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ON THE STRUCTURE OF MULTIPLE Q-ZETA VALUES

BENJAMIN BRINDLE

ABSTRACT. In 2015, Bachmann [Bacl5] conjectured that the Q-vector space Zg of
(formal) g-analogues of Multiple Zeta Values (¢MZVs) is spanned by a very particular
set compared to known spanning sets. In this work, we prove that this conjecture is
true for a subspace of Z({ spanned by words satisfying some condition on their number
of zeros and depth. According to this partial result, we give an explicit approach to the
whole conjecture, based on particular Q-linear relations among formal Multiple ¢-Zeta
Values which are implied by duality.

1. INTRODUCTION

Given a field F' and a countable set A, we call A also an alphabet and elements of A
are referred to as letters. Denote by spanp A the F-vector space spanned by elements
of A. Furthermore, monomials of elements in A (with respect to concatenation) are
called words. Usually, the neutral element with respect to concatenation is denoted by 1
and called the empty word. Let A* denote the set of words with letters in A, then we
write F'(A) for the F-vector space spanp A*, equipped with the non-commutative, but
associative multiplication, given by concatenation.

Choosing F' = Q and A = U = {u; | j € Z>o}, we define the stuffle product to be
the Q-bilinear map *: Q(U) x QU) — Q(U) recursively via

Uy Wy g, Wy = g, (W g, Wo) 4 g, (1, Wy % Wa ) + w4, (W1 % Wo)
for all j1, 72 € Z>(p and Wy, Wy € U* with initial condition 1 +W = W*1 = W for any W € U™.
By Hoffman ([Hof00]), (Q(U),*) is an associative and commutative Q-algebra. For a
word W = wuy, - --ug, € U*, we often write uy (up := 1), where k = (ky,..., k), and
associate the notion of

length, len(W) :=len(k) :=r,
depth, depth(W) := depth(k) :=#{k; #0 |1 < j <r},
number of zeros, zero(W) :=zero(k) :=#{k; =0]1<j <r},
weight, wt(W) := wt(k) := |k| + zero(W),
where |k| := k1 +- - -+k,. Furthermore, we denote U*° := U \uo* to be the set of words

not starting with uy and we define the corresponding Q-vector space Q(U)° C Q(U)
spanned by the words from U*°. Note that Q(U)° is closed under % which gives rise to
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a commutative Q-algebra (Q(U)°, *) (see [Hof00]). The map ¢J”: (QU)°, %) — (Q[q], -)
is the Q-algebra homomorphism (see [HI17]) defined via (%(1) = 1, Q-linearity, and,
with mgyq =0,

< imi—mi — 1 m;k;
G (gt - upugh) =Y H ( ’ Z;H )(137),%7 (0.1)
mi1>-->mg>0 j=1
for any ki,...,kq € Z~o and 21, ..., 24 € Z>o where d € Z~( (note that this definition is
not the usual one, like in [Sinl5], but equivalent to it; this statement can be deduced,
e.g., from [Bri24, Theorem 2.18]). We denote by Z, the image of CqSZ and call elements
in Z, (Schlesinger—Zudilin) ¢MZVs ((SZ-)gMZVs for short). Note that these g-series

are g-analogues of Multiple Zeta Values since in the case k; > 2 and 2 = - = 253 = 0,
we have

: 1

(III_I)I%(l o q)k1+ +kd<’qsz(ukl . .ukd> = C(ukl . .ukd) = Z ﬁ

mi>->mg>0 M My

But in this work, we focus purely on the algebraic structure of (SZ-)gMZVs and do
not consider its implication for classical Multiple Zeta Values. Over the years, several
versions of ¢gMZVs were introduced (see, e.g., [Sch01, OOZ12, Zud15, Bacl9, BK20]);
for an overview, see [Bri24]. Because of Conjecture 1 and since the g-series on the
right of (0.1) is invariant under the Q-linear involution 7 : Q(U)° — Q(U)°, defined
by 7(1) := 1 and

21 Zd\ .__ kqg—1 k1—1
T (ug,ug' - * U, Uy ) = Uzg+1Uy 7 Uz 41U

for all d € Zwg, k1,...,kq > 1, and z1,...,24 > 0 (see [Zha20, Theorem 8.3]), we will
consider the algebra of formal gMZVs,

27 (QU),

where T is the x-ideal in Q(U/)° generated by {7(W) — W|W € Q(U)°}. For W € Q(U)°, we
set C; (W) to be the congruence class of W in ZJ . Note that depth and weight are invariant
under 7 while the number of zeros generally is not. Furthermore, playing with 7 and the
stuffle product *, one obtains non-trivial Q-linear relations among formal ¢MZVs. The
following folklore conjecture (see [Bacl4]; a published version can be found in [Zud15,
Conjecture 1]) states the expectation of how the Q-linear relations among SZ-gMZVs
look like.

Conjecture 1 (Bachmann). All Q-linear relations among elements in Z, are obtained
by the stuffle product * and duality T.

Le., one expects Z, ~ Z{ . We will consider in this paper only Q-linear relations in Z({
which are implied by

C;f (Wy x (W — 7(W))) =0 (1.1)

for any words Wi, Wy € U*°. For investigating Zg in more detail, we need the following
notion of filtrations.
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Notation 2. (i) For every (N,op) € {(Z,zero),(D,depth), (W,wt)}, n € Z, and
sets S C QU)°, S’ C Z{, write
Fill} S := spang {W € U*° | op(W) < n} NS,
FilY & .= spang {C; (W) € Z({ |Wweu*®, op(W) <n}nNS

for the filtration by number of zeros (if N = Z), depth (if N = D), and
weight (if N = W) respectively on & and S’ respectively.

(i) For S € QU)° or S € ZJ, Ny,....N,, € {Z,D, W}, where m € Z, and for
integers ngy, ..., n,, € Z, we abbreviate

Fily! N S = () Fil) S.

N1yeeey Nm
J=1

The following particular filtration will play a main role in this paper.
Definition 3. We define
Zle=Fil§ 2].
At this point, note that
Fil”2V Qu)° « FiZW Q) c FusPY QU)° (3.1)

z,d,w 2! dw' 242!, d+d'  w+w’
and
r(FZDY Q) = RPN, Q) (3:2)

for all z,2/,d,d',w,w' € Z. Hence, considering (1.1), W; * Wy and Wy * 7(Wy) are, in
general, in different filtrations of Q(U)° regarding the number of zeros since we have,
in general z # w — z — d. Therefore, for given W € U*°, it is difficult to find the
minimal z € Zq such that ¢! (W) € FilZ Z/.

Let us consider a small example of how we use Q-linear relations of shape (1.1) to
obtain that, e.g., qu (W) € Zg’o for W= uoug € U*°. First, we note that

U2Uy = U * UTUY — 2U1U1U0 — U1U1 — UTUQUT -

Now,
0= C; (ug * (ugug — 7(urug))) — QC; (1 * (ugugug — T(uurug)))
= g; (1 * (uguou; — T(urupuy)))
= C; (ug * ugug) — Cé (ug * ug) — 2C§ (urugug) + 2(’; (uguy)
— ¢ (uruguy) + ¢ (uyus)
and so,

() (uaug) = (uy * up) — 2¢) (upur) — ¢} (urur) — ¢ (uyus) (3.3)
= (wug) + ¢ (us) — ¢ (ugur) — ¢ (waur) — ¢ (uaug) € ZJ°.

That formal ¢MZVs are in Zg’o already is not just a coincidence, as the following
conjecture shows.
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Conjecture 4 (Bachmann, [Bac19, Conjecture 3.9]). For all z,d,w € Z~o, we have

FilZV 2 c R, 210 (4.1)

In particular, we have Zl{ = Zj )

We say that Bachmann’s Conjecture 4 is true for (zo,do, wo) € Z2, if (4.1) is true
for (z,d,w) = (2, dy, wo).
Partial results already exist; we will collect them in the following.

Theorem 5. (i) By Bachmann ([Bacl9, Proposition 4.4 ), Bachmann’s Congecture /
is true for all (z,1,w) € Z2,
(i) also by Bachmann ([Bacl9, Proposition 5.9]), Bachmann’s Conjecture / is true
for all (1,2,w) € Z3,
(111) by Vieeshouwers ([V1e20, Theorem 5.3]), Bachmann’s Conjecture 4 is true for
all (z,2,w) € Z2, with some parity condition on w,
w) and by Burmester ([Bur22, Theorem 6.4]), Bachmann’s Conjecture 4 is true for
Y )
all (1,d,w) € 73,

While the proofs of (i)—(iii) are mainly based on generating series of the corresponding g-
series, the proof of (iv) uses the stuffle product and duality relations. Using relations
among formal Multiple Zeta Values of shape (1.1) only suffices to prove the following
theorem.

Theorem 6 (Theorem 26). Let be z,d € Z=o, k = (k1,...,kq) € Z2,, and consider
integers 1 < j; < jo < d. Deconcatenate k as

kg = (k- k), KGirgs) = (Kot -5 )y Kggrsay = (Kjot1s - - -5 Ka)-
We have

f z 7,D,W
Cq <uk(1;j1) (uk(11+1;j2> * uk(]’2+1;d)u0>> Z FILZS s 2

where w = |k| + z.

Remark 7. (i) Theorem 6 is a generalization of Bachmann’s Theorem [Bacl9,
Proposition 4.4] via the case d = 1. We have already seen the proof for an
example of this theorem using our methods in (3.3). We will generalize this
approach in Proposition 21 to generalize Bachmann’s Theorem 5(i).

(ii) Note that Theorem 6 also generalizes Burmester’s Theorem [Bur22, Theorem 6.4]
via considering the special cases z = 1. For details, we refer to Corollary 28.

Extending our methods of playing with relations of shape (1.1), we observe the following
theorem.

Theorem 8 (Theorem 80). Bachmann’s Conjecture J is true for all (z,d,w) € Z3,
with z +d < 6.

In this paper, we will use duality and the stuffle product only for an approach to
write ¢f (W) for every W € U*° satisfying zero(W) > 1 as linear combination of ¢} (W)’s
with zero(W') < zero(W) and W € U*°. We need the following notion of F, 4, for this.
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Definition 9. For z,d, w € Z~q, we define

Fogw:=FilogoY 20+ Y FiG5% 2]
2 +d' =z+d—1
0<z'<z
In this paper, our main approach towards Bachmann’s Conjecture 4 is to strengthen
the conjecture as follows and then to investigate the strengthened version for obtaining
results like Theorem 8.

Conjecture 10 (Refined Bachmann Conjecture). For all z,d, w € Z~q, we have

FilZ) N 21 CF. . (10.1)

z,d,w

We say that the refined Bachmann Conjecture 10 is true for (zo, do, wo) € Z2,, if (10.1)
is true for (z,d, w) = (29, do, wp).

Lemma 11 (Lemma 73). Fiz z,d,w € Z~q. If the refined Bachmann Conjecture 10
is true for (z,d,w) and if Bachmann’s Conjecture 4 is true for all (z',d,w') € Z3,
with 2 +d + w' < z+d+ w, then Bachmann’s Conjecture j is true for (z,d,w). In
particular, the refined Bachmann Conjecture 10 implies Bachmann’s Conjecture /.

To study the refined Bachmann Conjecture 10, we will introduce the box product
(see Definition 15) that provides a connection to the stuffle product (see Lemma 61)
and allows us to refine the refined Bachmann Conjecture 10 for z > d again (see
Conjecture 39). In this way, we obtain another particular result towards the refined
Bachmann Conjecture 10.

Theorem 12 (Theorem 81). The refined Bachmann Conjecture 10 is true for all triples
of positive integers (z,d,w) € Z2, with 1 < d < 4.

Theorem 12 will follow mainly using Theorem 8 and the investigation of the box
product from Section 4. Furthermore, Theorem 12 is a strong statement since - together
with some more results of this paper - now, Bachmann’s Conjecture 4 is almost proven
for z +d < 7 as well: Namely, following Lemma 11, it remains to prove the refined
Bachmann Conjecture 10 for triples of shape (2,5, w) € Z3,,.

All our main results (and those implied by the box product) are based on Q-linear
relations of shape (1.1) only. Following our approach to a general proof of the refined
Bachmann Conjecture 10 (and so of Bachmann’s Conjecture 4 too), described in Section 5,
it is conjecturally possible to prove the refined Bachmann Conjecture 10 using Q-linear
relations of shape (1.1) only. Based on our results, it seems that this approach works.
Furthermore, our explicit approach has the advantage that it is (compared to other
approaches) easy to obtain explicit formulas for ¢/ (W) (with W € U*°) as element
of Zg °. Proposition 21, for example, contains such an explicit formula. Nevertheless,
the explicitness limits this method in the sense that the larger z + d is in the refined
Bachmann Conjecture 10, the more confusing the Q-linear relations (1.1), one needs to
consider following our approach, become.
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Organization of the paper. Section 2 contains the introduction of the box product
mentioned. Section 3 contains generalizations of theorems by Bachmann and Burmester
concerning the refined Bachmann Conjecture 10, like Theorem 6. In Section 4, we
will investigate the box product and consider its connection to the stuffle product.
Furthermore, Section 5 contains the rough description of our approach to the refined
Bachmann Conjecture 10. Using the approach from Section 5, in Section 6, we prove
new partial results towards Bachmann’s Conjecture 4. Particularly, there, we will provide
proofs for Theorems 8 and 12. Last, Section 7 ends the paper with some open questions
and a rough generalization of our calculations from Section 6.

Acknowledgements. The author thanks Henrik Bachmann, Annika Burmester, Jan-
Willem van Ittersum, and Ulf Kiihn for valuable discussions and helpful comments on
this paper.

2. INTRODUCTION OF THE BOX PRODUCT

In this section, we introduce the box product and consider elementary properties.
First, we briefly remark on a property of the stuffle product in the following proposition.

Proposition 13. Let be Wi, Wy € U™° and write
z = zero(T(Wy)) + zero(T(Wp)), di = depth(Wy), dy = depth(Wy), w = wt(Wy) + wt(Wy).
Then, for 0 < s < min{dy,dy}, there are uniquely determined
Linax{dy ds}+s € spang {W € U™ | depth(W) = max{dy,ds} + s}

such that
min{dy,d>}
Wy * Wo = Z Lmax{dl,dz}—i-s-
s=0
Furthermore, for all 0 < s < min{dy, ds}, we have

:1Z,D,W o
T ('Cmax{dl,dg}-l—s) € Fllz—s,max{d1,d2}+s,w Q<u> '

In particular, T (Emax{dh@}) is the part of T(Wy * Wg) having the mazimum number of
zeros and we have
min{d;,d2}

T(wl * w2) € Z FHZ’—DsZ\rznvax{dl,dg}+s,w Q<u>0
s=0

Proof. This is a direct consequence of Equations (3.1) and (3.2). U
Let us consider an example to point out the statement of Proposition 13.

Example 14. Choose Wi = ug, Wy = ujus, ie., di = 1,dy = 2 in the notion of
Proposition 13. We have

Wi % Wo = usto + Uit + UsUgUs + 2UUsUs .

=Lz :»CS
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Observe
T(Ly) = uyuguiugug + upuguguoty,  T(L3) = ugtioUityty + 2U1 Uty Uty .
We see that 7(L5) indeed has the maximum number of zeros in the expression 7(ug*u us).

Since we want to reduce the number of zeros, we often will be interested in the
part of the stuffle product only that has the maximum number of zeros. Therefore,
Proposition 13 motivates the definition of the box product that basically extracts this
part of the stuffle product after one applies 7.

Definition 15 (Box product). The Q-bilinear boz product B: Q(U)° x Q(U)° — Q(U)°
is defined as follows: For W; € U*° with depth(W;) = d;, where j € {1,2}, we set

Wi B Wy = Emax{dl,dz}
in the notion of Proposition 13.
For illustration, we continue Example 14.

Example 16. We have
Ug B U U = UglUg + U Uy,

which is exactly £, of Example 14, i.e., after applying 7, one obtains the part of the
stuffle product wus * ujus having maximum number of zeros. We state and prove the
generalization of this observation in Lemma 61.

Corollary 17. Let be Wy, Wy € U™° and write
z = zero(7(Wy)) + zero(7(Wp)), di = depth(Wy), dy = depth(Ws), w = wt(Wy) + wt(Wy).
Then,

min{dl,dg}
T x W) — T @We) € ) FIEDT L QU
s=1

Proof. This is an immediate consequence of Proposition 13 and the definition of the box
product. O

Lemma 18. Consider the alphabet U\{uo} = {u; | j € Z=o}. The restriction of the box
product B: QU\{uo}) x QU\{uo}) = QU\{uo}) can be described as follows. For any
two words Wy = Up, «* * Up,, Wo = up, - - ug, € (U\{ug})", we set recursively

0, if s >,
WiEWy == < Wy, if Wy =1,
Up, (Wl% e Ugr) + Up, 40, (um Uy By, 'Wr) , if s <.
Then, WiEWy = Wy B Wy whenever len(W;) < len(W,).
Note that the box product satisfies the following connection to the stuffle product.
Lemma 19. For all indices of positive integers mqy, g, £, we have

Uy B (Upy B Up) = (Upy * Upy) B Up = Upy B (Up, B up).
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Proof. The proof of the first equality follows by induction on len(nq) + len(ng) and
the definition of stuffle and box product. The second equality then follows from the
commutativity of the stuffle product and the first equality. O

Next, we make an easy but instrumental observation. For this, we denote for an given
index k = (ky, ..., k) its reversed index by rev(k) := (k;, ..., k).

Proposition 20. Given n € Z5,, £ € Z%, with 1 < s < d. Writing

Up B Up = E Gyl
neZl,

with a, € Z appropriate, we have

Urey(n) & Urev(e) = E ApUrev(p)-
HEZL,

Proof. Using Lemma 18 and induction on len(n) +len(£), the claim follows immediately.
UJ

3. A COMMON APPROACH TO THEOREMS BY BACHMANN AND BURMESTER

In this section, we consider the cases of d = 1 (and z € Z-, arbitrary), and z = 1
(and d € Z~ arbitrary), respectively, of Bachmann’s Conjecture 4. The first case mainly
is a result originally due to Bachmann ([Bacl9, Proposition 4.4]), which we will reprove
in a way giving explicit formulas for every element of Fili’? ,va
elements in Fil?ﬁfw Z({ . The second case is done by Burmester’s thesis ([Bur22, Theorem
6.4]), which we will extend in Section 3.2.

Zg as linear combination of

3.1. Bachmann’s Conjecture 4 for (z,1,w). By [Bacl9, Proposition 4.4] (see also
Theorem 5(i)), it is known that Bachmann’s Conjecture 4 is true for all triples (z, 1, w).

Here, we give an alternative proof which gives an explicit expression in terms of elements
)
in Z({ ©,

Proposition 21. For all k € Z~o and z € Z>o, we have that C; (ugpuf) equals

(_1>Z Z Z Z C; (Unjg—fjg-H o 'un1—61+1uno+lugl)

J1,J220  ng,...,n;jy >0 1<p<jo
Jitje=z no+-+nj,=k—1 0<ep<min{l,np}

T2 2.

1<j<z £1,...,0;>1 J1,3220
O+ <z Jitje=z—Ll1——{;
E: E: Tl CT A g1
(_1) Cq (ul * * U * unj2*€]'2+1 Uny—e1+1Une+1U7 ) :
n0;...,Mju >0 1<p<j2

no+-+nj,=k—1 0<ep<min{l,np}

In particular, we have C; (urud) € FﬂszLVXHZ ZJ’O, yielding Bachmann’s Conjecture 4 for
all triples (z,1,w).
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Proof. First note that a calculation, using the definition of the stuffle product, shows for
all a € Z~y, b € Z>( the identity

a—1
gty = Y (=1)" 7l # ug_puf + (1) h(a,b), (21.1)
=1
where h(a,b) ;== 3 ™ (uf? xuf). Choosing a =z + 1 and b=k — 1, we obtain
71,5220
Jitjz=a—1

U, quf ™t = Z(—l)f_luf $ U oub ™t (=1)7R(z + 1,k —1).
=1
Using the latter formula and (21.1) repeatedly, we obtain

Uy up ! Z Z 1)7 9yl ~~*ufj*h(z+1—€1—-~~—€j,k—1)
1<z 1,0ty >1
< (21.2)

+ (=1)°h(z+ 1,k —1).

Now, note that for all a € Z-( and b € Z>(, we have

h(a,b) = Z ul ! (ujf xug)

J1,J220
Jitje=a—1
o Z Z 2 : Ji+1. no —e1 . Tjo ~€jg
J1,7220  no,..., >0 1<p<j2

Njy =
Jitiez=a—1 py+-. +nj, =b0<ep<min{l,np}

Hence, by 7-invariance of formal ¢MZVs,

Gy (h(a,b)) = Z Z Z Ca (Ungy—ejp1 Uny—er 1 Ung 1] )

J1,J220  ng,...,nj, >0 1<p<j2
Jitjz=a—1ng+..tnj,=b0<ep<min{l,np}

implying the claim when using (21.2) and ¢} (uru§) = ¢} (T(urug)) = ¢ (quulg "). From

the obtained representation of ¢} (uxuf), we get directly ¢! (uzuf) € Fil2Y " ess 2070 due

o (3.1). O
Let us consider an example regarding Proposition 21.

Example 22. For k = z = 2, Proposition 21 yields
G (uaug)
= C; (ug * up * ug) — 2(; (w1 * uguy) — Cé (w1 * ugug) — C; (ug * ugup) — C; (uruy * ug)
+ 3Cf (uguiug) + 2(; (uyuguq) + (; (uuqug) + 3@; (uruquy)
C (uyq) — C (uguy) — Cf (ugug) — C; (uguy) — C; (uug) € FllDW Zf’ C Fi IDW Zf’
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3.2. Bachmann’s Conjecture 4 for (1,d,w). Given an index k = (ky, ..., kq) € Z2,,
we introduce the following notation of subindices

Kooy = (kjlﬂ"'vka)a if1<j <j2<d,
(i) - 0, else.

Lemma 23. Fir z,d € Z~¢ and k € Z¢,,. For 1 < j < d, we have

£ 2 Z.D,W
Cq (ukl (uk@;j) * Uk (1150 u0>> Z FiL S dsw 2

where w = |k| + z.

Proof. We prove by induction on d. The base case d = 1 corresponds to Proposition 21
since then j = 1 and so k() = k(j4+1.9) = 0. Hence, we may assume d > 1 and that
Lemma 23 is proven already for all smaller values of d. First, note that the case j = d
follows from k(;11,9) = 0 in this case and from

f Z,D,W
Z Cq(um--- *uk ZFﬂZ Sd+8w

N1yeesy 5/>1
ni+-+4ng=z
lgs/gd

since

f kg—1 ki—1 Z.D,W
E Cq (7’ (um C Up,, B U U Uy )) mod E Fil~ Sd+sw

ni,..,ng>1
ni+-tng=z
1<s'<d

The last identity is a consequence of Proposition 13 and the definition of the box product.
Furthermore, the remaining expression is

_f 2 Z,.D,W
= Cq (uk1 <uk(2;d) *u0)> mod E Fil7” Sd+sw

which can be verified via induction on s’ + d and the definition of the stuffle product.
Hence, let be 1 < 7 < d — 1 and assume that the claim holds for all larger values of j.
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The induction hypothesis on d implies, since len()) + len (k(j+2;d)) =d—j—1<d-1,

z
f 2\ _ Af 2 7,.D,W
Cq (uk(j+1;d)u0> - Cq <ukj+1(u@ * uk<j+2;d))u0)> € Z Fil” d—j+s,w's
s=1

where w' = |K(j11,q)| + 2. Hence, by (3.1), we obtain

f 2 Z Z,D,W
C.q <uk(1;j) * uk(j+1;d) u0> Fllz s,d+s, w (231)
Now, using the definition of the stuffle product, we obtain
* U uy =uy, (u * U o) tu u * U :
Ukrj) * Uk(pra) U0 = ks \ Uk * Uk(jp0) Y0 kit \ Yk * k(a0 o

T Ukytk (“k@;j) * uk<j+z;d>“(z)> '
Note that the formal ¢gMZVof the second summand on the right-hand side is an element
of > Fil%Pw Zg due to the assumption on j, while the formal gMZV of the third

z—s8,d+s,w
s=1

one is by induction hypothesis on d. Hence, because of (23.1), we obtain

f Z,D,W
< (ukl <uk(2 N *U’k J+1; d)u0>> E :Fﬂz sd+sw

completing the induction step. Therefore, the lemma is proven. 0

Corollary 24. Fiz z,d € Z~q. For allk € Z%,, we have

¢F (meug) € Z FilZD % 21

z—8,d+s,w

where w = |k| + z.
Proof. This is the special case j = 1 of Lemma 23. U
Corollary 25. Fiz d € Z~,. For all k € 74, we have
(; (uuoug) € F11d+\}2vw Zle,
where w = |k| + 2.

Proof. The special case z = 2 of Corollary 24 and Fll%?ﬁvw Zg C FlldDJrVQVw Zf ° by

Burmester’s Theorem 5(iv) yield the claim. O
Lemma 23 is a special case of the following theorem.

Theorem 26 (Theorem 6). Let be z,d € Zwo, k = (ki1,...,kq) € Z%,, and consider
integers 1 < j; < jo < d. We have

f 7Z,D,W
Cq <uk(1;j1) (uk(j1+1;j2) uk(ﬂ2+l d) >) Z Fllz s,d+s, w (261)

where w = |k| + z.
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Proof. We prove by induction on d. Note that the base case d = 1 follows from
Proposition 21 since then j; = jo = 1 and so kg 11,5, = K(jp41.0) = 0. Hence,
choose d > 1 and assume the theorem is proven for all smaller values of d. Furthermore,
note that the case j; = 1 is nothing else than Lemma 23. Hence, let 2 < j; < d arbitrary.
The claim for j, = j; corresponds to Corollary 24 since then k(j, 41,5,y = 0. Therefore,
assume jo > 77 > 1 in the following and that the claim is proven for all possible smaller
values of ji, j» and len(k(j, +1,5,)) = j2 — j1, respectively. Using the recursive definition
of the stuffle product gives

Uk (uk(j1+1;j2) * uk(]’2+1;d)u(z3)
= Uk (uk<j1+1;j2> * Uy, “k<j2+1;d>“6>
= Uy Ui (“kmw;jg) * Uk, “k(a’2+1;d>u8>
T Uiy ) Uy kg1 (uk<j1+2;j2> * uk(j2+1;d)“8>

Now, the formal gMZVof the first summand on the right-hand side is in Z Fil2wW  zf

z—s,d+s,w “q

due to the assumption on 7; (since len (k(lm_l)) = len (k(lm)) 1), Whlle the second one
is as well due to the assumption on jo — ji (since len (K, 42,,)) = len (Kj 41.5)) — 1),
and the third one is due to the induction hypothesis on d. In particular, we have

f z 7,D,W
Cq (uk(l;jl) (uk(j1+1;j2) * uk(]’2+1;d)u0>> Z FILS s 2

completing the induction step. Hence, the theorem follows. ([l
Corollary 27. Let be z2,d € Z~o, k = (k1,...,kq) € Z%,. For all 1 < j < d, we have
Z C; (uk(l;j—l)ukjugj T UggUg ) ZFllstZXi-sw (27'1>
e la>0
€j+---+£d:z

where w = |k| + z.

Proof. For fixed 1 < j < d, the corollary is obtained from the special case j; = 7, jo = d
of Theorem 26 and multiplying out the corresponding stuffle product occurring in (26.1)
(since then kj, 41,9y = 0). O

As a corollary of Corollary 27, we obtain Burmester’s Theorem 5(iv).

Corollary 28 (Burmester, [Bur22, Theorem 6.4]). Bachmann’s Congjecture 4 is true for
all (1,d,w) € 73,

Proof. Let be d € Z~o, k = (ky,...,kq) € Z%, and denote w = |k| + 1 in the following.
Considering Corollary 27 with 2 = 1 and 7 = d, we obtain Cg (uxug) € Fil2:"V Zf’

d+1,w
Now, let be 1 < j* < d — 1. Considering the difference of (27.1) with z = 1, j = j
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and (27.1) with z =1, j = j' 4+ 1, we obtain
£ DWW o
Cq (uk(l;j/)uouk(j/ﬂ;d)) < Fﬂd+1,w Zg :

In particular, for every W € U*° N Filf’gy Q(U)°, we have shown C; (W) € FildDjx\fw Z({ °

i.e., we have Fili’gl’z}v Z({ - FildDjxw Zg ©. completing the claim. U

Corollary 29. Let be d € Z>y and k = (ky,...,kq) € Zio. We have
C; (ukluoubuouk(w)) € FildDjr\Zw Z({’O,
where w = |k| + 2.

Proof. Consider the difference of (27.1) for z = 2, j = 2, and (27.1) for z = 2, j = 3 to
obtain, all congruences modulo Fil#DW zf

1,d+1,w “q>
— f 43 Lq f L2 Ly
0= E Cq <Uk1uk2uk3u0 Crr Uk Uy ) (q Uy Uky U™+~ Uy U
l3,....0q>0 l2,....£4>0
O3ty =2 CoF =2
_ f £ t lq
= —( (uklubuououk(gm) — E Cq (ukluk2u0uk3u0 Ce U, Ug
£3,...,£4>0
b3t tlg=1

— f kq—1 ks—1 ko—1  ki—1
= —¢ <u1u0 Co U Uyt U3y U Uy

f kqg—1 ks—1 ko—1 k1—1
- § : Cq (“Edﬂuo CUgg Uyt Ul U Uy

£3,...£4>0
l3+-+L3=1

— f ka—1 ks—1 ko1 . ki—1 £

= (, <u1u0 CUIUYT Uy Ul ) =G, <u1 * T (uklu;@uouk(g;d)))
=t

= Gy u;,clU()’u]@U()uk(&dl> .

Since Fil7;Y, 2/ C Filpy, 21 by Corollary 28, the claim follows. O

4. INVESTIGATION OF THE BOX PRODUCT

First, in Section 4.1, we show that several monomials can already be written as a Q-
linear combination of non-trivial box products. In Section 4.2, we investigate a conjecture
(Conjecture 39) regarding the structure of box products and give partial results for it.
Furthermore, in Section 4.4, we study the main connection between the box product and
the stuffle product that we will need to prove our main results. Last, in Section 4.5, we
give some further results about the box product that are interesting for itself but not
necessary for the remaining paper.

4.1. Monomials as linear combination of box products. In the following, we
characterize some particular monomials in Q(U\{uo}) as a linear combination of box
products. The results will be important for proving Theorem 81.

We will need the Q-vector space spanned by (non-trivial) box products in the following.
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Definition 30. We define

P :=spang {Wy B Wy | Wy, Wo € U\{uo})", Wi, W # 1} C QU\{uo}).  (30.1)
Corollary 31. Given p € Z¢, with d € Z~o. Then u, € P if and only if rey(u) € P-
Proof. This is an immediate consequence of Proposition 20. 0
Lemma 32. Foralld € Z~y and 0 < 7 < d — 1, we have

d . j d—j—1
Ug, U UL+qU; eP.

Proof. A direct calculation shows ug = uf ® u, giving the first part of the lemma.
Furthermore, for all 0 < 7 < d — 1, we have
d
wugpgu 7T =) (=D g B ulug gl 7
a=1
giving the second claim of the lemma. 0

Lemma 33. For arbitrary d € Z~o and 0 < j < d — 2, we have
wusuy 7 e P

Proof. For any 0 < 7 < d — 2, one verifies

o d—j—2
uyubuzug
Jj+1 Jj+2
2 : 1 d—j—2 Z _
— a+1 ] a+ Ugul Jj— & uauq + a+1 uil a+1 & uau(li 1' 0

We first need an auxiliary lemma to prove the statements in Corollary 35 and Lemma 36.

Lemma 34. For all d, puy, po € Z~g with py + pe < d + 2, we have

d—p1—p2+2 d—2
U Upag (U Buy ") €P.

Proof. We prove by induction on py. First, consider gy = 1. Similarly to the proof of
Lemma 33, we obtain by direct calculation that

d—p2+1 d—2
U Uy (11 BRI
d—pz+2 d—2 b, d—p2+b+2 d—2
— Uy, 1 (U Buy ) — § (—1)"uy B Upta—bUpp—2—ally
0<a<jp—3
0<b<l+a
a+b —b,, . d—p2+1 d-2
+ E Uy BB U1 gpUpy—2—aqlly -
0<a<ps— 3
0<b<a
d—pa+1 . :
Hence, we have for all py € Zso that wju,,(ui "> B uf?) € P if and only if we
d—p2+2 d—2 e d—p2+1 d—2 :
have wuyw,,—1(uj~ Euj ) € P, giving recursively that wju,, (uy~ Muj ) € Pif

and only if

wuz(ui > @ul=?) € P,
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which is true since this is the 7 = 0 case of Lemma 33.
Now, for p; > 1, assume that the lemma is proven for pu; — 1 already. We calculate

d—p1+2
d—p1—p2+2 d—2\ __ peta , d—¥41—a+3 d—2
Uy Uy (U7 uj ") = (—1) Uy Uy —1Uaq Uy
a=ps2
d—p1—p2+3 d—2
— Upy—1Uey (ul Uy )

d—p1+1— d—2
+ (DT gy gsuy
d—p1—pa+2 - : ~
Le., we have u,, u,, (uj " ?@u{~?) € P by the assumption that the lemma is proven

for pp — 1. O
Corollary 35. For alld € Z~g and 0 < j < d, we have
u1+jud_]~+1u‘f—2 eP.
Proof. Setting 1y =1+ j and pus =d — j + 1 in Lemma 34, we obtain the claim. O
Furthermore, Lemma 34 is used to prove the following observation.

Lemma 36. For arbitrary d € Z~y and all 0 < 57 < d — 3, we have
uyuuugug % € P

Proof. First, a direct calculation gives for all 0 < 7 < d — 3 that
u2u1u§u3ug_j_3
J+2 A J+3
= Z(—l)“ W P uud T @ gl + Z(—l)“ uf™ T B uguf
a=2 a=1

—(a+b)+3  d—j—3 -
— E (= 1)+t o O w7 ) wguud 2

a,b>2
a+b<j+3

+ (=1 uguys (w7 @ uf?)

+ (=1)713 Z Ug o1 (U7 B ud™2) 4 v pouy(ud T B ud?).

a,b>2
a+b=7+3

Using Lemma 34 now yields the claim. 0
Collecting the results of this subsection, we have proven the following theorem.

Theorem 37. Let be d € Z~y.
(1) For all 0 < j < d—2, we have

i d—j—2 d—j—2
wubuzug 17 uduzuy 7 uy € P

(11) For all 0 < j < d, we have

d—2 d—2
ULy jUdg—j1U] 5 U] Ud—jp1Uiyy € P.
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(111) For all 0 < j < d — 3, we have

j—3

o d— o d—j—3
Uty uduzuy 77 udusug ' ugug € P.

Proof. Using Corollary 31 each, the proof for (i) follows from Lemma 33, the proof of
(ii) follows from Corollary 35, and the proof of (iii) follows from Lemma 36. O

4.2. Conjectures about particular box products and implications. We consider
in this section the structure of all box products u,, B u, such that len(€) and |n|+ |£| are
fixed. For this, we will need the spaces S, ; and 7, 4 in the following.

Definition 38. (i) For all z,d € Z~g, we define
J..q = spang {u, | p € 2%y, |p| =z + d},
{Zd = dlmQ GJZA.
(ii) Furthermore, for all z,d € Z-(, we define
Tod = {(n,ﬂ)‘neZio, ezl 1<s<d |n|+¢ :z—i—d},
jz,d,: = #jz,d-
and
8. = spang {un Bue | (0, £) € T.q} =T.4NP,
dpd 1= dim(@ 827d.

Based on numerical calculations (see Lemma 42), we conjecture the following for the
dimension of §, 4.

Conjecture 39. For all z,d € Z~q, we have

z+d—1
Pad = (min{z, d} — 1)‘ (39.1)

Given (zg,dy) € Z=g, we say that Conjecture 39 is true for (zo,dp) if (39.1) is true
for (z,d) = (20,dy). Note the following equivalent formulation for z > d.

Corollary 40. Given (z,d) € Z2, with = > d. Conjecture 39 is true for (z,d) if and
only if S, 4 =9, 4.

Proof. Clearly, for all z,d € Z~(, one has

z4+d—1
t,0=
=)

since 1, 4 is the number of compositions of z + d into exactly d positive integers. Hence,
for (z,d) € Z2, with z > d, Conjecture 39 is equivalent to 3, 4 = 1. 4 which is equivalent
to 8,4 = I, 4 since 8,4 C J,4 and both 8§, 4 and 7, 4 are finite-dimensional Q-vector
spaces. ]

Theorem 41. Fiz d € Z~q. If Conjecture 39 is true for (d,d), then it is also true for
all (z,d) € Z2, with z > d.
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Proof. Fix d € Z~o and assume that Conjecture 39 is true for (d, d). L.e., by Corollary 40,
we assume S;4 = Jg 4. This is equivalent to

Up = Y ane(z) un B

(n,€)€Jq,q
for all z = (21,...,24) € Z%, with |z| = 2d and with ay, ¢(z) € Q appropriate.
Now, assume z > d and let be z = (21,...,24) € Z¢, with |z| = z + d arbitrary. We
can write

(21,...,Zd):(21_‘_617"'72&—’_550

with 61,...,04 € Zsg and 2’ = (2],...,2}) € Z2, with |z'| = 2d. Hence,
Uz = Z an,g(Z/) Un B Upy 451 * " Uey464-
(n,£)€J4q,q
Since z was chosen arbitrary, we obtain S, 4 = 9, 4, proving the theorem. [

Lemma 42. Conjecture 39 is true for all (z,d) € Z2, with 1 < d < 8.

Proof. The proof for 1 < z < d < 8 is obtained by computer algebra; for details, see
Remark 65 and the appendix. By Theorem 41, Conjecture 39 is also true for z > d
when 1 < d < 8, proving the lemma. O

Note that 3, 4 is the dimension of the image of the Q-linear map
Box, q4: spang J.a — J..4,
(n, £) — uy B ug
that we continue Q-bilinearly. By the rank-nullity theorem, we know that
3.4 + dimg ker Box. 4 = dimg spang J. 4. (42.1)

The right-hand side is given by j, 4, which is the number of writing 2 + d as ordered
sum of at least d + 1 and at most d + min{z, d} positive integers, i.e.,

min{z,d} cid—1
dimg spang Jz.q4 = jza = Z ( ) ) (42.2)
= d+7—-1

Hence, determining 4, 4 now is equivalent to determining dimg ker Box, 4. While it seems
to be difficult to obtain a (conjectured) basis of S, 4, we can give a conjectured basis
of ker Box, 4 explicitly. To do so, we need the notion of stuffle product and box product

on index level. Ie., weset n*® := 0*n := n, n®0 := 0 ®n := n for every
index n. Furthermore, for given indices n = (n4,...,ns) € Z5,, m = (my,...,my) € Z%,
with s,t > 1, we set recursively
nxm:= (nl)'<<n27 s 7”8) * m) + (m1>(n * (m27 s 7mt>)
+ (n1 +m1).((ng, ..., ng) * (Mo, ..., my))

as formal sum of indices, where ().() means the concatenation of indices. Similarly, we
define the box product n ® m to be the part of n *x m of smallest length.
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Example 43. To illustrate the definition of stuffle product and box product of indices,
we consider n = (1,2) and m = (3,2). We have

n*xm =(1,2) % (3,2)
=(4,4) 4+ (1,5,2) +(1,3,4) +2(4,2,2) + (3, 3,2)
+(1,2,3,2) +2(1,3,2,2) +2(3,1,2,2) + (3,2, 1,2)
and
nEm= (1,2)®(3,2) = (4,4).

In the following, for z,d € Z~(, we consider the set

— _ n1 €23}, n2€23%), £e7¢
et {(nb nz @) — (myxnz, €) || 0 el e=ed [ © SPatg Ted;

where (-, ) is Q-bilinearly continued.
Lemma 44. For all z,d € Zo, we have spang K, 4 C ker Box, 4.
Proof. This is an immediate consequence of Lemma 19. O

By numerical calculations (see the appendix), we conjecture that the converse inclusion
is also true if z < d.

Conjecture 45. Let be z,d € Z~o with z < d. Then,
spang K 4 = ker Box, 4. (45.1)

We say that Conjecture 45 is true for (2o, dp) if (45.1) is true for (z,d) = (20, dp). Note
the following consequence.

Lemma 46. Let be z,d € Z~y with z < d. If Conjecture 45 is true for (z,d), we have

z+d—1
z)z,dZ ( d )

In particular, if z = d additionally, then Conjecture 39 is true for (d,d).
Proof. Let be z,d € Z~q with z < d. We begin by noting that we have

L z+d—1
K.q=
#ea =2 <d - 1>
7j=2
since #/C, 4 is the number of ways one can write z+d as ordered sum of at least d+2 and

at most d + min{z,d} (= d + z in case z < d) positive integers. Now, if Conjecture 45
is true for (z,d), we obtain by (42.1) and (42.2), that

: z+d—1 z z+d—1 24d—1
52d = Jza — dimg ker Box, 4 > Z( » )_Z( » ) _ < )
=1 d+j_1 = d+,]_1 d

In case z = d, the right hand side is t44, i.e., we must have equality and so, Conjecture 39
is true for (d,d). This completes the proof of the lemma. O
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The set K, 4 seems to be of special interest regarding determining a basis of ker Box, 4
as the following refinement of Conjecture 45 shows.

Conjecture 47. Let be z,d € Z~y with z < d. Then K, 4 is a basis of ker Box, 4.

As usual, we say that Conjecture 47 is true for (2o, dp) if IC, 4, is a basis of ker Box, 4, -
We give evidence for Conjecture 47.

Lemma 48. Conjecture 47 is true for all (z,d) € Z2 satisfying 1 < z <d < 8,

Proof. For z = 1 and d € Z-q, we have K14 = 0 and j,4 = d = 314 as we will show
in Lemma 52, i.e., ker Box; 4 is the trivial vector space. Hence, Conjecture 47 is true
for all (1,d) € Z%,. For z > 2, the claim is obtained by numerical calculations, see the
appendix. 0

Note the following consequence that Conjecture 47 is a refinement of Conjecture 39.

Lemma 49. Let be z,d € Z~o with z < d. If Conjecture 47 is true for (z,d), then also
Conjecture 39 is true for (z,d).

Proof. Let be z,d € Z~ with z < d and assume that Conjecture 47 is true for (z,d).
By (42.1) and (42.2), then we obtain

324 = Jra — dimg ker Box, 4 = Jil <Zij: 1) _ ; (Zij: 1) _ (Z-l—j— 1>7
i.e., Conjecture 39 is true for (z,d). O
We investigate 4, 4 in the following in more detail.
Lemma 50. For all z,d € Z~q, we have
dadr1 T 9241.a < dag1,d1-

Proof. Fix z,d € Z~(. By definition of 3, 441, there are 3, 44, linearly independent linear
combinations

Yoo al@unmue (1< <ba),
(D,Z)EJz,d+l

Then, the 3, 441 linear combinations (1 < j <3, 441 in the following) of case (z+1, d+1),

Z agj@(z) Un B Ul 0,0011+1)> (50.1)
(H,Z)Ejz7d+1

are linearly independent as well. Note that all occurring words u,,, - in this linear
combinations satisfy pg.1 > 2.

Now, by definition of 4,.; 4, there are 4,1, 4 linear independent linear combinations

Yoo W@ unmue (1<) < b0a). (50.2)
(n;e)€jz+l,d

© Upgys
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Considering for 1 < j <3,4; 4 the following linear combinations in case (z + 1,d + 1)

Z bfi)e(z) U B Uplly
(n7£)6jz+l,d
(50.3)

= > @ unBu | uit Y b2 (U B ) U,
(ny‘e)e-:]z+1,d (n7£)e~.7z+1,d

are linearly independent again because of (50.2). Furthermore, they and the ones from
(50.1) are linearly independent since the latter ones contain words ending in w,,,,
with g1 > 2 while the linear independence of (50.3) already comes from words ending
all in wu;.

Summarized, we have proven 3, 411 + 3,410 < 3241441 O

Remark 51. Assuming Conjecture 39, the inequality in Lemma 50 is an equality if and
only if z # d.

With Lemma 50, we can now prove the following partial result towards Conjecture 39.

Lemma 52. Conjecture 39 is true for all pairs (z,d) € Z2, with 1 < z < 3,

assume z = 3 in the following. For (z,d) € {(3,1),(3,2),(3,3)}, the claim follows
from Remark 66. Hence, consider d > 4 and prove by induction (with already proven
base case d = 3) on d. By Lemma 50, the induction hypothesis, and the case z = 2 of
the lemma that is proven in Remark 66, we know that

d+1 d+1 d—+2
33.d = 33.4-1 1+ 324 = 5 + ] = 5 )

Therefore, it suffices to prove 334 < (d'zﬂ). Note that for (z,d) = (3,d) the number of

box products spanning 84 is (“F%) + (“1%) + (“3?). Le., if we can show that (“3?) of

those are such that the other (dgz) + (dJ{Q) ones are in thelr Q-span, we are done. We

consider the set of (df) box products

Proof. Note that the proof for 1 < 2z < 2 is contained in Remark 66. Therefore,

0<j1<d—2,0<52<d—2,

ia deja—jgs2 0<j3,]'4<d—2,j3+j4<d—2}‘

u2u1lu1, uluzlul
. d—j d—jo—1
Rg}d = uzlul U2y - u1Iu1 uguy 27
u1lu1 UUT U2U

In the following, we show that the other box products in case (z,d) = (3,d) are in
the Q-span of R3 4. For 0 < j; < d — 2, we obtain

1
uuy B ul ugud n-l— =3 ((ul * U — Us) ul'u uf = ) € spang Rsqa  (52.1)

due to Lemma 19 and the definition of R3 4. Furthermore, we have that

-1 d
uz M ud = E uy @ ul? u3u T — (uguy + ugug) B ug (52.2)
J2=0
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is in the Q-span of R3 4. This implies, due to us * u; = usu; + uyug + uz and Lemma 19,
that

_ d—ji—1
s Bud uy =uy @ | uy B ul — E uluu -
J1=0

= (uguy + uyus + uz) @ ul Z Uy [H u1 ugu ol g spang R34
Jj1=0
Similar to (52.1), one obtains now

Us u‘f‘luQ € spang R3 4.
Using (52.2), Lemma 19 and the definition of R34, we get

1
d d
U U U By = 3 ((u1 kK ULU] — Ul — U Usa) ul) € spang R34,

completing the claim. In particular, the lemma is proven for z = 3. 0

Proposition 53. Conjecture 39 is true for (4,4) and therefore, by Theorem 41, for all
pairs (z,4) with z > 4.

Proof. Using Corollary 40, we have to show S84 4 = 94 4. From Theorem 37 and Lemma 32,
we already have

UgU2U2U2, UsUIUI UL, UTU5UIUT, UTUITUSUL, UTUIUI U5, U1UIU2U2, UIU2U3U2,
UjU2U2U3, UU2ULUT, U2U3U2UT, U2U2U3UT, U2U4UIUT, UZUIUIUT, U4U2UIUT,
U1UIU2U4, UTUTUUZ, UTUIULUZ, U2UIU3UZ, UgUIU2U3, U2U3UI U, UsU2UIU2 € 84,4-

Hence, considering u; B usui usta, we obtain usuqusus € 844, and so, by Corollary 31,we
also have ususuiuz € Sy4. Now, considering ujuy uljluzugquu{:‘ for 71, 72,73 € Z>o
with 77 + jo + j3 = 2, yields UzUU3UY, UsUU U3, UTUsUSUT, UTUsUIU3 € Syg. Last,
consider wu; E u}' u2u1 ugui® for ji,je,js € Zso with j; + jo + js = 1 immediately
giVes Ul Uglly, UgU Uiy, UiUUsU, UTU2U1Us € Syy, yielding, by Corollary 31 again,
that wqujuouy, s uiUs, U UsUUY, UrUsuiUs € Syq. Therefore, 844 = Ty4 follows,
completing the proof. O

4.3. Abuot a possible basis of the spaces S, ;. After discussing the spaces S, ; and
its dimension, we give in this subsection a possible basis of §, 4 for 1 < z < d. The results
were obtained using numerical calculations, a proof for Conjecture 56 is postponed to
future works.

Definition 54. Given 1 < z < d. We define the set 9, ;4 of plain basis vectors recursively
as follows:

(i) For z = 1, we set My 4 = {uf}.
(ii) For z > 1, we define

Mg ={uM:WeM, s5._ a1, 1 <l<z+d—wt(W)}
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Remark 55. More explicitly, 9, 4 is the set of wy, ---wup, with ¢1,...,¢; € Z-( such

that

d

d
Zﬁk <min{z,d—j+1}+d—j
k=j

forall 1 <j <d.

Conjecture 56. Let be 1 < 2z < d. The set

. Uél"'ufdemz,d» nj€Z>O (1§JSS)7
d* nytFns+Hl+oHlg=z+d, 01 >2—d+0n, =s=1

B, 4= {unl Ce Uy, B U, Uy
is a basis of 8, 4.
Example 57. Consider d = 4. Then,
9)?1,4 :{Ulululul}a
9ﬁ2,4 Z{Ulululul, U1U1U2UT, U1U2ULUT, U2U1U1U1},
9)?374 = {ulululuh UTU1U2UT, UTU2UIUL, U2UIUIUT,
U1U2UUT, U2UTU2UT, UTUZUTUL, UU2UTUT, U3U1U1U1},
im4,4 = {ulululula UTUIU2UTL, UIUUIUL, UUITUIUL, UIUUUT, UIUIUIUL, U2U1UUT,
UU2UT UL, USUITUIUT, U2UU2UT, U2U3ULUT, UZUITUUT, UZU2UIU], U4U1U1U1} .
Hence, conjecturally we have that
Brg={ur B wyuiuguyf,
%2’4 = {Ul U1ULULUT, UL UU2UTUT, UL U2UTUTUT, U UU1UL UYL,
uuy B uguq Uy},
%3’4 = {Ul U1U2U2U7, U7 Uiuzu1uUr, U1 UU1UUTL, U7 Ug2U2U1UT,
Ul FK Uusu Uiy, U K UiUiUUy, U K UjUsU UL, U B UgUiU1UT,
ULUT B U U U2UT, UTUT BB UqUoUL UL, UTUT BB UoUq UL U, U BBE UqUq U UL,
UU2 B UL U UI UL, U2Up K UTUL UL UL, UTULUL ulululul},
%474 = {Ul U2U2U2UT, UL UgUzU1 UL, U7 UsUi1U2U1, U7 UzU2U1UT,
U B UgUL UL UL, U B UL U2ULUT, Uz K U USUIUT, U K UgUU2UT,
Ug K UgUoU UL, U B USUITUITUL, U1UT K UTU2U2UT, UIUY K UUIULUT,
ULUT BB UoUqUoUT, UTUL BB UoUoU UL, UTUT BB UsULULUT, U BB UqUUUTL,
U3 K U1U2U UL, U3 B UU1UITUL, UiU K UTULU2UT, UTU2 K U UUL U,
ULU2 B UgU UL UL, UoUp B UULU2UT, UoU BE UUUL UL, UoU B UpU UL UYL,
UrU1Uy B U1U1U2Uy, UIUIUL B U U2UI UL, UrUUY B Uy U Uy, Ug B U UIUI UL,
ULU3 B uiuiug Uy, Uglo B Uiy, Uz B ujuiu iy, Uuits B ujuiuiug,
UTU2U K UTU U UL, UUIUT B U UL U UL, UTUIUIUY ulululul}

build a basis of 8 4, Sa4, S34, and 844, respectively.
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Remark 58. (i) For proving Conjecture 56, for the case of z = d in particular, it
is sufficient to show linear independence of B, ;.
(ii) Conjecture 56 is numerically verified for all 1 <z < d = 9.

4.4. Connection between the box product and the stuffle product. First, to
connect the box product with the stuffle product, we introduce the maps V.

Definition 59. Fix d € Z- and k = (ki,...,ks) € Z%,. We define the Q-linear
map Wy: spang {W € U™°| len(W) = d} — Q(U)°, given on generators by

ka—1 ki—1
Upy * o Uy > Uy U™ - Uy, Uy

Note the following connection of maps ¥y with the box product.
Lemma 60. Let be z,d,w € Zso and (n,€) € J.q. Furthermore, let be k € Z‘io
satisfying |k| = w — z. Then,
Up B Uy (ug) = Wi(uy B ug).
Proof. Using the notation as in the lemma, we note that particularly depth(u,) = d.

The claim immediately follows by the definition of the box product and the definition of
the map Wy. O

The following Lemma 61 now connects the stuffle product with the box product. It
will be the key for proving Theorem 74 below and one of the main observations for our
approach to the refined Bachmann Conjecture 10.

Lemma 61. Let be z,d,w € Zso and (n,€) € J.q4. Furthermore, let be k € Z<,
satisfying |k| = w — z. Then,
G(U(unBug) € Y FZDV 2L
1<s<min{z,d}
Proof. Let be z,d,w € Z~q, (n,£) € J, 4, k € Z2, such that |k| = w — z and write s for
the length of n. Le., we have, uy € Filg)\n Q@U)° and Wy (ug) € Fillg™ 3, 1 g QU)°.
Since (n,£) € J..4, we have |n|+ €| = z + d. Therefore, (3.1) implies, together with the
assumption |k| = w — z, that
Un * Uy (ug) € Fili’_DC’lV_VZ’dJrS,,w QU)°.

By (3.2), this implies now

T(un * Uic(ug)) € FIlZDN, L QU)°,
yielding, since 1 < s’ < min{z, d},

G (tn % Uie(up)) = (T(un * Ui(ug)) € Y FZDW 2]
1<s<min{z,d}
Furthermore, due to Corollary 17, we also have
G (un 8 Wlug)) € Y FZLRL 2]
1<s<min{z,d}

Hence, the lemma follows now from Lemma 60. O
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Corollary 62. Let be z,d,w € Z~g and p € Z%, satisfying |p| = z +d. Ifu, € P
with P from (30.1), then

C; (\Ilk(uu)) S Z Filf;]?s:yl—s,w Zt{ - szde
1<s<min{z,d}
for all k € Z2, satisfying |k| = w — z.

Proof. Let be z,d,w € Z~o and p € Z2 satisfying |u| = z + d. Furthermore, choose an
index k € Z¢, arbitrary with the property |k| = w — z. Assume u, € P, i.e., we have

Uy = Z Qn g Un B Up
(nve)ejz,d
with an e € Q appropriate. Now, for all (n,£) € J, 4, by Lemma 61, we have
G (U(unBup) € Y FZDV 2L
1<s<min{z,d}
Le., by Q-linearity of C; and Wy, hence we obtain
GU(up) = Y anel(U(unBug)) € > FiZDW 2
(nL)eT. q 1<s<min{z,d}

completing the claim. O
4.5. Supplementary results and calculations regarding the box product. We
collect in this subsection further results towards the box product that are connected to

Conjecture 39 but not needed in the following. First, we refine Conjecture 39. For this,
we define for all z,d, spin € Z~o with 1 < z < d,

8z7d,smin = Span(@ {un Up | (na‘e) € jz,da len(n) Z Smin} C 8z,da

ézydysmin = dlm@ Szvdvsmin'

Conjecture 63. For all z,d, Spin € Z~o with 1 < z < d, we have

6zyd75min = (Z * d - 1) . (631)

Z — Smin

Given (29, dp, Smino) € Zso with 1 < z < d, we say that Conjecture 63 is true
for (20, do, Smino) if (63.1) is true for (z,d, Smin) = (20, do, Smino)-

Remark 64. With Theorem 41, we see that if Conjecture 39 is true for z = d, then the
statement for z > d follows as well. Hence, we can view Conjecture 63 (via Sy = 1)
indeed as a refinement of Conjecture 39, despite it is a refinement for z < d only.

Remark 65. Conjecture 63 is true for all triples (z,d, Spn) € Z3, with 1 < 2 < d <8
and 1 < spim < 8 The proof is obtained by computer algebra; for details, see the
appendix. One could use the code in the appendix for verifying Conjecture 63 also for
larger values of z and d. The only limit is the computing capacity and time since the
code is based on computing ranks of matrices that grow exponentially in z and d.
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In the next remark, we give an elementary proof, not based on numerical calculations,
for the part of Lemma 42 that is needed for proving our main results of this paper.

Remark 66. We could verify Conjecture 39 for all pairs (z,d) € Z2, with 1 < d < 3
also without numerical calculations. For this, first, assume d = 1 and fix z € Z~o. Note
that ., = spang {u.41}, yielding 3., < dimg 9,1 = 1. Furthermore,

U1 = U WU, € 8z71,

giving 3,1 > 1. Hence, Conjecture 39 is true for all pairs (z,1) € Z2, since

g 1= 1+2-1
#1707 \min{z, 1} -1/

Now, assume z = 1 and fix d € Z¢. In this case, §; 4 = spang {u1 ucll}, Le, d14=1.
In particular, we have proven Conjecture 39 for z = 1 since

o de1-1
BT ST \min{1,d} — 1)

Next, assume d = 2 and fix z € Zso. Note that the case (z,d) = (1,2) follows from
the z = l-case we have proven. Note that J,, = spang {ust.q12-0 [ 1 <a < z4 1} A
direct calculation shows

U Uy B Ug—1Uzq1—a, if 2<a<z,
UgUz42—q = § U1 B ULU, — WU B UIU, 1, if a =1,
uy B U U — Uy B Uy U, ifa=z+1.

Hence, u,t,q9-q € Sy foralll <a <z+41,1e., 8,2 =9,2, giving
24+2z-1
3,0 =dimg T, o = .
2= e a2 (mm{z, 2} — 1)

since we assumed z > 2 = d. Hence, Conjecture 39 is true for all pairs (z,2) € Z2,,.
Now, assume z = 2 and fix d > 2 (since the (z,d) = (2, 1)-case follows from the d = 1-
case of the theorem). In this case, S; 4 is spanned by the d 4+ 2 box products

i .
uy B ufuguy ? 0<j<d-1), wu u‘lj, Uo u‘lj.

Note that all but the last box product are linear independent since uyu; B u¢ does not
contain any word with letter uz while wu; u{uguf_] ~! does contain exactly one such one
which is unique for fixed j. Furthermore, we have

d-1
i d—j—1
Uy B ul = g uy 8w ugul 7T = 2uyuy B ul,
7=0

i.e., up @ u¢ is not linearly independent of the box products. Therefore,

b g dt2-d
2 ~ \min{2,d} — 1

since we assumed d > 2. This proves Conjecture 39 for z = 2.
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Now, assume d = 3. Since the cases (z,d) € {(1,3),(2,3)} follow from the case z = 1,
respectively z = 2, that we have proven already, we may fix z € Z>3. For z = 3,
from Lemmas 32, 33, and 36, we obtain S35 = Js3, yielding, by Corollary 40, the
claim. For z > 3, we apply Theorem 41 to obtain the remaining part for the proof that
Conjecture 39 is true for all pairs (z,3) € Z%, from the case z = 3.

Noting Corollary 40, Conjecture 39 is equivalent to 8.4 = J, 4 for all z > d. e,
in these cases, every u, with p € Z2, and |p| = 2z + d conjecturally can be written
as Q-linear combination of box products u, & ue with (n, £) € J, 4. With the following
lemmas, we reduce the number of such p’s. For that, we have to show this, which can
be seen as progress towards Conjecture 39. For this, given Wi, Wy € (U\{ug})", we call
the box product Wy B Wy non-trivial if 1 <len(W;) < len(Wy).

Lemma 67. Let be p € 72, for some d > 1. Then, u, can be written as a linear
combination of words ending in u; and non-trivial box products.

Proof. Choose g = (g, ..., pta) € Z%, with pg > 1 (for g = 1 there is nothing to prove).
Then,

Upg—1 B Uy = e Upy UL = Uy + (uud—l Upy = uud—l) Uy,
i.e., after rearranging, one obtains the claim. 0
Lemma 68. Fir z,d € Z~, with z > d > 2. If Conjecture 39 is true for (z,d — 1), then

every u,, with p € 72, and |p| = z + d can be written as linear combination of words
ending in us and non-trivial box products.

Proof. Assume d and z as in the lemma. Let be g = (uq, ..., pq) € 22, with |u| = 2 +d.
If g = 2, there is nothing to prove. If uy > 2, we proceed as in the proof of Lemma 67.
If ug = 1, by assumption and Theorem 41, we have

Upy  Upy g = Z an,e(ﬂ) Un X Ug
(nre)Ejz,dfl
for appropriate an¢(p) € Q. Then,
> anep)un Bugur = up+ > ane(p) (Unyine_y) B ) Ui,
(nve)ejz,dfl (nv‘e)ejz,dfl

The latter sum consists of words ending in some u,, with py > 2. However, such words
can be written as linear combinations of words ending in uy and box products, similar

to the proof of Lemma 67, completing the proof. O
Lemma 69. Fiz z,d € Z+1 with z > d > 2. If Conjecture 39 is true for (z —1,d — 1),
then every u, with p € Z%, and |p| = z + d can be written as linear combination of

words ending in uz and non-trivial box products.

Proof. Assume d and z as in the lemma. Using Lemma 68, we only have to show that

a word ending in us can be written as a linear combination of words ending in uz and
d—1

box products. Choose such a word wuy, - - w,, ,u2, i.e., 2+ Y p; = z+ d. Then, by
j=1
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assumption, one has
U U =Y ane(p) un B ug
(nﬂ‘e)EJz—l,d—l
for appropriate an () € Q. Hence,
Z Ano(p) Un B upus = u, + Z ane(pt) (u(nh_msfl) uz) U gn, -
(nL)eT._1,a-1 (n)eT.—1,a-1

The latter sum consists of words ending in some w,, with py > 3. However, such words
can be written as linear combinations of words ending in u3 and box products, similar
to the proof of Lemma 67, completing the proof. ([l

Lemma 70. Let be n € 75,,L € Z%, with 1 < s < d. Then, u, B ug can be written as
linear combination of non-trivial box products u, B uy where £’ ends in 1.

Proof. Writing € = ({1, ...,{4), we may assume {4 > 1 since for {; = 1 there is nothing
to prove. Then,

—_

d—1
Un B Ug = Up (%—1 Uity lg1,1) — § U(zl,...7ej+ed—1,...,ed_1,1))
j:

d—1
= (U/n * Uéd—l) u(fl,...,fd_l,l) - E Un u(£1,...,éj+€d—1,...7£d_1,l)a
=1
where we used Lemma 19 in the last step. U

A further result about the numbers 3, is the following lemma that gives a lower
bound.

Lemma 71. For all z,d € Z~(, we have 3,4 > (Zﬁf).

Proof. We prove by induction on z+d. For z = 1, the claim is clear, since for all d € Z~,
we have 0 # u; B uf € 814, i.e.,
14+d—-2
310> 1= .
b= ( d—1 )
For d = 1, we have for all z € Z-( equality by Lemma 42. In particular, the base

case z + d = 2 is proven. Now, let be z,d € Z~, and assume that the lemma is proven
for all smaller values of z + d. By Lemma 50 and the induction hypothesis, we obtain

z2+d—3 z+d—3 z+d—2
> > = -
i>z,d_5z,d_1+i>z—1,d_( d—9 )"‘( d—1 ) ( d—1 > O

We end this subsection with some remark on Conjecture 39 that is independent of the
rest of the paper.

Remark 72. Using basic linear algebra, we obtain the following equivalent formulation
of Conjecture 39 in the cases z > d. Fix positive integers d and z with z > d.
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z+d—1

g1 ) expressions

Conjecture 39 is true for the pair (z,d) if and only if the (

Z ehotn Bug | p €L, |pul=2+d
(nv‘e)EJz,d

are Q-linearly independent. Here, Eﬁ,e denotes the multiplicity of u, in u, & u,.

5. OUR APPROACH TO THE REFINED BACHMANN CONJECTURE 10

In the following, we present the approach with which one is trying to make progress in
proving the refined Bachmann Conjecture 10. The general idea is to prove by induction
on zero(W) for W € U*° that ¢/ (W) € Z/°. This is trivial for the base case zero(W) = 0.
Thus, we assume zero(W) > 0. Particularly - for proving the induction step - one has to
write ¢ (W) as a linear combination of ¢} (W)’s with W' € ¢*° and zero(W') < zero(W). In
our approach, we refine the induction step by showing that for every word W € U*° we
can write ¢f (W) as a linear combination of ¢f (W')’s with W € U*° and zero(W') < zero(W),
or

zero(W') = zero(W) and depth(W) + wt(W) < depth(W) + wt(W)

(see the refined Bachmann Conjecture 10). The general observation of why the refined
Bachmann Conjecture 10 is of interest when studying Bachmann’s Conjecture 4 is given
in the following lemma.

Lemma 73 (Lemma 11). Fiz z,d,w € Z~q. If the refined Bachmann Conjecture 10
is true for (z,d,w) and if Bachmann’s Conjecture 4 is true for all (',d',w') € Z3,
with 2/ +d + w' < z+d+ w, then Bachmann’s Conjecture j is true for (z,d,w). In
particular, the refined Bachmann Conjecture 10 implies Bachmann’s Conjecture /.

Proof. Fix z,d,w € Z~y and assume that the refined Bachmann Conjecture 10 is true
for (z,d,w) and that Bachmann’s Conjecture 4 is true for all triples (2/,d’,w’) € Z3,
satisfying 2’ +d + w' < z + d + w. By definition of F, ;,, and the second part of our
assumption, it follows

Fogw=FZ0N 21+ > RGN 2/

z,d,w—1 “q

2/ +d' =z+d—1
0<2'<2

.1D,W 0 .1D,W 0 .1D,W o
C Fill w1 Z0° + Fily_, , 2)° C Fi, 21°.

Using the assumption Fili’gy Zg C F. 4w, we obtain Fili’gz’fv Zg C Fillz)jr\gw Zg’o, ie.,

Bachmann’s Conjecture 4 for (z,d, w). OJ

For given z > d, our approach to the refined Bachmann Conjecture 10 restricts -
independent of the weight w - to prove Conjecture 39 for the pair (z,d) as the following
theorem shows.
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Theorem 74. Fiz z,d € Z~o with z > d. If Conjecture 39 is true for the pair (z,d),
then for all w € Z~g, we have
-1Z,D,W :12,D,W
Rz 2l Y RGN 2] CFlgw.

z,d,w
2/ +d' =z+d—1
0<z'<2z—1
In particular, the refined Bachmann Congjecture 10 is true for the triples (z,d,w) € Z2
with w arbitrary.

Proof. Fix z,d € Z~¢ with z > d and assume that Conjecture 39 is true for (z,d). This
means u, € P for all z € Z2 with |z| = z + d. Hence, the claim follows immediately
from Corollary 62. U

Remark 75. Immediately from Theorems 41 and 74 the following statement is obtained:
If Conjecture 39 is true for all z = d, then we have

FilZ Z] C Filj | Z]
for all (z,d) € Z%, with z > d. More precise, then we have
o 1Z,D,W
zl=z/"+ Y Fi z!

z,d,2z+d—1 “q *
0<2<d-1
d>1

Remark 76. For z > d, our approach to Bachmann’s Conjecture 4, and the refined
Bachmann Conjecture 10, is to study Conjecture 39 in more detail. We will explain this
in Section 6. For z < d, this approach will not suffice since in this case, we have S, ; C I, 4
by Conjecture 39 which is numerically explicit verified for small values of z and d (see
Lemma 42). Hence, we need to extend our approach. We make do with few explicit
calculations to prove our main results in Section 6. In the outlook, Section 7, we abstract
our calculations and leave it as an open question whether this generalization is sufficient.

6. PROOF OF OUR MAIN RESULTS TOWARDS THE REFINED BACHMANN
CONJECTURE 10

In this section, we first provide the proof of our main results, namely, Theorems 8
and 12, where some particular statements are black-boxed. We deliver their proofs in
Sections 6.1, 6.2, and 6.3.

Proposition 77. The refined Bachmann Conjecture 10 is true for all (z,2,w) € Z3,,.

Proof. Due to case d = 2 of Lemma 42, Conjecture 39 is true for all (z,2) € Z2,
with z > 2. Theorem 74 then implies Fil?y,\" 2/ C F.,,, for all z,w € Z-y with 2 > 2.
Hence, it remains to prove case z = 1. However, this follows immediately from the

special case d = 2 of Corollary 28. U
Proposition 78. The refined Bachmann Conjecture 10 is true for all (z,3,w) € Z3,,.

Proof. The case z = 1 is proven by Corollary 28, the case z = 2 will follow from
Theorem 82 below, and the cases z > 3 are proven by the z = 3 case of Lemma 52,
Theorem 41, and Theorem 74. L]
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Proposition 79. The refined Bachmann Conjecture 10 is true for all (z,4,w) € Z3,.

Proof. While the case z = 1 is proven by Corollary 28, the case z = 2 will be obtained
from Theorem 87 below, and the case z = 3 will be obtained from Theorem 102 below.
Furthermore, the cases z > 4 are proven by Proposition 53 and Theorem 74, completing
the claim. 0

We are now able to prove one of our main theorems.

Theorem 80 (Theorem 8). Bachmann’s Conjecture 4 is true for all (z,d,w) € Z2,
with z +d < 6.

Proof. For z + d < 3, the claim is an immediate consequence of Proposition 21 and
Corollary 28. For z = d = 2, the claim follows by induction on w, using the proven
claim for z + d < 3, Lemma 73, and Proposition 77 in the induction step. Together
with Proposition 21 and Corollary 28, the claim holds now for z + d < 4. Again,
inductively on w, the claim for (z,d) € {(3,2),(2,3)} follows from the already proven
claim for z+d < 4, Lemma 73, and Proposition 77 (for (z,d) = (3,2)), and Proposition 78
(for (z,d) = (2,3)). Now, using Proposition 21 and Corollary 28, the claim follows
for z +d < 5. Analogously, for (z,d) € {(4,2),(3,3),(2,4)}, the claim follows in each
case inductively on w, where we use in the induction step the already proven claim
for 2+ d < 5, Lemma 73, and Proposition 77 (for (z,d) = (4,2)), 78 (for (z,d) = (3, 3)),
and 79 (for (z,d) = (2,4)), respectively. Now, using Proposition 21 and Corollary 28,
the theorem is proven for z + d < 6 as well, completing the proof. 0

Theorem 80 is the main ingredient in the proof of the next main theorem.

Theorem 81 (Theorem 12). The refined Bachmann Conjecture 10 is true for all triples
of positive integers (z,d,w) € Z3, with 1 < d < 4.

Proof. For 1 < z < d <4 and w € Z~ arbitrary, we obtain the claim from Theorem 80.
Furthermore, for 1 < d < 3, z > d and w € Z- arbitrary, we obtain the claim from
Corollary 62, Lemma 42, and Theorem 74. For d = z = 4 and w € Z~ arbitrary, the
claim follows from Proposition 53 and Corollary 62. Hence, for z > d = 4 and w € Z+
arbitrary, the claim is a direct consequence of Corollary 62 and Theorem 74, proving the
theorem finally. O

6.1. The refined Bachmann Conjecture 10 for (z,d,w) = (2,3, w).

Theorem 82. The refined Bachmann Conjecture 10 is true for all (2,3,w) € Z2,, i.e.,
Cé (Upey UG U UG Uy U ) € Fag (82.1)

forallk; € Zsq, z; € L>q, for1 < j <3, satisfying z1+22+23 = 2 and w = ky+ko+ks+2.

Proof. For ky = ko = k3 = 1 and for all zy, 29, 23 > 0 satisfying z; + 2o + 23 = 2, (82.1)
is true since, after using 7-invariance of C;, we have

f : f
(g (uugturugturug®) = (g (Uzg 11Uz 11Uz511) € Foga -
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Furthermore, for ko > 1, (82.1) will follow from Lemma 84, for k3 > 1, (82.1) will follow
from Lemma 85, and for k; > 1, (82.1) will follow from Lemma 86, completing the proof

of the theorem. O
Lemma 83. Let be ki, ko, k3 € Z~y and write w = k1 + ko + k3 + 2. We have

C; (Upey Uy Uy UoUp ) C; (Upey Uo Uy U Uy ) € Fosu, (83.1)

C; (Upey Uk UoUQ Uy ) = C; (U, WO Uy Uges U mod Fa 3, (83.2)

= —(; (Upy UUQUR ULy ) = — C; (Upey Uy Up Uy Ug) mod Fy3,. (83.3)

In particular, for fived ki, ko, ks, if one of the latter four formal Multiple Zeta Values is
in Fog., (82.1) is true for the corresponding choice of ky, ka, k.

Proof. First note that (83.1) is a consequence of Corollaries 25 and 29. Furthermore,
after using Lemma 61 and 7-invariance of formal gMZVs, with (83.1), we obtain

0= g (Why o y) (wrwn B ureiguy)) mod Fas.
= () (uaug® "ugug® turugt ™t 4 ugug®unug? Musug ) mod Fag,
= ;(“klukquksUO) +C¢§ (Up, UoUky UpsUo) mod Fa3,, (83.4)
= C; (W (ko o ) (11 B s ) mod Fa 3.,
= C; <U2U}53_1U2u182_1mu'81_1 + u1u§3_1u3u§2_1u1u§1_1) mod Fa 3,
= C; (Upey Uy U Uy Ug ) + C; (Upey Upoy U U U5 ) mod Fy 3.,
0= Gy (Wh by (w1 B wru1us)) mod Fas,  (83.5)
= ¢ (g ugud  usug T 4 gt g ugug ) mod Fajg
= C; (Ukey WUy Uy U ) + C; (g, UoUoUy Uy ) mod Fys, . (83.6)
We obtain (83.2) and (83.3), by comparing (83.4), (83.5), and (83.6). O

Lemma 84. Equation (82.1) is true for kg > 1.
Proof. Let be ki, ko, k3 € Z~o and write w = ky + ko + k3 + 3. By (3.1), we have
Uy * Ugy Upy Ugy € Filg”&ﬂw QU)°.

Hence, and due to 7-invariance of formal gMZVs, we have

L
0= G, (7(uzur) * 7 (wr, upy i, )) mod Fa.
2
1
= k—(; (u1u1u0 * u1u§3_1u1u§2_1u1u§1_1) mod Fa 33,
2
_ _ K _ _
= ch (U2U§3 1U2U§2U1U§1 1) + k?_2<; (U1U1 * mu'g?’ 1u1u§2 1u1u’§1) mod Fy3,,
= ch (ky gy 100Uy o) + (; (‘Ij(lﬁ—&-l,kg,kg)(ulul u1u1u1)) mod Fy 3.,

C; (U, Uk 11U UE5 U ) mod Fy 34,
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where the last step is a consequence of Lemma 61. Now, with Lemma 83, (82.1) indeed
is true for ky > 1. O
Lemma 85. Equation (82.1) is true for ks > 1.
Proof. Let be ki, ko, ks € Z~o and write w = ky + ko + k3 + 3. By (3.1), we have

Ug * Up, UgUpy Ugy € Filf’i;uw Q{U)°.

Hence, and due to 7-invariance of formal gMZVs, we have

1
0= k_g ;(T(UQ) sk T (Upy UoUky Uy ) ) mod Fy 3.,
1
= ™ Cf[ (uluo * u1u§3_1u1u§2_1uQu§1_1) mod Fj 3,
3
- - ko _ _
= ;(u2u§3u1u§2 1u2u§1 1) —|—k—§; (UQU/ISS 1u1u§2u2u§1 1)
3
ko - - k1
+ k—(; (ulug" 1u2u§2u2u§1 1) + k—C; (\If(kﬁl’k%ks)(ul U1U1U2) mod Fj 3.,
3 3
= C§ (Uky U Uy Uiy 10 ) mod Foj3,, .
The last step is obtained by Lemmas 61 and 84. Hence, the lemma is proven b
P Y p Y
Lemma &83. [

Hence, for proving Proposition 78, the remaining case is ky = k3 = 1.
Lemma 86. Equation (82.1) is true for ky > 1.

Proof. Let be ki, ko, ks € Z~o with k; > 1 and write w = ki + ko + k3 + 2. Due to
Lemmas 84 and 85, we may assume k; > 1 and ky = k3 = 1, i.e., w = k; + 4 then. By
Proposition 77, we have (; (up, upurug) € Fao,—1 and thus C; (U1 * ug, upurtp) € Foz.p.
Multiplying out the latter product and using Proposition 77, (83.1), and Lemma 84, we
see that

0= C; (U1 * Uk1U0U1Uo) = QC; (Uk1U0U1U1U0 + Ukluluouluo) mod F2,3,w
= C; (Uk1U0U1U1U0) mod F23.w,

where the last congruence is obtained from (83.4). Thus, the proof of the lemma follows
from Lemma 83. ]

6.2. The refined Bachmann Conjecture 10 for (z,d,w) = (2,4, w).

Theorem 87. The refined Bachmann Conjecture 10 is true for all (2,4, w) € Z3,, i.e.,
Cg (Ugey UG Wy UG Uy UG Uk UG ) € Fog oy (87.1)

for all k; € Zso, zj € Zxo, for 1 < j < 4, satisfying z1 + 20 + 23 + 24 = 2 and

w:k1+k2+k3+k4+2.

Proof. In the case ky = ky = k3 = ky = 1, (87.1) is true since for all z1,...,24 > 0, we
have by 7-invariance of C; that

f z 22 23 z4\ _ f 1D,W ~f.o
Cq (urug' urug urugiur ug') = Cq (Uzy 11Uz 11Uy 11Uz, 1) € F114,w Zq .
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In the four cases k;,, ki, ki; > 1 with pairwise distinct iy,iq,i3 € {1,2,3,4}, (87.1)
will follow from Lemma 92, Proposition 93, and Proposition 94. Furthermore, the six
cases kj,,k;, > 1 for distinct 41,1, € {1,2,3,4} (and the two other k;’s equal 1) then
follow from Lemmas 92, 95, 96, and 97. Next, the four cases of k; > 1 (i € {1,2,3,4})
(and the three other k;’s equal 1), will follow from Lemmas 98, 99, 100, and 101. This
completes the proof of the theorem. O

In the following three lemmas, we state some congruences that are true independently
of the several cases we might consider.

Lemma 88. Let be ky,...,ky € Z~o and write w = k1 + ---+ ks + 2. We have

0 = ¢} (W, Upey ey g, Ugo) mod Fyy,,  (88.1)
0= Q (U, U Uy U Uy Uk ) mod Fyg,,  (88.2)
0= ¢ (Wpy Why Uiy Uty ) + € (W, Uy Uy UgUo U, ) mod Fay,. (88.3)

Proof. Note that (88.1) is a direct consequence of Corollary 25, while (88.2) follows from
Corollary 29. Last, (88.3) follows from (88.1) and the special case d =4, z = 2, j = 3 of
Corollary 27. O

Lemma 89. Let be ky, ..., ks € Z~o and write w = ky +-- -+ ks + 2. We have

0= C (U, Upey Uy U Uy Ug) +C (Ukey Upy U Uy Uy Uy )

(89.1)

—i—C (U U Uy Uy Uy Ug) mod Fg 4.,

0 = ¢ (wpy Uhy Uotiy o, ) + € (Upy Uotpy Uy UoUi,)  moOd Fa gy, (89.2)

0= Q“ (Upey Uy U U Uy U —l—C (Ukey Uy U Uy Up U, ) (89.3)
+ C; (Upey Uy UOUQUkes U, ) mod Fog 4 4,

0 = C§ (thhy oWy Uy Uy o) + G (W, Uy Uy U, ) (89.4)
- Cf (U, UWOUQ Uy Ukes Uk, ) mod Fyg 4., .

0 = € (tky Uy ks UotioUn, ) + Gy (U, Uk, UoUoUkyUs, ) (89.5)
+ €} (wk, UoUo Uy, Uy U, ) mod Fa 44,

0= C (Upey Uy U U Uy U ) —l—C (Upey Uy U U Uy U
+ Cq (ke U0 Uy Uiy Uky o) + Cq (W, hy Uo Uy Uo U, ) (89.6)

+ C; (Upey U0 Uy Upes Up U, ) mod Fy 4, .
Proof. All relations are, by Lemma 61, a consequence of
0=C (T(Vi(un Bup))) mod Fayy

with k = (k1,...,ks) each and (n,£) € Jo4, where Lemma 88 was applied. Precisely,
for (89.1), we used (n, ) =((1),(2,1,1,1)), for (89.2), we used (n,£) = ((1),(1,2,1,1)),
for (89.3), we used (n,€) = ((1), (1, 1 2 )) for (89.4), we used (n,£) = ((1),(1,1,1,2),
for (89.5), we used (n,€) = ((2),(1,1,1,1)). Furthermore, for (89.6), we used the
element (n,£) = ((1,1),(1,1,1,1)) of j24 O
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Lemma 90. Let be ky, ..., ks € Z~o and write w = ky +---+ ks + 3. We have
0= k:4§; (W) U Uy Uy Uy +1U0) — k’gC; (Upey U U0 Uy Uk 11Uk, )
— k2C§ (Up, WU Uy 1 Upy Uk, ) mod F 4,
0= /{;4(; (Uppy Upoy U Uy Upey 11U0) — kg( (Upey Uy UpUO U 11Uk, ) MO Foyyy  (
0= K€y (thry Uy Uy Uk, 41%0) + k2 (U, Upy1toUry totis,) mod Faygy, (903
0= kgg‘; (Upy Upey Ug+1 UpUp, Up) — kQC (Ukey U Uy 11Uk Uy o) MOd Fo gy (
0= k3§£ (Uklqungﬂuououm) - kQCq (ukluouﬂuk2+1uk3uk4) mod Fy 4, . (90-5
Proof. We use 7-invariance of formal ¢MZVs and Corollary 28 to see in the following
calculations that each of the formal ¢gMZVs of stuffle products in the first line indeed is
an element of Fy 4, in the following.

Now, by (88.2) and (89.4), we have

0= C; (7(u2) * 7 (g, UoUp, Uks Uk, )) mod Fa 4
= Cf (umo *ululg“ u1u§3 1u1u§2 u2u§1 ) mod Fj 4.,

= k4C (uguo wup® g ul  uguft ! ) — k3C (u1u04 Yt ugul? tugul ! )
—kQCq (u1u§4 1u1u§3 u1u§2u3u§1 ) mod Fj 4.,
= k4C¢§ (ke U0 Uy Uiy Ukg41U0) — k3Cq (U, UOUOUky Uk 41Uk,
- k‘zC; (ukluﬂuouk2+1uk3uk4) mod F2 4w,

proving (90.1). Furthermore, using (88.2), we have

0= C; (T(ug) * T (Ug, gy Up Uy Uy ) mod Fg 4,
= Cf (urug * w g ugu g ) mod Fj 4.
= 1{14C (uzuo wyugd  ugul2 g ul )
— kng (ululg‘l YuuPusul2 tuguf ) mod Fy 4.,
= kg (tk, Why UoUiy Uney1100) — k3C] (U Upy UoUoUpy 41U, ) mod F3 4.4,
proving (90.2). Now, applying (88.3) yields
0= C; (T(ug) * T (U, Upey Ugy UoUs, ) mod Fj 4.,
= Cf (u1u0 s uup' ™ upupd tuyufr g ) mod Fg 4,
= k:4<’ (u2u0 u2ulg u1u§2 Yu ulgl_ )
+ kg(’q (ululg“ Yugug®  tuguPuyult ) mod Fg 4,
= k) (g Wey Uky Uotpey+1t0) + Kol (g Upy41UoUs, U0 U, ) mod Fyg 4.,
proving (90.3). Next, use (88.1) and (89.1) to obtain
0= (; (T (ug) * T (Upy Upy Upy Up, Uo) ) mod Fa 4,
= (; (u1u0 * u2ug4 ulugs' lulugz Y ugl ) mod Fg 4,



ON THE STRUCTURE OF MULTIPLE Q-ZETA VALUES 35
= k3C (u2u§4 YugupPuyul2 g ul 1)
- kg( (u2u0 ulu’g3 ulu’(?ungl 1) mod Fg 4.,
= k() (W, Uy Uy 410Uy o) — K Gy (U, Uty 41Uy U, o) mod Fa 4.4,
proving (90.4). Now, (88.1) and (89.5) imply
0= C; (T(uguo) * T (Upy Upy Uy Uy ) mod Fy 4.,
= Cf (uguo *ulug ulu’g“ 1u1u§2 1u1u§1 1) mod Fj 4.,
= k3C (u1u0 YugugBugul?  tugult 1)
—kQC (u1u§4 Yugulr  u bt ugul 1) mod Fj 4.,
= k€l (Uny Uy Uy 41 U0U0 U, ) — K2Cl (U, UoUoUpey 41Uy Ui, ) mod Fa 4,
proving (90.5). This completes the proof of the lemma. O
Corollary 91. Let be ky,...,ky € Z~o and write w = ki + -+ -+ kg + 3. We have
0 = ¢ (tny UoUpy 1 Uky Uo U, ) mod Fa 44, (91.1)
0= C; (Upey Ukey-41 U0 Uy U Uy ) mod Fy 4., (91.2)
0= C; (Upey Uy Uy U Uy 410 mod Fj 4., (91.3)
0= C; (U Uy Uy U U0 Uy +1) mod Fo 4, - (91.4)
Proof. Adding (90.4) and (90.5), yields, applying (88.3),
0= — Ky (¢ (ury wotnyr1 iy g to) + G (tk, UoUoUpy+1 Uy ey ) ) mod Fy 4,
= k‘qu (ukluouk2+1uk3u0uk4) mod F2,4,w,
where the last step follows from (89.4). Hence, (91.1) is proven. Furthermore, (91.2)
is deducted from (89.2) and (91.1). Now, (91.3) follows from (90.3) and (91.2). Since
(91.4) is a consequence of (91.3) and (88.3), the corollary is proven. O

Lemma 92. Equation (87.1) is true for ko, ky > 1.

Proof. Let be ky, ko, ks, ky € Z~o and write w = ky + ko + k3 + ks + 4. By (88.1), (89.1),

and (91.3), we have

0= C; (T(uquz) * T (Up, gy Uy U, ) mod Fo 4,
= Cf (u1u0u0u1 * ululg u1u§3 1u1u§2 L ulgl 1) mod Fg 4,
= k4k2§ (u2u0 ululg u1u§2u ulgl 1)

—|—C (u1u0 - (u1u0u0u1 s uup® tugug? tugul 1))
—|—C (u2u0 “luy (u0u0u1 s ups g ul gl 1)) mod Fa 4, .

Now, by (89.2), (89.4), (89.6), and (91.1), the latter is, modulo Fs 4,,, congruent

ks +1

) > g (uk‘1 ukg uk‘3+2u0uk‘4u0)

f
KakaCy (Why UoUpy 11 Uky Upy 1 1U0) — (
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ko +1
2

Using (90.2), (90.3), (90.4), and (90.5), the latter is, modulo Fs4,,, congruent

f
+ kkaCy (Uhy UoUpyt1 Uk 11Uk U0) — ( )Q (kg U UO Uy 42Uy Uy ) -

f 1 f
— koksC, (Uky Upy+1UoU Uk 41Uk, ) — =k2k3C, (Uky UWoUky-+1Uky 41Uk Uo)
q 2 q

1
f f
+ k3koCy (Uh, U0 Uy 1 Uk 41 Uky U0) — = Kok Cy (Uky Wy 11 Uy 41 U0 U0 Uy )
q 2 q

1
_ f £
= koks | —C, (U Ukyt1UoU U +1Uky ) — = (Upy Ukey+1 Uk +1 U U0 U, )
q 2 q

f
+§Cq (ukluouk2+1uk3+1uk4u0)> mod Fy 4, .

With (89.2), (89.3), (89.6), and (91.2), one obtains so

0= C; (Uky Uy 1 UOURs 41Uk o) MO Foyyy (92.1)
Now, this, together with (89.3) and (91.2) imply

0= C (Ukey Uy 41 U U Uy 11Uk, ) MO Fg gy (92.2)
Furthermore, (90.2) and (92.2) imply

0= C (Whey Uy 41 U Ukg Uy 41Up)  MOd Fo gy

Note that by Lemma 88, Corollary 91, and the congruences in Lemma 89, the claim
follows. OJ

Proposition 93. Equation (87.1) is true for ki, ks, kqy > 1.

PT’OOf. Let be ]{?1, k’g, k?g, k‘4 € Z>0 with ]{?1, ]{?3, ]C4 > 1 and write w = l{il -+ ]{?2 + kg + k’4 + 2.
For all 29, 23,24 > 0 with 2o + 23 + 24 = 2, using Theorem 82 in the first step and
Lemma 92 additionally in the second step, we have

J— f ) z3 zZ4 J— f z2 z3 z4
0= ¢, (Uhey * Upey UG Uy UG UR, UG ) = Cq (Upey Uy UG Upg UG U ug')  mod Fo gy

Using this observation, for z; > 1, 29, 23,24 > 0 with 21 + - -+ + 24 = 2, we have, using
Corollary 28 in the first step due to 2o + 23 + 24 < 1,

0= {; (Uzy * T (Ugy Uk UG U UG U, UG ) ) mod Fj 4
= Cf (Uz1 * uz4+1u’54_1uz3+1u§3_1uz2+1ulg ululgl 1) mod Fy 4,
_C (UZ4+1u0 luZ3+1ulg3_lu22+1ug 1u21+1u§1 1) mod F2,47w
= Cq (Ukey UG Uy UG Uy UG Upe, UG mod Fo 4, -
This completes the proof of the proposition. O

Proposition 94. Fquation (87.1) is true for ki, ko, ks > 1.

PT’OOf. Let be ]ﬁ, k‘g, ]{33, ks € Z>0 with ]{31, ]{32, ]{33 > 1 and write w = k1 + ka + k?3 + kg + 2.
Using Lemma 92 and Proposition 93, we obtain for zq, 29,24 > 0 with 21 + 29 + 24 = 2
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that
— f zZ4 Z1 zZ2 J— f Z1 zZ2 Z4
0= (, (urug" * up, ug Up, ug’ Ups) = Gy (Up, UG Uky UG Uny Upy ") MOd Fo g,

where we used Proposition 21 and Proposition 78 for the first congruence. Now, for

all zq,...,24 >0 with 2; +---+ 24 = 2 and 23 > 0, we have
0= C; (Usy * T (Upy UG Upey UG U U, UG ) ) mod Fj 44,
= C; (uz3 * uz4+1u§4_1u1u53_1uz2+1u§2_1uzl+1ulgl_1) mod Fa 4,
= C; (UZ4+IUI(§4_1uZ3+1ul(§3_1u22+1u§2_1uZ1+1u181_1) mod F2741w
= C; (Ugey UG Uy UG Uy UG Upe, UG") mod Fo 4, -
This completes the proof of the proposition. O

Lemma 92 and Propositions 93 and 94, show that Theorem 87 is true when three of
the k; are larger than 1. Hence, in the following, we will prove the remaining cases that
two of the k;’s are larger 1.

Lemma 95. Equation (87.1) is true for ks, kg > 1.

Proof. Let be ky, ko, ks, ky € Z~o with k3, ky > 1 and write w = ky + ko + ks + kg + 2.
According to Lemma 92 and Proposition 93, we may assume k; = ky = 1. Using

Proposition 78 for the first two steps in the following calculation, while using (88.2),
(89.2), and (91.1) for the last step, we have

0= {; (w1 * UgUpUg, UgUy, ) mod Fg 4,
= 2(; (uruq U, Uy, ) + C; (U1 U U Upg Ug U, )
+ C; (U1 Uy Ug UgUy, ) + (; (U1 UQUgs Uo Uy U, )
+ C; (U1 U U UgUg, U1 ) mod Fo 4,
= C; (U1 U U Uk Uo U, ) mod Fy 4., - (95.1)
This implies, with (89.2) again,
0= C; (wruour g wotty,) mod Fagyy, . (95.2)

Now, using Proposition 78 for the first step, then using (88.2), (91.1), and Lemma 92 for
the second step, then applying (95.1) and (95.2), we obtain
1

0= 1 (C; (w1 * Uy Uy Uk, ) — Cé (U1 * g UgUky Wk, Up) ) mod Fy 4,

1
f f
3
Qq (ululuououk uk4) + 2§q (u1u1u0uk3u0uk4)

1
+ ZC; (1 U Uy Upy Up Uy ) mod Fy 4,
= C; (w11 U U Uky U, ) mod Fo 4, .
The lemma follows using the relations in Lemma 89. U

Lemma 96. Equation (87.1) is true for ko, ks > 1.
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Proof. Let be kyi, ko, ks, ky € Z~o with ko, ks > 1 and write w = ki + ko + ks + kg + 2.
According to Proposition 94 and Lemma 92, we may assume k; = k4 = 1. Using
Proposition 78 for the first step and Lemmas 92 and 95 for the second one, we obtain

0= C (U1 * Uy UYUO Uy Uky ) = C (uruoUuoUp, Uk ur)  mod Fag 4.,
giving by (89.5), respectively by (89.4) and (91.1),
0= Cf (U1 Ug, U uototr)  mod Fag 4., (96.1)
0= ( (ug g, ugsurtg)  mod Fag gy .
Note that (96.1) implies by (88.3)
0 _C (Ur gy U uotrttg)  mod Fag g,

completing, together with (88.1), (88.2), (91.1), (91.2), (92.1), and (92.2), the proof of
the lemma. m

Lemma 97. Equation (87.1) is true for ky > 1 and one of ko, ks, ks larger 1.

Proof. Let be ky, ko, k3, ky € Z~o with k; > 1 and write w = ki + ko + k3 + k4 + 2. First,
assume that one of ks, ky larger 1 as well. For zs, 23,24 > 0 with 25 + 23 + 24 = 2, we
have, using Proposition 78 in the first step and Lemmas 92, 95, and 96 for the second
one,

_ f z2 23 24\ — f 22 23 24
0 = ¢, (U, * Upug Upsug g, ug') = G (Ury Uny UG  Upy Ug* Uy ug" ) mOd Fo gy

Now, for all z; > 0, 29, 23, 24 > 0 with z; + - -+ + 24 = 2, using Corollary 28, we obtain

0= Cf (Uszy * T (Upy Upey UG Upeg UG U, UG )) mod Fy 4.,
= Cf (uzl * uz4+1u0 1u23+1u’53_1uz2+1u’5 ululgl 1) mod Fg 4.,
(u24+1u0 uz3+1ulg 1u22+1u](§ uz1+1u](§1 1) mod F274,w

= Cf (U, UG Uy UG U UG U, UG mod F 4,

showing that (87.1) holds for &y, k3 > 1, and for ky, ks > 1 as well.

It remains considering the case of ki, ky > 1 with ks, ky € Z~o arbitrary. Note that
for 23,24 > 0 with 23 + 24 = 2, we have by the previous results of this proof and
Lemmas 92, 95, and 96,

0= C (Upa UG Upe UG * Uy Upy) = C (Upey Uy Upg U Up ug')  mod Fag gy,
By Corollary 28 for the first congruence and for the second, again, by the previous results
of this proof and Lemmas 92, 95, and 96, we have
0= C (Upeg Uy U * Upey UpUpy ) = ( (Upey UoUpey Uy Upy o) MOd Fo gy

Using the previous results of this proof and (88.1), (88.2), (91.2), (91.1), and Lemma 89,
we obtain that (87.1) also holds true for ki, ks > 1, completing the proof. U

As in the proof of Theorem 87 mentioned, for completing the proof of Theorem 87,
it remains to consider the cases where one of the k;’s is larger 1 while the other three
equal 1.
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Lemma 98. Equation (87.1) is true for ks > 1.

Proof. Let be ki, ko, ks, ky € Z~o with ks > 1 and write w = ky + ko + k3 + kg + 2.
According to Lemmas 95, 96, 97, we may assume k; = ko = ky = 1, i.e., w = k3 + 5.
Using Proposition 78 for the first congruence, Corollary 28 and Proposition 78 for the
second one, and (88.2), (89.5), and (91.4) for the third one, we have

0= ¢ (ug * wyuouous ) mod Faq.
= 2{; (u1ug ugUgUy Upy ) + C}; (w1 uoUy Uty Uy )
+ 2C£ (u1uououruruk,) + C}f (u1uoUoUL UK, U1 ) mod Fy 4,
= C; (uruotous gy uy ) mod Fg 4. . (98.1)

Furthermore, using Proposition 78 for the first congruence, Corollary 28, Proposition 78
and Equations (88.2), (89.2), and (91.1) for the second congruence, gives

0= C; (U1 * U UoUR UoUL) = C; (wruugug,uouy)  mod Fo gy, (98.2)

and so, by (89.2) again,

0= C; (uruguupuguy)  mod Fayy, . (98.3)
Now, (89.4) in combination with (98.1) and (98.3) implies
0= C; (W upur g uitg) mod Fa g,y . (98.4)

Using Corollary 28 for the first congruence and, for the second one, Corollary 28,
Propositions 77 and 78 and Equations (89.1), (107.11), (88.2), (98.2), and (98.3), we
obtain

1
0= 1 (¢} (uruguy * uyuguy,) — ¢} (urug * uyuguyuy,)) mod Fa 4,
= ¢} (ururuguoie,uy) mod Fain.  (98.5)
The remaining proof follows directly from Lemma 89. U

Lemma 99. Equation (87.1) is true for ky > 1.

Proof. Let be ki, ko, ks, ky € Z~o with ky > 1 and write w = ky + ko + k3 + kg + 2.
According to Lemmas 95, 92, 97, we may assume k| = ks = k3 = 1, i.e., w = k4+5. Using
Corollary 28 for the first congruence, and for the second one, Corollary 28, Proposition 78,
and Equations (89.6), (91.3), and (98.4), we have

—~

(C; (uyug * uluouluk4)) = C; (wugugupuiug,)  mod Fa g,y .

] =

0=
This, (91.4), and (98.5), gives, together with Proposition 78,
0= C; (U1 * ugug ugUoUy, ) = C; (v upurupuyg,) mod Foyy,.

The remaining part of the proof follows from Equations (88.1), (88.2), (91.3), (91.4), and
Lemma 89. O

Lemma 100. Equation (87.1) is true for kg > 1.
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Proof. Let be ki, ko, k3, ky € Z~o with ky > 1 and write w = ki + ko + ks + ky + 2.
According to Lemmas 92, 96, 97, we may assume k; = k3 = ky = 1, i.e., w = ko + 5.
First note that, by Proposition 78 and Lemma 98, one has

0 5@5 (Ul * u1uououkzul) = Cé (Uluououk2ulu1) mod F2,4,w7
giving, with (89.4) and (91.1),

0= C; (uwuoug,ururg)  mod Foyy, (100.1)
Furthermore, by Proposition 78 for the first congruence, Corollary 28, Proposition 78
and Lemma 98, Equations (89.1), (91.2), and (100.1) for the second congruence, we
obtain

0= Cé (U * Uy Uk, UeULUg) = C; (U, uoururtg)  mod Fa gy .
The remaining part of the proof follows from (88.1), (88.2), (91.2), (91.1), and Lemma 89,
immediately. 0
Lemma 101. Equation (87.1) is true for ky > 1.

Proof. Let be ki, ko, k3, ky € Z~o with ky > 1 and write w = k; + ko + k3 + ky + 2.
According to Lemma 97, we may assume ky = k3 = k4 = 1, i.e., w = k1 + 5. For
any zs, 23, 24 > 0 with 25 + 23 + 24 = 2, we have, using Corollary 28, Proposition 78, and
Lemmas 98, 99, and 100 for the third congruence,

0= ¢} (thy * T (Usy 1ty g1Uzyp1)) mod Fg 4.
= (; (U, * wrug ugug’ urug") mod Fy 4,
= (; (wpy ug ugug ud ugugt) mod Foy4 -

This implies, for any z; > 0, 29, 23,24 > 0 with z; + --- 4+ z4 = 2, using Proposition 78
for the first congruence and, additionally, Corollary 28 for the third congruence,

0= C; (us, * T (Uug, urugturugugugt)) mod Fa 4,
= C; (uzl * U/z4+1uz3+1u22+1u1u’8171) IHOd F2,4,w
= C; (UZ4+1Uz3+1u22+1Uz1+1U§171) mod Fy 4,
= ¢ (wp, u v uduuduug?) mod Fj 4.4,
completing the proof of the lemma. 0

6.3. The refined Bachmann Conjecture 10 for (z,d,w) = (3,4, w).
Theorem 102. The refined Bachmann Conjecture 10 is true for all (3,4,w) € Z2, i.e.,
C; (Ugey UG Uy UG Uy UG Uk UG ) € Fgg 0y (102.1)

for all integers k; € Zso, z; € Z>o, for 1 < j < 4, satisfying z1 + 22 + 23 + 24 = 3
andw:k1+k2+k3+k4+3
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Proof. In the case k; = ko = k3 = k4 = 1, (102.1) is true since, by 7-invariance of C;, for
any zi,...,24 > 0, we have
f z 2z z 24\ — f ,0
C (uug uug*urug® urug') = Gy (Uzyp1Ueg 11Uy 11Uz 41) € ZJ :

For k3 > 1, (102.1) will follow from Lemma 106, for k4, > 1, (102.1) will follow from
Lemma 107, for ko > 1, (102.1) will follow from Lemma 108, and for k; > 1, (102.1) will
follow from Lemma 109. This completes the proof of the theorem. OJ

First, we will consider some relations we need more than once.
Lemma 103. Let be kq, ..., ks € Z~o and write w = k1 + -+ - + ks + 3. We have
0= C; (Wky Upey Uy Upey UoUoUp)  Od Fg g4, (103.1)
0= C; (Wky WoUpy Uo U UoUE, )  moOd Fg gy, (103.2)

Proof. Congruence (103.1) is a special case of Corollary 24. Setting k := (ky, ..., kq),
(103.2) follows from Lemma 61 and (103.1) via
3

C; (\I/k (ulug)) = Z(_l)]—lgé (\Ijk (U]l u4_ju?1’)) = 0 mod F374’w . ]

j=0
Next, we consider relations coming from products with no ug in one of the factors.
Lemma 104. Let be k1, ..., ks € Z~o and write w = k1 + --- + kg + 3. We have

0= C; (U, Uy Uy U Uy U Ug) + Cé (Upey Uy U Ugeq Uy U U )

f (104.1)
+ G (Upy UoUpy Uy Uk, UoUo) mod F 4.,

0 = G, (i, oUotp, Uyt ho) + Cq (1, UotoUry U, U, ) (104.2)
+ € (U UoUQUR, Uo Uy Uk, ) + o (U, UoUoUO Uk, Uk Uk, ) MO Fy g, .

0 = ¢ (Wt Uky Uy Uty totho) + Gy (U, Uy Uy UgUo g, o) (104.3)
+ ¢ (U Uy o Uiy Ui, o) + € (thgy Uo ey Uy oty o) moOd Fy gy, |

0 = g (up, uotp, Upyu, toio) + Cg (wh, Ugtip, Upsuotin, Uo) (104.4)
+ C; (Ugey U Uy U Uy U, Up)) + C; (s, U U0 UR, Uy Uy ) MO Fg g, |

0= Gy (u, oty U, ot o) + Cg (s, oty Uk, oo, ) (104.5)
+ € (wk, Uo Uy oy Uo Uk, ) + € (g UoUoUky Uny tigtty,)  moOd F g, |

0 = (g (tk, Uotpy U0 Uy Uy o) + G (U, UoUk, UoUkyUoU, ) (104.6)
+ C; (kg WUy U U Uy Upey ) + C; (t, totoUpy UoUins ug,) MO Fz g, |

0= C; (Upey Upey Upes U, UpUOU) + Cé (W Uy Uk g U, o) (104.7)
i C; (Ui, Uiy Uy U ey Uiy ) + C; (g UpUQUpy Uy Uk, Up) MO Fz 44, )

0= C; (Uhey Uy Uk Uo Uk, UpUo ) + C; (g Wk Uk UoUoUo U, ) (104.8)

+ C; (Upey Uy U U U5 Ug U, ) + C; (Uky UUOUEy Ups UoUE, )  MOd Fg 44,
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_ f
0 = (; (Uky Upy UoUpy U, Uoto ) + Gy (Upy Upy Uo Uy UoUo U, )

(104.9)
+ Cf (uk‘lukguﬂuououkguk4) + Cf (Uk1 Uououkzuoukgum) mod F3,4,w;
O == g (uk‘1u0uk‘2uk3uk‘4u0u0> +C (ukluoukzukguououk‘4) (104 10)
+§ (U, U Uy U UQUges Uk, ) —1—( (Uky UoUUQURy Uk, Uk, )  mOd Fg4 4,
0= Q (Upey U Uy Uy Ug Ui, Uo) —i—( (U, U Uy U U U, U
+ Cq (Upey UoUQ Uy Upeq U, Up ) + Cq (g, Uo U Uy U Uy Uk, ) (104.11)
+ ¢} (uny uotouo e, we, s, ) mod Fj 4,
0 = ¢ (W py sy UooUoUp, ) + € (g Upey UoUQUQ U, U, )
(104.12)
+ C (Wky UOUOUO Uy Uiy Uk, ) mod F3 4,
0= C (Upey Uy Uy U Uk, Ul —i—( (Upy Upoy U Uy Uy U U )
+ €5 (ke U0y Upey Wy U0t ) + G (g Uy U0 Uy U o U, ) (104.13)
+ C§ (kg U Uy Uy U U U, ) + C; (g, Uiy UoUoURy Uk, ) MO Fg g4,
0= (; (U Uy Uy U U0 U, Ug)) + C; (Upey Uy U U U Uy Up)
+ Q; (Upey U U Uy Uk U, Ug) + C; (Upey Uy U UQ U Up U, ) (104.14)
+ € (e UoUQUR, Uk, UoUk, ) + i (Uky UoUoUky UoUky Uk,)  mOd F g,
0 = ¢ (wky Why Uo Uy UoUipy o) + G (ke UgUpey Wiy Uo Uiy U ) (104.15)

+ Cq (ukl uoquuoukSUk4U0> mod F3747w )
Proof. All relations are a consequence of Lemma 103 and, by Lemma 61,
OECf (T(Uk(un B ug))) mod Fzygy

with k = (k1,...,ks) and (n,£) € J34 each. Precisely, we used (n,€) = ((1),(3,1,1,1))
for (104.1), (n,€) = ((1 ),(1,1,1,3)) for (104.2), (n,€) = ((1),(2,2,1,1)) for (104.3),
(n,£) = ((1),(2,1,1,2)) for (104.4), (n,£€) = ((1),(1,2,1,2)) for (104.5). Furthermore,
weused( €)= ((1),(1,1,2,2)) for (104.6). Furthermore, we used (n,£) = ((2), (2,1,1,1))
for (104.7), (n,€) = ((2),(1,2,1,1)) for (104.8), (n,£) = ((2), (1, 2,1)) for (104.9),
(n,£) = (( .1, for (104.10), (n,£) =((1,1),(1,1,1,2)) for (104.11). Furthermore,

(n

): (1,1,1,2)

we used (n,£) = ((3),
2

1
(2, ) (17 1,1
(n,€) = ((1,2), (1,1, 1,1

2 1,1)) for (104.12), (n,£) = (2,1
) = ((1

1,1 )) for (104.13),
1)) for (104.14), and (n,¥£) )

)) for (104.15).
O

Note that we have the following conclusions.

Lemma 105. Let be k = (ky, ..., k) € Z2, and write w = |k| + 3. For all 1 < j < 4,
we have

0= ¢ (Ui (u] Mgy + ud gy ™)) mod Fyiw, (105.1)
0 = ¢ (ury gy g ooty o) + G (U, Uny ook, U, o) (105.2)

£
+ C (Upy Uy U U UL U UL, ) mod F3 4 4,
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0= {; (U, Ukey Uy U Uy U Ug) + C; (Upey Uy U Ugeq Uy U U ) (105.3)
+ Cf (kg Uy U Uy U U U, ) mod F3 44,
C; (Upey Uy U0 U U Up U, ) +C (Upey U U Uy U Uy U, ) mod Fs,,, (105.4)
C; (Upey Uy Uy U Uge, U U ) —i—( (Upey Uo Uy UQUQ Uy Uk, ) mod Fs 4., (105.5)
= ] (Wky UoUpey Uy Uk Uotio) + € (g Wey UoUo Uy ol ) mod Fs,,, (105.6)
0= ( (U, U U0 Uy Upeq Uy Up) —|—C (Upey Uy U U Up U U, ) mod Fs4,. (105.7)

Proof. The proof of (105.1) is obtained from Lemma 61 and the direct calculation

3

0= > (-1 (W (uf ® ] Huayif 7)) mod Fy 4,
p=1

= <6f1 (\Ijk (u{_1u4u;l_j + U2 U1U2 ])) mod Fs 4, .

Note that (105.4) is a consequence of (103.1), (104.3), (104.8), (104.7), when using
(104.14). Analogously, (105.5) is a consequence of (103.1), (104.6), (104.9), (104.10),
using (104.13). Furthermore, we obtain (105.6) with (104.13), (104.15), and case j = 3
of (105.1), in a similar way, using Lemma 61,

0= Cé (U (1 B uguguqug)) — C; (U (ug B uuguquy))
—Cé (Ui (ug B ujugugug)) — Cf (u1u§4 1u2u’53 1u3u’52 Y ulgl 1)
= CF (i, oty Uiy i, Uotho) + Ch (g UnyUoUoUpytigti,)  mod Fy g
and we obtain (105.7) with (104.14), (104.15), and with case j = 3 of (105.1),
0= ch[ (U (uy B ugugugug)) — C; (Vi (ug B uuguguy))

— C; (Wi (ug B uguiugug))  mod Fgyy,

mod F3 4.,

= g; (ukluououkguk3uk4u0> + C; (Uk1 ukguouk3U0U0Uk4) mOd F3,4,w7
completing the proof of the lemma. [l

For the proof of Theorem 102, it remains to consider the cases where we have for
one j € {1,2,3,4} that k; > 1.

Lemma 106. Fquation (102.1) is true for ks > 1.

Proof. Let be ki, ko, ks, ky € Z-o and write w = ky + ko + k3 + k4 + 4. By (103.2)
and (104.15), we obtain

0= k—Cé (T(urugug) * T (Uky Wky Uky Uy ) ) mod F3 4.,
3
= —Cf (U1UOU1U1 *uwlg ulu§3 1u1u§2 lululgl 1) mod F 4.,

C (u2ulg4 ululg3u2u§2 luQUISI 1) mod F 4.,

= C; (uk1uouk2U0uk3+1ukz4u0) mod Fs 4w - (106.1)
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Similar, using (103.2), (104.15), (106.1), we have

L
0= — k—Cq (T(uruguy ) * T (Upy Uky Uy Uy ) mod Fjs 4,
2
1
_ £ ka—1, . ks—1, ko—1 ki—1
= — k—(q (ululuoul U U UIUGS T ULy U UG ) mod F3 4.,
2
_ f ka—1, ks—1, _k k1—1
= (, (u2u04 Uy~ Uy  Up Uy ) mod F3 4.,
_ f
= Cq (Uk1 uk2+1u0uk3u0uk4u0) mod F3,4,w .
Furthermore, using (104.15), (106.2), (104.11), we have
1
_ £
0=—¢ (T (ugur) * T (g, UoUpy Uky U, )) mod Fs 4.
3
L ka—1, . ks—1, ko—1 ki—1
= k—Cq (u1u1u0 U UG UIUGD T UL Ul ) mod F3 4,
3
= C§ (uoug* M usugPurug? ™ usugt ") mod F3 4.,
_
= (y (Upy UoURy Uk 11U UR, U ) mod F3 4, .

This implies by (104.15) and (106.1)
0= Cé (Upey Uy U Uy +1UoUR, Up)  OA Fg gy
Now, by equations (104.15), (105.2), (105.3), (106.4), (106.2), we have

1

_ f

0= — k—Cq (T (uguy ) * T (U, Upy UoUpy U, ) mod Fj 4,

2
1 _ _ _ _

= — k—gg (ululuo*ululg“ 1u1u§3 1u2u§2 1u1u§1 1) mod F3 4.,
2

= (; (uzulgrlu?,u’gylulu’g?ululgl71) mod F3 4.,

_ f

= Cq (ukluk2+1uk3u0u0uk4uo) HlOd F3747w .

Considering (105.4), this implies
0= C; (Upey UoUQURy 41 U Uk U, ) Od Fg gy
Next, we consider, using Corollary 28, (104.14), (105.2), (105.3),

1

_ f

0= k_?)(q (T (uguour) * 7 (s Uk, kg tip, ) mod Fs 4.

1

_ £ ka—1, . ks—1,  ko—1  _ ki—1

= k—ng (Uluzuo UL UG UG UU™  UUG ) mod F3 4

_ f ka—1, ks, ko=l ki—1

= (, (upug' ™ usugiurug® ugugt ) mod F3 4.,

_

= Cq (kg Uiy Uy 11 U U0 U Uo) mod F34,,.

Now, a consequence of (105.4) is

_
0 = ¢, (g, UoUoUkyUoUky 11Uk,) MOd F3gy .

(106.2)

(106.3)

(106.4)

(106.5)

(106.6)

(106.7)



ON THE STRUCTURE OF MULTIPLE Q-ZETA VALUES

In a similar way, we obtain by Corollary 28, (104.13), (105.2), (105.3),

_ £
0= k—Cq (T(ugurug) * 7 (Upy Uky Uks U, ) mod Fs 4,
3
= —Cf (uguluo*ululg ululg?’ lulu’g? lululgl 1) mod Fs 4.,
ke fey— ki—1
= Cf (u3u0 uguo“uluo L 1Uy' ) mod F3 4,
= C (uklukzuk3+1u0uk4u0uo) mod F374,w.
q

By (105.5), one obtains
0= C (Upey U Uy UoUQUkg 41U, )  MOd Fg gy

From Corollary 28, (106.7), (106.5), and (106.2) we immediately get

0= k—(; (T(uguy) * T (Upy Upy Upes U U, ) ) mod Fj 4.,
2

= k—(’; (u1u1u0 *ululg u2u§3 1u1u§2 Yu ugl 1) mod F3 4.,

= Cf (ulu’g‘1 Yugufs ugultug uft 1) mod F3 4.,

= Cq (ukluk2+1uouk3uououk4) mod F3,4,w7

and so, by (105.7),
0 —C (Upey UoUQUky41 Uy Ugy o) MOA Fg gy
This implies, using (104.2), (106.6), (106.2),
0 —C (Wky UOUO Uy 41Uz UoUE,) MO Fg 4y,
Also, from (104.7), using (106.5), (106.11), and (103.1), we obtain
0 —C (Upey Uy 41U U Uy Upy o) MOd Fg gy
This leads to, using (104.14), (106.5), (106.6), (106.11), (106.12),
0= C (Upey Uy 41U U Uz UpUp, ) MOd Fg gy
A consequence of (105.6) then is
0= C (Upoy U0 Uy 1 Ukg Uk UoUp)  MOd Fg gy

By Corollary 28, (104.4), (104.2), and (106.1), we have

_ f
0= — k—Cq (T(urug) * T (Ug, UoUky Uy Uy ) mod Fj 4,
4
= ——Qf (uluoul*ululg ululg?’ lulu’g? luQul{jl 1) mod Fg 4,
= C; (ugulg“ulu’g ulugz 1u2u§1 1) mod F3 4.,

q

f
o (Wgey WUy Uy Uy +1 U U ) mod Fs 4, .

45

(106.8)

(106.9)

(106.10)

(106.11)

(106.12)

(106.13)

(106.14)

(106.15)

(106.16)
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Hence, by Theorem 87 for the first congruence and by applying (104.4), (104.2), (106.3)
afterwards, we see that

0= — k—{; (T (ug) * T (Up, UoUky Ugy Uk, Up ) ) mod Fj 4,
3
= — k—cf (uluo*ugulg u1u§3 1u1u’52 1u2u’51 1) mod F3 4.,
= Qf (U3U§4 Mupugturug? ugugt 1) mod F3 4,
= Cq (U, U Uy U 11U, UpUp ) mod Fs4,. (106.17)

Now, (105.6) yields
0 _C (Upey Uy UoUO U 11U U, ) Od Fg gy

Furthermore, (106.17) implies with (104.10) and (106.9), respectively (104.1) and
(106.8),

_f

0=¢, (Upey U Uy Uy +1UoU U, ) MOA Fg g4,
respectively,

0 —C (Ukey Uy U Uy 41Uk, UoUp)  Od Fg gy

The latter implies by using (104.13) for the first congruence, then (105.7) for the second

one, (104.7) for the third one, and (104.14) for the last one,
0= C (uklukguﬂuk3+1u0u0uk4 mod F3,4,w7

mod F3,4,w7

0 —C (U, UoUOURy Uz 41Uk, Uo) MO Fs 4.0,
0 = ¢ (wy Uy UoUoUpg 11U, Uo)

_ ot
0 = ¢, (g, UoUoUky Uy 11UoUE,)  MOd F3 44,

This completes the proof of the lemma. O
Lemma 107. Equation (102.1) is true for kg > 1.

Proof. Let be ky, ko, k3, ky € Z~o and write w = ki + ko + k3 + k4 + 4. From (106.16), we
obtain by (105.6)

0 = ¢} (up, wey UoUoUsyugUgy+1)  mod Fzyy . (107.1)
From Corollary 28, Lemma 106, (104.6), (106.6), one sees

0= — k_ég (T(urug) * 7 (wp, U, UoUnyUk,)) mod F3 4.
4
= — —Cf (U1U0U1 *U1U'5 Ululgg 1u2u§2 lulugl 1) mod Fy
= Q; (u3u0 ulu’{f’ 1u2u’52 lulugl 1) mod F 4.
_
= (y (Uky Uky U Uk Uy +1U0Uo) mod Fs 4., (107.2)
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With (104.1), this implies
0= C; (Ukey Uky Uky UoUpy +1UUp) MO F3 44, (107.3)
0= C; (Upey UoUpy UoUQUE U, +1)  MOd Fg gy

The second congruence is a consequence of the first one and (105.5).
Furthermore, Theorem 87 for the first congruence, Lemma 106 and (104.5) for the
third one, give

1
0= k—(’; (T (ug) * T (Up, UoUky Ugy UoUk, ) ) mod Fj 4,
4
1 . _ _
= k—{; (u1u0 s ugupt g u uf  ugul! 1) mod F3 4.,
4
= C; (ugulg“ugulg?’*lululgrlugugrl) mod F3 4.,
= C; (U, U Uy Uy U Uy 41U ) mod Fj 4., (107.4)
and so, applying case j = 3 of (105.1),
0= C; (Upey Uy UoUOUURy Uy +1)  Od Fg gy (107.5)

Furthermore, by Theorem 87 for the first congruence and by Lemma 106 and (104.2)
for the third one, we observe

1

= k—(; (T (ug) * T (Up, UUQUky Uy U, ) mod Fs 4.4
4
1
= k—C; (u1u0 * u1ulgrlulug?’*lulugrlu?)ugl71) mod F3 4.,
4
= Q; (u2ulg4u1u§3_1u1u§2_1u3u§1_1) mod F 4.
_ f
= (, (U, UoUOUR, Uy Upy +1U0) mod Fs34,.  (107.6)

This implies, using (105.7), and (104.13) for the second congruence additionally,
0= C; (Upey Upey UoUE UoUQUE,+1) MO F3 44, (107.7)
0= C; (Upey UoUpy Uy UpUo U, +1)  MOd Fg gy
Now, (104.9), (107.4), (107.2), (107.7) yield
0= (; (Upey UoUQURy UURg Uy +1)  MOd Fg g,
0= C; (Upey Uy Upeg UoUo Uy +1Up)  Od Fg gy (107.8)

The second congruence is a consequence of the first one and (105.4). Using (107.8) and
equations (104.7) and (107.6), we see that

_f
0=¢, (Ukey Uy U U Uy Uy +1Up)  MOd Fg g4,
_f
0=¢, (Ukey WoUQ Uy Upey Uy +1)  MOA Fg gy, (107.9)

where the second congruence is implied by the first one and (104.14).



48 BENJAMIN BRINDLE

Combining (104.8), (107.3), (107.1), (107.9), we have
0= (f (Wky Uhey U WU UQURy+1) MO Fg 44, (107.10)
0= § (Upey U Uy UoUpes Uy +1Up)  MOd Fg gy

The second congruence is a consequence of the first one and case j = 2 of (105.1).
Now, (104.12), (107.10), (107.5), (103.1) give

0 _C (Uky UoUOUOUky Uy Uy +1) MO F3 4.0,

0= C (Upey Uy U Uy UpUy +1Up)  Od Fg gy (107.11)
The second congruence is a consequence of the first one and case j = 4 of (105.1)
additionally. This completes the proof of the Lemma. 0

Lemma 108. Equation (102.1) is true for ko > 1.

Proof. Let be ki, ko, k3, ky € Z~o and write w = k; + ko + k3 + k4 + 4. Note that by
Theorem 87 for the first congruence and by Lemmas 106 and 107, and equations (106.13)
and (106.2) for the third congruence, we have

1
0= k_Cg (T(Ug) *T (uklukzuoukguk4u0)) mod F374,w
1
= k—(; (muo * u2u§4 1u1u’53 1u2u’52 Yu ulgl 1) mod Fs 4.,
2
= C; (U3U§4 Muug? T ugugtugugt 1) mod F3 4.,
= qu (kg U UO Uy 41 Uk U Uy ) mod Fs 4, . (108.1)

By (104.1) and (106.15), this yields
0= C; (Ukey Uy 41Uk WUk, UoUp)  MOA Fg g4, (108.2)
leading to, by using (105.5) and then (104.13),
0 = ¢ (up, UoUpy41U0UoUR, Uk,)  mOd Fyyyp,
(ukluoukﬁlukduououm) mod Fs 4., -
Combining (104.8), (108 2), (106.14), and (106.12), we obtain
(u Uy +1 Uk UoUpUo U, ) MOd Fg gy,
0= C (Upey U0 Uy 1 U Uz Up, o) MOd Fg gy

The second congruence is a consequence of the first one and case j = 2 of (105.1).
Furthermore, combining (104.9), (108.1), (106.10), and (106.6), we obtain

0= Q (Upey Uy 41U U U Uk U, ) MOA Fg gy
0= C (Upey U Uy +1UE UoUE,Up)  Od Fg gy

The second congruence is a consequence of the first one and case j = 3 of (105.1). This
completes the proof of the lemma. O

Lemma 109. Equation (102.1) is true for ky > 1.
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Proof. Let be ky, ko, k3, ky € Z~o with k1 > 1 and write w = ki + ko + ks + kg + 3.
Using Proposition 78 for the first congruence and Lemmas 106, 107, 108 afterwards, for
all 29, 23, 24 > 0 with 2o + 23 + 24 = 3, we obtain

— f 22 z3 z4
0= (, (up, * Up,yug upsug ug,ug') mod Fs 4,

= C; (Ukey Uy UG Uy UG Uy UG") mod Fs 4, . (109.1)

Now, choose z; > 1, 29, 23, 24 > 0 with 2y +---+ 24 = 3. Then, we obtain by Theorem 87
(in case z; = 1), Corollary 28 (in case z; = 2), and (109.1),

0= C; (Usy * T (Upy Upey UG Uy UG U, UG ) ) mod Fj 4,
= C; (uzl * uz4+1u’54_1u23+1u§3_1u22+1u§2_1u1u§1_1) mod Fj 4,
= 2(Uzm1/84_IUZ3+1U'S3_luz2+1U'52‘1uzl+1u’51‘1) mod F34.
= ;(ukluéluk2u32uk3u33uk4ug4) mod Fs4, .
This completes the proof of the lemma. ]

7. CONCLUSION AND OUTLOOK
With Fil%?W ZI CF, 4y forall (z,d,w) € Z3 (the refined Bachmann Conjecture 10),

z,d,w
we gave a refinement of Bachmann’s Conjecture 4 and proved several cases. For z > d,
we gave a strategy for a general proof. Furthermore, for z < d, we were also able to
prove the cases 1 < d < 4. One can generalize our approach as described in the following
paragraph.
Approach to the refined Bachmann Conjecture 10 in case z < d. We fix positive
integers z,d,w € Z-y with z < d in the following and assume throughout the whole
paragraph that

1Z,D,W
Fil ™ 20 CFigg
for 2 < z, d< d, w < w is proven already. Note that the approach from case z > d will
not suffice for the case z < dsince S, 4 C 7, 4 in this case by Conjecture 39. Therefore, we
extend this approach as follows. Fix throughout this paragraph k = (ki,...,ks) € Z¢,
with |k| = w — z. Besides
S e = {C (Ta(un Bup)) | (n,8) € T.a} C FilZ)0V 2/

(the inclusion follows from Lemma 61), we consider

@ , (n,£)€ .4, meZ5™  [m|<len(n)+d—=,
S =3 G (T(T(Wnm) * 7(Wex))) Kezd o k2K, >1 (1<j<d), :
|m|+|k'|=s+]k|, wt(wnym)—i—wt(w&k/):w
where
L ns—1 ni—1 . lg—1 {1—1
Wom = Um, U™ < U Uy, Wesr = Uy’ -t

Remark 110. Note that we have SS;k C Sgik forall z,d € Z with 2 < dand k € Z2,,.
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Furthermore, we consider

€s/ 41

S = {Cé (“o(anSl'“Ua(ks/)USs'*Ua(k/ )Y "'uowd)“gd)

o€y, 1<s'<d—1,
e:(elv---ved)ezgov‘elzz )

where Sk is the set of permutations on {k; | 1 < j < d}.
Similarly to the proof of Lemma 61, we can show the following.

Lemma 111. Fiz z,d,w € Z~o. For all (n,0) € J.4, k, k' € Z¢,, and m € 7,
where s = len(n), satisfying k| = w — z, |rn| <len(n) +d—z and k; > k; > 1 for
alll <j<d, m|+|K|=s+ k|, wt(Wp, m) + wt(Wew ) = w, we have

G (T (T (Wnm) % T(Wero))) € > FZDN 2]
1<s’'<s
In particular, we have S dx C F.aw
Let us consider an example for illustration of Lemma 111.

Example 112. Denote w = k| + k} + kj + 2 in the following and choose

n=(1), m=(2), £=(1,1,1), k' =K, Kk, k) €Z,
in the notation of Lemma 111. First, we see that Wy m * W = ug * Uk Upy Ukl € F,
where F = Filg,’fqiuw QU)° + Fil? 3]?13]\]1 Q(U)°. Furthermore, we have

7(7(ug) * T(ukrlukéukrg))
( ky—1  kL—1 k’—1>
=T | UrUg * Ul U1l U Ug

K, K-l k- K—1 Ky k-1
ET(kéU2U03U1U02 w4 Kyuau u P ug v

11 K, K- N |
+k‘2u1u0 U Uy U Uy +k1u2u03 uruy® Uy

+k’1u1u’33‘1u2u’55‘1u1 + kiululgrlululgé_luzugi) mod F
= k‘éukll Uk/2 ukg+1U0 + kéukll uk/2+1uk§ Uug + kéukll uk/2+1u0uké
A KUy 1 U Uy U0 Ry Uk 41 Ugg Vo Uk + B Ugr 1 oty U, mod F.
Hence,
éCf (Uk’ (1 Uk’+1u0) + k’éCf (Uk' Uk'2+1ukguo) + /flzgf (Uk/ Uk'+1uoukg)
+ k C (Uk’ 1 Ukt Ut Uo) + K C (uk’1+1uk/2uouk§) + K] C (Uk/ 1U0Uk’2ng) €Fasw-

Compared to the linear combinations in Sila)lk, it stands out that the latter linear
combination is not a linear combination of words with the same multiplicity and the same
non-ug letters in the same order. Nevertheless, all occurring words wg, ug" wk, wg Uk, UG’

3
satisfy k; >k and Y (k; — k) =1=|m| —s=d - z.
j=1

Furthermore, we have the following.
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Lemma 113. Fix z,d,w € Z~o with z < d and assume that Filfiz}x, Zg C Fogu is
proven already for 2’ < z, d < d, w' < w. Then, for every index k = (ki,...,kq) € 22,

and for all permutations o on {ky,...,kq}, 1 < <d—1, and e = (e1,...,€q) € Z%o
satisfying |e| = z, we have

€y 41

f el €/ ed
¢ (ua(m)% U (k)UK Uo(ly ) Uo "'uo(Wo) SH

- (3)
In particular, we have S, 3y C F. g

With the proofs of Theorems 8 and 12, we gave evidence for the following conjecture
for d < 4.

Conjecture 114. Fix z,d,w € Z~y with z < d and assume that Filf,’z;’\z, Z({ CFuaw
is proven already for all 2/ < z, d' < d, w' < w. Then, for every k = (ky,..., kq) € Z¢,
and for every word W = ug,ug' - - - ug,ug’ € U° satisfying zero(W) = z, depth(W) = d,

and wt(W) = w, we have
¢, (W) € spang, <S£27k U Sfik) +F. a0 CFaw- (114.1)
In particular, then we have Fili’?,;jv ZI CF.guw.

Remark 115. Note that the inclusion in (114.1) follows from Lemmas 111 and 113.

Remark 116. We can refine our approach to Conjecture 114 as follows. First, we will
use for k € Z2, satisfying #{k; > 1} > d — z the linear combinations from Sgik only to
show (114.1). For the remaining cases, we then may assume without loss of generality
that #{k; = 1} > 2z and use both, nghk and Sg’k to prove (114.1). More precise, we
consider the cases of j, := #{k; = 1} with increasing j, > z. The intuitive reason for
this is that, for given jy, on the one hand we may assume that the cases for smaller values
of jo are proven, making the linear combinations from Sgik easier to handle since parts
of them are in F, 4,, already. On the other hand, the more entries of k are the same (for
our purposes: one), the less formal Multiple Zeta Values of different words occur in the
linear combinations from S gk

Conclusion. For z < d, our strategy also works in the small cases 1 < d < 4 as shown,
but there is still much to do for the general proof. More concretely, we conclude with
the following open questions:

(i) How can one prove Conjecture 39 in general?
(ii) Conjecturally, Conjecture 39 can be proven via induction on z, d, or z + d.
(iii) Regarding Conjecture 39, we conjecturally have 3,4 = 34, for all z,d € Z-,.
Can one prove this equality?
(iv) How to prove Conjecture 47 in general?

(v) How can one prove Fili’?ﬁv Zg C F, 4. for z < d in general?
(vi) Similar to Proposition 21, our approach for showing Fili’?ﬁv Z({ C Foqw is
suitable to obtain for all words W € U*° an explicit formula C; (W) = C; (L),

where £ is a linear combination of products of elements in Zg ©. With some
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engagement following our calculations, this already can be done now for all
words W € U™° satisfying zero(W) + depth(W) < 6. What do they look like?
Can one find some systematics such that one can derive such formulas also
for zero(W) + depth(W) > 6 (which would prove Bachmann’s Conjecture 4 in
particular)?
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The numerical calculations in the paper were done using Python. In this appendix,
the original source code is presented.

APPENDIX A. COMPUTATIONS REGARDING LEMMA 42

A.1. Setup and basic functions. We begin with the required packages.

import numpy as np

import itertools

import math

from ast import literal_eval

The first definitions were elementary for the main calculations.

Function 117. The function d(z,d,s) returns (igl) for z,d, s € Z~o with s < z < d,
which is conjecturally 3, 4 (see Conjecture 63).

def d(z,d,s):
if (z <= d) and (s <= z):
return(math.comb(z+d-1,z-s8))
elif (z <= d) and (s > z):
return (0)

Function 118. The function part(r,s) returns the list of all ordered partitions of r
into exactly s non-negative integers.
def part(r,s):
if s<=0:
return ([[]1])
else:
P = []
for S in set(itertools.combinations(range(r+s-1), s-1)):
p = (1
I = [-1] + 1list(8) + [r+s-1]
for i in range(len(I)):
if i > 0:
p.append (I[i]-I[i-1]1-1)
P.append (p)
return (P)

Function 119. The function ppart(r,s) returns the list all ordered partitions into
exactly s positive integers.
def ppart(r,s):

if s<=0 or r<s:

return ([[]1])

else:
P =[]
for p in part(r-s,s):
qQ = P
for j in range(len(p)):



1
2
3
4
5

54 BENJAMIN BRINDLE

qljl += 1
P.append (q)
P.sort ()
return (P)

Function 120. The function Indices(z,d) returns the list of all indices p € Z%,
with |p| = 2z + d.

def Indices(z,d):
if z==
return ([d*x[1]])
else:
I =[]
for index in Indices(z-1,d):
for k in range(d):
indi = index[:k] + [index[k]+1] + index[k+1:]
if indi not in I:
I.append(indi)
I.sort ()
return(I)

A.2. The box product. In this section, we implement the box product as linear
combination of words u, € (U\{up})". Furthermore, for a set of box products, we
implement the adjacency matrix whichs rows will correspond to the linear combinations
and the columns to the words u,, i.e., the entries are the coefficient of a word in a linear
combination of box products.

We begin with the box product.

Function 121. The function box (index1, index2) returns uindex1®Uindex? as follows.
It returns a dictionary D containing as keys the indices ind satisfying that w4 occurs
in the box product ujpgex1 ® Uindex2 With multiplicity # 0; the value D[ind] then is
the multiplicity of uinq in Uindex1 ® Yindex?2-

def box(indexl,index2):

D = {}

s = len(index1)

d = len(index2)

if s>d:
return (D)

elif index1l == []:
D[lstr(index2)] = 1

else:

for S in set(itertools.combinations(range(d), s)):
L = list(8)
L.sort ()
ind = []
for k in range(d):
if k in L:
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ind.append (index2[k]+index1[L.index(k)])
else:
ind.append (index2 [k])
D[str(ind)] = 1
return (D)

Based on box, we introduce the following function representing uindex1 ® %index?2

as dictionary D with keys ind € Z

1en(1ndex2)’ satisfying

|ind| = |index1| + |index2|,

and with D[ind] being the multiplicity of ujpq in the box product uipngex1 ® Uindex?2-

def

16

BOX (index1 , index?2) :
s = len(index1)

d = len(index2)

z = sum(indexl)+sum(index2)-d

I = Indices(z,d)

D = {}

for ind in I:
D[str(ind)] = 0

if 8>d or sum(indexl)+sum(index2) != z+d:
return (D)

elif index1l == [] and sum(index2) == z+d:
D[str(index2)] = 1

else:

for ind in box(indexl, index2):
D[ind] = box(indexl,index2) [ind]
return (D)

Let us consider an example to see the difference between the functions box and BOX.

Example 122. We have

U B U1U1U = U3U U + U U3U] + UL UL US.

Now, box([2],[1,1,1]) returns
{3, 1, 11°: 1, °[1, 3, 11°: 1, °[1, 1, 3]°: 1}
and BOX([2],[1,1,1]) returns
{01, 1, 31°: 1,
2 [1, 2, 2]°: O,
3 [1, 3, 1]°: 1,
4 [2, 1, 21°: 0,
5 °[2, 2, 1]’: 0,
6 °[3, 1, 11°: 1}.
A.3. Dimension of spaces spanned by box products. We considered in the paper

the dimension of spaces spanned by several box products (in particular, S, ;). Numerically,
we will obtain such dimensions as the rank of the coefficient matrix of the box products
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that span the space we consider, interpreted as linear combination of words u, €
(U\{up})". For this, we introduce the function MATR.

Function 123. The function Dim(P) takes a list P of box products, given in shape
of BOX (index1,index2), and returns the dimension of the space they span. This is done
via computing the rank of the coefficient matrix (as list of lists) of these box products
with rows corresponding to the box products, columns corresponding to the coefficient

of words u, € (U\{uo})"

def Dim(P):
M = []
for prod in P:
I=1

for index in prod:
I.append(prod[index])
M. append (I)
rk = np.linalg.matrix_rank (M)
return (rk)

A4, BTEX-Output. We will consider subspaces of S, ; for several z,d € Z~(. Usually,
we skip the cases of z = 1 or d = 1 since we already know the dimension of the
corresponding subspace in these cases. The function MatLatex produces the IXTEX-code
of a table in which we collect our calculations.

Function 124. The function MatLatex (M, cap) gives the I¥TEX-code of the table with
caption cap and three entries in each cell. Here, M is a list of lists with four entries each.
They are all of shape

[z, d,rk, dim],

where z defines the column, d defines the row, rk is the (numerical) dimension of the
subspace of 8., we consider, while dim is the corresponding conjectured dimension
cach. Every cell consists of two numbers, where the first one in black is the (numerically
obtained) dimension of the subspace of S, ; we consider and the second number is in
blue the conjectured dimension of the subspace of S, ; we consider.

def MatLatex(M,cap):

dmin = M[0] [0]

dmax = M[-1][0]

zmin = M[0] [1]

zmax = M[-1][1]

B = "\\begin{figure}[h]\n \\centering\n \\caption{"+cap+"X}\n \\
begin{tabular}{|" + "c|".join("" for j in range(zmin,zmax+2)) + "c
[}\n \\hline\n"

E = "\\end{tabular}\n \\end{figurel}"

newM = (dmax - dmin + 1)*[(zmax - zmin + 1)*["&-"]]

S = "d$\\backslash$ z&" + "&".join(str(j) for j in range(zmin, zmax

+1)) + "\\\\ \\hline\n"

for result in M:
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helpstr = "&" + str(result[2]) + "\\ \\textcolor{bluel}{"+str(
result [3])+"}

dact = result[0] - dmin

zact = result[1] - zmin

rowact = newM[dact]

newM = newM[:(result[0] - dmin)] + [rowact[:zact] + [helpstr] +
rowact [zact+1:]] + newM[(result [0] - dmin+1) :]
for j in range(dmax - dmin + 1):

S =S + str(dmin + j)
for k in range (zmax-zmin+1):
S =S + newM[j][k]
S = S + "\\\\ \\hline\n"
return (B+S+E)

Next, we produce the function giving the desired table for the dimension of S, 45 ..
for some s, and 2 < z,d up to an upper bound we declare in the input.

Function 125. Choosing zmax,dmaz,smin € Z-q, the following function returns
the tabular according to Function 124 where in black the computed dimension of the
space S.maz dmaz,smin 15 displayed, while in blue the conjectured dimension (coming from
Conjecture 63) appears.

def Tabular (zmax,dmax,smin):
M = []
for z in range(2,zmax+1):
for d in range(2,dmax+1):
P = []
for k in range(smin,min(d,z)+1):
S = ppart(d+z,d+k)
for partition in S:
P.append (BOX(partition[:k],partition[k:]))
rk = Dim(P)
M.append ([d,z,rk,d(z,d,smin)])

if smin != 1:

cap = "Dimension of $\\mathcal{S}_{z,d,"+str(smin)+"}$."
else:

cap = "Dimension of $\\mathcal{S}_{z,d}$."

return (MatLatex (M, cap))

A.5. Results. In the following, we present several results of our calculations. Recall
that every cell of the following tables consists of two numbers, where the first one in
black is the (numerically obtained) dimension of the subspace of 8, ,; we consider and
the second number is in blue the conjectured dimension from Conjecture 63.

Remark 126. (i) Using Tabular(8,8,1), we obtain that Conjecture 63 is true
for 2 <z <d < 8and sy, =1, i.e., Conjecture 39 is true for z,d < 8:



58 BENJAMIN BRINDLE

FIGURE 1. Dimension of S, 4.

ANzl 2] 3 4 5 6 7 8
2 [33] - - - - - -
3 [44[1010] - - - - -
4 [55[1515| 3535 - - - -
5 |66|2121| 5656 |126 126 - - -
6 |77|2828] 8484 |210210| 462 462 - -
7 883636120 120 | 330 330 | 792 792 | 1716 1716 -
8 994545 | 165 165 | 495 495 | 1287 1287 | 3003 3003 | 6435 6435

(ii) Using Tabular(8,8,2), we obtain that Conjecture 63 is true for 2 < 2 <d <8
and Spip = 2:

FIGURE 2. Dimension of S, 4.

d\Nz] 2 | 3 1 5 6 7 8
2 (11| - - - - - -
3 [11] 55 | - - - - -
4 [11] 66 |2121| - - - -
5 |11] 77 |2828] 8434 - - -
6 |11| 88 |3636]120 120 330 330 - -
7 |11] 99 |4545 165 165 | 495 495 | 1287 1287 -
8 [11]1010 5555|220 220 | 715 715 | 2002 2002 | 5005 5005

(iii) Using Tabular(8,8,3), we obtain that Conjecture 63 is true for 2 < z < d < 8
and Spip = 3:

FIGURE 3. Dimension of S, 43.

d\z] 2 ]3] 4 5 6 7 8
2 00| - | - - - - -
3 [00|11] - - - - -
4 (oo0[t1] 77 | - - - -
5 |00[11] 88 3636 - - -
6 |00[11| 99 |4545|165 165 - -
7 |00[11[1010]55055]220220| 715715 -
8 00|11 |1111|66066|286 286 | 1001 1001 | 3003 3003

(iv) Using Tabular(8,8,4), we obtain that Conjecture 63 is true for 2 < 2 < d <8
and Sy, = 4:
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FIGURE 4. Dimension of S, 44.

ANz 234 5 6 7 8
2 [00] - | - | - - - -
3 100(00] - | - - - -
4 [00l00|11] - - - -
5 [00/00[11] 99 | - - -
6 [00/00]|11][1010(5555]| - -
7 (000011111166 66| 286 286 -
8 [00]00]| 1112127878364 3641365 1365

(v) Using Tabular(8,8,5), we obtain that Conjecture 63 is true for 2 < z < d < 8
and Spip = 5

FIGURE 5. Dimension of S, 5.

2 3 4 5 6 7 8
00| - - - - - -
00(00| -
00|]00(00]| - - - -
00({00(00|11 - - -
00(00|0O0 111111 - -
000000111212 |7878 -
00|{00(00|11|1313|9191 455455

N

Co| | O O x| Wo| DO|—

(vi) Using Tabular(8,8,6), we obtain that Conjecture 63 is true for 2 < z < d <8
and Spip = 6:

FIGURE 6. Dimension of S, 4.
2 3 4 5) 6 7 8
00| - - - - - -
00|00 - - - - -
00|{00]00]| - - - -
00[{00]00]00]| - - -
00|00j00|00(|11 - -
00j00j00|00|1T1]1313 -
00[{00]00|00|11|1414]105105

N

Co| ~J| | U1 x| Lo| DO|—

(vii) Using Tabular(8,8,7), we obtain that Conjecture 63 is true for 2 < z < d < 8
and Sy, = 7:
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FIGURE 7. Dimension of S, 47.

ANz[ 23 [4[5][6]7] 8
2 100] - | - | -1-]-1-
3 00/00] - | -] -1-1 -
4 [o0][00f00] - | - | -] -
5 100(00/00[00]| - | - | -
6 |00/00/00[00(00] - | -
7 100[00/00[00(00[11]| -
8 100[00/00[00[00[11]1515

(viii) Using Tabular(8,8,8), we obtain that Conjecture 63 is true for 2 < z <d <8
and Sy, = 8:

FIGURE 8. Dimension of S, 45.

2 3 4 5) 6 7 8
00| - - - - - -
00(00]| -
0000|0000 - - - -
00(00j00|00| - - -
00(00]00(00(0O0| - -
00(00]00(00|00|00 | -
00|00]00|00|00|00|11

N

oo| 3| | U1 x| Wo| DO|—

APPENDIX B. COMPUTATIONS REGARDING LEMMA 48

B.1. Setup and basic functions. We use the same setup as in Section A.1 and the
functions part and ppart from there.

B.2. Stuffle product and box product. We define the stuffle product on index level
and call the function stuffleprod.

Function 127. For indices L1 and L2 (input as lists), the function stuffleprod(L1,L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
stuffle product L1 % L2.

| def stuffleprod(L1l,L2):
2 if len(L1) == 0:

3 return ([L2])
| elif len(L2) == 0:
5

return ([L1])

6 L =[]

for L3 in stuffleprod(L1[1:],L2):
L.append ([L1[0]]+L3)

for L3 in stuffleprod(L1,L2[1:]):

o
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L.append ([L2[0]]1+L3)

for L3 in stuffleprod(L1[1:],L2[1:]):
L.append ([L1[0]+L2[0]]+L3)

return (L)

Furthermore, we define the box product on index level and call the function boxprod.

Function 128. For two indices L1 and L2 (input as lists), the function boxprod(L1,L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
box product L1 % L2.

def boxprod(L1,L2):

s = len(L1)
d = len(L2)
if s>d:
return ([])
elif s==0:
return ([L2])
L =[]

for L3 in boxprod(L1[1:],L2[1:]):
L.append ([L1[0]+L2[0]1]1+L3)

for L3 in boxprod(L1,L2[1:]):
L.append ([L2[0]]1+L3)

return (L)

B.3. The numbers dimgspang K, 4. First, we implement for given 1 < z < d the

conjectured dimension of spang K, 4. Following Conjecture 39, (42.1), and (42.2), this

number is
L (z+d—1
. 128.1
> (100 1)

Jj=2

Function 129. For z,d € Z-(, with z < d, the function kerneldimconj returns the
conjectured dimension of spang K. 4, which is given by (128.1).

def kerneldimconj(z,d):
S =0
for j in range(d+1,z+d):
S = S + math.comb(z+d-1,j)
return(S)

The next function returns for given 1 < z < d the number dimg spang K..a.

Function 130. Let be z,d € Z~y with z < d. The function kerneldim(z,d) returns
the number dimg spang K, 4 via computing ranks of matrices.

def kerneldim(z,d):
Rel = []
for s in range(d+2,z+d+1):
for partition in ppart(z+d,s):
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5 for t in range(d+1,s):
6 Mind = partition[t:]
7 Lind = partition[:d]
8 Nind = partition[d:t]
9 D = {}
10 for s in range(d+1,z+d+1):

11 for ppartition in ppart(z+d,s):

12 D[str(ppartition)] = O

13 for P in boxprod(Mind,Lind) :

14 D[str(Nind+P)] = D[str(Nind+P)] + 1
15 for P in stuffleprod(Nind,Mind):

16 D[str(P+Lind)] = D[str(P+Lind)] - 1
17 R = []

18 for key in D:

19 R.append (D [key])

20 Rel.append (R)

21 return(np.linalg.matrix_rank (Rel))

B.4. Results. Via

I for d in range(2,9):
2 for z in range(2,d+1):
3 print(z,d, (kerneldim(z,d) ,kerneldimconj(z,d)))

we obtain in the following in each row four entries, the first one corresponding to z,
the second to d, the third to the numerical result for dimg spang K, 4, and the fourth is
the value we expect for dimg spang K, 4:

(1,
(1,
(6,
(1,
(7,
(29,
(1,
(8,

N

1)
1)
6)
1)
7)
29)
1)
8)

O W NN =

~N O O WNO O WN OO WD WD WNN
N NN NN N0 00O DWW

37,

(130,

(1,
9,
(46,

(176,
(562,

(1,
(10,
(56,

(232,
(794,
(2380,

37)
130)

1)

9)

46)
176)
562)

1)

10)

56)
232)
794)

2380)
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28 (1, 1

3 8 (11, 11)

4 8 (67, 67)

5 8 (299, 299)

6 8 (1093, 1093)
7 8 (3473, 3473)
8 8 (9949, 9949)

Remark 131. Regarding our results, Lemma 48 is proven.
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