently the number of

customers in the system at time ¢. Denote N}* := % to be the fraction of occupied servers or the
n—scaled number of customers in the system at time ¢. Also, let F3* be the filtration generated by
{N}:s€]0,t]}.

For the sake of simplicity, we first assume that the system starts empty, that is, the number of
customers in the system at time 0 is zero. In the sequel, we will relax this assumption.

Observe that the number of busy servers at time ¢ consists of all arrivals to the system such that
all of the following conditions are met:
(i) the customer arrival occurs at or prior to time ¢,
(ii) the number of occupied servers upon the customer’s arrival is less than n, and
(iii) the remaining service time of this customer at time ¢ is positive, that is, the customer is yet to
depart the system.
For the i—th customer arriving to the system, these conditions correspond to {T; < t}, {Nj._ <n}
or {N}._ <1}, and {V; > t — T;} respectively. Consequently, the number of customers at time ¢
satisfies

N = Z 1{Tz’§t}1{N§3i,<n}l{Vi>t—T,-}~ (3.1)
i=1
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On scaling (3.1) by n, we obtain that the fraction of occupied servers satisfies

_ 1 &
NP == Lmenlivg <anliseny (3.2)
=1

Crucially, observe that N™ or N™ given by (3.1)-(3.2) are given by integral equations whose evolution
depends, in general, on its history. As such, these processes are non-Markovian and in this work we
provide a way of obtaining scaling limits of such processes arising out of loss queuing systems. To
that effect, we work with the scaled process N and obtain a representation using random measures.
Denote

Wi (t, u, z) Zl{N;;_<1}1{x>t L {u<ty (3.3)
i=1

Then relation (3.2) can be represented as

W:KAm@wmmmmy (3.4)

where M" is the counting measure associated with the marked point process of the arrival and
service time pair (73, V;). Taking expectation, we have by Theorem 2.3 that

e[ [ [t natanan)] = [ [ m ot

Denote M7 to be the compensated random measure:
ML =M" — M7, (3.5)
where M?(du, dx) := E[M"(du, dz)] = nA(u)g(z)dudz.

Having obtained an integral representation for the fraction of occupied servers in (3.4), our goal
is to exploit this relation to obtain the limit of the stochastic process {N;,¢ > 0} as n goes to
infinity. We begin with a result proving convergence along a subsequence.

Proposition 3.1. Let Assumption 3.1 hold. Assume that the system starts empty, that is pj =0
for all n. Then

(i) For any T > 0 and any subsequence, there exists a further subsequence (ry) and a continuous,
possibly stochastic process p such that almost surely,

N — p, (3.6)

in the uniform topology.

(i) Moreover, given (ry), almost surely there exists a bounded, possibly stochastic process w such
that

1mgayiw@ in L0, T). (3.7)
(iii) Furthermore, almost surely, p and w defined in (3.6)-(3.7) satisfy
t
pr = / w(u)G(t —u)N\(u)du, te€[0,T], and (3.8)
0
1ipe_<1y Sw(u) <1, ae in [0,T].

That is, for almost all w € Q (p(w),w(w)) as in (3.8) is a solution, interpreted according to Defini-
tion 2.2, to the following non-linear discontinuous Volterra integral equation

pr= /0 1ip,_<13G(t — w)A(u)du. (3.9)
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Proof. For simplicity we will consider the initial subsequence to be (n), but the arguments below
go through for any initial subsequence.
Part (i). Applying the decomposition (3.5) in (3.4) we have

N = X"+ Y/, (3.10)

where

t ¢
:/ /Wn(t,u,x)./\/lf(du,dx), and Y;" ::/ Lin <1}C_}(t—u)/\(u)du. (3.11)
0 JR 0 v

We will analyze X™ and Y™ separately, starting with the term Y™.
By the local integrability of A from Assumption 3.1, we have from (3.11) that almost surely

T
sup sup Y," S/ AMu) du < 0. (3.12)
n te[0,7] 0

Meanwhile Y™ satisfies

t S
v =3 = [ 1 G- M@= [ 1 Gl =A@

t
= / Linn <3Gt —uw)A(u)du + /0 Linn <1y (G(t —u) — G(s —u)) AN(u)du.  (3.13)
Given that G is non-increasing and bounded above by 1, we can derive from (3.13) that
t
sup [V =Y < / AMu)du.

Since the function A(t fo u)du is uniformly continuous on [0, T, it follows that Y are equicon-
tinuous. Therefore we have
15%1 sup wy« (§) = 0. (3.14)

n

By (3.12), (3.14), Theorem 2.1 and Prokhorov’s theorem we can conclude that there exists p € D
and a subsequence (ny) such that

ym B p, almost surely. (3.15)

Moreover, L1[0,T7] is a separable Banach space with dual L>°[0, T'] and 1 (vn_<1y € L>[0,T]. There-

fore by [6, Thm 2.34], almost surely there is a subsubsequence (I;) C (ng) and w € L*°[0, T, possibly
depending on (I3), such that for any ¢ € L'[0, T

lim / ¢(u)l{Niﬁ<1} / o(u du, forall t € [0,T]. (3.16)

k—o00 0

Note that w could still be random at this stage. In particular, choosing ¢(-) = G(t — -)A(:) we have
for all t € [0,T7], almost surely
t

lim 1{Ni’i<1}é(t —u)A(u)du = /0 w(u)G(t — u)\(u)du. (3.17)

k—o0 0

From (3.17) we identify p in (3.15), that is:

o = /0 w()G(t — u)A(u)du. (3.18)

This limiting function p is continuous because G and w are bounded, and X is integrable. It follows
that the convergence in (3.15) is also under the uniform topology:

lim sup ‘Y;lk — pt‘ =0, almost surely. (3.19)
k=00 ¢ef0,1]
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Let us now analyze the term X™. By (3.10)-(3.12) we have that almost surely
T
sup sup |X}'| <sup sup N} +sup sup V" <1 —l—/ Au) du < 0. (3.20)
n t€[0,T] n te[0,7] n t€[0,7] 0

Furthermore, the number of jumps of N™ is bounded by twice that of the arrivals. Consequently
N™ is piecewise constant with almost surely finitely many jumps in [0, 7]. Thus we have for all n,

W, () =0, (3.21)

almost surely. Using (3.21) and (3.14) in relation (3.10) we get
li n(6) = 0. 3.22
i sup wn (9) (3.22)

By (3.20), (3.22) and Theorem 2.1 we obtain the tightness of (X"),>1. Now recalling W,, in (3.3)
and X" in (3.11), we have for any fixed ¢ € [0, T

E(X")?=E Uot/RWn(t,u,x)MQ(du,dx)r

1 ! 2 1 [

< E [/ /Mf(du, dx)} = — Var (4y) = / Au)du — 0,
n 0 R n nJo

as n — oo. Consequently for each t € [0,T], X7 £ 0. Thus for any (t1,ts,...,tq) € [0,T]%

the finite dimensional vectors (Xg, - ,X[;) LN (0,...,0) as a consequence of the Cramer-Wold

device [4, Thm 29.4]. By Theorem 2.2 we have that X™ converges in distribution to the constant

zero function. Since the limiting function is non-random, the convergence becomes:

X" 20, in the uniform topology. (3.23)
From (3.23) we know that there exists a subsequence () C (Ix), such that
sup |X;*| — 0, almost surely. (3.24)
te[0,7)

Combining the above arguments together, for this sequence (ry), we thus obtain from (3.10),
(3.19) and (3.24) that almost surely

N™ = X" 4 Y™ = p, (3.25)
in the uniform topology, where p is identified by (3.18). This completes the proof of Part (i).
Part (i7). This has already been shown above in (3.16).

Part (iii). The function p has been identified by (3.18). It remains to show constraint for the
function w. We now observe that for sequence (N™) the set {N7_ <1} is identical to the set

{N{}, <1-— %} This is because N™ only takes values in {% i=1,... ,n}. Therefore, we can
rewrite (3.10) as

t

Notice that by Proposition 3.1, p < 1. Our next objective is to discover the function w in (3.8).
Since p is continuous, fix € > 0 and choose N large enough such that for all £ > N we have r; > %,
and HN Tk — pH < 5 almost surely. Then it is readily checked that

1{pu7S1—6} < 1{N£’j§l—1/rk} < l{pu7<1+6}'

Therefore for any ¢ > 0 such that ¢ € L]0, T] we have almost surely

t t t
/0 O(w)ly, <1_oydu < /O D) Lrk <11yl < /0 oW1y, <1seydu.



FLUID LIMIT FOR TIME-VARYING MANY SERVER LOSS QUEUES 11

Note that limeyo 1;,, <1-c} = 14, <1y and lime 9 1, <14y = 1y, <13 = 1. Consequently taking
k — oo and then € | 0 we have by the dominated convergence theorem and (3.7) that almost surely:

/Ot P(u)lyp, <npdu < /Otw(u)gb(u)du < /Ot o(u)du.

Since ¢ is arbitrary in L'[0, T], we have almost surely
1ipe_<1y Sw(u) <1, ae. in [0,7T].

Recall the notations defined in (2.1). Tt is easily checked that 1y, 13 = 1f,, <1y and 1y, o1y =
1(,,_<1y = L. Therefore, by (3.8) and Definition 2.2 we conclude that (p,w) is a solution to the
discontinuous Volterra equation (3.9).

0

We have established a fluid limit for N}* along a subsequence when the system starts empty. Now,
we extend our considerations to a more general case.

Assumption 3.2. Let the conditions under Assumption 3.1 hold. In addition let the number of
customers in the system at time 0: N, satisfy

n

lim —% = pg,  almost surely,
n—oo n

where pg € [0,1]. Moreover, assume that the remaining service times of each of the initially occupied
servers follow the distribution F™ satisfying

lim sup |[F"(t) — F(t)| =0,

n—oo ¢
for some limiting distribution F.

Proposition 3.2. Let Assumption 3.2 hold. Then

(i) For any T > 0 and any subsequence of N™, there exists a further subsequence N™* and a real-
valued continuous, possibly stochastic process p such that almost surely,

Nk — p, (3.26)

wn the uniform topology.
(i) Moreover, given (ry), almost surely there exists a bounded, possibly stochastic process w such
that

Linrecny Sow(t) i L0, T). (3.27)
(11i) Furthermore, almost surely, p and w defined in (3.26)-(3.27) satisfy
t
o= poB (1) + / w(w)G(t — W \u)du, te€0,T], and (3.29)
0
1ipe_<1y Sw(u) <1, ae in[0,T]

That is, for almost all w € Q (p(w),w(w)) as in (3.28) is a solution, interpreted according to
Definition 2.2, to the following non-linear discontinuous Volterra integral equation

pt = poF'(t) —|—/0 1ip,_<13G(t — u)A(u)du. (3.29)

Proof. At time 0, the number of customers in service is IVj'. Let the remaining service times for the

customers in service be (Vio)1<z’<N”' Then, similar to (3.4) we have:
St WNg

Nn

B 1 0 t

NP =23 Loy + /0 /R Wt u, 2) M (du, dz). (3.30)
i=1
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Observe that

1 N§ N Ng
2 : 0 § :

ﬁ 1{‘/;0>t} — 771 7(7]1 1{Vio>t}' (331)
i=1 =1

By Assumption 3.2, thanks to Glivenko-Cantelli theorem

NTL
. 1 <
nlg)go 81t1p N7 ; Liyosy — F(t)| =0, almost surely.

Therefore from the decomposition (3.31) we have

Nn
. 1 < -
nh_)rrolo sgp - ;:1 Livosy — poF(t)] =0, almost surely. (3.32)

Since we already analyzed the second term in (3.30) involving integration with respect to M™ in
Proposition 3.1, we obtain our desired result from (3.32). O

Now, we establish the existence of a unique p that satisfies (3.29) in the sense of Definition 2.2.
Consequently, we obtain a unique fluid limit of the fraction of occupied servers IN;.

Theorem 3.1. Let Assumption 3.2 hold. Then there exists a unique solution p to the discontinuous
Volterra integral equation (3.29). That is, there exists a unique solution p such that for allt € [0,T]

t
pt = poF'(t) —l—/ 2(u)G(t — u)A\(u)du, such that 0 < p; <1, (3.33)
0

for some z(t) that satisfies
Lip<1y < 2(t) <1 ace in[0,T]. (3.34)

Proof. The existence of the solution directly follows from Proposition 3.2. In order to prove unique-
ness, let us define

o0=0,7 = inf {t:p =1} and o; = inf{t: p; < 1}. (3.35)
t>0;_1 t>T7;

We first show that there are at most countably many 7;, o;. Denote Z the index set of 7;, o;. Since p;
is continuous, by definition we know that 7,11 > o;. That is p, < 1 for t € (0, 7541). Additionally,
{(0i, Tit+1) }iez are pairwise disjoint open intervals on R. Since each nonempty open interval in R
contains a rational, we can construct an injection Z — Q to conclude Z is a countable set.

We will prove uniqueness by contradiction. Suppose there exist two solutions (p},z21(t)) and
(p?, 22(t)) satisfying (3.33) such that p} # p? for some t € [0,7]. Denote

oy =0,7t = inf {t:pl =1} and o} = 1ti>nfl{t ol < 1},

1
t2o, 4

and similarly 72, 02 for p?, respectively. Since by (3.34) we have for t € {s: ps < 1}, 2(t) = 1 is the

only choice, we can conclude that the first time p; differs from p? can only be one of those ol-l, 012 .

Define
io =min{i € T | o} # o?}.
Since the index set 7 is countable, and N is well-ordered, the above term is well defined. Without

loss of generality we can assume ailo < 01-20. Then, for ¢ € [0, az-lo], we have

pt = poF (1) +/ 21 (u)G (t — u)A(u)du
0

— poF(t) + /0 22 (W) G(t — W (u)du = p?.
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Consequently for ¢ € [0, 0} ]

Y 0

/0 (z1(u) — z2(u)) G(t — u)M(u)du = 0. (3.36)

Notice that

9 _
i (71(w) — 2(W)) Mu)G(t —u) = = (21(w) = 22(u)) A(w)g(t — ).

Since 21, 2o are bounded and \, g € L'[0, T, by Young’s convolution inequality the function (u,t)
(z1(u) — zo(u))A(w)g(t —u) € LY([0,T] x [0,T]). Therefore, we can apply [35, Thm 2.7] to take
derivatives of both side of (3.36) to obtain

(z1(t) — z2(t)) A(t) — /0 (z1(u) — z2(uw)) AM(u)g(t — u)du =0, a.e. in [0,T]. (3.37)

Now observe that the only solution in L![0,T] to the Volterra integral equation

z(t) = /0 z(u)g(t —u)du

is 2(t) = 0 (see for example [7, Thm 1.2.8]). Therefore, from (3.37) we have for ¢ € [0, 0} ]

(z1(t) — 2z2(t)) M(t) =0, a.e. in [0,T]. (3.38)

Recall that o} < ¢?. This implies by continuity of p' that there exists § with 0 < § < 02 — o}
10 20 P 70

2
such that ’
pr<pi=1, forte (02-10,02-10 +9). (3.39)

Therefore, from (3.33) we have

t t
poF(t) —i—/o 21 (WA (u)G(t — u)du < poF(t) + /0 2 (WA(W)G(t — u)du, for t € (o},,04 +6).
Plugging (3.38) into the above inequality we obtain

t

/0'1 (21(u) — 22(w) A(u)G(t — w)du < 0, for t € (o},,04 +6).
0

Since A(u)G(t —u) > 0, there exists a positive measure set A C (o}, 0 + 0) such that u € A

implies z1(u) — z2(u) < 0. However, by (3.34) and (3.39) we have for almost every ¢ € (0},,07),
z1(u) = 1 > z9(w). This is a contradiction. Therefore, p; is unique. O

In Theorem 3.1 we established the unique solvability of (3.33)-(3.34) in the sense that p; is
unique. Therefore, by Proposition 3.2 the fraction of occupied servers NJ* converge to this unique
pt. By (3.34) z(t) = 1 when p; < 1. However, z(t) remains unspecified when p; = 1. It would be
beneficial to specify a possible value of z(¢) in this regime, specifically for the purpose of numerical
experimentations. The following theorem provides a solution of z.

Theorem 3.2. Under the setting of Theorem 3.1, the pair (p, z) satisfying

_ t —
p= PO+ [ =AG(E - v

— )\(t), pr < 1,
Zwa_{mﬂﬂ+ﬁdWMwﬂFWMw =1, (3.40)
and
Lip<1y < 2(t) <1 ace. in [0,T]. (3.41)

is a solution to (3.33)-(3.34). In addition, the function z\ is unique almost everywhere.
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Proof. Since z(t) is bounded and A(t), g(t) € L'[0,T], by Young’s convolution inequality we have

&z(u)é(t —w)A(u) = —z(u)M(u)g(t —u) € L*([0,T] x [0,T)).
Therefore, by [35, Thm 2.7] we have for ¢ € [0, 7]
oy = —pof(t) + z()A(t) — tz(u)g(t —u)A(u)du, a.e. in [0,T]. (3.42)
Recall that {7;,0;}ien are defined in (3.35).0 For any i = 1,2,3,---,t € (7;,0;), we have p, = 1.
Consequently p; = 0 in these intervals. By (3.42) we thus have for almost every ¢ € (7;,0;)
—pof(t) + z(t)A(t) — /OTi AMu)g(t — u)du — /t z(u)AM(u)g(t — u)du = 0. (3.43)

By [7, Thm 6.3.1] we know that for ¢ > 7; there exist a unique solution z(t) € L} (Ry) of the
Volterra integral equation

Ti t
x(t) = pof(t) + / AMu)g(t — u)du + / x(u)g(t — u)du. (3.44)

0 Ti
Since by (3.43) we have z\ is a solution to (3.44), by the uniqueness of the solution we can conclude
that z(t) = z(t)A\(t) for t € (7, 04). O

Remark 3.2. In the proof of Theorem 3.2 we can see that when A(t) > 0, the solution z(¢) is unique
almost surely.

Remark 3.3. Notice that if, in addition to Assumption 3.2, we assume g > 0 then A(¢) > 0 a.e.
when p; = 1. That is, for almost every ¢ € [1;,0;] we must have A(t) > 0, where {7;,0;}ien are
defined in (3.35). This can be proved by contradiction. Assume A(t) = 0 for some positive measure
set K C [y, 04]. Without loss of generality we can assume K = (¢/,t' + §) C [r;,0;]. By (3.33) we
have

py = poF () + /On 2(u)G(t — u)\(u)du +/ 2(w)G(t — u)\(u)du, (3.45)

i

and

T; B t/ _
prris = poF(t' +0) + / 2(W) Gt + 6 — u)N(u)du + / 2(W)G(t + 6 — u)\(u)du. (3.46)
0 Ti
Since F is non-increasing and G is strictly decreasing, by (3.45)-(3.46) we have py s < py. This is
a contradiction since p; = 1 for t € (7, 0y).

Remark 3.4. Note that the proof of Theorem 3.2, provides a characterization for ;. Indeed, o;
equals the first time after 7; that z(t) > A(t) for a positive measure set. To see that, notice by
(3.41), for t € (74, 0;) we have z(t) = z(t)\(t) < A(t). Suppose there exist € > 0 such that z(t) < \(¢)
for almost every t € [0;,0; + €), then choose Z such that Z satisfies (3.41) and Z(t)\(t) = x(t) for
t € [0i,0; +¢€) and, Z(t) = z(t) for t € [0,0;). By (3.42) and (3.44) we know that there exists a
function p such that

s Pt B B te [O7Ui)
PEZ poF (1) + [LE()Aw)G(t — u)du t € [o5,00+¢)
and p, = 0 for t € [0;,0; + €). This implies that p, = 1 in this interval. However, p; < 1 for

t € [0i,0; 4+ €). From the uniqueness of p established by Theorem 3.1 we can concluded that this is
a contradiction.

Since we have obtained the unique solvability of p, we can establish the fluid limit result for the
entire sequence N™.
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Theorem 3.3. Let Assumption 3.2 hold. Then

(i) For any T > 0, there exists a real-valued continuous deterministic process p such that almost
surely,

lim sup |N;" — p| = 0. (3.47)
=90 4e[0,T]

(i) Moreover, there exists a bounded function w such that almost surely

L <1y —w(t) in L0, T), (3.48)

A-almost surely in t, where w solves (3.40)-(3.41).
(11i) Furthermore, p and w defined in (3.47)-(3.48) satisfy

pt = poF(t) + /Otw(u)(_}(t —u)A(u)du, te€[0,T], and (3.49)

lipe_<1y Sw(u) <1, ae in [0, T7].

That is, (p,w) as in (3.49) is a solution, interpreted according to Definition 2.2, to the following
non-linear discontinuous Volterra integral equation

pt = pol'(t) +/0 1p <13G(t — w)A(u)du. (3.50)

Proof. Part (i). From Proposition 3.2, for any subsequence there exists a further subsequence ()
such that almost surely

N{* = pr,
in the uniform topology, where p solves (3.50) path by path. By Theorem 3.1, p is unique. Con-
sequently p is a deterministic function. Moreover, from the uniqueness of p again we can conclude
that the entire sequence N™ converges to p almost surely in uniform topology.

Part (ii). By Proposition 3.2 we have for every subsequence there exists a subsubsequence (ry) and
a bounded, possibly stochastic process w such that almost surely

L A (w) X w(u)A(u) in L0, T7. (3.51)

By Theorem 3.2 we know that this wA is unique. Therefore the weak-star convergence in (3.51)
holds for the entire sequence.

Part (ii7). This follows directly from Proposition 3.2.(iii) and Theorems 3.1-3.2. O

Note that the probability that an incoming arrival at time ¢ will be accepted to the system is
given by P(py < 1). The following corollary provides asymptotics for this acceptance probability.

Corollary 3.1. The acceptance probability in the n-th M;/G/n/n model P(NJ*. < 1) satisfies the
following convergence

P (N} <1) = w(u), for A-almost every u € [0,T],
where w is defined in Theorem 3.35.
Proof. 1iyn .1y is piecewise constant with almost surely finitely many jumps in [0,T] since the

number of jumps of N” is bounded by twice that of the arrivals. By Theorem 2.1 we obtain the
tightness of (Lryn ~q3). By (3.48) we have A-almost surely, for any ¢ € L0, T

t t
Jim /0 B(u) Ly <yydu = /0 bu)w(u)du.

By taking ¢(-) = d(.) we can conclude that the finite dimensional distributions of 1 (Np <1y converge
to that of w(t). By Theorem 2.2 we have 1;yn .q3 = w(u). This implies that 1yyn o3A(u) =
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w(u)A(u). By Theorem 3.2 we have w is unique and thus deterministic. Therefore, the convergence
becomes

Ly <npMu) 2 w(u)(w),

in the Skorokhod topology. Moreover, since the indicator functions are uniformly bounded and A is
integrable in [0, T, (1;yn -1yA(u)) are uniformly integrable. By [10, Thm 5.5.2] we have for almost

every u € [0, 77,
E [1{N37<1})\(u)] =P (N} < 1) A(u) = w(u)A(uw).
U

Remark 3.5. As noticed in (3.40), the function w(t) can be discontinuous at 7; even when A is
continuous. This means the limit of the blocking/acceptance probability is discontinuous. This
property is further reflected in the numerics below.

4. FLuib LIMIT FOR LOSS SYSTEM WITH BUFFER

4.1. Setup. In this section, we introduce a time-varying many-server loss queuing model with
buffer. We work with a sequence of queuing systems indexed by n, subject to the following assump-
tions.

Assumption 4.1. We consider a My;/G/n/n + b, loss queuing system; namely, a queuing model
with
i. a nonhomogeneous Poisson arrival process A™ with rate or intensity function nA(-), where
A 18 locally integrable;
1. general customer service times sampled independently from a distribution G with density g
bounded by a constant cg > 0;
i1i. the system has n servers and b, buffer spaces or waiting spaces. When the system s full,
new incoming customer arrivals are lost. Additionally, by, satisfies

lim On — B. (4.1)

n—oo n

4.2. Characterization of Relevant Stochastic Processes. Let S}' and )} denote the number
of customers in service and buffer, respectively, at time ¢. In addition, let D} denote the cumulative
number of departures from the system by time ¢. For the scaled processes, we define

mn n n

SP = S—t, QY = &, and D} := &,

n n n
to be the n—scaled number in service, in buffer and of departures respectively. Also, let F}* be the
filtration generated by {S™, Q" : s € [0,t]}. Let T, V;, and D; represent respectively the arrival
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time, service time, and departure time of the i-th customer to the system. Note that a customer
who arrives to find at least one idle server has their arrival time coincide with their service start
time. However, a customer who upon arrival finds all servers busy and must first enter the buffer
to wait, has their service start time determined by the arrival and service times of prior customers.
In addition, their service entry time coincides with the departure time of a prior customer. For
this scenario, we let V;; denote the service time of the customer who enters service at time D;. For
simplicity, we initially assume that the number of customers in the system at time ¢ = 0 is zero.
This assumption will be relaxed in the sequel.

4.2.1. Busy servers or customers in service. Observe that the number of busy servers or the number
in service at time ¢ consists of customers from two groups:

(a) Customers admitted directly upon arrival. This scenario is similar to the setup of Section 3.
Observe that the number of customers at time ¢, who were directly admitted upon arrival, consists
of all arrivals to the system such that all of the following conditions are met:

(i) the customer arrival occurs at or prior to time ¢,

(ii) the number of occupied servers upon the customer’s arrival is less than n, and

(iii) the remaining service time of this customer at time ¢ is positive, that is, the customer is yet to
depart the system.

For the i—th customer arriving to the system, these conditions correspond to {7; < t}, {S7._ <n}
or {5’%7 < 1}, and {V; > t — T;} respectively. Consequently, the number of customers at time ¢,
who were directly admitted upon arrival equals:

> Yr<nlisy, _<mlvist-my- (4.2)
i=1

(b) Customers promoted from the buffer. The customers in this scenario start service at the de-
parture time D; of some customer i. Observe that the number of customers at time ¢, who were
promoted from the buffers, consists of all departures such that all of the following conditions are
met:

(i) the service start time D; of this customer is at or prior to time ¢,

(ii) the buffer is non-empty at time D;—, and

(iii) the remaining service time of this customer at time ¢ is positive, that is, the customer is yet to
depart the system.

For the customer promoted from buffer at time D;, these conditions correspond to {D; < t},
{Qp,_ > 0} or {Q”i_ > 0}, and {Vj, > t — D;} respectively. Consequently, the number of
customers at time ¢, who were promoted from the buffer equals:

> Lo @y, >0l Doy, > (4.3)
1=1

Therefore, by combining the two groups of customers from (4.2)-(4.3), we have the number of
customers in service at time t satisfies

St = _Lmenlsy_<mlviseny + D Lpien i@y, >0 Ly, >1)- (4.4)
=1 =1

On scaling (4.4) by n, we have in contrast to (3.2) that the scaled number of busy servers satisfy

Sy = - Z 1{T¢§t}1{§§£r<1}1{Vi>t—Ti} + - Z 1{Di§t}1{Q%F>0}l{Di+Vj¢>t}' (4.5)
=1 i=1
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4.2.2. Occupied buffers. The number of occupied buffers equals the difference between two groups:

(a) Customers that entered the buffer. Observe that the total number of customers who entered the
buffer by time ¢ consists of those individuals who satisfy all of the following conditions:

(i) the customer arrival occurs at or prior to time ¢,

(ii) the number of occupied servers upon the customer’s arrival is n, and

(iii) the buffer upon the customer’s arrival is not full.

For the i—th customer arriving to the system, these conditions correspond to {T; < t}, {S},_ =n}
or {S%_ = 1}, and {Q7,_ < bp} or {Q%_ < %”} respectively. Consequently, the number of
customers who entered the buffer by time ¢ equals:

o

> Ln<olisy_—nl{ay,_<bu) (4.6)

=1

(b) Customers that exited the buffer. The customers in this scenario start service at the departure
time D; of some customer i. Observe that the total number of customers who departed from the
buffer by time ¢ consists of those individuals who satisfy all of the following conditions:

(i) the service start time D; of this customer is at or prior to time ¢, and

(ii) the buffer is non-empty at time D;—.

For the customer departing from buffer at time D;, these conditions correspond to {D; < t} and
{Qp,_ >0} or {Q%F > 0} respectively. Consequently, the number of customers that exited the
buffer by time ¢ equals:

o
Zl{DiSt}l{Q%i_w}. (4.7)
i=1
Therefore, by taking the difference between the two groups of customers from (4.6)-(4.7), we have
the number of customers in buffer at time ¢ satisfies

QIL = Z 1{Ti§t}1{S¥i7=n}1{Q%i7<bn} - Z 1{Di§t}1{Q%r>0}' (4,8)
=1 =1

On scaling (4.8) by n, this yields that the scaled number in buffer satisfy
. 1 oo 1 oo
Qr = n Z 1{TiSt}1{§%i_=1}1{@;_7<%} s Z 1{Di§t}1{Q%i_>0}- (4.9)
i=1 ' i=1

4.2.3. Departures. Observe that the cumulative number of departures also include customers from
two groups:

(a) Departure of customers admitted directly upon arrival. Observe that the number of customers
at time ¢, who were directly admitted upon arrival and then departed from the system, consists of
those customers who satisfy all of the following conditions:

(i) the customer arrival occurs at or prior to time ¢,

(ii) the number of occupied servers upon the customer’s arrival is less than n, and

(iii) the customer has departed from the system by time ¢.

For the i—th customer arriving to the system, these conditions correspond to {7; < ¢}, {7, <n}
or {5'%7 < 1}, and {T; + V; < t} respectively. Consequently, the number of customers at time ¢,
who were admitted directly upon arrival and then departed equals:

Z 1{T¢St}1{S%i_<n}1{Ti+Vi§t}- (4.10)

i=1
(b) Departure of customers promoted from the buffer. The customers in this scenario start service
at the departure time D; of some customer i. Observe that the number of customers at time ¢, who
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were promoted from the buffers and then departed from the system, consists of those customers
who satisfy all of the following conditions:

(i) the service start time D; of this customer is at or prior to time ¢,

(ii) the buffer is non-empty at time D;—, and

(iii) the customer has departed from the system at time ¢.

For the customer promoted from buffer at time D;, these conditions correspond to {D; < t},
{Qp,_ > 0} or {Q’})F > 0}, and {D; + Vj, < t} respectively. Consequently, the number of
customers at time ¢, who were promoted from the buffer and departed equals:

> Lipi<nligp, >0 L, <ty (4.11)
=1

Therefore, by combining the two groups of customers from (4.10)-(4.11) we have the cumulative
departures at time ¢ satisfies

o oo
D = Z 1{TiSt}1{Sﬁ,,<n}1{Vi+Ti§t} + Z 1{@;51,)0}1{Di§t}1{pi+vjigt}-
i=1 i=1

On scaling by n we have
. 1 l &
Di =2 Yoy = 2 o lisy_<nlonsn + 00 Ly soloavsn. (412)
i=1 i=1 i=1

4.3. Stochastic Integral Representation. As in Section 3, we will use random measures to
obtain cleaner representations of the processes under consideration. To that effect, we define:

WSA(t u, ) Zl{uq}l{sn <1}1{x>t u}> WSD(t u, ) Zl{u<t}1{Q" >0}1{:1:>t u}>

i=1 i=1
1.
Wg’ (t u, ZL‘ Z 1{u<t}1{S” _1} {Qn_< bn}7 W’g:D(t,u,:L') = g Z l{ugt}l{QTuL_>0}7
1=1 i=1
1&
WAt u, z) Z Liu<ylian <iylo<i—uys WPt u,x) = - Z Lign soplia<i—uy-
=1 =1

Using these notations, the relations (4.5), (4.9) and (4.12) can be expressed as stochastic integrals
Sy —/ /WSA (t, u, 2) M (du, dx) + / /WSD (t, u, 2) M™P (du, dz), (4.13)
QY —/ /Wq’ (t, u, 2) M (du, dz) / /Wq’ (t, u, 2) M™P (du, dz), (4.14)

Dy _/ /W“ (t, u, 2) M (du, dz) / /WdD (t, u, 2) M™P (du, dz), (4.15)

where M™4 is the counting measure associated with the marked point process of the arrival and
service time pairs (7}, V;), and M™P is the counting measure associated with the marked point
process of the departure and service time pairs (D;, V};). Since the number of cumulative departures
in [0, ¢] is bounded by the number of arrivals in the same interval, the departure process is a locally
finite point process. Recall Definition 2.1 and denote the intensity measure of the scaled departure

process of the n-th model to be v,. The following proposition shows that the scaled departure
process exhibits an intensity or rate function.

Proposition 4.1. Let Assumption 4.1 hold. Then,
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(i) For every n € N, the intensity measure of the scaled departure process for the n-th model, vy, is
absolutely continuous w.r.t. Lebesgue measure. That is, there exists a density function d, for every
v, such that

t
E[D}] = v,(0,t] = / dp(u)du.
0
(ii) There exists a bounded function d on [0,T] and a subsequence (ny) such that

lim sup |E[D{'*] — D] =0,
k=00 ¢ef0,1]

where Dy = [3 d(u)du.
(i1i) Furthermore,

dp, = d in L]0, T).

k

Proof. Part (i). For any n, denote the service start time of the k-th customer to be T}. Define

the departure process of the k-th customer from the i-th server by Df " and the corresponding

occupancy indicator of the i-th server Bf T as following:

k‘,’L’,’I’L _ kﬂ":’n j—
Dy = 1{T,§+Vk§t}> B, = 1{T,;§t<T,g+Vk,}-

Define the hazard rate

h(z) := 13((;;)(;10)’ z €[0,M) where M :=sup{z € [0,00):G(z) < 1}.

Note that h(u) is almost surely well-defined on [0, Vj]. Let ]-"tk’i = o{BE™ for 0<s <t} We
claim that the process

. . t .
xhin _ phin _ /0 BYh(u — T))du, >0, (4.16)

is a martingale w.r.t. f-'tkl It suffices to consider the following elements of .T-'Sk’i for0<s<t:

(a) {T], =r, Vi =v} forr+v < s,
(b) {T}, =r, T, + Vi > s} for r < s, and
(c) {Ty, > s}.

(a) For r +v < s, we have
E[Xf’i’”|T,é:r,Vk:U}
t
:P(Té—i—VkSHTé:T,Vk:v)—/ h(u—r)P(u<Tj,+ Vi | T}, =7, Vi, = v) du

=1- /HU h(u — r)du, (4.17)

where the last expression is the value of X5 on {T}, =7, Vi = v}.
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(b) For r < s we have

E [va@“ T, =7, T} + Vi, > s}

t
:P(T,g—i—VkSHT,;:r,T,é—f—Vk>8)—/ hu—7r)P(u<T)+ Vi | T, =7Th+ Vi > s) du

P(s<T|+Vi, <t|T]=r) /th( )P(Té—l—Vk>u\/s’Té:r)d
P(T’+Vk>s\T]g:r) , P(T,+Vi>s|T,=r)
_Gt—r)—=G(s—r) GuVs—r)
= h(u — d 4.18
1-G(s—r) / u=r) —-G(s—r) " (4.18)

where using the definition of A in the last mtegral

/Tth(u_r)1—G(u\/s—r)du:/rsh(u_r)dw/:g(u_r)du

1-G(s—r) 1-G(s—r)
y Gt—r)—G(s—r)
= - . (41
/rh(u r)du + =G5~ 1) (4.19)
Therefore, plugging (4.19) into (4.18) we have
E {Xf’i’n | T}, =r, T}, + Vi, > s} = —/ h(u — r)du, (4.20)

where the right hand side is the value of X" on {T, =r, T, + Vi, > s}.

(c) Finally, consider

. t
E[Xf"’”|T,g>s] :P(T,g+vk§t|T,;>s)—E[/0 h(u — T (T}<u < T} + V) du

T[C>s}

> . (4.21)
The last term of the numerator in (4.21) can be expressed as

T} +Vi, )AL (T +Vi ) At
l{T/>S}/ h(u—T{)du| =E i~ E /T h(u — T},)du

k

(T} +Vi)At=T,

! P (T} + Vi <t,Tj E |1 =
= — , > — / —
P s\ s> {T>eh /T,; (s = T

T,

T, (422

where elementary integration yields:

(T} +Vi ) At=T},
E [/0 h(u)du

Plugging (4.23) into (4.22) we have

(T,;*FV]C)/\t ,
E 1{T};>s}/ h(u—Tk)du
)

Using (4.24) in (4.21) we obtain

—E[-log{1-G (T} + V&) At —=T})} | T} = r]

T, =r

= G(t—r). (4.23)

—E [G(t - T,g)l{Tps}} P (T)+ Vi <tT|>s). (4.24)

E [vai’" | T > s] =0, (4.25)

which is exactly the value of X2*" on {T}, > s}.



22 MINGRUI WANG AND PRAKASH CHAKRABORTY

Combining our conclusions from cases (a)-(c) given by relations (4.17), (4.20) and (4.25) we can
conclude that

E [Xf”"" | ]—"5] = xkin,

This proves our claim that th b given by (4.16) is a martingale w.r.t. ]:tk " Consequently we have

_ 1 ki 1 t )
va(0,t) =E [D}] =E - > Dt =E - Z/O BFh(y — T} du | (4.26)
ik i,k

Since our integrands are non-negative, by Tonelli’s theorem, we interchange expectation and integral
to obtain

t
1 )
v (0,1] = / E|=) BYh(u-T})| du. (4.27)
0 "k

This implies that v, is absolutely continuous w.r.t. Lebesgue measure. Denoted

1 .
4w = E |20 Bhmn )|
i,k

be the intensity function in (4.27).

Part (ii). Since d,, are non-negative, and

t T
/ dy(u)du = E [D}'] < / AMu)du < oo, (4.28)
0 0

are uniformly bounded, by Helly’s selection theorem there exists a bounded non-decreasing func-

tion D and a subsequence (ny) such that the pointwise convergence fg dy,, (u)du — Dy holds.

Furthermore, since D is continuous, then the convergence is uniform (see for example [34, Sec

0.1]). It remains to show that D; is absolute continuous with a non-negative density d. Since
k?‘i

> B = L1y <t<1)+v,)» from (4.26) we have for any n

vn(s,t] =E %Z /t BN b (y — T))du| = E [i Z /t Lz <uct4viyh(u — Tp)du | .
ik VS E VS
Therefore, _
vn(s,t] = LE _ /(Tk+vk)Ath(u ~T)du| = 2E [Z E /(THVWHé h(u)du | T}
T s "o (Tivs)=T;
— L | S (g (1 - G (s — 1) v0)) — los (1 — G (1 + o) At —T1)) | T
L &

Using (4.23) the above equation becomes

n(s,t] = %E [Z log (1-G((s—1T;) v0))+G(t—1Tj) (4.29)
k

Denote Ay, =log(1 — G((s — T}) V0)) + G(t — T}). Recall in Assumption 4.1 that g(z) < ¢,. For
s < T}, we have

A =log(1— G(0) + G(t —T}) < G(t —T}) < G(t — 5) < cy(t — ), (4.30)
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where the last inequality follows from mean value theorem. On the other hand, since log(z) < z—1,
for s > T} we have

Ap=log(1-G(s—T}))+ Gt —T}) < —G(s = T}) + G(t — Ty) < cy4(t — s). (4.31)
Combining (4.29)-(4.31) we obtain

3

1 oo
Vn(s7t] <-E [Z 1{T,;§t}] Cg(t - 8)7

k=1

Since E[} ;2 1iry<ny] < E[AY] < fg nA(u)du, we have for any n,

T
Un(s,t] < cq(t — s)/ AMu)du. (4.32)
0
Therefore

T
Di— D, < ¢yt —s) /0 Mu)du. (4.33)

By (4.33), for € > 0 there exists 6 = ¢/(cq fOT A(u)du) such that for any finite set of disjoint intervals
(a1,b1), ..., (ax, bx) satisfying Y1) (b; — a;) <6,

K T K
Z | Dy, — Dq,| < cg/ A(u)du Z(bj —aj) <Ee.
j=1 0 =1

By [13, Prop 3.32|, we conclude that D is absolutely continuous w.r.t. Lebesgue measure. By
Radon-Nikodym theorem there exists a density function d such that D; = fg d(u)du. Finally,

notice from (4.32)-(4.33) we know that d,, and d are bounded by ¢, fOT A(u)du. This completes the
proof of Part (ii).
Part (iii). The convergence fg dp, (u)du — Dy implies that for any 0 < s <t < T we have
t t t
lim dy,, (u)du = lim 160y dny (u)du = / 1ps,pyd(u)du.
0

k—oo Jq k—oo Jo

This can be extended to any step function g to give

t t
lim (_I(U)dnk(u)alu:/O q(u)d(u)du.

k—o00 0

Since step functions are dense in L', we can conclude that for any ¢ € L'[0,T]

k—oo

lim /0 gb(u)dnk(u)alu:/0 o(u)d(u)du.
t

Thanks to the existence of the density functions d,, from Proposition 4.1, we can characterize the
intensities of the random measures under consideration.

Lemma 4.1. Let Assumption 4.1 hold. The intensity measures of the marked point processes M™4
and M™P are

M A (du, dz) = E [M”’A(du,dx)] = nA(u)g(x)dudz,
MPP(du, dz) = E [M™P(du, dz)] = nd,(u)g(z)dudz. (4.34)
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Proof. The first part is trivial and has already been utilized in Section 3. We show only for M™P
here. Observe that

M™P(C x L) = Zlg Vi)

and hence

MPP(C x L) = E[M™P(C x L)] ZElC Vi)
Note that D; and Vj; are independent. Thus we have

MPP(CxL)=) E[lg E[1.(V},)] =E [Zlg P(V;, EL):m/n(C’)/g(a:)dx.
=1

L
(4.35)
Applying Proposition 4.1 to (4.35) we obtain that
MMP(Cx L) = / ndy, (u)g(z)dudz,
CxL
which proves our desired result. [l

We now exploit the intensities obtained in Lemma 4.1 to obtain the limit of the stochastic
processes (S™,Q",D™) as n goes to infinity. We again begin with a result proving convergence
along a subsequence.

Proposition 4.2. Let Assumption 4.1 hold. Assume that the system starts empty, that is, the
number of customers at time 0 is zero. Then

(i) For any T > 0 and for any subsequence, there exists a further subsequence (ry) and continuous,
possibly stochastic processes p,m, D such that almost surely

S{k — Pt, Q:k — N, D:k — Dt, (436)

in the uniform topology.
(ii) Moreover, given (1), almost surely there exist bounded, possibly stochastic processes w', w?, w3
such that

Ligrecny Sowl(t), Lo w0y Sowk(t), Ligrk <iny Sowd(t), i L0, T (4.37)
(iii) Purthermore, almost surely, (p,n, D, wb, w?,w®) defined in (4.36)-(4.37) satisfy
P /0 0t (w) Gt — u)A(u)du + /0 "W ()Gt — w)d(u)du, (4.38)
= /0 (1 — a0t () o™ () M)t — /0 " 0 (u)d(w)du, (4.39)
D, = /O " ()Gt — M)+ /0 "W ()Gt — u)d(u)du, (4.40)
and for almost cvery ¢ € [0, T

1{pz<1} < wl(t) <1, 1{77t>0} < wZ(t) <1, 1{77t<5} < wg(t) <1.

That is, for almost all w € 2, (p(w),n(w), D, w' (w), w*(w),w3(w)) as in (4.38)-(4.40) is a solution,
interpreted according to Definition 2.2, to the following non-linear discontinuous Volterra integral
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equation
¢ ) . )
pr = /0 1ip, <3Gt — u)A(u)du +/0 Lo 01 G(t — u)d(u)du,
¢ ¢
77t_/0 1{pu_=1}1{nu_<ﬁ})\(u)du—/0 g, soyd(u)du,
t

t
D; = / 1ipu <13 G(t — u)A(u)du + / 1 >0y G(t — u)d(u)du. (4.41)
0 0

Proof. For simplicity we will consider the initial subsequence to be (n), but the arguments below
go through for any initial subsequence.

Part (i). We prove only the results for S™ and p as the other parts are similar. By Campbell’s
formula and Lemma 4.1 we have for a fixed ¢ € [0,T], for all measurable functions W, (¢,u,z) :

RxR—=R
[//WtuacM"Adudx] //W (t,u, z)n\(u)g(x)dudz,

[//W tux/\/lnDdud:n} //Wtuxnd()(m)dudw. (4.42)

Denote Mf and Mf’D to be the compensated random measures:
M:},A _ Mn,A o M?’A, M:,D — Mn,D _ M?:D, (443)

where M2 and M2P are as defined in (4.34).
Arrivals affecting number in service: We first investigate the stochastic integrals with respect to
the random measure M™#. By the decomposition (4.43) and Lemma 4.1, the first term in (4.13)
becomes:

Sy = xpmA Lyt (4.44)

where
t t -
th’n’A ::/ /Wi’A(t,u,x)Mf’A(du, dx), and Yts’n’A ::/ lign <3 G(t — w)A(u)du.
R 0 “

We can follow the same argument as in the proof of Proposition 3.1 to conclude similar to how we
obtained (3.16) that for any subsequence (Ij), there exists a subsubsequence (ry) C (Ix), such that
for any ¢ € L'[0, T] there exists w!(u) € L>[0,T] and almost surely

t t
kli_{rgo/o qS(u)l{szk_d}du:/o o(u)w' (u)du. (4.45)

Furthermore, using similar arguments to how we obtained (3.25) we get almost surely
ST’“’ = X" A +Y” oA / (u)G(t — u)\(u)du := YA, (4.46)

in the uniform topology.
Departures affecting number in service: In this part we look at the stochastic integrals with respect
to the random measure M™P in (4.13). Similar to (4.44) we have

SZL,D _ Xf’n’D + Yts,mD’ (4.47)

where
t

x5 = / /WSD (t,u, 2) M P (du,dz) and Y "P = / 1{QZ_>O}G(t—u)d (u)du. (4.48)
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We first analyze the term Y™ Since the cumulative departures are upper bounded by the
cumulative arrivals, by (4.48) and the integrability of A\ we have

t ¢
v < / dy(u)du < / A(u)du < oo. (4.49)
0 0

Note that
t S
R /s 11gn >0 Gt — u)dy (u)du + /0 Ligr >0y (G(t —u) — G(s — u)) dn(u)du.

Since G is non-increasing and bounded above by 1, we have

t T
- Yss’mD‘ < sup/ dp(u)du < cg(t — s)/ AMu)du,
n S 0

where the last inequality follows from (4.32). This Lipschitz continuity implies that ¥;*™ is
equicontinuous. Therefore we have

li e (6) =0. 4.50

By (4.49), (4.50), Theorem 2.1 and Prokhorov’s theorem we can conclude that there exists Y € D
and a subsequence (ny) such that almost surely

ysmeD B Y*P almost surely. (4.51)

Since indicators are uniformly bounded, by [6, Thm 2.34], almost surely there exists a subsequence
(Ix) C (ng) and w?(u) € L>|0,t], possibly depending on (), such that for any ¢ € L'[0,T]

t
lim / o(u {sz >0} :/0 d(u)w*(u)du, for all t € [0, 7). (4.52)

k—o0 w—

Note that w? could still be random at this stage. In addition from Proposition 4.1.(iii) we have that
there exists a bounded function d such that for any ¢ € L'[0,T] almost surely

lim / (u)dy, (u du—/ o(u du, for all t €[0,T]. (4.53)

k—o0

Recall Y*™P from (4.48). By triangle inequality

D _ /0 "2 ()Gt — w)d(u)du

<

(4.54)

/0 Ligli 0y G = ) (i () = d(w)) du| + /0 (1{Qif_>0} - wQ(“)> G(t - w)d(u)dul ,

where the right hand side converges to 0 as & — oo almost surely, thanks to (4.52) and (4.53). Thus
(4.54) yields for all ¢t € [0, T, almost surely

lim Yl = /0 w?(u)G(t — u)d(u)du. (4.55)

k—o00

This means we can identify Y% in (4.51) from (4.55), that is:
t
ysP = / W2 ()Gt — w)d(u)du. (4.56)
0

This limiting function Y% is continuous because G' and w? are bounded, and d is integrable. It
follows that the convergence in (4.51) is also under the uniform topology:

YtS’D‘ =0, almost surely. (4.57)

lim sup ‘Yts’l’“’D
k=00 ¢ef0,1]
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Let us now analyze the term X*™ . Similar to the argument in (3.20)-(3.21) one can also conclude
that X;*™" are uniformly bounded for all ¢ € [0, 7] and

SUp W, p(4) = 0. (4.58)

Using (4.4;), (458) and (450) we obtain
l'l“S” ! s.n.D 6 —0 4«;9

n

The uniform boundedness and (4.59) together imply that {X;"™"},> is tight. Consider the process

t t t
zZp = / / MPP(du, dz) = / / M™P (du, dz) — / / MPP (du, dz). (4.60)
0 R 0o JR

Since fot Jr MEP (du, dx) fo Jrdn z)dudz is a continuous function with bounded variation,
by [32, Thm 26, Chapter 2] it has O quadratlc variation. It follows that the quadratic variation of
Z™ coincides with the quadratic variation of the pure jump process M™P([0,-] x R), i.e

oo

AN Z(1{DZ.§,5}1R(V;,.))2 = /0 /R M™P (du, dx). (4.61)

i=1
Consequently by [32, Thm 29, Chapter 2|, and (4.48), (4.60) we have

t t
[xsmD, xomD] = / / (WDt u,2)) > d[2", 27); = / / (WP (¢, u,2))* MPP (du, d).
0 JR 0 JR
By [32, Cor 3, Chapter 2| and (4.42) we conclude that
E(X;;”D) — E([x*mP, x*mP] ) = E U / (WP (¢, u,2))” M™P (du, dx)}

1 T
/ / u)dudr < — / AMu)du — 0,
n Jo

as n — 00, where we utilize (4.28) in the last inequality. Similar to the argument leading to (3.23)
we obtained that

XD 2,0, in the uniform topology. (4.62)
From (4.62) we know that there exists a subsequence (r;) C (Ix) such that
sup | X5™P| -0, almost surely. (4.63)
te[0,T]
For this sequence () we thus obtain from (4.47), (4.57) and (4.63) that almost surely
SpeP = Xprel yprel o yeb, (4.64)

in the uniform topology, where the function Y'*? is identified by (4.56).

Conclusion: Let us denote for ¢ € [0, T
t t
= YtS’A + YtS’D = / w! (u)G(t — u)\(u)du + / w? (u)G(t — u)d(u)du.
0 0
Combining (4.46) and (4.64) we conclude that almost surely

Sk = S§reA L GrieD 0,

in the uniform topology, which is the desired convergence result for S™ in (4.36).
Number in buffer and departures: Similar arguments yield convergence of Q™ and D" in (4.36), in
addition to the corresponding representations of the limits in (4.39) and (4.40).
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For the first term on the right hand side of (4.39), since 1{§rk —1} = 1-— 1{§rk <1} by a diago-
nalization argument one can get for any ¢ € L'[0, 7]

t t
lim 1{5%21}1@%<brk/7,k}¢(u) = /0 (1 —w' (u)w?(u)p(u)du, almost surely.

k—o0

For the left hand side of (4.40), recall from (4.60) that

/ /M”D (du, dz) + Zt _/ d (u)du—k%Zt". (4.65)

By Proposition 4.1 we know that for the subsequence (l;) and d in (4.53), we have for ¢ € [0,T]

t t
/ dy, (u)du — Dy = / d(u)du,
0 0

in the uniform topology. By [32, Cor 3, Chapter 2|, (4.42) and (4.61) we conclude that

E (izgl)Q = %E([Z”,Z”]t) = —E [/ /M”D (du d:v)}
// dud:c<TlL/Ot)\(u)du—>0.

By a similar argument leading to (4.63), we obtain that there exists a subsequence (ry) C (Ix) such
that

| A

Z e
Tk

sup — 0, almost surely. (4.66)

t€[0,T]

Combining (4.65)-(4.66) we can conclude that D™ converge to Dy = fo u)du almost surely in the
uniform topology. This completes the proof of Part ().

Part (ii). The weak™® convergence of 1 has already been shown above in (4.52), and the

{QlF >0}

counterpart of 1 _ and 1, . are similar.

{5} <1} {QlF <by/n}

Part (iii). The functions p,n, D have been identified in the proof of Part (i). It remains to show
the constraints for functions w!, w? w®. We now observe that the set {S7_ < 1} is identical to the

set {5’3_ <1- %} This is because S™ only takes values in {% e=1,... ,n}. Therefore, (4.44)
can be rewritten as

t
SZMA _ Xf’n’A—i—/ 1{5‘” <1_l}(_}’(t—u)/\(U)dU-
0 u——="""7p

Next, we try to find out w!. Recall the convergence stated in (4.36) in the uniform topology.
3

Consequently fix € > 0 and choose N large enough such that for all & > N we have ry > 2,
HS’”@ — pHT < § almost surely. Then it is readily checked that

Lpw-<1-ey = Ligme comiymy < puo<ive}- (4.67)
Therefore for any such that ¢ € L[0, T we have

t t t
/0 d(u)ly,, <i—apdu < /0 ¢(u)1{§§i§1—1/rk}d“ < /0 ¢(u)lyy,_<iqeydu, forallt €[0,T].

Note that lim.yo 1;,, <1-c} = 14, <1} and lime 9 1, <146y = 1y, <13 = 1. Consequently taking
k — oo and then £ | 0 we have by the dominated convergence theorem and (4.45) that:

/gb u)ly,, <1}du</ du</ ¢(u)du, for all t € [0,T].
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Since ¢ is arbitrary we have almost surely
Lipe <13 Sw'(u) <1, ae. in[0,7]. (4.68)
Observe that one can also replace {Q;* < by, /r} by {Q;} < by, /ri — 1/r.} and {Q;F > 0} by
{QF > 1/ry}. Similar to (4.67), for any € > 0 one can choose large enough N such that for all
k > N we have rj, > 2, ||Q" — yHT $ and ||by, /rr — B]| < § almost surely. Then it is readily
checked that almost 5urely
1{77u—§5*5} < 1{sz_gbrk/7“kfl/rk} < 1{7]u—<,3+5}7 (469)
L sey < Ligresapmy < 1 (4.70)

Similar to the argument leading to (4.68), from (4.70) we can conclude that almost surely for any
¢ € LY0,T]

/ P(u) Ly, >opdu < / u)du < / ¢(u)du, for all t € [0,T],
and almost surely
1 w0y Sw?(u) <1, ae. in[0,7).
From (4.69) we can conclude that for any ¢ € L'[0,T]

1{7] —<IB}</ du</ ¢

1 <y < w(u) <1, ae. in [0,T].

Therefore, by (4.38)-(4.40) and Definition 2.2 we conclude that (p,n,d, w', w? w3) is the solution
to the discontinuous Volterra equation (4.41). O

and almost surely

We have established a fluid limit for (S™, Q", D") along a subsequence when the system starts
empty. Now, we extend our considerations to a more general case.

Assumption 4.2. Let the conditions under Assumption 4.1 hold. In addition, let the number of
customers in the system at time 0: N, satisfy the following asymptotic result:

n
lim
n—oo

0l = 0, almost surely,

n

where o € (0,14 B]. Moreover, assume that the empirical distribution F™ of the remaining service
times of the initial occupied servers satisfy

lim sup |F"(t) — F(t)| =0, almost surely
n—oo ¢

for some distribution F.

Proposition 4.3. Let Assumption 4.2 hold. Then

(i) For any T > 0 and for any subsequence of (n), there exists a further subsequence ry and real-
valued continuous, possibly stochastic processes p,n, D such that almost surely

Sk — pr,  QpF —m, DJ* — Dy, (4.71)

in the uniform topology.
(ii) Moreover, given (1), almost surely there exist bounded, possibly stochastic processes w', w?, w3
such that

1{S;E<1} N wl(t), 1{Q;E>0} N wQ(t), 1{Q;E<brk/7’k} A w3(t), in L™ [0, T] (472)
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(iii) Furthermore, almost surely, (p,n, D,w', w? w3) defined in (4.71)-(4.72) satisfy

o = min{ro, 1} (t) + /0 W ()Gt — WA (w)du + /0 w2 ()Gt — u)d(u)du, (4.73)
o = max{ro — 1,0} + /0 (1 = w (u) ) )\ (u)du — /0 w?(u)d(u)du, (4.74)
Dy = min{rg, 1} F(t) + /0 w! (u)G(t — u)M(u)du + /0 w?(u)G(t — u)d(u)du, (4.75)

and for almost every t € [0,T]

Ly Sw'(t) <1, 10 Sw?(t) <1, 1g,op S wi(t) <1

That is, for almost all w € Q (p(w),n(w), D, w!(w), w?(w), w*(w)) as in (4.73)-(4.75) is a solution

interpreted according to Definition 2.2, to the following non-linear discontinuous Volterra integral
equation

t t
pt = min{rg, 1}F(t) + / 1p, <13G(t — w)A(u)du + / 1t >0y G(t — w)d(u)du,
0 0

t t
1 = max{rg — 1,0} —i—/o 1 =131 <ppAMu)du — /0 14, s0yd(u)du,

t t
Dy = min{rg, 1} F(t) + / 1 <y G(t —u)A(u)du + / 1,_>0yG(t — u)d(u)du. (4.76)

0 0
Proof. At time 0, the number of customers in service is min{N{,n} and the number of customers

in buffer is max{NJ — n,0}. Let the remaining service times for the customers in service to be
(Vio)lgigmin{Ngl,n}' Then, similar to (4.13)-(4.15) we have:

min{ N}',n}
qQn 1 s, n, S, n,
S] = z; 1{V0>t}+/ /W At u, 2) M (du, d) / /W Dt u, 2) M™P (du, dz),
- 1
QF = - m max{ Ny —n,0} —I—/ /WqA (t, u, ) M™(du, dx) / /Wq’ (t, u, £) M™P (du, dz),
B min{N{,n}
D} =— Z Livocy +/ /WdA (t, u, 2) M (du, dz) + / /WdD (t, u, ©) M™P (du, dz).
n
i=1
Observing that
min{N",n . min{ N",n
: § }1 _ min{Ng',n} § P ey
no = V> = n — min{ N}, n}’
By Assumption 4.2 and (4.1) we have that
min{N§*,n} B
nh—>120 s%p - Z Livosy — min{rg, 1} F(t)| =0, almost surely. (4.77)
i=1
Similarly
min{N}',n}
nh_)rgo sup |- Z Livocyy —min{ro, 1}F(t)| =0, almost surely (4.78)
i=1

and obviously

1
lim ‘n max{N} —n,0} — max{rg —1,0}| = 0. (4.79)

n—o0



FLUID LIMIT FOR TIME-VARYING MANY SERVER LOSS QUEUES 31

Since we already analyzed the integration w.r.t M™#4 and M™P? in Proposition 4.2, by (4.77)-(4.79)
we get the desired results. O

Now, we establish the existence of a unique (p,n, D) that satisfies (4.76) in the sense of Defini-
tion 2.2. Consequently, we obtain a unique fluid limit of the fraction of busy servervs, fraction of
occupied buffers and the n—scaled cumulative departure rate.

Theorem 4.1. Let Assumption 4.2 hold. Then there exists a unique solution to the discontinuous
Volterra integral equation (4.76), that is, there exist a unique solution (p,n,d) such that fort € [0,T]

pr = min{ro, 1} (£) + / WG — WA (u)du + / PG — wdwdu,  (4.80)
0 0
ne = max{rg — 1,0} + /t(l — 2Hw) 2B (w)A(u)du — /t 22(u)d(u)du, (4.81)
0 0
Dy = min{ro, 1} F(£) + / WG — WA (u)du + / PG — wdde,  (4.82)
0 0
for some (2!, 22, 2%) that satisfies for almost every t € [0,T]
Lipeny S 2 () <1, (4.83)
1{7]z>0} < 22(t) <1 (484)
1pu<p < 2(t) <1, and (4.85)
0<p: <1, 0<n<pB, m(l—p)=0. (4.86)

Proof. The existence of the solution directly follows from Proposition 4.3. Before we prove the
uniqueness, let us first talk about the differentiability of the processes of interest. Since fot d(u)du <
fot Mu)du < oo for t € [0,T], d € L*[0,T]. For bounded z(t), since d(t), \(t),g(t) € L*[0,T], by
Young’s convolution inequality we have

O H(G(t—~w)A(w) = () (w)g(t —w) € L([0,T] x [0,7)),
%x(u)G(t —u)d(u) = z(u)d(u)g(t —u) € L*([0,T] x [0,T]).

Therefore, by [35, Thm 2.7] we can differentiate both side of (4.82) for ¢t € (0,7")

d(t) = min{rg, 1} f(¢) + /0 (zl(u))\(u) + 22(u)d(u)) g(t —u)du, a.e. in [0,T]. (4.87)

Differentiating both side of (4.80) and plugging in (4.87) we obtain

pi = = minfro, (0 + (10N + 20d(0) = [ (1A + H)dw) glt — w)

= ('(WAE) + 22 (t)d(t)) — d(t), a.e. in [0,T]). (4.88)

By (4.86) we know that when 1, > 0, p; = 1. Hence, in order to prove the uniqueness of (p,n,d),
we can divide the situations into four states:

(1) pr < 1,m =0.

(2) pt=1,m =0.

(3) p=1,0<n <p.

(4) pe=1.me = B.
Denote 0F = inft>%;_c_1{t : (pt,me) € state i} to be the k-th time (p¢,7;) entering the i-th state, and
vE = inft>511_g{t : (pt,me) ¢ state i} denote the k-th time (p¢, m¢) leaving the i-th state, i = 1,2,3,4
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and k = 1,2,3,---. With a similar argument after (3.35) we can conclude that there are at most
countable many k. We discuss each state in the following for any k£ € N.

State 1: p; < 1,m; = 0. We need to identify p,d and 7§ in this state. From (4.83) we have for
t € (6§,~4F), 21(t) = 1, a.e.. Plugging this into (4.81) we have

t
=g = [ 2
1

Since 7 is continuous, for t € (0F,7F) we have n; = Nsk = 0. Therefore, we can conclude that
22(t)d(t) = 0, a.e.. Substituting 2! and 2?d with their values in (4.80) and (4.87) we have for
t € (0F,7%)
_ sy _ t_
pr = min{ro, 1} F(t) + / (zH (W) (u) + 2% (w)d(u)) Gt —w)du+ [ G(t —u)A(u)du,
0 5%
and

5k t
d(t) = min{ro, 1}f(t)—|—/ (zl(u))\(u) + 22(u)d(u)) gt—uw)du+ [ Auw)g(t—u)du, a.e. in [0,T].
0 oy
We can see that 7§ = inft>5llv{Pt = 1} is unique if 6¥ and 2'(u)\(u) + 2%(u)d(u) is known for
u € [0,6%). The next state can only be state 2.
State 2: p; = 1,m; = 0. We need to identify d and ~§ in this state. From (4.85) we have for
t € (65,~45), 23(t) = 1, a.e.. Plugging this into (4.81) we have
t

N = Mgk +/ (1- zl(u)))\(u)du — / 22(u)d(u)du. (4.89)

55 0%

Since 7 is continuous, for ¢ € (65,~v5) we have n, = Nsy = 0. Therefore,
t t
/ (1= 2 (u)\(w)du — / 22(w)d(u)du = 0.
0% 5%
Since t is arbitrary, we can conclude that for t € (65,7%)
ZONE) + 22(t)d(t) = M(t), a.e. in [0,T). (4.90)
Plugging (4.90) into (4.87) we get
5k t
d(t) = min{ro, 1}f(t)+/ i (zH(w)A(u) + 22 (u)d(u)) g(t—u)du+/ Auw)g(t—u)du, a.e. in [0,T].
0 55
To identify 75 we can plug (4.90) into (4.88). Since p} = 0 for t € (05,7%), we have
pr=XAt)—d(t) =0, ae. in|[0,T]. (4.91)
Define

5]2671 = sup{t: \(s) > d(s), for a.e.s € (65,1)}
t>6%

the first time after 05 that A(¢) < d(t) for a positive measure set, and

(553 = sup{t: A(s) < d(s), for a.e.s € (05,t)}
t>6k

denote the first time after 65 that A(t) > d(t) for a positive measure set. Since (4.91) is true for
t € (05,7%), 75 = min[6§ |, 65,]. If 45 = 6%, the next state will be state 1. Indeed, since 7
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is continuous, there exist small enough ¢ > 0 s.t. for t € (5]2“’1,5571 +¢), 0 < < B and thus
23(t) = 1, a.e.. Consequently (4.89) is true in this interval. Applying Leibniz rule to (4.89) we have
n = (1 -2 t)A(t) — 22(t)d(t), a.e. in [0,T]. (4.92)
Since ok, = = 0 and 7; > 0 is continuous, there exist ¢’ > 0 such that y; > 0 for ¢ € (52 1 52 1+€).
By (4. 92) we have
AN + 22()d(t) < A(t), a.e. in [0,T].

By the definition of 52 | there exist a positive measure set K C (05 1,52 1+¢€) st A(t) < d(t) for
t € K. Plugging this into the above inequality we have for t € K

ABA) + 22(t)d(t) < d(t), a.e. in [0,T]. (4.93)
Therefore, by (4.88) and (4.93) we have
pp <0, fora.e.t € K

By Fundamental Theorem of Calculus we have p; < 1 for t € (5’2“71, 5’2"’71 +¢’), which is exactly state
1. Similarly, if fyé“ = 5573, the next state will be state 3. We can see that 'y§ is unique if (5§ and
Y ()M (u) + 2%(u)d(u) is known for u € [0, 55).
State 3: py = 1,0 < my < B. We need to identify y, d and 4% in this state. From (4.84) and (4.85)
we know that for ¢ € (0%,~5)
2(t)=1,2%(t)=1, ae. in[0,T]. (4.94)
Plugging (4.94) into (4.88), we have
Py = 2HA(t) >0, ae. in [0,T].
Since p; < 1, we have p} = 0 for t € (6%,~%). Consequently
ZA(B)A(E) =0, for a.e. t e (65,~45) (4.95)
Therefore, plugging (4.94)-(4.95) into (4.87) we obtain for almost every ¢ € [0, 7]
5k t
d(t) = min{ro, 1} f(¢) + / (zM () A(u) + 22 (w)d(u)) g(t — u)du + / d(u)g(t —u)du,  (4.96)
0 3

By [7, Thm 6.3.1] there exist a unique solution d(¢) to the Volterra integral equation (4.96) for
t € (6%,~%). With this solution and (4.94), (4.95) we can obtain

t
m= g+ [ M) = da)du.

3
Deﬁne 05y = inf,se{t : e = 0} and 05y = inf,_se{t : m = B}. Then Vi = min[05,,05,]. If
3 = ok 9, the next state will be state 2. If vE = 53 4, the next state will be state 4. We can see that
7% is unique if 0%, Ny and z Yu)A(u) + 22(u)d(u) is known for u € [0, 6%).
State 4: p; = 1,m; = B. We need to identify d and ¥ in this state. From (4.84) we have for
t € (0%,9%), 22(t) = 1, a.e.. Similar to the argument leading to (4.95) we obtain
ZABAE) =0 for ae. te (05, ~5). (4.97)

Substituting 2!\ and 22 with their values in (4.87) we have for almost every t € [0, T

5k t
d(t) = min{rg, 1} f(¢) + /0 (zl(u))\(u) + ZQ(U)d(U)) gt —u)du+ [ d(u)g(t —u)du, (4.98)

o}
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By [7, Thm 6.3.1] again there exist a unique solution d(t) to the Volterra integral equation (4.98)
for t € (6%, ~%). Plugging this solution, (4.97) and 22(t) = 1 into (4.81) we have

B = gy + /5 2w (u) — d(u)du. (4.99)

Differentiating both side of (4.99) we get
2(A(t) = d(t) for ae. te (65,45).
It is easy to see that when d(t) > A(t), there does not exist 23(¢) satisfies (4.85). Therefore,
AK = sup{t: d(s) < A(s), for a.e. s (6% 1)}
>0k
We can see that 7% is unique if 6% and 2z'(u)A(u) + 2%(u)d(u) is known for u € [0,6%). The next
state can only be State 3.

Note that in every state above one can obtain unique (p¢, n¢, d(t)). Additionally, in every state
above one can obtain almost surely either (z!(t),22(t)) or 2 (u)A\(u) + 2%(u)d(u) and thus unique
’yf,z' = 1,2,3,4. Since k is arbitrary, we construct a unique solution (p¢,n:,d(t)) to the system
(4.80)-(4.86). Indeed, if there exist two different solution p},m:1,d1(t) and p?, 0, da(t) satisfying
(4.80)-(4.82), the first time they differ must be one of those d¥ or v¥. However, this violates the

uniqueness established above in each state and leads to a contradiction. Therefore, we obtain the
uniqueness of p,7,d and the resulting solution satisfies (4.80)-(4.82) and

State 1, 2'(t) =1,2%(t)d(t) = 0,23(t) = 1,

State 2, z2'(H)A(t) + 22(t)d(t) = \(t),23(t) = 1,
State 3, 2'(t)A(t) = 0,22(t) = 1,23(t) = 1,
State 4, 2'(t)A(t) = 0,22(t) = 1, 23()\(t) = d(¢t)

O

Similar to Theorem 3.2, we now provide possible solutions to the auxiliary functions (2!, 22, 23).

Theorem 4.2. Under the setting of Theorem 4.2, the solution to (4.80)-(4.86) satisfies

21(t) = 1,2°(1)d(t) = 0,2°(t) = pe <1 =0
SON) + 2(0)d(0) = N(0). (t) o= Ly =0 o0
Zl(t)A(t) 072(): )y % () 7 pt:1)0<77t<16 )
ZHOAE) =0,22(t) = L2 (A1) =d(t), pe=1m=p
In particular, the tuple (p,n,d, z', 22, 23) satisfying (4.80)-(4.85) and
Zl(t):1>z2(t) :07Z3(t) =1, pr <1,m =0
) =1,22(t) =0,23(t) =1 pe=1,1m7=0
() =0,22(t) =1,23(t) =1, pr=1,0<m <f
Zl(t) = 0722(t) = 1723(t) - d(t)/A(t) A 17 Pt = 1a77t = B
is a solution to the system (4.80)-(4.86). Moreover, the functions z'\ + 22d and 23X\ are unique

almost surely.

Proof. From the proof of Theorem 4.1 we have (21, 22, 23) satisfy
State 1, z(): ()(t):()z() 1,
State 2, z'()A(t) + 22(t)d(t) = Alt), 2 () =1,
State 3, ()()—02() 1,2%(t) = 1,
State 4, zl(t)/\( )=0,22(t) = 1,23(t) = d(t) /A t) A 1

It is easy to see that z'\ + 22d and 23\ are unique almost surely. Choosing z' = 1, 22 = 0 in state
2 and, z! = 0 in state 3 and 4, we get our desired result. O
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Theorem 4.3. Let Assumption 4.2 hold. Then

(i) For any T > 0, there exist real-valued continuous deterministic processes p,n, D such that almost
surely

lim sup ‘S’f — pt‘ =0, lim sup ‘Q? — nt} =0, lim sup ‘Df — Dyl =0. (4.101)
n—o0 tE[O,T] n—oo tE[O,T] n—o0 tE[O,T]

(ii) Moreover, there exist bounded functions w', w?,w® such that almost surely

Lige < A1) + Ligp opd(t) = w' (DA(E) +w?()d(t),  and
Lign <bmpAt) 2w (@A), in L=(0,T), (4.102)

where wl, w? w3 satisfy (4.100).
(iii) Furthermore, (p,n, D,w!, w?, w?) defined in (4.101)-(4.102) satisfy

pt = min{rg, 1}F () + /0 w! (u)G(t — u)\(u)du + /0 w? (u)G(t — u)d(u)du, (4.103)
ne = max{ro — 1,0} + /0 (1 — w' (u)w? (u)A(u)du — /0 w?(u)d(u)du, (4.104)
Dy = min{ro, 1} F(t) + /0 w! (u)G(t — u)\(u)du + /0 w? (u)G(t — u)d(u)du, (4.105)

and for almost every t € [0,T]
Lpcty S0 <1 Lyogp S0 () <1, 1pgem Swi() <L

That is, (p,n,d,w',w? w?) as in (4.103)-(4.105) is a solution, interpreted according to Defini-
tion 2.2, to the following non-linear discontinuous Volterra integral equation
t t
pt = min{ro, 1} F'(t) + / 1 <13 G(t — w)A(u)du + / 1 >0y G(t — u)d(u)du, (4.106)
0 0
t t
ne = max{ro — 1,0} +/ 1ipu =131 <pp Mu)du — / 1ina_>o0yd(u)du, (4.107)
0 0

t t
Dy = min{rg, 1} F(t) + / 1ipu <3Gt —u)A(u)du + / 1,501 G(t — w)d(u)du. (4.108)
0 0

Proof. Part (i). From Proposition 4.3, for any subsequence there exists a further subsequence ()
such that almost surely

Stk = pi, Q" = my, Di* — Dy,
in the uniform topology, where (p,n, D) solve (4.106)-(4.108) path by path. By Theorem 4.1,
(p,n, D) is unique. Consequently, the limiting functions (p,n, D) are deterministic. Moreover, by
the uniqueness of (p,n, D) again we can conclude that the entire sequence (S™,Q", D™) converges
to (p,n, D) almost surely in the uniform topology.

Part (ii). By Proposition 4.3 we have for every subsequence there exists a subsubsequence (ry) and

bounded, possibly stochastic processes w!, w?,w? such that almost surely

BN, _ o2 _ N : oo
Ly —~w (0), Ligesgy ~w (), Ligmay, jmy — @ (#), in LZ(0,T].
Consequently,
g g A(E) + Ligresgyd(t) = w' (A() +w?()d(t),  and

LGpt <ty prigMB) = 0P (OA®), - in L0, T]. (4.109)
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By Theorem 4.2 we know that w'\ 4+ w?d and w3\ is unique. Therefore the weak-star convergence
in (4.109) hold for the entire sequence.

Part (iii). This follows directly from Proposition 4.3.(iii) and Theorem 4.1-4.2. O

Similar to Corollary 3.1, an asymptotic result of the acceptance probability can be obtained. We
state the following result without proof.

Corollary 4.1. The acceptance probability of the n-th M;/G/n/n+b, model P(Q} < %") satisfies
the following convergence

_ b,
P <QZ_ < n) — w?(u), for M\-almost every u € [0,T],

where w? is defined in Theorem 4.3.

3

Remark 4.1. Similar to Remark 3.5, the function w® can be discontinuous even when A is continuous.

5. NUMERICS AND OPERATIONAL PERSPECTIVES

5.1. Numerical Methods for Discontinuous VIE. This section outlines a simple procedure
to numerically solve the discontinuous VIEs (3.50) and (4.106)-(4.108), using an explicit Euler
discretization. The main computational challenge lies in updating the auxiliary functions z or
(21,22, 2%) in tandem with the solution trajectories p or (p,n,d) at each iteration. Algorithm 1
details the steps to solve (3.50) following the solution framework described in Theorems 3.1-3.2,

while Algorithm 2 extends this to the coupled system (4.106)-(4.108) using Theorems 4.1 - 4.2.
Algorithm 1 VIE for Zero-Buffer Loss System

1: Input: Initial value py,, time points ¢, 1, ..., ¢y, functions f, g, F.G,\.

2: Initialization: Set z(#p) = 0.

3: fort=0to N —1do

> Determine z values for time ¢, based on state at ¢;
4 if p;;, <1 then
5: Rt 1
6: else if p;, =1 then
7 1y min (55 (o (8) + Sy 20)A0)a(t — 1)) 1)
8 end 1f
> Update state for time ;1 by discretizing integral equations

90 pryy < poF (tigr) + Y000 2(t)A(L) G tin — 1)
10: end for
11: Output: The sequence of values for p and z.

Algorithm 2 VIE for Loss System with Buffer

1: Input: Initial value 79 or (ps,, 1, ), threshold 3, time points tg, 1, .. ., t, functions £, g, F, G, \.
2: Initialization: Set (2}, 22,2}  d(ty)) = (0,0,0,0).

3: fori=0to N —1do
> Determine z values for time ¢;11 based on state at ¢;
4: if p;; <1 and n;, = 0 then
5: (zt1i+1,zi+1,zi+l)e(l,O,l)
6: else if p;;, =1 and 7, = 0 then
7: (zgi+l,z,%+1,zg+l)<—(1,0,1)
8: else if p;, =1 and 0 < 7, < 3 then
9: (zgiﬂ,ziﬂ,zgﬂ) «~(0,1,1)

10: else if p;;, =1 and n;, = B then
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11: (zgiﬂ,ziﬂ) + (0,1)
12: Z?Hl — min(d(ti)/)\(t,;), 1)

13: end if
> Update state for time t;41 by discretizing integral equations

1 dyy, < min(ro, 1) f(tien) + 20550 (21(E)A() + 22(8)d(E))) g(tipr — t5)
15: pryy, < min(ro, 1) F(tiy) + ZHl (2" (t)AE;) + 22(t5)d(t;) Gt — t5)
2

)
16: mpyy,  max(ro — 1,0) + 255 [(1 = 21(85))23(8)A(ty) — 22(t;)d(t)]
17: end for
18: Output: The sequences of values for (p,n,d) and (2!, 22, 23).

5.1.1. Ezample 1: Zero-buffer Loss System. We first solve the VIE (3.29) using Algorithm 1. The
simulated system has n = 150 servers and Lognormal(—0.5,2) service times. Two types of arrival
rates are used: periodic with A(t) = 2/3(1 4 sin(27t/10)) as in Figure 3a, and episodic with A(t) =
0.005-¢t(T —t) as in Figure 4a. The simulated trajectory N" closely matches the fluid-limit solution
p, as in Figures 3b and 4b, confirming the convergence in Theorem 3.3. Repeating the simulation
over R = 200 replications shows that the empirical blocking probability B™(t) aligns well with the
theoretical 1 — w(t), supporting Corollary 3.1. Figures 3c-3d and 4c-4d illustrate this relationship
for n = 150 and n = 5000 for both arrival types.

I I I
25 25 30 35
Time (1) Time (1)

(a) (B)

M;/G/150 Loss System, R = 200 reps M;/G/5000 Loss System, R = 200 reps
T T T T T T

i : H L4 L . I
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time (t) Time (t)

() ()

Ficure 3. Zero-Buffer Loss Queue with Periodic Arrival Rate

5.1.2. Ezample 2: Finite-buffer Loss System. Next, we solve the VIE system (4.76) using Algo-
rithm 2. Again, the system has n = 150 servers and Lognormal(—0.5,1.2) service times, with two
types of arrival rates: periodic with A(t) = 2(1.5 + sin(2Z)) as in Figure 5a and episodic with
A(t) = 0.005 - t(T" — t) as in Figure 6a. The sunulated trajectories S™ and Q™ track the theoretical
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FIGURE 4. Zero-Buffer Loss Queue with Episodic Arrival Rate

(p,m) closely, as in Figures 5b and 6b, confirming the convergence in Theorem 4.3. Similarly, the
blocking probability B™(t) aligns with 1 — w?(t), validating the finite-buffer fluid approximation in
Corollary 4.1. This is illustrated in Figures 5c¢-5d and 6¢-6d for n = 150 and n = 5000 both arrival
types.

Remark 5.1. As noted in Remark 3.5 and 4.1, the auxiliary functions w and w3 may exhibit disconti-
nuities. In the numerical results, this discontinuity becomes evident as system size n increases (e.g.,
n = 5000). For smaller systems, the blocking probability appears smoother, but the underlying
discontinuity emerges clearly in the large-system limit.

5.2. Operational Perspectives. Finite capacity is a defining characteristic of many real-world
service systems, such as call centers, emergency departments, and cloud resource pools. Such
systems exhibit non-stationary queuing dynamics due to time-varying arrivals and general service
times, making accurate transient analysis crucial for operational insights.

Our fluid limits for the zero-buffer M;/G/n/n and finite-buffer M;/G/n/n + b, provide first-
order approximations of the system occupancy, queue length, departure process, and acceptance
probabilities as n — co. These deterministic approximations offer a tractable foundation for opera-
tional optimization: they allow one to compute time-varying blocking probabilities directly and to
optimize server and buffer capacities against transient performance constraints.

5.2.1. Staffing Optimization in Zero-Buffer Systems. Consider a sequence of non-stationary
M,;/G/cpn/cn loss systems, with ¢, = |nc| servers and arrivals satisfying Assumption 3.2. For
simplicity, assume that the system starts empty. Let the scaled number in the system or the pro-
portion of occupied servers in the n—th system be NJ* and the n—scaled cumulative departure
process be DP. Then similar to the treatise done in Section 3 and Theorem 3.2, we let the patient
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reader work out the details to conclude that

lim sup ‘Nt”—pt =0, lim sup }Df—Dt‘ =0,
t—}oote[oﬂ—v] t—>oote[07T}

almost surely where D(t) is the fluid cumulative departure rate given by D; = fg d(u)du and d(-)
is the fluid instantaneous departure rate whose dynamics is presented below. In addition, p; solves
the discontinuous non-linear VIE given by

t
pr = / 1ipu_<cyG(t — u)Aydu. (5.1)
0

We note that the number of servers could be time-varying with ¢, (t) = |nc(t)| in which case
our results will remain valid as long as the capacity constraint 1, .} is incorporated in (5.1).
However for simplicity we consider ¢(+) to be constant. Under Definition 2.2, (5.1) can be equivalently
expressed as

t
pr = / we(u)G(t — u)A(u)du, (5.2)
0
where
1, if py < c,
e(t) = . 5.3
we(t) {?\Eg/\l, if pr = ¢, (5:3)
and

¢
d(t) = / we(u)g(t — u)A(u)du. (5.4)
0
Furthermore the acceptance probability converges uniformly

lim sup |P(N{ < cn) —we(t)| = 0. (5.5)
=0 ¢e[0,T]
Equations (5.2)-(5.4) and the convergence result (5.5) direct server capacity optimization while
maintaining the transient blocking probability above a given threshold. This is particularly relevant
in emergency departments or call centers where it is important from a managerial perspective to
minimize the total number of blocked patients or customers. Summarizing, we solve the following
problem in the fluid limit

mine, such that inf w.(t) > 1 — ¢,
t€[0,T]
where « is the maximum allowable instantaneous blocking probability. Since the infimum of the
acceptance probability w increases as the capacity c increases, the problem admits a unique optimal
solution to the above constrained optimization problem. Therefore we can apply standard root-
finding techniques (e.g. the bisection method) to obtain the optimal server capacity ¢*. For each
value of ¢, we solve the discontinuous VIE by Algorithm 1 to get inf;c(g 7 we(t), and stop searching
once infye(o, 1) Wer (t) = 1 — . Numerical results are presented in Figures 7 and 8, respectively, for
periodic and episodic arrival rates, and for two choices of a.

5.2.2. Joint Staffing and Buffer Capacity Optimization. Now consider a sequence of non-stationary
M, /G /cn/cn + by loss queuing systems, where ¢, = |nc], buffer size b, = [nf], and arrivals satisfy
Assumption 4.1. Similar to the previous case, server and buffer size could be time-varying with
cn(t) = |ne(t)] and by,(t) = [nB(t)], and our results would still hold valid as long as ¢(-) and 3(-)
are piecewise constant. However, for simplicity, we do not consider those generalizations and also
assume that the system starts empty. Let the scaled number being served or the proportion of
occupied servers be N/, the scaled number waiting in buffer be Q7 and the n—scaled cumulative
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departure process be DP*. Then similar to the treatise done in Section 4 and Theorem 4.3, we let
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the patient reader work out the details to conclude that

lim sup ‘Nt —pt‘ =0, lim sup }Qt _Ut’ =0 lim sup }Dt Dt’ =0,

t—o0 te[0,7] 1—00 4 1—00 4
almost surely where D(t) is the fluid cumulative departure rate given by D; = fo u)du and d(-)
is the fluid instantaneous departure rate whose dynamics is presented below. In addltlon, the fluid

limits (p, 1, d) solves a coupled discontinuous nonlinear VIE system which interpreted according to

Definition 2.2 reads
t

pr = /0 wiﬁ(u)é(t —u)A(u)du + / wgﬁ(u)@(t —u)d(u)du,

0

me = /O (1= wl 5 () 5(w) Mut) s — /0 w? 5(w)d(u)du,
D, = /0 wiﬁ(u)G(t —u)A(u)du + /0 wg’ﬁ(u)G(t —u)d(u)du, (5.6)

where the auxiliary functions w} 5 w? B w3 5 evolve similar to (5.7):

wi,ﬁ( )=1 wg,,@( ) = O,wiﬁ(t) =1, pr <c,me =0
wp(t) =1L wig(t) =0,wls(t) =1, pr=c,m=0
w5t )—0 wist) =Lwlst) =1, p=c0<n<p
wiﬂ(t) = O,wiﬂ(t) =1, wcﬂ(t) =d(t)/\t) A1, pr=c,m =P (5.7)
The acceptance probability again satisfies
nh_)IgOtg[l(l)pT] |P(Q} < by) — c,/i(t)’ = 0. (5.8)

Using equations (5.6)-(5.3) and the convergence result (5.8), we can formulate a joint staffing-buffer
optimization problem in the fluid limit constrained to maintain the transient blocking probability
above a threshold:
minv - ¢+ (1 —v) - 5, such that tel[%fT]w ept) 21— a,

where v weights the relative cost of servers and buffer space, and « denotes the maximum allow-
able instantaneous blocking probability. For each ¢, the infimum of the acceptance probability w?
increases with buffer size 8. Thus, there exists a unique S, such that inf;c[o 7 wg’ 5. (t)=1—a. We
can perform a grid search for ¢ and apply standard root-finding techniques (e.g., bisection method)
to determine the optimal S. for each c¢. At each ¢ and [, we solve the discontinuous VIE system
using Algorithm 2 to obtain inf,¢(o 7 wgﬁ (t). The search terminates when inf;co 7 wgﬂc (t)=1—q.
The optimal solution is the capacity ¢* that minimizes v - ¢* + (1 — v) - B+ during the grid search.
Numerical results are presented in Figure 9. It is important to note that this solution provides
a rudimentary approach to solving the constrained optimization problem. While there may be
more effective optimization techniques available, the focus of this paper is not on exploring such
alternative solutions.

6. CONCLUSION

This paper developed a unified fluid-limit framework for nonstationary many-server loss systems
with general service-time distributions. In the first part, we established a functional strong law of
large numbers for the zero-buffer M;/G/n/n model via a discontinuous Volterra integral equation
representation. The second part extended this analysis to the finite-buffer M;/G/n/(n+ b,) model,
showing that the joint dynamics of servers, buffer occupancy, and departures satisfy a coupled
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Ficure 9. Optimal server and buffer capacity with periodic and episodic arrival rates.

system of discontinuous Volterra equations. In both regimes, we proved existence and uniqueness
of the limiting trajectories and convergence of the associated time-varying acceptance and blocking
probabilities.

The results demonstrate that deterministic fluid models can accurately describe transient behavior
in large-scale, non-Markovian, time-varying loss systems. The discontinuous Volterra structure cap-
tures admission control and boundary effects within a mathematically rigorous and computationally
tractable framework, bridging the gap between asymptotic theory and operational approximation.

Beyond theoretical insight, the model provides a practical basis for performance evaluation and
real-time decision-making. We showed how the fluid limit can be used for optimal staffing and buffer
capacity design, and the same structure can naturally extend to dynamic control settings. Future
work may pursue diffusion refinements, stochastic perturbation analysis, and optimization-based
control formulations, further integrating transient queuing dynamics into the broader landscape of
stochastic operations management.
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