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Abstract. In 2015, Bachmann [Bac15] conjectured that the Q-vector space Zf
q of

(formal) q-analogues of Multiple Zeta Values (qMZVs) is spanned by a very particular
set compared to known spanning sets. In this work, we prove that this conjecture is
true for a subspace of Zf

q spanned by words satisfying some condition on their number
of zeros and depth. According to this partial result, we give an explicit approach to the
whole conjecture, based on particular Q-linear relations among formal Multiple q-Zeta
Values which are implied by duality.

1. Introduction

Given a field F and a countable set A, we call A also an alphabet and elements of A
are referred to as letters. Denote by spanF A the F -vector space spanned by elements
of A. Furthermore, monomials of elements in A (with respect to concatenation) are
called words. Usually, the neutral element with respect to concatenation is denoted by 1
and called the empty word. Let A∗ denote the set of words with letters in A, then we
write F ⟨A⟩ for the F -vector space spanF A∗, equipped with the non-commutative, but
associative multiplication, given by concatenation.

Choosing F = Q and A = U := {uj | j ∈ Z≥0}, we define the stuffle product to be
the Q-bilinear map ∗ : Q⟨U⟩ ×Q⟨U⟩ → Q⟨U⟩ recursively via

uj1W1 ∗ uj2W2 = uj1(W1 ∗ uj2W2) + uj2(uj1W1 ∗ W2) + uj1+j2(W1 ∗ W2)
for all j1, j2 ∈ Z≥0 and W1, W2 ∈ U∗ with initial condition 1∗W = W∗1 = W for any W ∈ U∗.
By Hoffman ([Hof00]), (Q⟨U⟩, ∗) is an associative and commutative Q-algebra. For a
word W = uk1 · · ·ukr ∈ U∗, we often write uk (u∅ := 1), where k = (k1, . . . , kr), and
associate the notion of

length, len(W) := len(k) := r,

depth, depth(W) := depth(k) := #{kj ̸= 0 | 1 ≤ j ≤ r},
number of zeros, zero(W) := zero(k) := #{kj = 0 | 1 ≤ j ≤ r},

weight, wt(W) := wt(k) := |k|+ zero(W),

where |k| := k1+· · ·+kr. Furthermore, we denote U∗,◦ := U∗\u0U∗ to be the set of words
not starting with u0 and we define the corresponding Q-vector space Q⟨U⟩◦ ⊂ Q⟨U⟩
spanned by the words from U∗,◦. Note that Q⟨U⟩◦ is closed under ∗ which gives rise to
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a commutative Q-algebra (Q⟨U⟩◦, ∗) (see [Hof00]). The map ζSZq : (Q⟨U⟩◦, ∗) → (QJqK, ·)
is the Q-algebra homomorphism (see [HI17]) defined via ζSZq (1) = 1, Q-linearity, and,
with md+1 := 0,

ζSZq (uk1u
z1
0 · · ·ukdu

zd
0 ) :=

∑
m1>···>md>0

d∏
j=1

(
mj −mj+1 − 1

zj

)
qmjkj

(1− qmj)kj
, (0.1)

for any k1, . . . , kd ∈ Z>0 and z1, . . . , zd ∈ Z≥0 where d ∈ Z>0 (note that this definition is
not the usual one, like in [Sin15], but equivalent to it; this statement can be deduced,
e.g., from [Bri24, Theorem 2.18]). We denote by Zq the image of ζSZq and call elements
in Zq (Schlesinger–Zudilin) qMZVs ((SZ-)qMZVs for short). Note that these q-series
are q-analogues of Multiple Zeta Values since in the case k1 ≥ 2 and z1 = · · · = zd = 0,
we have

lim
q→1

(1− q)k1+···+kdζSZq (uk1 · · ·ukd) = ζ(uk1 · · ·ukd) :=
∑

m1>···>md>0

1

mk1
1 · · ·mkd

d

.

But in this work, we focus purely on the algebraic structure of (SZ-)qMZVs and do
not consider its implication for classical Multiple Zeta Values. Over the years, several
versions of qMZVs were introduced (see, e.g., [Sch01, OOZ12, Zud15, Bac19, BK20]);
for an overview, see [Bri24]. Because of Conjecture 1 and since the q-series on the
right of (0.1) is invariant under the Q-linear involution τ : Q⟨U⟩◦ → Q⟨U⟩◦, defined
by τ(1) := 1 and

τ (uk1u
z1
0 · · ·ukdu

zd
0 ) := uzd+1u

kd−1
0 · · ·uz1+1u

k1−1
0

for all d ∈ Z>0, k1, . . . , kd ≥ 1, and z1, . . . , zd ≥ 0 (see [Zha20, Theorem 8.3]), we will
consider the algebra of formal qMZVs,

Zf
q := (Q⟨U⟩◦, ∗)⧸T ,

where T is the ∗-ideal in Q⟨U⟩◦ generated by {τ(W)− W | W ∈ Q⟨U⟩◦}. For W ∈ Q⟨U⟩◦, we
set ζ fq (W) to be the congruence class of W in Zf

q . Note that depth and weight are invariant
under τ while the number of zeros generally is not. Furthermore, playing with τ and the
stuffle product ∗, one obtains non-trivial Q-linear relations among formal qMZVs. The
following folklore conjecture (see [Bac14]; a published version can be found in [Zud15,
Conjecture 1]) states the expectation of how the Q-linear relations among SZ-qMZVs
look like.

Conjecture 1 (Bachmann). All Q-linear relations among elements in Zq are obtained
by the stuffle product ∗ and duality τ .

I.e., one expects Zq ≃ Zf
q . We will consider in this paper only Q-linear relations in Zf

q

which are implied by

ζ fq (W1 ∗ (W2 − τ(W2))) = 0 (1.1)

for any words W1, W2 ∈ U∗,◦. For investigating Zf
q in more detail, we need the following

notion of filtrations.
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Notation 2. (i) For every (N, op) ∈ {(Z, zero), (D, depth), (W,wt)}, n ∈ Z, and
sets S ⊂ Q⟨U⟩◦, S ′ ⊂ Zf

q , write

FilNn S := spanQ {W ∈ U∗,◦ | op(W) ≤ n} ∩ S,
FilNn S ′ := spanQ

{
ζ fq (W) ∈ Zf

q | W ∈ U∗,◦, op(W) ≤ n
}
∩ S ′

for the filtration by number of zeros (if N = Z), depth (if N = D), and
weight (if N = W) respectively on S and S ′ respectively.

(ii) For S ⊂ Q⟨U⟩◦ or S ⊂ Zf
q , N1, . . . ,Nm ∈ {Z,D,W}, where m ∈ Z>0, and for

integers n1, . . . , nm ∈ Z, we abbreviate

FilN1,...,Nm
n1,...,nm

S :=
m⋂
j=1

FilNj
nj

S.

The following particular filtration will play a main role in this paper.

Definition 3. We define

Zf,◦
q := FilZ0 Zf

q .

At this point, note that

FilZ,D,W
z,d,w Q⟨U⟩◦ ∗ FilZ,D,W

z′,d′,w′ Q⟨U⟩◦ ⊂ FilZ,D,W
z+z′,d+d′,w+w′ Q⟨U⟩◦ (3.1)

and

τ
(
FilZ,D,W

z,d,w Q⟨U⟩◦
)
= FilZ,D,W

w−z−d,d,w Q⟨U⟩◦ (3.2)

for all z, z′, d, d′, w, w′ ∈ Z. Hence, considering (1.1), W1 ∗ W2 and W1 ∗ τ(W2) are, in
general, in different filtrations of Q⟨U⟩◦ regarding the number of zeros since we have,
in general z ̸= w − z − d. Therefore, for given W ∈ U∗,◦, it is difficult to find the
minimal z ∈ Z≥0 such that ζ fq (W) ∈ FilZz Zf

q .
Let us consider a small example of how we use Q-linear relations of shape (1.1) to

obtain that, e.g., ζ fq (W) ∈ Zf,◦
q for W = u2u0 ∈ U∗,◦. First, we note that

u2u0 = u1 ∗ u1u0 − 2u1u1u0 − u1u1 − u1u0u1.

Now,

0 = ζ fq (u1 ∗ (u1u0 − τ(u1u0)))− 2ζ fq (1 ∗ (u1u1u0 − τ(u1u1u0)))

− ζ fq (1 ∗ (u1u0u1 − τ(u1u0u1)))

= ζ fq (u1 ∗ u1u0)− ζ fq (u1 ∗ u2)− 2ζ fq (u1u1u0) + 2ζ fq (u2u1)

− ζ fq (u1u0u1) + ζ fq (u1u2) ,

and so,

ζ fq (u2u0) = ζ fq (u1 ∗ u2)− 2ζ fq (u2u1)− ζ fq (u1u1)− ζ fq (u1u2) (3.3)

= ζ fq (u1u2) + ζ fq (u3)− ζ fq (u2u1)− ζ fq (u1u1)− ζ fq (u1u2) ∈ Zf,◦
q .

That formal qMZVs are in Zf,◦
q already is not just a coincidence, as the following

conjecture shows.
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Conjecture 4 (Bachmann, [Bac19, Conjecture 3.9]). For all z, d, w ∈ Z>0, we have

FilZ,D,W
z,d,w Zf

q ⊂ FilD,W
z+d,w Zf,◦

q . (4.1)

In particular, we have Zf
q = Zf,◦

q .

We say that Bachmann’s Conjecture 4 is true for (z0, d0, w0) ∈ Z3
>0 if (4.1) is true

for (z, d, w) = (z0, d0, w0).
Partial results already exist; we will collect them in the following.

Theorem 5. (i) By Bachmann ([Bac19, Proposition 4.4]), Bachmann’s Conjecture 4
is true for all (z, 1, w) ∈ Z3

>0.
(ii) also by Bachmann ([Bac19, Proposition 5.9]), Bachmann’s Conjecture 4 is true

for all (1, 2, w) ∈ Z3
>0.

(iii) by Vleeshouwers ([Vle20, Theorem 5.3]), Bachmann’s Conjecture 4 is true for
all (z, 2, w) ∈ Z3

>0 with some parity condition on w,
(iv) and by Burmester ([Bur22, Theorem 6.4]), Bachmann’s Conjecture 4 is true for

all (1, d, w) ∈ Z3
>0.

While the proofs of (i)–(iii) are mainly based on generating series of the corresponding q-
series, the proof of (iv) uses the stuffle product and duality relations. Using relations
among formal Multiple Zeta Values of shape (1.1) only suffices to prove the following
theorem.

Theorem 6 (Theorem 26). Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0, and consider

integers 1 ≤ j1 ≤ j2 ≤ d. Deconcatenate k as

k(1;j1) = (k1, . . . , kj1), k(j1+1;j2) = (kj1+1, . . . , kj2), k(j2+1;d) = (kj2+1, . . . , kd).

We have

ζ fq

(
uk(1;j1)

(
uk(j1+1;j2)

∗ uk(j2+1;d)
uz
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k|+ z.

Remark 7. (i) Theorem 6 is a generalization of Bachmann’s Theorem [Bac19,
Proposition 4.4] via the case d = 1. We have already seen the proof for an
example of this theorem using our methods in (3.3). We will generalize this
approach in Proposition 21 to generalize Bachmann’s Theorem 5(i).

(ii) Note that Theorem 6 also generalizes Burmester’s Theorem [Bur22, Theorem 6.4]
via considering the special cases z = 1. For details, we refer to Corollary 28.

Extending our methods of playing with relations of shape (1.1), we observe the following
theorem.

Theorem 8 (Theorem 80). Bachmann’s Conjecture 4 is true for all (z, d, w) ∈ Z3
>0

with z + d ≤ 6.

In this paper, we will use duality and the stuffle product only for an approach to
write ζ fq (W) for every W ∈ U∗,◦ satisfying zero(W) ≥ 1 as linear combination of ζ fq (W

′)’s
with zero(W′) < zero(W) and W′ ∈ U∗,◦. We need the following notion of Fz,d,w for this.
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Definition 9. For z, d, w ∈ Z>0, we define

Fz,d,w := FilZ,D,W
z,d,w−1 Z

f
q +

∑
z′+d′=z+d−1

0≤z′≤z

FilZ,D,W
z′,d′,w Zf

q .

In this paper, our main approach towards Bachmann’s Conjecture 4 is to strengthen
the conjecture as follows and then to investigate the strengthened version for obtaining
results like Theorem 8.

Conjecture 10 (Refined Bachmann Conjecture). For all z, d, w ∈ Z>0, we have

FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w . (10.1)

We say that the refined Bachmann Conjecture 10 is true for (z0, d0, w0) ∈ Z3
>0, if (10.1)

is true for (z, d, w) = (z0, d0, w0).

Lemma 11 (Lemma 73). Fix z, d, w ∈ Z>0. If the refined Bachmann Conjecture 10
is true for (z, d, w) and if Bachmann’s Conjecture 4 is true for all (z′, d′, w′) ∈ Z3

>0

with z′ + d′ + w′ < z + d + w, then Bachmann’s Conjecture 4 is true for (z, d, w). In
particular, the refined Bachmann Conjecture 10 implies Bachmann’s Conjecture 4.

To study the refined Bachmann Conjecture 10, we will introduce the box product
(see Definition 15) that provides a connection to the stuffle product (see Lemma 61)
and allows us to refine the refined Bachmann Conjecture 10 for z ≥ d again (see
Conjecture 39). In this way, we obtain another particular result towards the refined
Bachmann Conjecture 10.

Theorem 12 (Theorem 81). The refined Bachmann Conjecture 10 is true for all triples
of positive integers (z, d, w) ∈ Z3

>0 with 1 ≤ d ≤ 4.

Theorem 12 will follow mainly using Theorem 8 and the investigation of the box
product from Section 4. Furthermore, Theorem 12 is a strong statement since - together
with some more results of this paper - now, Bachmann’s Conjecture 4 is almost proven
for z + d ≤ 7 as well: Namely, following Lemma 11, it remains to prove the refined
Bachmann Conjecture 10 for triples of shape (2, 5, w) ∈ Z3

>0.
All our main results (and those implied by the box product) are based on Q-linear

relations of shape (1.1) only. Following our approach to a general proof of the refined
Bachmann Conjecture 10 (and so of Bachmann’s Conjecture 4 too), described in Section 5,
it is conjecturally possible to prove the refined Bachmann Conjecture 10 using Q-linear
relations of shape (1.1) only. Based on our results, it seems that this approach works.
Furthermore, our explicit approach has the advantage that it is (compared to other
approaches) easy to obtain explicit formulas for ζ fq (W) (with W ∈ U∗,◦) as element

of Zf,◦
q . Proposition 21, for example, contains such an explicit formula. Nevertheless,

the explicitness limits this method in the sense that the larger z + d is in the refined
Bachmann Conjecture 10, the more confusing the Q-linear relations (1.1), one needs to
consider following our approach, become.
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Organization of the paper. Section 2 contains the introduction of the box product
mentioned. Section 3 contains generalizations of theorems by Bachmann and Burmester
concerning the refined Bachmann Conjecture 10, like Theorem 6. In Section 4, we
will investigate the box product and consider its connection to the stuffle product.
Furthermore, Section 5 contains the rough description of our approach to the refined
Bachmann Conjecture 10. Using the approach from Section 5, in Section 6, we prove
new partial results towards Bachmann’s Conjecture 4. Particularly, there, we will provide
proofs for Theorems 8 and 12. Last, Section 7 ends the paper with some open questions
and a rough generalization of our calculations from Section 6.

Acknowledgements. The author thanks Henrik Bachmann, Annika Burmester, Jan-
Willem van Ittersum, and Ulf Kühn for valuable discussions and helpful comments on
this paper.

2. Introduction of the box product

In this section, we introduce the box product and consider elementary properties.
First, we briefly remark on a property of the stuffle product in the following proposition.

Proposition 13. Let be W1, W2 ∈ U∗,◦ and write

z = zero(τ(W1)) + zero(τ(W2)), d1 = depth(W1), d2 = depth(W2), w = wt(W1) + wt(W2).

Then, for 0 ≤ s ≤ min{d1, d2}, there are uniquely determined

Lmax{d1,d2}+s ∈ spanQ {W ∈ U∗,◦ | depth(W) = max{d1, d2}+ s}
such that

W1 ∗ W2 =
min{d1,d2}∑

s=0

Lmax{d1,d2}+s.

Furthermore, for all 0 ≤ s ≤ min{d1, d2}, we have

τ
(
Lmax{d1,d2}+s

)
∈ FilZ,D,W

z−s,max{d1,d2}+s,w Q⟨U⟩◦.

In particular, τ
(
Lmax{d1,d2}

)
is the part of τ(W1 ∗ W2) having the maximum number of

zeros and we have

τ(W1 ∗ W2) ∈
min{d1,d2}∑

s=0

FilZ,D,W
z−s,max{d1,d2}+s,w Q⟨U⟩◦.

Proof. This is a direct consequence of Equations (3.1) and (3.2). □

Let us consider an example to point out the statement of Proposition 13.

Example 14. Choose W1 = u2, W2 = u1u2, i.e., d1 = 1, d2 = 2 in the notion of
Proposition 13. We have

W1 ∗ W2 = u3u2 + u1u4︸ ︷︷ ︸
=L2

+u2u1u2 + 2u1u2u2︸ ︷︷ ︸
=L3

.
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Observe

τ(L2) = u1u0u1u0u0 + u1u0u0u0u1, τ(L3) = u1u0u1u1u0 + 2u1u0u1u0u1.

We see that τ(L2) indeed has the maximum number of zeros in the expression τ(u2∗u1u2).

Since we want to reduce the number of zeros, we often will be interested in the
part of the stuffle product only that has the maximum number of zeros. Therefore,
Proposition 13 motivates the definition of the box product that basically extracts this
part of the stuffle product after one applies τ .

Definition 15 (Box product). The Q-bilinear box product � : Q⟨U⟩◦ ×Q⟨U⟩◦ → Q⟨U⟩◦
is defined as follows: For Wj ∈ U∗,◦ with depth(Wj) = dj, where j ∈ {1, 2}, we set

W1 � W2 := Lmax{d1,d2}

in the notion of Proposition 13.

For illustration, we continue Example 14.

Example 16. We have

u2 � u1u2 = u3u2 + u1u4,

which is exactly L2 of Example 14, i.e., after applying τ , one obtains the part of the
stuffle product u2 ∗ u1u2 having maximum number of zeros. We state and prove the
generalization of this observation in Lemma 61.

Corollary 17. Let be W1, W2 ∈ U∗,◦ and write

z = zero(τ(W1)) + zero(τ(W2)), d1 = depth(W1), d2 = depth(W2), w = wt(W1) + wt(W2).

Then,

τ(W1 ∗ W2)− τ(W1 � W2) ∈
min{d1,d2}∑

s=1

FilZ,D,W
z−s,max{d1,d2}+s,w Q⟨U⟩◦.

Proof. This is an immediate consequence of Proposition 13 and the definition of the box
product. □

Lemma 18. Consider the alphabet U\{u0} = {uj | j ∈ Z>0}. The restriction of the box
product � : Q⟨U\{u0}⟩×Q⟨U\{u0}⟩ → Q⟨U\{u0}⟩ can be described as follows. For any
two words W1 = un1 · · ·uns , W2 = uℓ1 · · ·uℓr ∈ (U\{u0})∗, we set recursively

W1�̃W2 :=


0, if s > r,

W2, if W1 = 1,

uℓ1

(
W1�̃uℓ2 · · ·uℓr

)
+ un1+ℓ1

(
un2 · · ·uns�̃uℓ2 · · ·uℓr

)
, if s ≤ r.

Then, W1�̃W2 = W1 � W2 whenever len(W1) ≤ len(W2).

Note that the box product satisfies the following connection to the stuffle product.

Lemma 19. For all indices of positive integers n1,n2, ℓ, we have

un1 � (un2 � uℓ) = (un1 ∗ un2) � uℓ = un2 � (un1 � uℓ).
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Proof. The proof of the first equality follows by induction on len(n1) + len(n2) and
the definition of stuffle and box product. The second equality then follows from the
commutativity of the stuffle product and the first equality. □

Next, we make an easy but instrumental observation. For this, we denote for an given
index k = (k1, . . . , kr) its reversed index by rev(k) := (kr, . . . , k1).

Proposition 20. Given n ∈ Zs
>0, ℓ ∈ Zd

>0 with 1 ≤ s ≤ d. Writing

un � uℓ =
∑

µ∈Zd
>0

aµuµ

with aµ ∈ Z appropriate, we have

urev(n) � urev(ℓ) =
∑

µ∈Zd
>0

aµurev(µ).

Proof. Using Lemma 18 and induction on len(n)+ len(ℓ), the claim follows immediately.
□

3. A common approach to theorems by Bachmann and Burmester

In this section, we consider the cases of d = 1 (and z ∈ Z>0 arbitrary), and z = 1
(and d ∈ Z>0 arbitrary), respectively, of Bachmann’s Conjecture 4. The first case mainly
is a result originally due to Bachmann ([Bac19, Proposition 4.4]), which we will reprove

in a way giving explicit formulas for every element of FilZ,D,W
z,1,w Zf

q as linear combination of

elements in FilD,W
z+1,w Zf

q . The second case is done by Burmester’s thesis ([Bur22, Theorem
6.4]), which we will extend in Section 3.2.

3.1. Bachmann’s Conjecture 4 for (z, 1, w). By [Bac19, Proposition 4.4] (see also
Theorem 5(i)), it is known that Bachmann’s Conjecture 4 is true for all triples (z, 1, w).
Here, we give an alternative proof which gives an explicit expression in terms of elements
in Zf,◦

q .

Proposition 21. For all k ∈ Z>0 and z ∈ Z≥0, we have that ζ fq (uku
z
0) equals

(−1)z
∑

j1,j2≥0
j1+j2=z

∑
n0,...,nj2

≥0
n0+···+nj2

=k−1

∑
1≤p≤j2

0≤εp≤min{1,np}

ζ fq
(
unj2

−εj2+1 · · ·un1−ε1+1un0+1u
j1
1

)
+
∑

1≤j≤z

∑
ℓ1,...,ℓj≥1

ℓ1+···+ℓj≤z

∑
j1,j2≥0

j1+j2=z−ℓ1−···−ℓj∑
n0,...,nj2

≥0
n0+···+nj2

=k−1

∑
1≤p≤j2

0≤εp≤min{1,np}

(−1)z−jζ fq

(
uℓ1
1 ∗ · · · ∗ uℓj

1 ∗ unj2
−εj2+1 · · ·un1−ε1+1un0+1u

j1
1

)
.

In particular, we have ζ fq (uku
z
0) ∈ FilD,W

z+1,k+z Zf,◦
q , yielding Bachmann’s Conjecture 4 for

all triples (z, 1, w).
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Proof. First note that a calculation, using the definition of the stuffle product, shows for
all a ∈ Z>0, b ∈ Z≥0 the identity

uau
b
0 =

a−1∑
ℓ=1

(−1)ℓ−1uℓ
1 ∗ ua−ℓu

b
0 + (−1)a−1h(a, b), (21.1)

where h(a, b) :=
∑

j1,j2≥0
j1+j2=a−1

uj1+1
1

(
uj2
1 ∗ ub

0

)
. Choosing a = z + 1 and b = k − 1, we obtain

uz+1u
k−1
0 =

z∑
ℓ=1

(−1)ℓ−1uℓ
1 ∗ uz+1−ℓu

k−1
0 + (−1)zh(z + 1, k − 1).

Using the latter formula and (21.1) repeatedly, we obtain

uz+1u
k−1
0 =

∑
1≤j≤z

∑
ℓ1,...,ℓj≥1

ℓ1+···+ℓj≤z

(−1)z−juℓ1
1 ∗ · · · ∗ uℓj

1 ∗ h(z + 1− ℓ1 − · · · − ℓj, k − 1)

+ (−1)zh(z + 1, k − 1).

(21.2)

Now, note that for all a ∈ Z>0 and b ∈ Z≥0, we have

h(a, b) =
∑

j1,j2≥0
j1+j2=a−1

uj1+1
1

(
uj2
1 ∗ ub

0

)
=

∑
j1,j2≥0

j1+j2=a−1

∑
n0,...,nj2

≥0
n0+···+nj2

=b

∑
1≤p≤j2

0≤εp≤min{1,np}

uj1+1
1 un0

0 u1u
n1−ε1
0 · · ·u1u

nj2
−εj2

0 .

Hence, by τ -invariance of formal qMZVs,

ζ fq (h(a, b)) =
∑

j1,j2≥0
j1+j2=a−1

∑
n0,...,nj2

≥0
n0+···+nj2

=b

∑
1≤p≤j2

0≤εp≤min{1,np}

ζ fq
(
unj2

−εj2+1 · · ·un1−ε1+1un0+1u
j1
1

)
,

implying the claim when using (21.2) and ζ fq (uku
z
0) = ζ fq (τ(uku

z
0)) = ζ fq

(
uz+1u

k−1
0

)
. From

the obtained representation of ζ fq (uku
z
0), we get directly ζ fq (uku

z
0) ∈ FilD,W

z+1,k+z Zf,◦
q due

to (3.1). □

Let us consider an example regarding Proposition 21.

Example 22. For k = z = 2, Proposition 21 yields

ζ fq
(
u2u

2
0

)
= ζ fq (u1 ∗ u1 ∗ u2)− 2ζ fq (u1 ∗ u2u1)− ζ fq (u1 ∗ u1u2)− ζ fq (u1 ∗ u1u1)− ζ fq (u1u1 ∗ u2)

+ 3ζ fq (u2u1u1) + 2ζ fq (u1u2u1) + ζ fq (u1u1u2) + 3ζ fq (u1u1u1)

= ζ fq (u4)− ζ fq (u3u1)− ζ fq (u2u2)− ζ fq (u2u1)− ζ fq (u1u2) ∈ FilD,W
2,4 Zf,◦

q ⊂ FilD,W
3,4 Zf,◦

q .
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3.2. Bachmann’s Conjecture 4 for (1, d, w). Given an index k = (k1, . . . , kd) ∈ Zd
>0,

we introduce the following notation of subindices

k(j1;j2) :=

{
(kj1 , . . . , kj2), if 1 ≤ j1 ≤ j2 ≤ d,

∅, else.

Lemma 23. Fix z, d ∈ Z>0 and k ∈ Zd
>0. For 1 ≤ j ≤ d, we have

ζ fq

(
uk1

(
uk(2;j)

∗ uk(j+1;d)
uz
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k|+ z.

Proof. We prove by induction on d. The base case d = 1 corresponds to Proposition 21
since then j = 1 and so k(2;j) = k(j+1;d) = ∅. Hence, we may assume d > 1 and that
Lemma 23 is proven already for all smaller values of d. First, note that the case j = d
follows from k(j+1;d) = ∅ in this case and from∑

n1,...,ns′≥1
n1+···+ns′=z

1≤s′≤d

ζ fq
(
un1 · · ·uns′

∗ uk

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q

since ∑
n1,...,ns′≥1

n1+···+ns′=z
1≤s′≤d

ζ fq
(
un1 · · ·uns′

∗ τ(uk)
)

=
∑

n1,...,ns′≥1
n1+···+ns′=z

1≤s′≤d

ζ fq

(
un1 · · ·uns′

∗ u1u
kd−1
0 · · ·u1u

k1−1
0

)

=
∑

n1,...,ns′≥1
n1+···+ns′=z

1≤s′≤d

ζ fq

(
τ
(
un1 · · ·uns′

∗ u1u
kd−1
0 · · ·u1u

k1−1
0

))

≡
∑

n1,...,ns′≥1
n1+···+ns′=z

1≤s′≤d

ζ fq

(
τ
(
un1 · · ·uns′

� u1u
kd−1
0 · · ·u1u

k1−1
0

))
mod

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q .

The last identity is a consequence of Proposition 13 and the definition of the box product.
Furthermore, the remaining expression is

≡ ζ fq

(
uk1

(
uk(2;d)

∗ uz
0

))
mod

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

which can be verified via induction on s′ + d and the definition of the stuffle product.
Hence, let be 1 ≤ j ≤ d − 1 and assume that the claim holds for all larger values of j.
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The induction hypothesis on d implies, since len(∅) + len
(
k(j+2;d)

)
= d− j − 1 < d− 1,

ζ fq

(
uk(j+1;d)

uz
0

)
= ζ fq

(
ukj+1

(u∅ ∗ uk(j+2;d))
uz
0)
)
∈

z∑
s=1

FilZ,D,W
z−s,d−j+s,w′ ,

where w′ = |k(j+1;d)|+ z. Hence, by (3.1), we obtain

ζ fq

(
uk(1;j)

∗ uk(j+1;d)
uz
0

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q . (23.1)

Now, using the definition of the stuffle product, we obtain

uk(1;j)
∗ uk(j+1;d)

uz
0 =uk1

(
uk(2;j)

∗ uk(j+1;d)
uz
0

)
+ ukj+1

(
uk(1;j)

∗ uk(j+2;d)
uz
0

)
+ uk1+kj+1

(
uk(2;j)

∗ uk(j+2;d)
uz
0

)
.

Note that the formal qMZVof the second summand on the right-hand side is an element

of
z∑

s=1

FilZ,D,W
z−s,d+s,w Zf

q due to the assumption on j, while the formal qMZV of the third

one is by induction hypothesis on d. Hence, because of (23.1), we obtain

ζ fq

(
uk1

(
uk(2;j)

∗ uk(j+1;d)
uz
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

completing the induction step. Therefore, the lemma is proven. □

Corollary 24. Fix z, d ∈ Z>0. For all k ∈ Zd
>0, we have

ζ fq (uku
z
0) ∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

where w = |k|+ z.

Proof. This is the special case j = 1 of Lemma 23. □

Corollary 25. Fix d ∈ Z>0. For all k ∈ Zd
>0, we have

ζ fq (uku0u0) ∈ FilD,W
d+2,w Zf,◦

q ,

where w = |k|+ 2.

Proof. The special case z = 2 of Corollary 24 and FilZ,D,W
1,d+1,w Zf

q ⊂ FilD,W
d+2,w Zf,◦

q by
Burmester’s Theorem 5(iv) yield the claim. □

Lemma 23 is a special case of the following theorem.

Theorem 26 (Theorem 6). Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0, and consider

integers 1 ≤ j1 ≤ j2 ≤ d. We have

ζ fq

(
uk(1;j1)

(
uk(j1+1;j2)

∗ uk(j2+1;d)
uz
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q , (26.1)

where w = |k|+ z.
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Proof. We prove by induction on d. Note that the base case d = 1 follows from
Proposition 21 since then j1 = j2 = 1 and so k(j1+1;j2) = k(j2+1;d) = ∅. Hence,
choose d > 1 and assume the theorem is proven for all smaller values of d. Furthermore,
note that the case j1 = 1 is nothing else than Lemma 23. Hence, let 2 ≤ j1 ≤ d arbitrary.
The claim for j2 = j1 corresponds to Corollary 24 since then k(j1+1;j2) = ∅. Therefore,
assume j2 > j1 > 1 in the following and that the claim is proven for all possible smaller
values of j1, j2 and len(k(j1+1;j2)) = j2 − j1, respectively. Using the recursive definition
of the stuffle product gives

uk(1;j1)

(
uk(j1+1;j2)

∗ uk(j2+1;d)
uz
0

)
=uk(1;j1−1)

(
uk(j1+1;j2)

∗ ukj1
uk(j2+1;d)

uz
0

)
− uk(1;j1−1)

ukj1+1

(
uk(j1+2;j2)

∗ ukj1
uk(j2+1;d)

uz
0

)
− uk(1;j1−1)

ukj1+kj1+1

(
uk(j1+2;j2)

∗ uk(j2+1;d)
uz
0

)
Now, the formal qMZVof the first summand on the right-hand side is in

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q

due to the assumption on j1 (since len
(
k(1;j1−1)

)
= len

(
k(1;j1)

)
−1), while the second one

is as well due to the assumption on j2 − j1 (since len
(
k(j1+2;j2)

)
= len

(
k(j1+1;j2)

)
− 1),

and the third one is due to the induction hypothesis on d. In particular, we have

ζ fq

(
uk(1;j1)

(
uk(j1+1;j2)

∗ uk(j2+1;d)
uz
0

))
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q ,

completing the induction step. Hence, the theorem follows. □

Corollary 27. Let be z, d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0. For all 1 ≤ j ≤ d, we have∑

ℓj ,...,ℓd≥0
ℓj+···+ℓd=z

ζ fq

(
uk(1;j−1)

ukju
ℓj
0 · · ·ukdu

ℓd
0

)
∈

z∑
s=1

FilZ,D,W
z−s,d+s,w Zf

q , (27.1)

where w = |k|+ z.

Proof. For fixed 1 ≤ j ≤ d, the corollary is obtained from the special case j1 = j, j2 = d
of Theorem 26 and multiplying out the corresponding stuffle product occurring in (26.1)
(since then k(j2+1;d) = ∅). □

As a corollary of Corollary 27, we obtain Burmester’s Theorem 5(iv).

Corollary 28 (Burmester, [Bur22, Theorem 6.4]). Bachmann’s Conjecture 4 is true for
all (1, d, w) ∈ Z3

>0.

Proof. Let be d ∈ Z>0, k = (k1, . . . , kd) ∈ Zd
>0 and denote w = |k| + 1 in the following.

Considering Corollary 27 with z = 1 and j = d, we obtain ζ fq (uku0) ∈ FilD,W
d+1,w Zf,◦

q .
Now, let be 1 ≤ j′ ≤ d − 1. Considering the difference of (27.1) with z = 1, j = j′
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and (27.1) with z = 1, j = j′ + 1, we obtain

ζ fq

(
uk(1;j′)

u0uk(j′+1;d)

)
∈ FilD,W

d+1,w Zf,◦
q .

In particular, for every W ∈ U∗,◦ ∩ FilZ,D,W
1,d,w Q⟨U⟩◦, we have shown ζ fq (W) ∈ FilD,W

d+1,w Zf,◦
q ,

i.e., we have FilZ,D,W
1,d,w Zf

q ⊂ FilD,W
d+1,w Zf,◦

q , completing the claim. □

Corollary 29. Let be d ∈ Z≥2 and k = (k1, . . . , kd) ∈ Zd
>0. We have

ζ fq

(
uk1u0uk2u0uk(3;d)

)
∈ FilD,W

d+2,w Zf,◦
q ,

where w = |k|+ 2.

Proof. Consider the difference of (27.1) for z = 2, j = 2, and (27.1) for z = 2, j = 3 to

obtain, all congruences modulo FilZ,D,W
1,d+1,w Zf

q ,

0 ≡
∑

ℓ3,...,ℓd≥0
ℓ3+···+ℓd=2

ζ fq

(
uk1uk2uk3u

ℓ3
0 · · ·ukdu

ℓd
0

)
−

∑
ℓ2,...,ℓd≥0

ℓ2+···+ℓd=2

ζ fq

(
uk1uk2u

ℓ2
0 · · ·ukdu

ℓd
0

)

≡ − ζ fq

(
uk1uk2u0u0uk(3;d)

)
−

∑
ℓ3,...,ℓd≥0

ℓ3+···+ℓd=1

ζ fq

(
uk1uk2u0uk3u

ℓ3
0 · · ·ukdu

ℓd
0

)

≡ − ζ fq

(
u1u

kd−1
0 · · ·u1u

k3−1
0 u3u

k2−1
0 u1u

k1−1
0

)
−

∑
ℓ3,...,ℓd≥0

ℓ3+···+ℓd=1

ζ fq

(
uℓd+1u

kd−1
0 · · ·uℓ3+1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)

≡ ζ fq

(
u1u

kd−1
0 · · ·u1u

k3−1
0 u2u

k2−1
0 u2u

k1−1
0

)
− ζ fq

(
u1 ∗ τ

(
uk1uk2u0uk(3;d)

))
≡ ζ fq

(
uk1u0uk2u0uk(3;d)

)
.

Since FilZ,D,W
1,d+1,w Zf

q ⊂ FilD,W
d+2,w Zf,◦

q by Corollary 28, the claim follows. □

4. Investigation of the box product

First, in Section 4.1, we show that several monomials can already be written as a Q-
linear combination of non-trivial box products. In Section 4.2, we investigate a conjecture
(Conjecture 39) regarding the structure of box products and give partial results for it.
Furthermore, in Section 4.4, we study the main connection between the box product and
the stuffle product that we will need to prove our main results. Last, in Section 4.5, we
give some further results about the box product that are interesting for itself but not
necessary for the remaining paper.

4.1. Monomials as linear combination of box products. In the following, we
characterize some particular monomials in Q⟨U\{u0}⟩ as a linear combination of box
products. The results will be important for proving Theorem 81.

We will need theQ-vector space spanned by (non-trivial) box products in the following.
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Definition 30. We define

P := spanQ {W1 � W2 | W1, W2 ∈ (U\{u0})∗ , W1, W2 ̸= 1} ⊂ Q⟨U\{u0}⟩. (30.1)

Corollary 31. Given µ ∈ Zd
>0 with d ∈ Z>0. Then uµ ∈ P if and only if urev(µ) ∈ P.

Proof. This is an immediate consequence of Proposition 20. □

Lemma 32. For all d ∈ Z>0 and 0 ≤ j ≤ d− 1, we have

ud
2, uj

1u1+du
d−j−1
1 ∈ P .

Proof. A direct calculation shows ud
2 = ud

1 � ud
1, giving the first part of the lemma.

Furthermore, for all 0 ≤ j ≤ d− 1, we have

uj
1u1+du

d−j−1
1 =

d∑
a=1

(−1)a−1 ua
1 � uj

1u1+d−au
d−j−1
1 ,

giving the second claim of the lemma. □

Lemma 33. For arbitrary d ∈ Z>0 and 0 ≤ j ≤ d− 2, we have

u1u
j
2u3u

d−j−2
2 ∈ P .

Proof. For any 0 ≤ j ≤ d− 2, one verifies

u1u
j
2u3u

d−j−2
2

=

j+1∑
a=1

(−1)a+1 uj−a+1
1 u2u

d−j−2
1 � uau

d−1
1 +

j+2∑
a=1

(−1)a+1 ud−a+1
1 � uau

d−1
1 . □

We first need an auxiliary lemma to prove the statements in Corollary 35 and Lemma 36.

Lemma 34. For all d, µ1, µ2 ∈ Z>0 with µ1 + µ2 ≤ d+ 2, we have

uµ1uµ2(u
d−µ1−µ2+2
1 � ud−2

1 ) ∈ P .

Proof. We prove by induction on µ1. First, consider µ1 = 1. Similarly to the proof of
Lemma 33, we obtain by direct calculation that

u1uµ2(u
d−µ2+1
1 � ud−2

1 )

=− u1uµ2−1(u
d−µ2+2
1 � ud−2

1 )−
∑

0≤a≤µ2−3
0≤b≤1+a

(−1)b ud−µ2+b+2
1 � u2+a−buµ2−2−au

d−2
1

+
∑

0≤a≤µ2−3
0≤b≤a

(−1)a+b ua−b
1 u2u

d−µ2+1
1 � u1+buµ2−2−au

d−2
1 .

Hence, we have for all µ2 ∈ Z>0 that u1uµ2(u
d−µ2+1
1 � ud−2

1 ) ∈ P if and only if we

have u1uµ2−1(u
d−µ2+2
1 � ud−2

1 ) ∈ P , giving recursively that u1uµ2(u
d−µ2+1
1 � ud−2

1 ) ∈ P if
and only if

u1u3(u
d−2
1 � ud−2

1 ) ∈ P ,
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which is true since this is the j = 0 case of Lemma 33.
Now, for µ1 > 1, assume that the lemma is proven for µ1 − 1 already. We calculate

uµ1uµ2(u
d−µ1−µ2+2
1 � ud−2

1 ) =

d−µ1+2∑
a=µ2

(−1)µ2+a ud−ℓ1−a+3
1 � uµ1−1uau

d−2
1

− uµ1−1uℓ2(u
d−µ1−µ2+3
1 � ud−2

1 )

+ (−1)d−µ1+1−µ2 uµ1−1ud−µ1+3u
d−2
1 .

I.e., we have uµ1uµ2(u
d−µ1−µ2+2
1 �ud−2

1 ) ∈ P by the assumption that the lemma is proven
for µ1 − 1. □

Corollary 35. For all d ∈ Z>0 and 0 ≤ j ≤ d, we have

u1+jud−j+1u
d−2
1 ∈ P .

Proof. Setting µ1 = 1 + j and µ2 = d− j + 1 in Lemma 34, we obtain the claim. □

Furthermore, Lemma 34 is used to prove the following observation.

Lemma 36. For arbitrary d ∈ Z>0 and all 0 ≤ j ≤ d− 3, we have

u2u1u
j
2u3u

d−j−3
2 ∈ P .

Proof. First, a direct calculation gives for all 0 ≤ j ≤ d− 3 that

u2u1u
j
2u3u

d−j−3
2

=

j+2∑
a=2

(−1)a uj−a+2
1 u2u

d−j−3
1 � uau

d−1
1 +

j+3∑
a=1

(−1)a ud−a+1
1 � uau

d−1
1

−
∑
a,b≥2

a+b≤j+3

(−1)a+b u
j−(a+b)+3
1 u2u

d−j−3
1 � uaubu

d−2
1

+ (−1)j+3 u2uj+3(u
d−j−3
1 � ud−2

1 )

+ (−1)j+3
∑
a,b≥2

a+b=j+3

ua+2ub+1(u
d−j−4
1 � ud−2

1 ) + ua+2ub(u
d−j−3
1 � ud−2

1 ).

Using Lemma 34 now yields the claim. □

Collecting the results of this subsection, we have proven the following theorem.

Theorem 37. Let be d ∈ Z>0.

(i) For all 0 ≤ j ≤ d− 2, we have

u1u
j
2u3u

d−j−2
2 , uj

2u3u
d−j−2
2 u1 ∈ P .

(ii) For all 0 ≤ j ≤ d, we have

u1+jud−j+1u
d−2
1 , ud−2

1 ud−j+1u1+j ∈ P .
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(iii) For all 0 ≤ j ≤ d− 3, we have

u2u1u
j
2u3u

d−j−3
2 , uj

2u3u
d−j−3
2 u1u2 ∈ P .

Proof. Using Corollary 31 each, the proof for (i) follows from Lemma 33, the proof of
(ii) follows from Corollary 35, and the proof of (iii) follows from Lemma 36. □

4.2. Conjectures about particular box products and implications. We consider
in this section the structure of all box products un �uℓ such that len(ℓ) and |n|+ |ℓ| are
fixed. For this, we will need the spaces 𝒮z,d and 𝒯z,d in the following.

Definition 38. (i) For all z, d ∈ Z>0, we define

𝒯z,d := spanQ
{
uµ | µ ∈ Zd

>0, |µ| = z + d
}
,

𝓉z,d := dimQ 𝒯z,d.

(ii) Furthermore, for all z, d ∈ Z>0, we define

Jz,d :=
{
(n, ℓ)

∣∣∣n ∈ Zs
>0, ℓ ∈ Zd

>0, 1 ≤ s ≤ d, |n|+ |ℓ| = z + d
}
,

𝒿z,d,: =#Jz,d.

and

𝒮z,d := spanQ {un � uℓ | (n, ℓ) ∈ Jz,d} = 𝒯z,d ∩ P ,

𝓈z,d := dimQ 𝒮z,d.

Based on numerical calculations (see Lemma 42), we conjecture the following for the
dimension of 𝒮z,d.

Conjecture 39. For all z, d ∈ Z>0, we have

𝓈z,d =
(

z + d− 1

min{z, d} − 1

)
. (39.1)

Given (z0, d0) ∈ Z>0, we say that Conjecture 39 is true for (z0, d0) if (39.1) is true
for (z, d) = (z0, d0). Note the following equivalent formulation for z ≥ d.

Corollary 40. Given (z, d) ∈ Z2
>0 with z ≥ d. Conjecture 39 is true for (z, d) if and

only if 𝒮z,d = 𝒯z,d.

Proof. Clearly, for all z, d ∈ Z>0, one has

𝓉z,d =
(
z + d− 1

d− 1

)
since 𝓉z,d is the number of compositions of z + d into exactly d positive integers. Hence,
for (z, d) ∈ Z2

>0 with z ≥ d, Conjecture 39 is equivalent to 𝓈z,d = 𝓉z,d which is equivalent
to 𝒮z,d = 𝒯z,d since 𝒮z,d ⊂ 𝒯z,d and both 𝒮z,d and 𝒯z,d are finite-dimensional Q-vector
spaces. □

Theorem 41. Fix d ∈ Z>0. If Conjecture 39 is true for (d, d), then it is also true for
all (z, d) ∈ Z2

>0 with z > d.
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Proof. Fix d ∈ Z>0 and assume that Conjecture 39 is true for (d, d). I.e., by Corollary 40,
we assume 𝒮d,d = 𝒯d,d. This is equivalent to

uz =
∑

(n,ℓ)∈Jd,d

an,ℓ(z)un � uℓ

for all z = (z1, . . . , zd) ∈ Zd
>0 with |z| = 2d and with an,ℓ(z) ∈ Q appropriate.

Now, assume z > d and let be z = (z1, . . . , zd) ∈ Zd
>0 with |z| = z + d arbitrary. We

can write

(z1, . . . , zd) = (z′1 + δ1, . . . , z
′
d + δd)

with δ1, . . . , δd ∈ Z≥0 and z′ = (z′1, . . . , z
′
d) ∈ Zd

>0 with |z′| = 2d. Hence,

uz =
∑

(n,ℓ)∈Jd,d

an,ℓ(z
′)un � uℓ1+δ1 · · ·uℓd+δd .

Since z was chosen arbitrary, we obtain 𝒮z,d = 𝒯z,d, proving the theorem. □

Lemma 42. Conjecture 39 is true for all (z, d) ∈ Z2
>0 with 1 ≤ d ≤ 8.

Proof. The proof for 1 ≤ z ≤ d ≤ 8 is obtained by computer algebra; for details, see
Remark 65 and the appendix. By Theorem 41, Conjecture 39 is also true for z ≥ d
when 1 ≤ d ≤ 8, proving the lemma. □

Note that 𝓈z,d is the dimension of the image of the Q-linear map

Boxz,d : spanQ Jz,d −→ 𝒯z,d,

(n, ℓ) 7−→ un � uℓ

that we continue Q-bilinearly. By the rank-nullity theorem, we know that

𝓈z,d + dimQ kerBoxz,d = dimQ spanQ Jz,d. (42.1)

The right-hand side is given by 𝒿z,d, which is the number of writing z + d as ordered
sum of at least d+ 1 and at most d+min{z, d} positive integers, i.e.,

dimQ spanQ Jz,d = 𝒿z,d =
min{z,d}∑

j=1

(
z + d− 1

d+ j − 1

)
. (42.2)

Hence, determining 𝓈z,d now is equivalent to determining dimQ kerBoxz,d. While it seems
to be difficult to obtain a (conjectured) basis of 𝒮z,d, we can give a conjectured basis
of ker Boxz,d explicitly. To do so, we need the notion of stuffle product and box product
on index level. I.e., we set n ∗ ∅ := ∅ ∗ n := n, n � ∅ := ∅ � n := n for every
index n. Furthermore, for given indices n = (n1, . . . , ns) ∈ Zs

>0, m = (m1, . . . ,mt) ∈ Zt
>0

with s, t ≥ 1, we set recursively

n ∗m := (n1).((n2, . . . , ns) ∗m) + (m1).(n ∗ (m2, . . . ,mt))

+ (n1 +m1).((n2, . . . , ns) ∗ (m2, . . . ,mt))

as formal sum of indices, where ().() means the concatenation of indices. Similarly, we
define the box product n � m to be the part of n ∗m of smallest length.
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Example 43. To illustrate the definition of stuffle product and box product of indices,
we consider n = (1, 2) and m = (3, 2). We have

n ∗m =(1, 2) ∗ (3, 2)
= (4, 4) + (1, 5, 2) + (1, 3, 4) + 2(4, 2, 2) + (3, 3, 2)

+ (1, 2, 3, 2) + 2(1, 3, 2, 2) + 2(3, 1, 2, 2) + (3, 2, 1, 2)

and

n � m = (1, 2) � (3, 2) = (4, 4).

In the following, for z, d ∈ Z>0, we consider the set

Kz,d :=

{
(n1,n2 � ℓ)− (n1 ∗ n2, ℓ)

∣∣∣∣∣ n1∈Z
s1
>0,n2∈Z

s2
>0, ℓ∈Zd

>0,

1≤s1,s2≤d, |n1|+|n2|+ℓ=z+d

}
⊂ spanQ Jz,d,

where (·, ·) is Q-bilinearly continued.

Lemma 44. For all z, d ∈ Z>0, we have spanQ Kz,d ⊂ kerBoxz,d.

Proof. This is an immediate consequence of Lemma 19. □

By numerical calculations (see the appendix), we conjecture that the converse inclusion
is also true if z ≤ d.

Conjecture 45. Let be z, d ∈ Z>0 with z ≤ d. Then,

spanQKz,d = kerBoxz,d . (45.1)

We say that Conjecture 45 is true for (z0, d0) if (45.1) is true for (z, d) = (z0, d0). Note
the following consequence.

Lemma 46. Let be z, d ∈ Z>0 with z ≤ d. If Conjecture 45 is true for (z, d), we have

𝓈z,d ≥
(
z + d− 1

d

)
.

In particular, if z = d additionally, then Conjecture 39 is true for (d, d).

Proof. Let be z, d ∈ Z>0 with z ≤ d. We begin by noting that we have

#Kz,d =
z∑

j=2

(
z + d− 1

d+ j − 1

)
since #Kz,d is the number of ways one can write z+d as ordered sum of at least d+2 and
at most d + min{z, d} (= d + z in case z ≤ d) positive integers. Now, if Conjecture 45
is true for (z, d), we obtain by (42.1) and (42.2), that

𝓈z,d = 𝒿z,d − dimQ kerBoxz,d ≥
z∑

j=1

(
z + d− 1

d+ j − 1

)
−

z∑
j=2

(
z + d− 1

d+ j − 1

)
=

(
z + d− 1

d

)
.

In case z = d, the right hand side is 𝓉d,d, i.e., we must have equality and so, Conjecture 39
is true for (d, d). This completes the proof of the lemma. □
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The set Kz,d seems to be of special interest regarding determining a basis of ker Boxz,d
as the following refinement of Conjecture 45 shows.

Conjecture 47. Let be z, d ∈ Z>0 with z ≤ d. Then Kz,d is a basis of kerBoxz,d.

As usual, we say that Conjecture 47 is true for (z0, d0) if Kz0,d0 is a basis of ker Boxz0,d0 .
We give evidence for Conjecture 47.

Lemma 48. Conjecture 47 is true for all (z, d) ∈ Z2
>0 satisfying 1 ≤ z ≤ d ≤ 8.

Proof. For z = 1 and d ∈ Z>0, we have K1,d = ∅ and 𝒿z,d = d = 𝓈1,d as we will show
in Lemma 52, i.e., ker Box1,d is the trivial vector space. Hence, Conjecture 47 is true
for all (1, d) ∈ Z2

>0. For z ≥ 2, the claim is obtained by numerical calculations, see the
appendix. □

Note the following consequence that Conjecture 47 is a refinement of Conjecture 39.

Lemma 49. Let be z, d ∈ Z>0 with z ≤ d. If Conjecture 47 is true for (z, d), then also
Conjecture 39 is true for (z, d).

Proof. Let be z, d ∈ Z>0 with z ≤ d and assume that Conjecture 47 is true for (z, d).
By (42.1) and (42.2), then we obtain

𝓈z,d = 𝒿z,d − dimQ kerBoxz,d =
z∑

j=1

(
z + d− 1

d+ j − 1

)
−

z∑
j=2

(
z + d− 1

d+ j − 1

)
=

(
z + d− 1

d

)
,

i.e., Conjecture 39 is true for (z, d). □

We investigate 𝓈z,d in the following in more detail.

Lemma 50. For all z, d ∈ Z>0, we have

𝓈z,d+1 + 𝓈z+1,d ≤ 𝓈z+1,d+1.

Proof. Fix z, d ∈ Z>0. By definition of 𝓈z,d+1, there are 𝓈z,d+1 linearly independent linear
combinations ∑

(n,ℓ)∈Jz,d+1

a
(j)
n,ℓ(z)un � uℓ (1 ≤ j ≤ 𝓈z,d+1).

Then, the 𝓈z,d+1 linear combinations (1 ≤ j ≤ 𝓈z,d+1 in the following) of case (z+1, d+1),∑
(n,ℓ)∈Jz,d+1

a
(j)
n,ℓ(z)un � u(ℓ1,...,ℓd,ℓd+1+1), (50.1)

are linearly independent as well. Note that all occurring words uµ1 · · ·uµd+1
in this linear

combinations satisfy µd+1 ≥ 2.
Now, by definition of 𝓈z+1,d, there are 𝓈z+1,d linear independent linear combinations∑

(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)un � uℓ (1 ≤ j ≤ 𝓈z+1,d). (50.2)
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Considering for 1 ≤ j ≤ 𝓈z+1,d the following linear combinations in case (z + 1, d+ 1)∑
(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)un � uℓu1

=

 ∑
(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)un � uℓ

u1 +
∑

(n,ℓ)∈Jz+1,d

b
(j)
n,ℓ(z)

(
u(n1,...,ns−1) � uℓ

)
u1+ns

(50.3)

are linearly independent again because of (50.2). Furthermore, they and the ones from
(50.1) are linearly independent since the latter ones contain words ending in uµd+1

with µd+1 ≥ 2 while the linear independence of (50.3) already comes from words ending
all in u1.

Summarized, we have proven 𝓈z,d+1 + 𝓈z+1,d ≤ 𝓈z+1,d+1. □

Remark 51. Assuming Conjecture 39, the inequality in Lemma 50 is an equality if and
only if z ̸= d.

With Lemma 50, we can now prove the following partial result towards Conjecture 39.

Lemma 52. Conjecture 39 is true for all pairs (z, d) ∈ Z2
>0 with 1 ≤ z ≤ 3.

Proof. Note that the proof for 1 ≤ z ≤ 2 is contained in Remark 66. Therefore,
assume z = 3 in the following. For (z, d) ∈ {(3, 1), (3, 2), (3, 3)}, the claim follows
from Remark 66. Hence, consider d ≥ 4 and prove by induction (with already proven
base case d = 3) on d. By Lemma 50, the induction hypothesis, and the case z = 2 of
the lemma that is proven in Remark 66, we know that

𝓈3,d ≥ 𝓈3,d−1 + 𝓈2,d =
(
d+ 1

2

)
+

(
d+ 1

1

)
=

(
d+ 2

2

)
.

Therefore, it suffices to prove 𝓈3,d ≤
(
d+2
2

)
. Note that for (z, d) = (3, d) the number of

box products spanning 𝒮3,d is
(
d+2
0

)
+
(
d+2
1

)
+
(
d+2
2

)
. I.e., if we can show that

(
d+2
2

)
of

those are such that the other
(
d+2
0

)
+
(
d+2
1

)
ones are in their Q-span, we are done. We

consider the set of
(
d+2
2

)
box products

R3,d :=

{
u2u1�ud

1, u1u2�ud
1,

u2�u
j1
1 u2u

d−j1−1
1 , u1�u

j2
1 u3u

d−j2−1
1 ,

u1�u
j3
1 u2u

j4
1 u2u

d−j3−j4−2
1

∣∣∣∣∣ 0≤j1≤d−2, 0≤j2≤d−2,
0≤j3,j4≤d−2, j3+j4≤d−2

}
.

In the following, we show that the other box products in case (z, d) = (3, d) are in
the Q-span of R3,d. For 0 ≤ j1 ≤ d− 2, we obtain

u1u1 � uj1
1 u2u

d−j1−1
1 =

1

2

(
(u1 ∗ u1 − u2) � uj1

1 u2u
d−j1−1
1

)
∈ spanQR3,d (52.1)

due to Lemma 19 and the definition of R3,d. Furthermore, we have that

u3 � ud
1 =

d−1∑
j2=0

u1 � uj2
1 u3u

d−j2−1
1 − (u2u1 + u1u2) � ud

1 (52.2)
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is in the Q-span of R3,d. This implies, due to u2 ∗ u1 = u2u1 + u1u2 + u3 and Lemma 19,
that

u2 � ud−1
1 u2 =u2 �

(
u1 � ud

1 −
d−2∑
j1=0

uj1
1 u2u

d−j1−1
1

)

=(u2u1 + u1u2 + u3) � ud
1 −

d−2∑
j1=0

u2 � uj1
1 u2u

d−j1−1
1 ∈ spanQ R3,d.

Similar to (52.1), one obtains now

u2 � ud−1
1 u2 ∈ spanQR3,d.

Using (52.2), Lemma 19 and the definition of R3,d, we get

u1u1u1 � ud
1 =

1

3

(
(u1 ∗ u1u1 − u2u1 − u1u2) � ud

1

)
∈ spanQR3,d,

completing the claim. In particular, the lemma is proven for z = 3. □

Proposition 53. Conjecture 39 is true for (4, 4) and therefore, by Theorem 41, for all
pairs (z, 4) with z ≥ 4.

Proof. Using Corollary 40, we have to show 𝒮4,4 = 𝒯4,4. From Theorem 37 and Lemma 32,
we already have

u2u2u2u2, u5u1u1u1, u1u5u1u1, u1u1u5u1, u1u1u1u5, u1u3u2u2, u1u2u3u2,

u1u2u2u3, u3u2u2u1, u2u3u2u1, u2u2u3u1, u2u4u1u1, u3u3u1u1, u4u2u1u1,

u1u1u2u4, u1u1u3u3, u1u1u4u2, u2u1u3u2, u2u1u2u3, u2u3u1u2, u3u2u1u2 ∈ 𝒮4,4.

Hence, considering u1 �u2u1u2u2, we obtain u3u1u2u2 ∈ 𝒮4,4, and so, by Corollary 31,we

also have u2u2u1u3 ∈ 𝒮4,4. Now, considering u1u1 � u1j1u2u
j2
1 u2u

j3
1 for j1, j2, j3 ∈ Z≥0

with j1 + j2 + j3 = 2, yields u3u1u3u1, u3u1u1u3, u1u3u3u1, u1u3u1u3 ∈ 𝒮4,4. Last,

consider u1 � uj1
1 u2u

j2
1 u3u

j3
1 for j1, j2, j3 ∈ Z≥0 with j1 + j2 + j3 = 1 immediately

gives u2u1u4u1, u2u1u1u4, u1u2u4u1, u1u2u1u4 ∈ 𝒮4,4, yielding, by Corollary 31 again,
that u4u1u2u1, u4u1u1u2, u1u4u2u1, u1u4u1u2 ∈ 𝒮4,4. Therefore, 𝒮4,4 = 𝒯4,4 follows,
completing the proof. □

4.3. Abuot a possible basis of the spaces 𝒮z,d. After discussing the spaces 𝒮z,d and
its dimension, we give in this subsection a possible basis of 𝒮z,d for 1 ≤ z ≤ d. The results
were obtained using numerical calculations, a proof for Conjecture 56 is postponed to
future works.

Definition 54. Given 1 ≤ z ≤ d. We define the setMz,d of plain basis vectors recursively
as follows:

(i) For z = 1, we set M0,d = {ud
1}.

(ii) For z > 1, we define

Mz,d := {uℓW : W ∈ Mz−δz=d,d−1, 1 ≤ ℓ ≤ z + d− wt(W)}.
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Remark 55. More explicitly, Mz,d is the set of uℓ1 · · ·uℓd with ℓ1, . . . , ℓd ∈ Z>0 such
that

d∑
k=j

ℓk ≤ min{z, d− j + 1}+ d− j

for all 1 ≤ j ≤ d.

Conjecture 56. Let be 1 ≤ z ≤ d. The set

Bz,d :=
{
un1 · · ·uns � uℓ1 · · ·uℓd :

uℓ1
···uℓd

∈Mz,d, nj∈Z>0 (1≤j≤s),

n1+···+ns+ℓ1+···+ℓd=z+d, ℓ1>z−d+δn1=s=1

}
is a basis of 𝒮z,d.

Example 57. Consider d = 4. Then,

M1,4 ={u1u1u1u1},
M2,4 ={u1u1u1u1, u1u1u2u1, u1u2u1u1, u2u1u1u1},
M3,4 = {u1u1u1u1, u1u1u2u1, u1u2u1u1, u2u1u1u1,

u1u2u2u1, u2u1u2u1, u1u3u1u1, u2u2u1u1, u3u1u1u1} ,
M4,4 = {u1u1u1u1, u1u1u2u1, u1u2u1u1, u2u1u1u1, u1u2u2u1, u1u3u1u1, u2u1u2u1,

u2u2u1u1, u3u1u1u1, u2u2u2u1, u2u3u1u1, u3u1u2u1, u3u2u1u1, u4u1u1u1} .
Hence, conjecturally we have that

B1,4 ={u1 � u1u1u1u1},
B2,4 = {u1 � u1u1u2u1, u1 � u1u2u1u1, u1 � u2u1u1u1, u2 � u1u1u1u1,

u1u1 � u1u1u1u1} ,
B3,4 = {u1 � u1u2u2u1, u1 � u1u3u1u1, u1 � u2u1u2u1, u1 � u2u2u1u1,

u1 � u3u1u1u1, u2 � u1u1u2u1, u2 � u1u2u1u1, u2 � u2u1u1u1,

u1u1 � u1u1u2u1, u1u1 � u1u2u1u1, u1u1 � u2u1u1u1, u3 � u1u1u1u1,

u1u2 � u1u1u1u1, u2u1 � u1u1u1u1, u1u1u1 � u1u1u1u1} ,
B4,4 = {u1 � u2u2u2u1, u1 � u2u3u1u1, u1 � u3u1u2u1, u1 � u3u2u1u1,

u1 � u4u1u1u1, u2 � u1u2u2u1, u2 � u1u3u1u1, u2 � u2u1u2u1,

u2 � u2u2u1u1, u2 � u3u1u1u1, u1u1 � u1u2u2u1, u1u1 � u1u3u1u1,

u1u1 � u2u1u2u1, u1u1 � u2u2u1u1, u1u1 � u3u1u1u1, u3 � u1u1u2u1,

u3 � u1u2u1u1, u3 � u2u1u1u1, u1u2 � u1u1u2u1, u1u2 � u1u2u1u1,

u1u2 � u2u1u1u1, u2u1 � u1u1u2u1, u2u1 � u1u2u1u1, u2u1 � u2u1u1u1,

u1u1u1 � u1u1u2u1, u1u1u1 � u1u2u1u1, u1u1u1 � u2u1u1u1, u4 � u1u1u1u1,

u1u3 � u1u1u1u1, u2u2 � u1u1u1u1, u3u1 � u1u1u1u1, u1u1u2 � u1u1u1u1,

u1u2u1 � u1u1u1u1, u2u1u1 � u1u1u1u1, u1u1u1u1 � u1u1u1u1}
build a basis of 𝒮1,4, 𝒮2,4, 𝒮3,4, and 𝒮4,4, respectively.
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Remark 58. (i) For proving Conjecture 56, for the case of z = d in particular, it
is sufficient to show linear independence of Bz,d.

(ii) Conjecture 56 is numerically verified for all 1 ≤ z ≤ d = 9.

4.4. Connection between the box product and the stuffle product. First, to
connect the box product with the stuffle product, we introduce the maps Ψk.

Definition 59. Fix d ∈ Z>0 and k = (k1, . . . , kd) ∈ Zd
>0. We define the Q-linear

map Ψk : spanQ {W ∈ U∗,◦ | len(W) = d} → Q⟨U⟩◦, given on generators by

uµ1 · · ·uµd
7−→ uµ1u

kd−1
0 · · ·uµd

uk1−1
0 .

Note the following connection of maps Ψk with the box product.

Lemma 60. Let be z, d, w ∈ Z>0 and (n, ℓ) ∈ Jz,d. Furthermore, let be k ∈ Zd
>0

satisfying |k| = w − z. Then,

un � Ψk(uℓ) = Ψk(un � uℓ).

Proof. Using the notation as in the lemma, we note that particularly depth(uℓ) = d.
The claim immediately follows by the definition of the box product and the definition of
the map Ψk. □

The following Lemma 61 now connects the stuffle product with the box product. It
will be the key for proving Theorem 74 below and one of the main observations for our
approach to the refined Bachmann Conjecture 10.

Lemma 61. Let be z, d, w ∈ Z>0 and (n, ℓ) ∈ Jz,d. Furthermore, let be k ∈ Zd
>0

satisfying |k| = w − z. Then,

ζ fq (Ψk(un � uℓ)) ∈
∑

1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

Proof. Let be z, d, w ∈ Z>0, (n, ℓ) ∈ Jz,d, k ∈ Zd
>0 such that |k| = w− z and write s′ for

the length of n. I.e., we have, un ∈ FilZ,D,W
0,s′,|n| Q⟨U⟩◦ and Ψk(uℓ) ∈ FilZ,D,W

|k|−d,d,|k|+|ℓ|−d Q⟨U⟩◦.
Since (n, ℓ) ∈ Jz,d, we have |n|+ |ℓ| = z + d. Therefore, (3.1) implies, together with the
assumption |k| = w − z, that

un ∗Ψk(uℓ) ∈ FilZ,D,W
w−d−z,d+s′,w Q⟨U⟩◦.

By (3.2), this implies now

τ(un ∗Ψk(uℓ)) ∈ FilZ,D,W
z−s′,d+s′,w Q⟨U⟩◦,

yielding, since 1 ≤ s′ ≤ min{z, d},

ζ fq (un ∗Ψk(uℓ)) = ζ fq (τ(un ∗Ψk(uℓ))) ∈
∑

1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

Furthermore, due to Corollary 17, we also have

ζ fq (un � Ψk(uℓ)) ∈
∑

1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

Hence, the lemma follows now from Lemma 60. □
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Corollary 62. Let be z, d, w ∈ Z>0 and µ ∈ Zd
>0 satisfying |µ| = z + d. If uµ ∈ P

with P from (30.1), then

ζ fq (Ψk(uµ)) ∈
∑

1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q ⊂ Fz,d,w

for all k ∈ Zd
>0 satisfying |k| = w − z.

Proof. Let be z, d, w ∈ Z>0 and µ ∈ Zd
>0 satisfying |µ| = z + d. Furthermore, choose an

index k ∈ Zd
>0 arbitrary with the property |k| = w − z. Assume uµ ∈ P , i.e., we have

uµ =
∑

(n,ℓ)∈Jz,d

an,ℓ un � uℓ

with an,ℓ ∈ Q appropriate. Now, for all (n, ℓ) ∈ Jz,d, by Lemma 61, we have

ζ fq (Ψk(un � uℓ)) ∈
∑

1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q .

I.e., by Q-linearity of ζ fq and Ψk, hence we obtain

ζ fq (Ψk(uµ)) =
∑

(n,ℓ)∈Jz,d

an,ℓ ζ
f
q (Ψk(un � uℓ)) ∈

∑
1≤s≤min{z,d}

FilZ,D,W
z−s,d+s,w Zf

q ,

completing the claim. □

4.5. Supplementary results and calculations regarding the box product. We
collect in this subsection further results towards the box product that are connected to
Conjecture 39 but not needed in the following. First, we refine Conjecture 39. For this,
we define for all z, d, smin ∈ Z>0 with 1 ≤ z ≤ d,

𝒮z,d,smin
:= spanQ {un � uℓ | (n, ℓ) ∈ Jz,d, len(n) ≥ smin} ⊂ 𝒮z,d,

𝓈z,d,smin
:= dimQ 𝒮z,d,smin

.

Conjecture 63. For all z, d, smin ∈ Z>0 with 1 ≤ z ≤ d, we have

𝓈z,d,smin
=

(
z + d− 1

z − smin

)
. (63.1)

Given (z0, d0, smin,0) ∈ Z>0 with 1 ≤ z ≤ d, we say that Conjecture 63 is true
for (z0, d0, smin,0) if (63.1) is true for (z, d, smin) = (z0, d0, smin,0).

Remark 64. With Theorem 41, we see that if Conjecture 39 is true for z = d, then the
statement for z > d follows as well. Hence, we can view Conjecture 63 (via smin = 1)
indeed as a refinement of Conjecture 39, despite it is a refinement for z ≤ d only.

Remark 65. Conjecture 63 is true for all triples (z, d, smin) ∈ Z3
>0 with 1 ≤ z ≤ d ≤ 8

and 1 ≤ smin ≤ 8. The proof is obtained by computer algebra; for details, see the
appendix. One could use the code in the appendix for verifying Conjecture 63 also for
larger values of z and d. The only limit is the computing capacity and time since the
code is based on computing ranks of matrices that grow exponentially in z and d.
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In the next remark, we give an elementary proof, not based on numerical calculations,
for the part of Lemma 42 that is needed for proving our main results of this paper.

Remark 66. We could verify Conjecture 39 for all pairs (z, d) ∈ Z2
>0 with 1 ≤ d ≤ 3

also without numerical calculations. For this, first, assume d = 1 and fix z ∈ Z>0. Note
that 𝒯z,1 = spanQ {uz+1}, yielding 𝓈z,1 ≤ dimQ 𝒯z,1 = 1. Furthermore,

uz+1 = u1 � uz ∈ 𝒮z,1,

giving 𝓈z,1 ≥ 1. Hence, Conjecture 39 is true for all pairs (z, 1) ∈ Z2
>0 since

𝓈z,1 = 1 =

(
1 + z − 1

min{z, 1} − 1

)
.

Now, assume z = 1 and fix d ∈ Z>0. In this case, 𝒮1,d = spanQ
{
u1 � ud

1

}
, i.e., 𝓈1,d = 1.

In particular, we have proven Conjecture 39 for z = 1 since

𝓈1,d = 1 =

(
d+ 1− 1

min{1, d} − 1

)
.

Next, assume d = 2 and fix z ∈ Z≥2. Note that the case (z, d) = (1, 2) follows from
the z = 1-case we have proven. Note that 𝒯z,2 = spanQ {uauz+2−a | 1 ≤ a ≤ z + 1}. A
direct calculation shows

uauz+2−a =


u1u1 � ua−1uz+1−a, if 2 ≤ a ≤ z,

u1 � u1uz − u1u1 � u1uz−1, if a = 1,

u1 � uzu1 − u1u1 � uz−1u1, if a = z + 1.

Hence, uauz+2−a ∈ 𝒮z,2 for all 1 ≤ a ≤ z + 1, i.e., 𝒮z,2 = 𝒯z,2, giving

𝓈z,2 = dimQ 𝒯z,2 =

(
2 + z − 1

min{z, 2} − 1

)
since we assumed z ≥ 2 = d. Hence, Conjecture 39 is true for all pairs (z, 2) ∈ Z2

>0.
Now, assume z = 2 and fix d ≥ 2 (since the (z, d) = (2, 1)-case follows from the d = 1-

case of the theorem). In this case, 𝒮2,d is spanned by the d+ 2 box products

u1 � uj
1u2u

d−j−1
1 (0 ≤ j ≤ d− 1), u1u1 � ud

1, u2 � ud
1.

Note that all but the last box product are linear independent since u1u1 � ud
1 does not

contain any word with letter u3 while u1 �uj
1u2u

d−j−1
1 does contain exactly one such one

which is unique for fixed j. Furthermore, we have

u2 � ud
1 =

d−1∑
j=0

u1 � uj
1u2u

d−j−1
1 − 2u1u1 � ud

1,

i.e., u2 � ud
1 is not linearly independent of the box products. Therefore,

𝓈2,d = d+ 1 =

(
d+ 2− 1

min{2, d} − 1

)
since we assumed d ≥ 2. This proves Conjecture 39 for z = 2.
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Now, assume d = 3. Since the cases (z, d) ∈ {(1, 3), (2, 3)} follow from the case z = 1,
respectively z = 2, that we have proven already, we may fix z ∈ Z≥3. For z = 3,
from Lemmas 32, 33, and 36, we obtain 𝒮3,3 = 𝒯3,3, yielding, by Corollary 40, the
claim. For z > 3, we apply Theorem 41 to obtain the remaining part for the proof that
Conjecture 39 is true for all pairs (z, 3) ∈ Z2

>0 from the case z = 3.

Noting Corollary 40, Conjecture 39 is equivalent to 𝒮z,d = 𝒯z,d for all z ≥ d. I.e.,
in these cases, every uµ with µ ∈ Zd

>0 and |µ| = z + d conjecturally can be written
as Q-linear combination of box products un � uℓ with (n, ℓ) ∈ Jz,d. With the following
lemmas, we reduce the number of such µ’s. For that, we have to show this, which can
be seen as progress towards Conjecture 39. For this, given W1, W2 ∈ (U\{u0})∗, we call
the box product W1 � W2 non-trivial if 1 ≤ len(W1) ≤ len(W2).

Lemma 67. Let be µ ∈ Zd
>0 for some d ≥ 1. Then, uµ can be written as a linear

combination of words ending in u1 and non-trivial box products.

Proof. Choose µ = (µ1, . . . , µd) ∈ Zd
>0 with µd > 1 (for µd = 1 there is nothing to prove).

Then,

uµd−1 � uµ1 · · ·uµd−1
u1 = uµ +

(
uµd−1 � uµ1 · · ·uµd−1

)
u1,

i.e., after rearranging, one obtains the claim. □

Lemma 68. Fix z, d ∈ Z>1 with z ≥ d ≥ 2. If Conjecture 39 is true for (z, d− 1), then
every uµ with µ ∈ Zd

>0 and |µ| = z + d can be written as linear combination of words
ending in u2 and non-trivial box products.

Proof. Assume d and z as in the lemma. Let be µ = (µ1, . . . , µd) ∈ Zd
>0 with |µ| = z+d.

If µd = 2, there is nothing to prove. If µd > 2, we proceed as in the proof of Lemma 67.
If µd = 1, by assumption and Theorem 41, we have

uµ1 · · ·uµd−1
=

∑
(n,ℓ)∈Jz,d−1

an,ℓ(µ)un � uℓ

for appropriate an,ℓ(µ) ∈ Q. Then,∑
(n,ℓ)∈Jz,d−1

an,ℓ(µ)un � uℓu1 = uµ +
∑

(n,ℓ)∈Jz,d−1

an,ℓ(µ)
(
u(n1,...,ns−1) � uℓ

)
u1+ns .

The latter sum consists of words ending in some uµ′
d
with µ′

d ≥ 2. However, such words
can be written as linear combinations of words ending in u2 and box products, similar
to the proof of Lemma 67, completing the proof. □

Lemma 69. Fix z, d ∈ Z>1 with z ≥ d ≥ 2. If Conjecture 39 is true for (z − 1, d− 1),
then every uµ with µ ∈ Zd

>0 and |µ| = z + d can be written as linear combination of
words ending in u3 and non-trivial box products.

Proof. Assume d and z as in the lemma. Using Lemma 68, we only have to show that
a word ending in u2 can be written as a linear combination of words ending in u3 and

box products. Choose such a word uµ1 · · ·uµd−1
u2, i.e., 2 +

d−1∑
j=1

µj = z + d. Then, by
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assumption, one has

uµ1 · · ·uµd−1
=

∑
(n,ℓ)∈Jz−1,d−1

an,ℓ(µ)un � uℓ

for appropriate an,ℓ(µ) ∈ Q. Hence,∑
(n,ℓ)∈Jz−1,d−1

an,ℓ(µ)un � uℓu2 = uµ +
∑

(n,ℓ)∈Jz−1,d−1

an,ℓ(µ)
(
u(n1,...,ns−1) � uℓ

)
u2+ns .

The latter sum consists of words ending in some uµ′
d
with µ′

d ≥ 3. However, such words
can be written as linear combinations of words ending in u3 and box products, similar
to the proof of Lemma 67, completing the proof. □

Lemma 70. Let be n ∈ Zs
>0, ℓ ∈ Zd

>0 with 1 ≤ s ≤ d. Then, un � uℓ can be written as
linear combination of non-trivial box products un′ � uℓ′ where ℓ′ ends in 1.

Proof. Writing ℓ = (ℓ1, . . . , ℓd), we may assume ℓd > 1 since for ℓd = 1 there is nothing
to prove. Then,

un � uℓ =un �

(
uℓd−1 � u(ℓ1,...,ℓd−1,1) −

d−1∑
j=1

u(ℓ1,...,ℓj+ℓd−1,...,ℓd−1,1)

)

= (un ∗ uℓd−1) � u(ℓ1,...,ℓd−1,1) −
d−1∑
j=1

un � u(ℓ1,...,ℓj+ℓd−1,...,ℓd−1,1),

where we used Lemma 19 in the last step. □

A further result about the numbers 𝓈z,d is the following lemma that gives a lower
bound.

Lemma 71. For all z, d ∈ Z>0, we have 𝓈z,d ≥
(
z+d−2
d−1

)
.

Proof. We prove by induction on z+d. For z = 1, the claim is clear, since for all d ∈ Z>0,
we have 0 ̸= u1 � ud

1 ∈ 𝒮1,d, i.e.,

𝓈1,d ≥ 1 =

(
1 + d− 2

d− 1

)
.

For d = 1, we have for all z ∈ Z>0 equality by Lemma 42. In particular, the base
case z + d = 2 is proven. Now, let be z, d ∈ Z>1 and assume that the lemma is proven
for all smaller values of z + d. By Lemma 50 and the induction hypothesis, we obtain

𝓈z,d ≥ 𝓈z,d−1 + 𝓈z−1,d ≥
(
z + d− 3

d− 2

)
+

(
z + d− 3

d− 1

)
=

(
z + d− 2

d− 1

)
. □

We end this subsection with some remark on Conjecture 39 that is independent of the
rest of the paper.

Remark 72. Using basic linear algebra, we obtain the following equivalent formulation
of Conjecture 39 in the cases z ≥ d. Fix positive integers d and z with z ≥ d.
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Conjecture 39 is true for the pair (z, d) if and only if the
(
z+d−1
d−1

)
expressions ∑

(n,ℓ)∈Jz,d

ϵµn,ℓ un � uℓ

∣∣∣∣∣ µ ∈ Zd
>0, |µ| = z + d


are Q-linearly independent. Here, ϵµn,ℓ denotes the multiplicity of uµ in un � uℓ.

5. Our approach to the refined Bachmann Conjecture 10

In the following, we present the approach with which one is trying to make progress in
proving the refined Bachmann Conjecture 10. The general idea is to prove by induction
on zero(W) for W ∈ U∗,◦ that ζ fq (W) ∈ Zf,◦

q . This is trivial for the base case zero(W) = 0.
Thus, we assume zero(W) > 0. Particularly - for proving the induction step - one has to
write ζ fq (W) as a linear combination of ζ fq (W

′)’s with W′ ∈ U∗,◦ and zero(W′) < zero(W). In
our approach, we refine the induction step by showing that for every word W ∈ U∗,◦ we
can write ζ fq (W) as a linear combination of ζ fq (W

′)’s with W′ ∈ U∗,◦ and zero(W′) < zero(W),
or

zero(W′) = zero(W) and depth(W′) + wt(W′) < depth(W) + wt(W)

(see the refined Bachmann Conjecture 10). The general observation of why the refined
Bachmann Conjecture 10 is of interest when studying Bachmann’s Conjecture 4 is given
in the following lemma.

Lemma 73 (Lemma 11). Fix z, d, w ∈ Z>0. If the refined Bachmann Conjecture 10
is true for (z, d, w) and if Bachmann’s Conjecture 4 is true for all (z′, d′, w′) ∈ Z3

>0

with z′ + d′ + w′ < z + d + w, then Bachmann’s Conjecture 4 is true for (z, d, w). In
particular, the refined Bachmann Conjecture 10 implies Bachmann’s Conjecture 4.

Proof. Fix z, d, w ∈ Z>0 and assume that the refined Bachmann Conjecture 10 is true
for (z, d, w) and that Bachmann’s Conjecture 4 is true for all triples (z′, d′, w′) ∈ Z3

>0

satisfying z′ + d′ + w′ < z + d + w. By definition of Fz,d,w and the second part of our
assumption, it follows

Fz,d,w = FilZ,D,W
z,d,w−1 Z

f
q +

∑
z′+d′=z+d−1

0≤z′≤z

FilZ,D,W
z′,d′,w Zf

q

⊂ FilD,W
z+d,w−1 Z

f,◦
q + FilD,W

z+d−1,w Zf,◦
q ⊂ FilD,W

z+d,w Zf,◦
q .

Using the assumption FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w, we obtain FilZ,D,W
z,d,w Zf

q ⊂ FilD,W
z+d,w Zf,◦

q , i.e.,
Bachmann’s Conjecture 4 for (z, d, w). □

For given z ≥ d, our approach to the refined Bachmann Conjecture 10 restricts -
independent of the weight w - to prove Conjecture 39 for the pair (z, d) as the following
theorem shows.
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Theorem 74. Fix z, d ∈ Z>0 with z ≥ d. If Conjecture 39 is true for the pair (z, d),
then for all w ∈ Z>0, we have

FilZ,D,W
z,d,w Zf

q ⊂
∑

z′+d′=z+d−1
0≤z′≤z−1

FilZ,D,W
z′,d′,w Zf

q ⊂ Fz,d,w .

In particular, the refined Bachmann Conjecture 10 is true for the triples (z, d, w) ∈ Z3
>0

with w arbitrary.

Proof. Fix z, d ∈ Z>0 with z ≥ d and assume that Conjecture 39 is true for (z, d). This
means uz ∈ P for all z ∈ Zd

>0 with |z| = z + d. Hence, the claim follows immediately
from Corollary 62. □

Remark 75. Immediately from Theorems 41 and 74 the following statement is obtained:
If Conjecture 39 is true for all z = d, then we have

FilZz Zf
q ⊂ FilZd−1 Zf

q

for all (z, d) ∈ Z2
>0 with z ≥ d. More precise, then we have

Zf
q = Zf,◦

q +
∑

0≤z≤d−1
d≥1

FilZ,D,W
z,d,2z+d−1Z

f
q .

Remark 76. For z ≥ d, our approach to Bachmann’s Conjecture 4, and the refined
Bachmann Conjecture 10, is to study Conjecture 39 in more detail. We will explain this
in Section 6. For z < d, this approach will not suffice since in this case, we have 𝒮z,d ⊊ 𝒯z,d

by Conjecture 39 which is numerically explicit verified for small values of z and d (see
Lemma 42). Hence, we need to extend our approach. We make do with few explicit
calculations to prove our main results in Section 6. In the outlook, Section 7, we abstract
our calculations and leave it as an open question whether this generalization is sufficient.

6. Proof of our main results towards the refined Bachmann
Conjecture 10

In this section, we first provide the proof of our main results, namely, Theorems 8
and 12, where some particular statements are black-boxed. We deliver their proofs in
Sections 6.1, 6.2, and 6.3.

Proposition 77. The refined Bachmann Conjecture 10 is true for all (z, 2, w) ∈ Z3
>0.

Proof. Due to case d = 2 of Lemma 42, Conjecture 39 is true for all (z, 2) ∈ Z2
>0

with z ≥ 2. Theorem 74 then implies FilZ,D,W
z,2,w Zf

q ⊂ Fz,2,w for all z, w ∈ Z>0 with z ≥ 2.
Hence, it remains to prove case z = 1. However, this follows immediately from the
special case d = 2 of Corollary 28. □

Proposition 78. The refined Bachmann Conjecture 10 is true for all (z, 3, w) ∈ Z3
>0.

Proof. The case z = 1 is proven by Corollary 28, the case z = 2 will follow from
Theorem 82 below, and the cases z ≥ 3 are proven by the z = 3 case of Lemma 52,
Theorem 41, and Theorem 74. □
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Proposition 79. The refined Bachmann Conjecture 10 is true for all (z, 4, w) ∈ Z3
>0.

Proof. While the case z = 1 is proven by Corollary 28, the case z = 2 will be obtained
from Theorem 87 below, and the case z = 3 will be obtained from Theorem 102 below.
Furthermore, the cases z ≥ 4 are proven by Proposition 53 and Theorem 74, completing
the claim. □

We are now able to prove one of our main theorems.

Theorem 80 (Theorem 8). Bachmann’s Conjecture 4 is true for all (z, d, w) ∈ Z3
>0

with z + d ≤ 6.

Proof. For z + d ≤ 3, the claim is an immediate consequence of Proposition 21 and
Corollary 28. For z = d = 2, the claim follows by induction on w, using the proven
claim for z + d ≤ 3, Lemma 73, and Proposition 77 in the induction step. Together
with Proposition 21 and Corollary 28, the claim holds now for z + d ≤ 4. Again,
inductively on w, the claim for (z, d) ∈ {(3, 2), (2, 3)} follows from the already proven
claim for z+d ≤ 4, Lemma 73, and Proposition 77 (for (z, d) = (3, 2)), and Proposition 78
(for (z, d) = (2, 3)). Now, using Proposition 21 and Corollary 28, the claim follows
for z + d ≤ 5. Analogously, for (z, d) ∈ {(4, 2), (3, 3), (2, 4)}, the claim follows in each
case inductively on w, where we use in the induction step the already proven claim
for z+ d ≤ 5, Lemma 73, and Proposition 77 (for (z, d) = (4, 2)), 78 (for (z, d) = (3, 3)),
and 79 (for (z, d) = (2, 4)), respectively. Now, using Proposition 21 and Corollary 28,
the theorem is proven for z + d ≤ 6 as well, completing the proof. □

Theorem 80 is the main ingredient in the proof of the next main theorem.

Theorem 81 (Theorem 12). The refined Bachmann Conjecture 10 is true for all triples
of positive integers (z, d, w) ∈ Z3

>0 with 1 ≤ d ≤ 4.

Proof. For 1 ≤ z < d ≤ 4 and w ∈ Z>0 arbitrary, we obtain the claim from Theorem 80.
Furthermore, for 1 ≤ d ≤ 3, z ≥ d and w ∈ Z>0 arbitrary, we obtain the claim from
Corollary 62, Lemma 42, and Theorem 74. For d = z = 4 and w ∈ Z>0 arbitrary, the
claim follows from Proposition 53 and Corollary 62. Hence, for z ≥ d = 4 and w ∈ Z>0

arbitrary, the claim is a direct consequence of Corollary 62 and Theorem 74, proving the
theorem finally. □

6.1. The refined Bachmann Conjecture 10 for (z, d, w) = (2, 3, w).

Theorem 82. The refined Bachmann Conjecture 10 is true for all (2, 3, w) ∈ Z3
>0, i.e.,

ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 ) ∈ F2,3,w (82.1)

for all kj ∈ Z>0, zj ∈ Z≥0, for 1 ≤ j ≤ 3, satisfying z1+z2+z3 = 2 and w = k1+k2+k3+2.

Proof. For k1 = k2 = k3 = 1 and for all z1, z2, z3 ≥ 0 satisfying z1 + z2 + z3 = 2, (82.1)
is true since, after using τ -invariance of ζ fq, we have

ζ fq (u1u
z1
0 u1u

z2
0 u1u

z3
0 ) = ζ fq (uz3+1uz2+1uz3+1) ∈ F2,3,w .
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Furthermore, for k2 > 1, (82.1) will follow from Lemma 84, for k3 > 1, (82.1) will follow
from Lemma 85, and for k1 > 1, (82.1) will follow from Lemma 86, completing the proof
of the theorem. □

Lemma 83. Let be k1, k2, k3 ∈ Z>0 and write w = k1 + k2 + k3 + 2. We have

ζ fq (uk1uk2uk3u0u0) , ζ
f
q (uk1u0uk2u0uk3) ∈ F2,3,w, (83.1)

ζ fq (uk1uk2u0u0uk3) ≡ ζ fq (uk1u0uk2uk3u0) mod F2,3,w (83.2)

≡ −ζ fq (uk1u0u0uk2uk3) ≡ − ζ fq (uk1uk2u0uk3u0) mod F2,3,w . (83.3)

In particular, for fixed k1, k2, k3, if one of the latter four formal Multiple Zeta Values is
in F2,3,w, (82.1) is true for the corresponding choice of k1, k2, k3.

Proof. First note that (83.1) is a consequence of Corollaries 25 and 29. Furthermore,
after using Lemma 61 and τ -invariance of formal qMZVs, with (83.1), we obtain

0 ≡ ζ fq
(
Ψ(k1,k2,k3)(u1u1 � u1u1u1)

)
mod F2,3,w

≡ ζ fq
(
u2u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0 + u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F2,3,w

≡ ζ fq (uk1uk2u0uk3u0) + ζ fq (uk1u0uk2uk3u0) mod F2,3,w, (83.4)

0 ≡ ζ fq
(
Ψ(k1,k2,k3)(u1 � u1u2u1)

)
mod F2,3,w

≡ ζ fq
(
u2u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0 + u1u

k3−1
0 u3u

k2−1
0 u1u

k1−1
0

)
mod F2,3,w

≡ ζ fq (uk1uk2u0uk3u0) + ζ fq (uk1uk2u0u0uk3) mod F2,3,w,

0 ≡ ζ fq
(
Ψ(k1,k2,k3)(u1 � u1u1u2)

)
mod F2,3,w (83.5)

≡ ζ fq
(
u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0 + u1u

k3−1
0 u1u

k2−1
0 u3u

k1−1
0

)
mod F2,3,w

≡ ζ fq (uk1u0uk2uk3u0) + ζ fq (uk1u0u0uk2uk3) mod F2,3,w . (83.6)

We obtain (83.2) and (83.3), by comparing (83.4), (83.5), and (83.6). □

Lemma 84. Equation (82.1) is true for k2 > 1.

Proof. Let be k1, k2, k3 ∈ Z>0 and write w = k1 + k2 + k3 + 3. By (3.1), we have

u2u1 ∗ uk1uk2uk3 ∈ FilZ,D,W
0,5,w Q⟨U⟩◦.

Hence, and due to τ -invariance of formal qMZVs, we have

0 ≡ 1

k2
ζ fq (τ(u2u1) ∗ τ (uk1uk2uk3)) mod F2,3,w

≡ 1

k2
ζ fq
(
u1u1u0 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,3,w

≡ ζ fq
(
u2u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
+

k1
k2

ζ fq
(
u1u1 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1
0

)
mod F2,3,w

≡ ζ fq (uk1uk2+1u0uk3u0) + ζ fq
(
Ψ(k1+1,k2,k3)(u1u1 � u1u1u1)

)
mod F2,3,w,

≡ ζ fq (uk1uk2+1u0uk3u0) mod F2,3,w,
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where the last step is a consequence of Lemma 61. Now, with Lemma 83, (82.1) indeed
is true for k2 > 1. □

Lemma 85. Equation (82.1) is true for k3 > 1.

Proof. Let be k1, k2, k3 ∈ Z>0 and write w = k1 + k2 + k3 + 3. By (3.1), we have

u2 ∗ uk1u0uk2uk3 ∈ FilZ,D,W
1,4,w Q⟨U⟩◦.

Hence, and due to τ -invariance of formal qMZVs, we have

0 ≡ 1

k3
ζ fq (τ(u2) ∗ τ (uk1u0uk2uk3)) mod F2,3,w

≡ 1

k3
ζ fq
(
u1u0 ∗ u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F2,3,w

≡ ζ fq
(
u2u

k3
0 u1u

k2−1
0 u2u

k1−1
0

)
+

k2
k3

ζ fq
(
u2u

k3−1
0 u1u

k2
0 u2u

k1−1
0

)
+

k2
k3

ζ fq
(
u1u

k3−1
0 u2u

k2
0 u2u

k1−1
0

)
+

k1
k3

ζ fq
(
Ψ(k1+1,k2,k3)(u1 � u1u1u2

)
mod F2,3,w

≡ ζ fq (uk1u0uk2uk3+1u0) mod F2,3,w .

The last step is obtained by Lemmas 61 and 84. Hence, the lemma is proven by
Lemma 83. □

Hence, for proving Proposition 78, the remaining case is k2 = k3 = 1.

Lemma 86. Equation (82.1) is true for k1 > 1.

Proof. Let be k1, k2, k3 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + 2. Due to
Lemmas 84 and 85, we may assume k1 > 1 and k2 = k3 = 1, i.e., w = k1 + 4 then. By
Proposition 77, we have ζ fq (uk1u0u1u0) ∈ F2,2,w−1 and thus ζ fq (u1 ∗ uk1u0u1u0) ∈ F2,3,w.
Multiplying out the latter product and using Proposition 77, (83.1), and Lemma 84, we
see that

0 ≡ ζ fq (u1 ∗ uk1u0u1u0) ≡ 2ζ fq (uk1u0u1u1u0 + uk1u1u0u1u0) mod F2,3,w

≡ ζ fq (uk1u0u1u1u0) mod F2,3,w,

where the last congruence is obtained from (83.4). Thus, the proof of the lemma follows
from Lemma 83. □

6.2. The refined Bachmann Conjecture 10 for (z, d, w) = (2, 4, w).

Theorem 87. The refined Bachmann Conjecture 10 is true for all (2, 4, w) ∈ Z3
>0, i.e.,

ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) ∈ F2,4,w (87.1)

for all kj ∈ Z>0, zj ∈ Z≥0, for 1 ≤ j ≤ 4, satisfying z1 + z2 + z3 + z4 = 2 and
w = k1 + k2 + k3 + k4 + 2.

Proof. In the case k1 = k2 = k3 = k4 = 1, (87.1) is true since for all z1, . . . , z4 ≥ 0, we
have by τ -invariance of ζ fq that

ζ fq (u1u
z1
0 u1u

z2
0 u1u

z3
0 u1u

z4
0 ) = ζ fq (uz4+1uz3+1uz2+1uz1+1) ∈ FilD,W

4,w Zf,◦
q .
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In the four cases ki1 , ki2 , ki3 > 1 with pairwise distinct i1, i2, i3 ∈ {1, 2, 3, 4}, (87.1)
will follow from Lemma 92, Proposition 93, and Proposition 94. Furthermore, the six
cases ki1 , ki2 > 1 for distinct i1, i2 ∈ {1, 2, 3, 4} (and the two other kj’s equal 1) then
follow from Lemmas 92, 95, 96, and 97. Next, the four cases of ki > 1 (i ∈ {1, 2, 3, 4})
(and the three other kj’s equal 1), will follow from Lemmas 98, 99, 100, and 101. This
completes the proof of the theorem. □

In the following three lemmas, we state some congruences that are true independently
of the several cases we might consider.

Lemma 88. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · ·+ k4 + 2. We have

0 ≡ ζ fq (uk1uk2uk3uk4u0u0) mod F2,4,w, (88.1)

0 ≡ ζ fq (uk1u0uk2u0uk3uk4) mod F2,4,w, (88.2)

0 ≡ ζ fq (uk1uk2uk3u0uk4u0) + ζ fq (uk1uk2uk3u0u0uk4) mod F2,4,w . (88.3)

Proof. Note that (88.1) is a direct consequence of Corollary 25, while (88.2) follows from
Corollary 29. Last, (88.3) follows from (88.1) and the special case d = 4, z = 2, j = 3 of
Corollary 27. □

Lemma 89. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · ·+ k4 + 2. We have

0 ≡ ζ fq (uk1uk2uk3u0uk4u0) + ζ fq (uk1uk2u0uk3uk4u0)

+ ζ fq (uk1u0uk2uk3uk4u0) mod F2,4,w,
(89.1)

0 ≡ ζ fq (uk1uk2u0uk3u0uk4) + ζ fq (uk1u0uk2uk3u0uk4) mod F2,4,w, (89.2)

0 ≡ ζ fq (uk1uk2u0uk3uk4u0) + ζ fq (uk1uk2u0uk3u0uk4)

+ ζ fq (uk1uk2u0u0uk3uk4) mod F2,4,w,
(89.3)

0 ≡ ζ fq (uk1u0uk2uk3uk4u0) + ζ fq (uk1u0uk2uk3u0uk4)

+ ζ fq (uk1u0u0uk2uk3uk4) mod F2,4,w,
(89.4)

0 ≡ ζ fq (uk1uk2uk3u0u0uk4) + ζ fq (uk1uk2u0u0uk3uk4)

+ ζ fq (uk1u0u0uk2uk3uk4) mod F2,4,w,
(89.5)

0 ≡ ζ fq (uk1uk2uk3u0uk4u0) + ζ fq (uk1uk2u0uk3uk4u0)

+ ζ fq (uk1u0uk2uk3uk4u0) + ζ fq (uk1uk2u0uk3u0uk4)

+ ζ fq (uk1u0uk2uk3u0uk4) mod F2,4,w .

(89.6)

Proof. All relations are, by Lemma 61, a consequence of

0 ≡ ζ fq (τ(Ψk(un � uℓ))) mod F2,4,w

with k = (k1, . . . , k4) each and (n, ℓ) ∈ J2,4, where Lemma 88 was applied. Precisely,
for (89.1), we used (n, ℓ) = ((1), (2, 1, 1, 1)), for (89.2), we used (n, ℓ) = ((1), (1, 2, 1, 1)),
for (89.3), we used (n, ℓ) = ((1), (1, 1, 2, 1)), for (89.4), we used (n, ℓ) = ((1), (1, 1, 1, 2),
for (89.5), we used (n, ℓ) = ((2), (1, 1, 1, 1)). Furthermore, for (89.6), we used the
element (n, ℓ) = ((1, 1), (1, 1, 1, 1)) of J2,4. □
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Lemma 90. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · ·+ k4 + 3. We have

0 ≡ k4ζ
f
q (uk1u0uk2uk3uk4+1u0)− k3ζ

f
q (uk1u0u0uk2uk3+1uk4)

− k2ζ
f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w,

(90.1)

0 ≡ k4ζ
f
q (uk1uk2u0uk3uk4+1u0)− k3ζ

f
q (uk1uk2u0u0uk3+1uk4) mod F2,4,w, (90.2)

0 ≡ k4ζ
f
q (uk1uk2uk3u0uk4+1u0) + k2ζ

f
q (uk1uk2+1u0uk3u0uk4) mod F2,4,w, (90.3)

0 ≡ k3ζ
f
q (uk1uk2uk3+1u0uk4u0)− k2ζ

f
q (uk1u0uk2+1uk3uk4u0) mod F2,4,w, (90.4)

0 ≡ k3ζ
f
q (uk1uk2uk3+1u0u0uk4)− k2ζ

f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w . (90.5)

Proof. We use τ -invariance of formal qMZVs and Corollary 28 to see in the following
calculations that each of the formal qMZVs of stuffle products in the first line indeed is
an element of F2,4,w in the following.
Now, by (88.2) and (89.4), we have

0 ≡ ζ fq (τ(u2) ∗ τ (uk1u0uk2uk3uk4)) mod F2,4,w

≡ ζ fq
(
u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q

(
u2u

k4
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
− k3ζ

f
q

(
u1u

k4−1
0 u1u

k3
0 u1u

k2−1
0 u3u

k1−1
0

)
− k2ζ

f
q

(
u1u

k4−1
0 u1u

k3−1
0 u1u

k2
0 u3u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q (uk1u0uk2uk3uk4+1u0)− k3ζ

f
q (uk1u0u0uk2uk3+1uk4)

− k2ζ
f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w,

proving (90.1). Furthermore, using (88.2), we have

0 ≡ ζ fq (τ(u2) ∗ τ (uk1uk2u0uk3uk4)) mod F2,4,w

≡ ζ fq
(
u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q

(
u2u

k4
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
− k3ζ

f
q

(
u1u

k4−1
0 u1u

k3
0 u3u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q (uk1uk2u0uk3uk4+1u0)− k3ζ

f
q (uk1uk2u0u0uk3+1uk4) mod F2,4,w,

proving (90.2). Now, applying (88.3) yields

0 ≡ ζ fq (τ(u2) ∗ τ (uk1uk2uk3u0uk4)) mod F2,4,w

≡ ζ fq
(
u1u0 ∗ u1u

k4−1
0 u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q

(
u2u

k4
0 u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
+ k2ζ

f
q

(
u1u

k4−1
0 u2u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4ζ
f
q (uk1uk2uk3u0uk4+1u0) + k2ζ

f
q (uk1uk2+1u0uk3u0uk4) mod F2,4,w,

proving (90.3). Next, use (88.1) and (89.1) to obtain

0 ≡ ζ fq (τ(u2) ∗ τ (uk1uk2uk3uk4u0)) mod F2,4,w

≡ ζ fq
(
u1u0 ∗ u2u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w



ON THE STRUCTURE OF MULTIPLE Q-ZETA VALUES 35

≡ k3ζ
f
q

(
u2u

k4−1
0 u2u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
− k2ζ

f
q

(
u2u

k4−1
0 u1u

k3−1
0 u1u

k2
0 u2u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q (uk1uk2uk3+1u0uk4u0)− k2ζ

f
q (uk1u0uk2+1uk3uk4u0) mod F2,4,w,

proving (90.4). Now, (88.1) and (89.5) imply

0 ≡ ζ fq (τ(u2u0) ∗ τ (uk1uk2uk3uk4)) mod F2,4,w

≡ ζ fq
(
u2u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q

(
u1u

k4−1
0 u3u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
− k2ζ

f
q

(
u1u

k4−1
0 u1u

k3−1
0 u1u

k2
0 u3u

k1−1
0

)
mod F2,4,w

≡ k3ζ
f
q (uk1uk2uk3+1u0u0uk4)− k2ζ

f
q (uk1u0u0uk2+1uk3uk4) mod F2,4,w,

proving (90.5). This completes the proof of the lemma. □

Corollary 91. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · ·+ k4 + 3. We have

0 ≡ ζ fq (uk1u0uk2+1uk3u0uk4) mod F2,4,w, (91.1)

0 ≡ ζ fq (uk1uk2+1u0uk3u0uk4) mod F2,4,w, (91.2)

0 ≡ ζ fq (uk1uk2uk3u0uk4+1u0) mod F2,4,w, (91.3)

0 ≡ ζ fq (uk1uk2uk3u0u0uk4+1) mod F2,4,w . (91.4)

Proof. Adding (90.4) and (90.5), yields, applying (88.3),

0 ≡ − k2
(
ζ fq (uk1u0uk2+1uk3uk4u0) + ζ fq (uk1u0u0uk2+1uk3uk4)

)
mod F2,4,w

≡ k2ζ
f
q (uk1u0uk2+1uk3u0uk4) mod F2,4,w,

where the last step follows from (89.4). Hence, (91.1) is proven. Furthermore, (91.2)
is deducted from (89.2) and (91.1). Now, (91.3) follows from (90.3) and (91.2). Since
(91.4) is a consequence of (91.3) and (88.3), the corollary is proven. □

Lemma 92. Equation (87.1) is true for k2, k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. By (88.1), (89.1),
and (91.3), we have

0 ≡ ζ fq (τ(u1u3) ∗ τ (uk1uk2uk3uk4)) mod F2,4,w

≡ ζ fq
(
u1u0u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ k4k2ζ
f
q

(
u2u

k4
0 u1u

k3−1
0 u1u

k2
0 u2u

k1−1
0

)
+ ζ fq

(
u1u

k4−1
0

(
u1u0u0u1 ∗ u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

))
+ ζ fq

(
u2u

k4−1
0 u1

(
u0u0u1 ∗ uk3−1

0 u1u
k2−1
0 u1u

k1−1
0

))
mod F2,4,w .

Now, by (89.2), (89.4), (89.6), and (91.1), the latter is, modulo F2,4,w, congruent

k4k2ζ
f
q (uk1u0uk2+1uk3uk4+1u0)−

(
k3 + 1

2

)
ζ fq (uk1uk2uk3+2u0uk4u0)
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+ k3k2ζ
f
q (uk1u0uk2+1uk3+1uk4u0)−

(
k2 + 1

2

)
ζ fq (uk1u0u0uk2+2uk3uk4) .

Using (90.2), (90.3), (90.4), and (90.5), the latter is, modulo F2,4,w, congruent

− k2k3ζ
f
q (uk1uk2+1u0u0uk3+1uk4)−

1

2
k2k3ζ

f
q (uk1u0uk2+1uk3+1uk4u0)

+ k3k2ζ
f
q (uk1u0uk2+1uk3+1uk4u0)−

1

2
k2k3ζ

f
q (uk1uk2+1uk3+1u0u0uk4)

≡ k2k3

(
−ζ fq (uk1uk2+1u0u0uk3+1uk4)−

1

2
ζ fq (uk1uk2+1uk3+1u0u0uk4)

+
1

2
ζ fq (uk1u0uk2+1uk3+1uk4u0)

)
mod F2,4,w .

With (89.2), (89.3), (89.6), and (91.2), one obtains so

0 ≡ ζ fq (uk1uk2+1u0uk3+1uk4u0) mod F2,4,w . (92.1)

Now, this, together with (89.3) and (91.2) imply

0 ≡ ζ fq (uk1uk2+1u0u0uk3+1uk4) mod F2,4,w . (92.2)

Furthermore, (90.2) and (92.2) imply

0 ≡ ζ fq (uk1uk2+1u0uk3uk4+1u0) mod F2,4,w .

Note that by Lemma 88, Corollary 91, and the congruences in Lemma 89, the claim
follows. □

Proposition 93. Equation (87.1) is true for k1, k3, k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1, k3, k4 > 1 and write w = k1 + k2 + k3 + k4 + 2.
For all z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 2, using Theorem 82 in the first step and
Lemma 92 additionally in the second step, we have

0 ≡ ζ fq (uk1 ∗ uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 ) ≡ ζ fq (uk1uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

Using this observation, for z1 ≥ 1, z2, z3, z4 ≥ 0 with z1 + · · · + z4 = 2, we have, using
Corollary 28 in the first step due to z2 + z3 + z4 ≤ 1,

0 ≡ ζ fq (uz1 ∗ τ (uk1uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 )) mod F2,4,w

≡ ζ fq
(
uz1 ∗ uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ ζ fq
(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

This completes the proof of the proposition. □

Proposition 94. Equation (87.1) is true for k1, k2, k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1, k2, k3 > 1 and write w = k1 + k2 + k3 + k4 + 2.
Using Lemma 92 and Proposition 93, we obtain for z1, z2, z4 ≥ 0 with z1 + z2 + z4 = 2
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that

0 ≡ ζ fq (uk4u
z4
0 ∗ uk1u

z1
0 uk2u

z2
0 uk3) ≡ ζ fq (uk1u

z1
0 uk2u

z2
0 uk3uk4u

z4
0 ) mod F2,4,w,

where we used Proposition 21 and Proposition 78 for the first congruence. Now, for
all z1, . . . , z4 ≥ 0 with z1 + · · ·+ z4 = 2 and z3 > 0, we have

0 ≡ ζ fq (uz3 ∗ τ (uk1u
z1
0 uk2u

z2
0 uk3uk4u

z4
0 )) mod F2,4,w

≡ ζ fq
(
uz3 ∗ uz4+1u

k4−1
0 u1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ fq
(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

This completes the proof of the proposition. □

Lemma 92 and Propositions 93 and 94, show that Theorem 87 is true when three of
the kj are larger than 1. Hence, in the following, we will prove the remaining cases that
two of the kj’s are larger 1.

Lemma 95. Equation (87.1) is true for k3, k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k3, k4 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemma 92 and Proposition 93, we may assume k1 = k2 = 1. Using
Proposition 78 for the first two steps in the following calculation, while using (88.2),
(89.2), and (91.1) for the last step, we have

0 ≡ ζ fq (u1 ∗ u1u0uk3u0uk4) mod F2,4,w

≡ 2ζ fq (u1u1u0uk3u0uk4) + ζ fq (u1u0u1uk3u0uk4)

+ ζ fq (u1u0uk3u1u0uk4) + ζ fq (u1u0uk3u0u1uk4)

+ ζ fq (u1u0uk3u0uk4u1) mod F2,4,w

≡ ζ fq (u1u1u0uk3u0uk4) mod F2,4,w . (95.1)

This implies, with (89.2) again,

0 ≡ ζ fq (u1u0u1uk3u0uk4) mod F2,4,w . (95.2)

Now, using Proposition 78 for the first step, then using (88.2), (91.1), and Lemma 92 for
the second step, then applying (95.1) and (95.2), we obtain

0 ≡ 1

4

(
ζ fq (u1u0 ∗ u1u0uk3uk4)− ζ fq (u1 ∗ u1u0uk3uk4u0)

)
mod F2,4,w

≡ ζ fq (u1u1u0u0uk3uk4) +
1

2
ζ fq (u1u1u0uk3u0uk4)

+
1

4
ζ fq (u1u0u1uk3u0uk4) mod F2,4,w

≡ ζ fq (u1u1u0u0uk3uk4) mod F2,4,w .

The lemma follows using the relations in Lemma 89. □

Lemma 96. Equation (87.1) is true for k2, k3 > 1.
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Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k2, k3 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Proposition 94 and Lemma 92, we may assume k1 = k4 = 1. Using
Proposition 78 for the first step and Lemmas 92 and 95 for the second one, we obtain

0 ≡ ζ fq (u1 ∗ u1u0u0uk2uk3) ≡ ζ fq (u1u0u0uk2uk3u1) mod F2,4,w,

giving by (89.5), respectively by (89.4) and (91.1),

0 ≡ ζ fq (u1uk2uk3u0u0u1) mod F2,4,w, (96.1)

0 ≡ ζ fq (u1u0uk2uk3u1u0) mod F2,4,w .

Note that (96.1) implies by (88.3)

0 ≡ ζ fq (u1uk2uk3u0u1u0) mod F2,4,w,

completing, together with (88.1), (88.2), (91.1), (91.2), (92.1), and (92.2), the proof of
the lemma. □

Lemma 97. Equation (87.1) is true for k1 > 1 and one of k2, k3, k4 larger 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + k4 +2. First,
assume that one of k3, k4 larger 1 as well. For z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 2, we
have, using Proposition 78 in the first step and Lemmas 92, 95, and 96 for the second
one,

0 ≡ ζ fq (uk1 ∗ uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 ) ≡ ζ fq (uk1uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

Now, for all z1 > 0, z2, z3, z4 ≥ 0 with z1 + · · ·+ z4 = 2, using Corollary 28, we obtain

0 ≡ ζ fq (uz1 ∗ τ (uk1uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 )) mod F2,4,w

≡ ζ fq
(
uz1 ∗ uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 u1u

k1−1
0

)
mod F2,4,w

≡ ζ fq
(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w,

showing that (87.1) holds for k1, k3 > 1, and for k1, k4 > 1 as well.
It remains considering the case of k1, k2 > 1 with k3, k4 ∈ Z>0 arbitrary. Note that

for z3, z4 ≥ 0 with z3 + z4 = 2, we have by the previous results of this proof and
Lemmas 92, 95, and 96,

0 ≡ ζ fq (uk3u
z3
0 uk4u

z4
0 ∗ uk1uk2) ≡ ζ fq (uk1uk2uk3u

z3
0 uk4u

z4
0 ) mod F2,4,w .

By Corollary 28 for the first congruence and for the second, again, by the previous results
of this proof and Lemmas 92, 95, and 96, we have

0 ≡ ζ fq (uk3uk4u0 ∗ uk1u0uk2) ≡ ζ fq (uk1u0uk2uk3uk4u0) mod F2,4,w .

Using the previous results of this proof and (88.1), (88.2), (91.2), (91.1), and Lemma 89,
we obtain that (87.1) also holds true for k1, k2 > 1, completing the proof. □

As in the proof of Theorem 87 mentioned, for completing the proof of Theorem 87,
it remains to consider the cases where one of the kj’s is larger 1 while the other three
equal 1.
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Lemma 98. Equation (87.1) is true for k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k3 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemmas 95, 96, 97, we may assume k1 = k2 = k4 = 1, i.e., w = k3 + 5.
Using Proposition 78 for the first congruence, Corollary 28 and Proposition 78 for the
second one, and (88.2), (89.5), and (91.4) for the third one, we have

0 ≡ ζ fq (u1 ∗ u1u0u0u1uk3) mod F2,4,w

≡ 2ζ fq (u1u1u0u0u1uk3) + ζ fq (u1u0u1u0u1uk3)

+ 2ζ fq (u1u0u0u1u1uk3) + ζ fq (u1u0u0u1uk3u1) mod F2,4,w

≡ ζ fq (u1u0u0u1uk3u1) mod F2,4,w . (98.1)

Furthermore, using Proposition 78 for the first congruence, Corollary 28, Proposition 78
and Equations (88.2), (89.2), and (91.1) for the second congruence, gives

0 ≡ ζ fq (u1 ∗ u1u0uk3u0u1) ≡ ζ fq (u1u1u0uk3u0u1) mod F2,4,w, (98.2)

and so, by (89.2) again,

0 ≡ ζ fq (u1u0u1uk3u0u1) mod F2,4,w . (98.3)

Now, (89.4) in combination with (98.1) and (98.3) implies

0 ≡ ζ fq (u1u0u1uk3u1u0) mod F2,4,w . (98.4)

Using Corollary 28 for the first congruence and, for the second one, Corollary 28,
Propositions 77 and 78 and Equations (89.1), (107.11), (88.2), (98.2), and (98.3), we
obtain

0 ≡ 1

4

(
ζ fq (u1u0u1 ∗ u1u0uk3)− ζ fq (u1u0 ∗ u1u0u1uk3)

)
mod F2,4,w

≡ ζ fq (u1u1u0u0uk3u1) mod F2,4,w . (98.5)

The remaining proof follows directly from Lemma 89. □

Lemma 99. Equation (87.1) is true for k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k4 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemmas 95, 92, 97, we may assume k1 = k2 = k3 = 1, i.e., w = k4+5. Using
Corollary 28 for the first congruence, and for the second one, Corollary 28, Proposition 78,
and Equations (89.6), (91.3), and (98.4), we have

0 ≡ 1

4

(
ζ fq (u1u0 ∗ u1u0u1uk4)

)
≡ ζ fq (u1u1u0u0u1uk4) mod F2,4,w .

This, (91.4), and (98.5), gives, together with Proposition 78,

0 ≡ ζ fq (u1 ∗ u1u1u0u0uk4) ≡ ζ fq (u1u1u0u1u0uk4) mod F2,4,w .

The remaining part of the proof follows from Equations (88.1), (88.2), (91.3), (91.4), and
Lemma 89. □

Lemma 100. Equation (87.1) is true for k2 > 1.
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Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k2 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemmas 92, 96, 97, we may assume k1 = k3 = k4 = 1, i.e., w = k2 + 5.
First note that, by Proposition 78 and Lemma 98, one has

0 ≡ 1

2
ζ fq (u1 ∗ u1u0u0uk2u1) ≡ ζ fq (u1u0u0uk2u1u1) mod F2,4,w,

giving, with (89.4) and (91.1),

0 ≡ ζ fq (u1u0uk2u1u1u0) mod F2,4,w, (100.1)

Furthermore, by Proposition 78 for the first congruence, Corollary 28, Proposition 78
and Lemma 98, Equations (89.1), (91.2), and (100.1) for the second congruence, we
obtain

0 ≡ ζ fq (u1 ∗ u1uk2u0u1u0) ≡ ζ fq (u1uk2u0u1u1u0) mod F2,4,w .

The remaining part of the proof follows from (88.1), (88.2), (91.2), (91.1), and Lemma 89,
immediately. □

Lemma 101. Equation (87.1) is true for k1 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + k4 + 2.
According to Lemma 97, we may assume k2 = k3 = k4 = 1, i.e., w = k1 + 5. For
any z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 2, we have, using Corollary 28, Proposition 78, and
Lemmas 98, 99, and 100 for the third congruence,

0 ≡ ζ fq (uk1 ∗ τ (uz4+1uz3+1uz2+1)) mod F2,4,w

≡ ζ fq (uk1 ∗ u1u
z2
0 u1u

z3
0 u1u

z4
0 ) mod F2,4,w

≡ ζ fq (uk1u1u
z2
0 u1u

z3
0 u1u

z4
0 ) mod F2,4,w .

This implies, for any z1 > 0, z2, z3, z4 ≥ 0 with z1 + · · · + z4 = 2, using Proposition 78
for the first congruence and, additionally, Corollary 28 for the third congruence,

0 ≡ ζ fq (uz1 ∗ τ (uk1u1u
z2
0 u1u

z3
0 u1u

z4
0 )) mod F2,4,w

≡ ζ fq
(
uz1 ∗ uz4+1uz3+1uz2+1u1u

k1−1
0

)
mod F2,4,w

≡ ζ fq
(
uz4+1uz3+1uz2+1uz1+1u

k1−1
0

)
mod F2,4,w

≡ ζ fq (uk1u
z1
0 u1u

z2
0 u1u

z3
0 u1u

z4
0 ) mod F2,4,w,

completing the proof of the lemma. □

6.3. The refined Bachmann Conjecture 10 for (z, d, w) = (3, 4, w).

Theorem 102. The refined Bachmann Conjecture 10 is true for all (3, 4, w) ∈ Z3
>0, i.e.,

ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) ∈ F3,4,w (102.1)

for all integers kj ∈ Z>0, zj ∈ Z≥0, for 1 ≤ j ≤ 4, satisfying z1 + z2 + z3 + z4 = 3
and w = k1 + k2 + k3 + k4 + 3.
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Proof. In the case k1 = k2 = k3 = k4 = 1, (102.1) is true since, by τ -invariance of ζ fq, for
any z1, . . . , z4 ≥ 0, we have

ζ fq (u1u
z1
0 u1u

z2
0 u1u

z3
0 u1u

z4
0 ) ≡ ζ fq (uz4+1uz3+1uz2+1uz1+1) ∈ Zf,◦

q .

For k3 > 1, (102.1) will follow from Lemma 106, for k4 > 1, (102.1) will follow from
Lemma 107, for k2 > 1, (102.1) will follow from Lemma 108, and for k1 > 1, (102.1) will
follow from Lemma 109. This completes the proof of the theorem. □

First, we will consider some relations we need more than once.

Lemma 103. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · ·+ k4 + 3. We have

0 ≡ ζ fq (uk1uk2uk3uk4u0u0u0) mod F3,4,w, (103.1)

0 ≡ ζ fq (uk1u0uk2u0uk3u0uk4) mod F3,4,w . (103.2)

Proof. Congruence (103.1) is a special case of Corollary 24. Setting k := (k1, . . . , k4),
(103.2) follows from Lemma 61 and (103.1) via

ζ fq
(
Ψk

(
u1u

3
2

))
≡

3∑
j=0

(−1)j−1ζ fq
(
Ψk

(
uj
1 � u4−ju

3
1

))
≡ 0 mod F3,4,w . □

Next, we consider relations coming from products with no u0 in one of the factors.

Lemma 104. Let be k1, . . . , k4 ∈ Z>0 and write w = k1 + · · ·+ k4 + 3. We have

0 ≡ ζ fq (uk1uk2uk3u0uk4u0u0) + ζ fq (uk1uk2u0uk3uk4u0u0)

+ ζ fq (uk1u0uk2uk3uk4u0u0) mod F3,4,w,
(104.1)

0 ≡ ζ fq (uk1u0u0uk2uk3uk4u0) + ζ fq (uk1u0u0uk2uk3u0uk4)

+ ζ fq (uk1u0u0uk2u0uk3uk4) + ζ fq (uk1u0u0u0uk2uk3uk4) mod F3,4,w,
(104.2)

0 ≡ ζ fq (uk1uk2uk3u0uk4u0u0) + ζ fq (uk1uk2uk3u0u0uk4u0)

+ ζ fq (uk1uk2u0uk3u0uk4u0) + ζ fq (uk1u0uk2uk3u0uk4u0) mod F3,4,w,
(104.3)

0 ≡ ζ fq (uk1u0uk2uk3uk4u0u0) + ζ fq (uk1u0uk2uk3u0uk4u0)

+ ζ fq (uk1u0uk2u0uk3uk4u0) + ζ fq (uk1u0u0uk2uk3uk4u0) mod F3,4,w,
(104.4)

0 ≡ ζ fq (uk1u0uk2uk3u0uk4u0) + ζ fq (uk1u0uk2uk3u0u0uk4)

+ ζ fq (uk1u0uk2u0uk3u0uk4) + ζ fq (uk1u0u0uk2uk3u0uk4) mod F3,4,w,
(104.5)

0 ≡ ζ fq (uk1u0uk2u0uk3uk4u0) + ζ fq (uk1u0uk2u0uk3u0uk4)

+ ζ fq (uk1u0uk2u0u0uk3uk4) + ζ fq (uk1u0u0uk2u0uk3uk4) mod F3,4,w,
(104.6)

0 ≡ ζ fq (uk1uk2uk3uk4u0u0u0) + ζ fq (uk1uk2uk3u0u0uk4u0)

+ ζ fq (uk1uk2u0u0uk3uk4u0) + ζ fq (uk1u0u0uk2uk3uk4u0) mod F3,4,w,
(104.7)

0 ≡ ζ fq (uk1uk2uk3u0uk4u0u0) + ζ fq (uk1uk2uk3u0u0u0uk4)

+ ζ fq (uk1uk2u0u0uk3u0uk4) + ζ fq (uk1u0u0uk2uk3u0uk4) mod F3,4,w,
(104.8)
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0 ≡ ζ fq (uk1uk2u0uk3uk4u0u0) + ζ fq (uk1uk2u0uk3u0u0uk4)

+ ζ fq (uk1uk2u0u0u0uk3uk4) + ζ fq (uk1u0u0uk2u0uk3uk4) mod F3,4,w,
(104.9)

0 ≡ ζ fq (uk1u0uk2uk3uk4u0u0) + ζ fq (uk1u0uk2uk3u0u0uk4)

+ ζ fq (uk1u0uk2u0u0uk3uk4) + ζ fq (uk1u0u0u0uk2uk3uk4) mod F3,4,w,
(104.10)

0 ≡ ζ fq (uk1u0uk2uk3u0uk4u0) + ζ fq (uk1u0uk2u0uk3uk4u0)

+ ζ fq (uk1u0u0uk2uk3uk4u0) + ζ fq (uk1u0u0uk2u0uk3uk4)

+ ζ fq (uk1u0u0u0uk2uk3uk4) mod F3,4,w,

(104.11)

0 ≡ ζ fq (uk1uk2uk3u0u0u0uk4) + ζ fq (uk1uk2u0u0u0uk3uk4)

+ ζ fq (uk1u0u0u0uk2uk3uk4) mod F3,4,w,
(104.12)

0 ≡ ζ fq (uk1uk2uk3u0uk4u0u0) + ζ fq (uk1uk2u0uk3uk4u0u0)

+ ζ fq (uk1u0uk2uk3uk4u0u0) + ζ fq (uk1uk2u0uk3u0u0uk4)

+ ζ fq (uk1u0uk2uk3u0u0uk4) + ζ fq (uk1u0uk2u0u0uk3uk4) mod F3,4,w,

(104.13)

0 ≡ ζ fq (uk1uk2uk3u0u0uk4u0) + ζ fq (uk1uk2u0u0uk3uk4u0)

+ ζ fq (uk1u0u0uk2uk3uk4u0) + ζ fq (uk1uk2u0u0uk3u0uk4)

+ ζ fq (uk1u0u0uk2uk3u0uk4) + ζ fq (uk1u0u0uk2u0uk3uk4) mod F3,4,w,

(104.14)

0 ≡ ζ fq (uk1uk2u0uk3u0uk4u0) + ζ fq (uk1u0uk2uk3u0uk4u0)

+ ζ fq (uk1u0uk2u0uk3uk4u0) mod F3,4,w .
(104.15)

Proof. All relations are a consequence of Lemma 103 and, by Lemma 61,

0 ≡ ζ fq (τ(Ψk(un � uℓ))) mod F3,4,w

with k = (k1, . . . , k4) and (n, ℓ) ∈ J3,4 each. Precisely, we used (n, ℓ) = ((1), (3, 1, 1, 1))
for (104.1), (n, ℓ) = ((1), (1, 1, 1, 3)) for (104.2), (n, ℓ) = ((1), (2, 2, 1, 1)) for (104.3),
(n, ℓ) = ((1), (2, 1, 1, 2)) for (104.4), (n, ℓ) = ((1), (1, 2, 1, 2)) for (104.5). Furthermore,
we used (n, ℓ) = ((1), (1, 1, 2, 2)) for (104.6). Furthermore, we used (n, ℓ) = ((2), (2, 1, 1, 1))
for (104.7), (n, ℓ) = ((2), (1, 2, 1, 1)) for (104.8), (n, ℓ) = ((2), (1, 1, 2, 1)) for (104.9),
(n, ℓ) = ((2), (1, 1, 1, 2)) for (104.10), (n, ℓ) = ((1, 1), (1, 1, 1, 2)) for (104.11). Furthermore,
we used (n, ℓ) = ((3), (1, 1, 1, 1)) for (104.12), (n, ℓ) = ((2, 1), (1, 1, 1, 1)) for (104.13),
(n, ℓ) = ((1, 2), (1, 1, 1, 1)) for (104.14), and (n, ℓ) = ((1, 1, 1), (1, 1, 1, 1)) for (104.15).

□

Note that we have the following conclusions.

Lemma 105. Let be k = (k1, . . . , k4) ∈ Z4
>0 and write w = |k| + 3. For all 1 ≤ j ≤ 4,

we have

0 ≡ ζ fq
(
Ψk

(
uj−1
1 u4u

4−j
1 + uj−1

2 u1u
4−j
2

))
mod F3,4,w, (105.1)

0 ≡ ζ fq (uk1uk2uk3u0u0uk4u0) + ζ fq (uk1uk2u0u0uk3uk4u0) (105.2)

+ ζ fq (uk1uk2u0u0uk3u0uk4) mod F3,4,w,
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0 ≡ ζ fq (uk1uk2uk3u0uk4u0u0) + ζ fq (uk1uk2u0uk3uk4u0u0) (105.3)

+ ζ fq (uk1uk2u0uk3u0u0uk4) mod F3,4,w,

0 ≡ ζ fq (uk1uk2u0u0uk3u0uk4) + ζ fq (uk1u0u0uk2u0uk3uk4) mod F3,4,w, (105.4)

0 ≡ ζ fq (uk1uk2uk3u0uk4u0u0) + ζ fq (uk1u0uk2u0u0uk3uk4) mod F3,4,w, (105.5)

0 ≡ ζ fq (uk1u0uk2uk3uk4u0u0) + ζ fq (uk1uk2u0u0uk3u0uk4) mod F3,4,w, (105.6)

0 ≡ ζ fq (uk1u0u0uk2uk3uk4u0) + ζ fq (uk1uk2u0uk3u0u0uk4) mod F3,4,w . (105.7)

Proof. The proof of (105.1) is obtained from Lemma 61 and the direct calculation

0 ≡
3∑

p=1

(−1)pζ fq
(
Ψk

(
up
1 � uj−1

1 u4−pu
4−j
1

))
mod F3,4,w

≡ ζ fq
(
Ψk

(
uj−1
1 u4u

4−j
1 + uj−1

2 u1u
4−j
2

))
mod F3,4,w .

Note that (105.4) is a consequence of (103.1), (104.3), (104.8), (104.7), when using
(104.14). Analogously, (105.5) is a consequence of (103.1), (104.6), (104.9), (104.10),
using (104.13). Furthermore, we obtain (105.6) with (104.13), (104.15), and case j = 3
of (105.1), in a similar way, using Lemma 61,

0 ≡ ζ fq (Ψk(u1 � u1u2u1u2))− ζ fq (Ψk(u2 � u1u2u1u1))

− ζ fq (Ψk(u2 � u1u1u1u2))− ζ fq
(
u1u

k4−1
0 u2u

k3−1
0 u3u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0uk2uk3uk4u0u0) + ζ fq (uk1uk2u0u0uk3u0uk4) mod F3,4,w

and we obtain (105.7) with (104.14), (104.15), and with case j = 3 of (105.1),

0 ≡ ζ fq (Ψk(u1 � u2u1u1u1))− ζ fq (Ψk(u2 � u1u1u2u1))

− ζ fq (Ψk(u2 � u2u1u1u1)) mod F3,4,w

≡ ζ fq (uk1u0u0uk2uk3uk4u0) + ζ fq (uk1uk2u0uk3u0u0uk4) mod F3,4,w,

completing the proof of the lemma. □

For the proof of Theorem 102, it remains to consider the cases where we have for
one j ∈ {1, 2, 3, 4} that kj > 1.

Lemma 106. Equation (102.1) is true for k3 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. By (103.2)
and (104.15), we obtain

0 ≡ 1

k3
ζ fq (τ(u1u1u2) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ 1

k3
ζ fq
(
u1u0u1u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4−1
0 u1u

k3
0 u2u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0uk2u0uk3+1uk4u0) mod F3,4,w . (106.1)
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Similar, using (103.2), (104.15), (106.1), we have

0 ≡ − 1

k2
ζ fq (τ(u1u2u1) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ − 1

k2
ζ fq
(
u1u1u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4−1
0 u2u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1uk2+1u0uk3u0uk4u0) mod F3,4,w . (106.2)

Furthermore, using (104.15), (106.2), (104.11), we have

0 ≡ 1

k3
ζ fq (τ(u2u1) ∗ τ (uk1u0uk2uk3uk4)) mod F3,4,w

≡ 1

k3
ζ fq
(
u1u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4−1
0 u2u

k3
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0uk2uk3+1u0uk4u0) mod F3,4,w . (106.3)

This implies by (104.15) and (106.1)

0 ≡ ζ fq (uk1uk2u0uk3+1u0uk4u0) mod F3,4,w . (106.4)

Now, by equations (104.15), (105.2), (105.3), (106.4), (106.2), we have

0 ≡ − 1

k2
ζ fq (τ(u2u1) ∗ τ (uk1uk2u0uk3uk4)) mod F3,4,w

≡ − 1

k2
ζ fq
(
u1u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4−1
0 u3u

k3−1
0 u1u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1uk2+1uk3u0u0uk4u0) mod F3,4,w . (106.5)

Considering (105.4), this implies

0 ≡ ζ fq (uk1u0u0uk2+1u0uk3uk4) mod F3,4,w . (106.6)

Next, we consider, using Corollary 28, (104.14), (105.2), (105.3),

0 ≡ 1

k3
ζ fq (τ(u2u0u1) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ 1

k3
ζ fq
(
u1u2u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4−1
0 u3u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1uk2uk3+1u0u0uk4u0) mod F3,4,w . (106.7)

Now, a consequence of (105.4) is

0 ≡ ζ fq (uk1u0u0uk2u0uk3+1uk4) mod F3,4,w .
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In a similar way, we obtain by Corollary 28, (104.13), (105.2), (105.3),

0 ≡ 1

k3
ζ fq (τ(u2u1u0) ∗ τ (uk1uk2uk3uk4)) mod F3,4,w

≡ 1

k3
ζ fq
(
u2u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u3u

k4−1
0 u2u

k3
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1uk2uk3+1u0uk4u0u0) mod F3,4,w . (106.8)

By (105.5), one obtains

0 ≡ ζ fq (uk1u0uk2u0u0uk3+1uk4) mod F3,4,w . (106.9)

From Corollary 28, (106.7), (106.5), and (106.2) we immediately get

0 ≡ 1

k2
ζ fq (τ(u2u1) ∗ τ (uk1uk2uk3u0uk4)) mod F3,4,w

≡ 1

k2
ζ fq
(
u1u1u0 ∗ u1u

k4−1
0 u2u

k3−1
0 u1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u1u

k4−1
0 u3u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1uk2+1u0uk3u0u0uk4) mod F3,4,w, (106.10)

and so, by (105.7),

0 ≡ ζ fq (uk1u0u0uk2+1uk3uk4u0) mod F3,4,w . (106.11)

This implies, using (104.2), (106.6), (106.2),

0 ≡ ζ fq (uk1u0u0uk2+1uk3u0uk4) mod F3,4,w . (106.12)

Also, from (104.7), using (106.5), (106.11), and (103.1), we obtain

0 ≡ ζ fq (uk1uk2+1u0u0uk3uk4u0) mod F3,4,w . (106.13)

This leads to, using (104.14), (106.5), (106.6), (106.11), (106.12),

0 ≡ ζ fq (uk1uk2+1u0u0uk3u0uk4) mod F3,4,w . (106.14)

A consequence of (105.6) then is

0 ≡ ζ fq (uk1u0uk2+1uk3uk4u0u0) mod F3,4,w . (106.15)

By Corollary 28, (104.4), (104.2), and (106.1), we have

0 ≡ − 1

k4
ζ fq (τ(u1u2) ∗ τ (uk1u0uk2uk3uk4)) mod F3,4,w

≡ − 1

k4
ζ fq
(
u1u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u3u

k4
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0uk2uk3uk4+1u0u0) mod F3,4,w . (106.16)



46 BENJAMIN BRINDLE

Hence, by Theorem 87 for the first congruence and by applying (104.4), (104.2), (106.3)
afterwards, we see that

0 ≡ − 1

k3
ζ fq (τ(u2) ∗ τ (uk1u0uk2uk3uk4u0)) mod F3,4,w

≡ − 1

k3
ζ fq
(
u1u0 ∗ u2u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u3u

k4−1
0 u1u

k3
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0uk2uk3+1uk4u0u0) mod F3,4,w . (106.17)

Now, (105.6) yields

0 ≡ ζ fq (uk1uk2u0u0uk3+1u0uk4) mod F3,4,w .

Furthermore, (106.17) implies with (104.10) and (106.9), respectively (104.1) and
(106.8),

0 ≡ ζ fq (uk1u0uk2uk3+1u0u0uk4) mod F3,4,w,

respectively,

0 ≡ ζ fq (uk1uk2u0uk3+1uk4u0u0) mod F3,4,w .

The latter implies by using (104.13) for the first congruence, then (105.7) for the second
one, (104.7) for the third one, and (104.14) for the last one,

0 ≡ ζ fq (uk1uk2u0uk3+1u0u0uk4) mod F3,4,w,

0 ≡ ζ fq (uk1u0u0uk2uk3+1uk4u0) mod F3,4,w,

0 ≡ ζ fq (uk1uk2u0u0uk3+1uk4u0) mod F3,4,w,

0 ≡ ζ fq (uk1u0u0uk2uk3+1u0uk4) mod F3,4,w .

This completes the proof of the lemma. □

Lemma 107. Equation (102.1) is true for k4 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 +4. From (106.16), we
obtain by (105.6)

0 ≡ ζ fq (uk1uk2u0u0uk3u0uk4+1) mod F3,4,w . (107.1)

From Corollary 28, Lemma 106, (104.6), (106.6), one sees

0 ≡ − 1

k4
ζ fq (τ(u1u2) ∗ τ (uk1uk2u0uk3uk4)) mod F3,4,w

≡ − 1

k4
ζ fq
(
u1u0u1 ∗ u1u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u3u

k4
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1uk2u0uk3uk4+1u0u0) mod F3,4,w, (107.2)
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With (104.1), this implies

0 ≡ ζ fq (uk1uk2uk3u0uk4+1u0u0) mod F3,4,w, (107.3)

0 ≡ ζ fq (uk1u0uk2u0u0uk3uk4+1) mod F3,4,w .

The second congruence is a consequence of the first one and (105.5).
Furthermore, Theorem 87 for the first congruence, Lemma 106 and (104.5) for the

third one, give

0 ≡ 1

k4
ζ fq (τ(u2) ∗ τ (uk1u0uk2uk3u0uk4)) mod F3,4,w

≡ 1

k4
ζ fq
(
u1u0 ∗ u1u

k4−1
0 u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4
0 u2u

k3−1
0 u1u

k2−1
0 u2u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0uk2uk3u0uk4+1u0) mod F3,4,w, (107.4)

and so, applying case j = 3 of (105.1),

0 ≡ ζ fq (uk1uk2u0u0u0uk3uk4+1) mod F3,4,w . (107.5)

Furthermore, by Theorem 87 for the first congruence and by Lemma 106 and (104.2)
for the third one, we observe

0 ≡ 1

k4
ζ fq (τ(u2) ∗ τ (uk1u0u0uk2uk3uk4)) mod F3,4,w

≡ 1

k4
ζ fq
(
u1u0 ∗ u1u

k4−1
0 u1u

k3−1
0 u1u

k2−1
0 u3u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u2u

k4
0 u1u

k3−1
0 u1u

k2−1
0 u3u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0u0uk2uk3uk4+1u0) mod F3,4,w . (107.6)

This implies, using (105.7), and (104.13) for the second congruence additionally,

0 ≡ ζ fq (uk1uk2u0uk3u0u0uk4+1) mod F3,4,w, (107.7)

0 ≡ ζ fq (uk1u0uk2uk3u0u0uk4+1) mod F3,4,w .

Now, (104.9), (107.4), (107.2), (107.7) yield

0 ≡ ζ fq (uk1u0u0uk2u0uk3uk4+1) mod F3,4,w,

0 ≡ ζ fq (uk1uk2uk3u0u0uk4+1u0) mod F3,4,w . (107.8)

The second congruence is a consequence of the first one and (105.4). Using (107.8) and
equations (104.7) and (107.6), we see that

0 ≡ ζ fq (uk1uk2u0u0uk3uk4+1u0) mod F3,4,w,

0 ≡ ζ fq (uk1u0u0uk2uk3u0uk4+1) mod F3,4,w, (107.9)

where the second congruence is implied by the first one and (104.14).
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Combining (104.8), (107.3), (107.1), (107.9), we have

0 ≡ ζ fq (uk1uk2uk3u0u0u0uk4+1) mod F3,4,w, (107.10)

0 ≡ ζ fq (uk1u0uk2u0uk3uk4+1u0) mod F3,4,w .

The second congruence is a consequence of the first one and case j = 2 of (105.1).
Now, (104.12), (107.10), (107.5), (103.1) give

0 ≡ ζ fq (uk1u0u0u0uk2uk3uk4+1) mod F3,4,w,

0 ≡ ζ fq (uk1uk2u0uk3u0uk4+1u0) mod F3,4,w . (107.11)

The second congruence is a consequence of the first one and case j = 4 of (105.1)
additionally. This completes the proof of the Lemma. □

Lemma 108. Equation (102.1) is true for k2 > 1.

Proof. Let be k1, k2, k3, k4 ∈ Z>0 and write w = k1 + k2 + k3 + k4 + 4. Note that by
Theorem 87 for the first congruence and by Lemmas 106 and 107, and equations (106.13)
and (106.2) for the third congruence, we have

0 ≡ 1

k2
ζ fq (τ(u2) ∗ τ (uk1uk2u0uk3uk4u0)) mod F3,4,w

≡ 1

k2
ζ fq
(
u1u0 ∗ u2u

k4−1
0 u1u

k3−1
0 u2u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
u3u

k4−1
0 u1u

k3−1
0 u2u

k2
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u0u0uk2+1uk3u0uk4) mod F3,4,w . (108.1)

By (104.1) and (106.15), this yields

0 ≡ ζ fq (uk1uk2+1uk3u0uk4u0u0) mod F3,4,w, (108.2)

leading to, by using (105.5) and then (104.13),

0 ≡ ζ fq (uk1u0uk2+1u0u0uk3uk4) mod F3,4,w,

0 ≡ ζ fq (uk1u0uk2+1uk3u0u0uk4) mod F3,4,w .

Combining (104.8), (108.2), (106.14), and (106.12), we obtain

0 ≡ ζ fq (uk1uk2+1uk3u0u0u0uk4) mod F3,4,w,

0 ≡ ζ fq (uk1u0uk2+1u0uk3uk4u0) mod F3,4,w .

The second congruence is a consequence of the first one and case j = 2 of (105.1).
Furthermore, combining (104.9), (108.1), (106.10), and (106.6), we obtain

0 ≡ ζ fq (uk1uk2+1u0u0u0uk3uk4) mod F3,4,w .

0 ≡ ζ fq (uk1u0uk2+1uk3u0uk4u0) mod F3,4,w .

The second congruence is a consequence of the first one and case j = 3 of (105.1). This
completes the proof of the lemma. □

Lemma 109. Equation (102.1) is true for k1 > 1.
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Proof. Let be k1, k2, k3, k4 ∈ Z>0 with k1 > 1 and write w = k1 + k2 + k3 + k4 + 3.
Using Proposition 78 for the first congruence and Lemmas 106, 107, 108 afterwards, for
all z2, z3, z4 ≥ 0 with z2 + z3 + z4 = 3, we obtain

0 ≡ ζ fq (uk1 ∗ uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F3,4,w

≡ ζ fq (uk1uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F3,4,w . (109.1)

Now, choose z1 ≥ 1, z2, z3, z4 ≥ 0 with z1+ · · ·+ z4 = 3. Then, we obtain by Theorem 87
(in case z1 = 1), Corollary 28 (in case z1 = 2), and (109.1),

0 ≡ ζ fq (uz1 ∗ τ (uk1uk2u
z2
0 uk3u

z3
0 uk4u

z4
0 )) mod F3,4,w

≡ ζ fq
(
uz1 ∗ uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 u1u

k1−1
0

)
mod F3,4,w

≡ ζ fq
(
uz4+1u

k4−1
0 uz3+1u

k3−1
0 uz2+1u

k2−1
0 uz1+1u

k1−1
0

)
mod F3,4,w

≡ ζ fq (uk1u
z1
0 uk2u

z2
0 uk3u

z3
0 uk4u

z4
0 ) mod F3,4,w .

This completes the proof of the lemma. □

7. Conclusion and outlook

With FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w for all (z, d, w) ∈ Z3
>0 (the refined Bachmann Conjecture 10),

we gave a refinement of Bachmann’s Conjecture 4 and proved several cases. For z ≥ d,
we gave a strategy for a general proof. Furthermore, for z < d, we were also able to
prove the cases 1 ≤ d ≤ 4. One can generalize our approach as described in the following
paragraph.
Approach to the refined Bachmann Conjecture 10 in case z < d. We fix positive
integers z, d, w ∈ Z>0 with z < d in the following and assume throughout the whole
paragraph that

FilZ,D,W

z̃,d̃,w̃
Zf

q ⊂ Fz̃,d̃,w̃

for z̃ ≤ z, d̃ < d, w̃ < w is proven already. Note that the approach from case z ≥ d will
not suffice for the case z < d since 𝒮z,d ⊊ 𝒯z,d in this case by Conjecture 39. Therefore, we
extend this approach as follows. Fix throughout this paragraph k = (k1, . . . , kd) ∈ Zd

>0

with |k| = w − z. Besides

S
(1)
z,d,k :=

{
ζ fq (Ψk(un � uℓ)) | (n, ℓ) ∈ Jz,d

}
⊂ FilZ,D,W

z,d,w Zf
q

(the inclusion follows from Lemma 61), we consider

S
(2)
z,d,k :=

{
ζ fq (τ(τ(Wn,m) ∗ τ(Wℓ,k′)))

∣∣∣∣∣(n,ℓ)∈Jz,d,m∈Zlen(n)
≥0 , |m|≤len(n)+d−z,

k′∈Zd
>0, kj≥k′j≥1 (1≤j≤d),

|m|+|k′|=s+|k|,wt(Wn,m)+wt(Wℓ,k′ )=w

}
,

where

Wn,m := um1u
ns−1
0 · · ·umsu

n1−1
0 , Wℓ,k′ = uk′1

uℓd−1
0 · · ·uk′d

uℓ1−1
0 .

Remark 110. Note that we have S
(1)
z,d,k ⊂ S

(2)
z,d,k for all z, d ∈ Z>0 with z < d and k ∈ Zd

>0.
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Furthermore, we consider

S
(3)
z,d,k :=

{
ζ fq

(
uσ(k1)u

e1
0 · · ·uσ(ks′ )

u
es′
0 ∗ uσ(ks′+1)

u
es′+1

0 · · ·uσ(kd)u
ed
0

) ∣∣∣∣∣ σ∈Sk, 1≤s′≤d−1,
e=(e1,...,ed)∈Zd

≥0, |e|=z

}
,

where Sk is the set of permutations on {kj | 1 ≤ j ≤ d}.
Similarly to the proof of Lemma 61, we can show the following.

Lemma 111. Fix z, d, w ∈ Z>0. For all (n, ℓ) ∈ Jz,d, k, k′ ∈ Zd
>0, and m ∈ Zs

≥0,
where s = len(n), satisfying |k| = w − z, |m| ≤ len(n) + d − z and kj ≥ k′

j ≥ 1 for
all 1 ≤ j ≤ d, |m|+ |k′| = s+ |k|, wt(Wn,m) + wt(Wℓ,k′) = w, we have

ζ fq (τ(τ(Wn,m) ∗ τ(Wℓ,k′))) ∈
∑

1≤s′≤s

FilZ,D,W
z−s′,d+s′,w Zf

q .

In particular, we have S
(2)
z,d,k ⊂ Fz,d,w.

Let us consider an example for illustration of Lemma 111.

Example 112. Denote w = k′
1 + k′

2 + k′
3 + 2 in the following and choose

n = (1), m = (2), ℓ = (1, 1, 1), k′ = (k′
1, k

′
2, k

′
3) ∈ Z3

>0

in the notation of Lemma 111. First, we see that Wn,m ∗ Wℓ,k′ = u2 ∗ uk′1
uk′2

uk′3
∈ F ,

where F = FilZ,D,W
0,4,w Q⟨U⟩◦ + FilZ,D,W

1,3,w−1Q⟨U⟩◦. Furthermore, we have

τ(τ(u2) ∗ τ(uk′1
uk′2

uk′3
))

= τ
(
u1u0 ∗ u1u

k′3−1
0 u1u

k′2−1
0 u1u

k′1−1
0

)
≡ τ

(
k′
3u2u

k′3
0 u1u

k′2−1
0 u1u

k′1−1
0 + k′

2u2u
k′3−1
0 u1u

k′2
0 u1u

k′1−1
0

+k′
2u1u

k′3−1
0 u2u

k′2
0 u1u

k′1−1
0 + k′

1u2u
k′3−1
0 u1u

k′2−1
0 u1

+k′
1u1u

k′3−1
0 u2u

k′2−1
0 u1 + k′

1u1u
k′3−1
0 u1u

k′2−1
0 u2u

k′1
0

)
mod F

≡ k′
3uk′1

uk′2
uk′3+1u0 + k′

2uk′1
uk′2+1uk′3

u0 + k′
2uk′1

uk′2+1u0uk′3

+ k′
1uk′1+1uk′2

uk′3
u0 + k′

1uk′1+1uk′2
u0uk′3

+ k′
1uk′1+1u0uk′2

uk′3
mod F .

Hence,

k′
3ζ

f
q

(
uk′1

uk′2
uk′3+1u0

)
+ k′

2ζ
f
q

(
uk′1

uk′2+1uk′3
u0

)
+ k′

2ζ
f
q

(
uk′1

uk′2+1u0uk′3

)
+ k′

1ζ
f
q

(
uk′1+1uk′2

uk′3
u0

)
+ k′

1ζ
f
q

(
uk′1+1uk′2

u0uk′3

)
+ k′

1ζ
f
q

(
uk′1+1u0uk′2

uk′3

)
∈ F2,3,w .

Compared to the linear combinations in S
(1)
z,d,k, it stands out that the latter linear

combination is not a linear combination of words with the same multiplicity and the same
non-u0 letters in the same order. Nevertheless, all occurring words uk1u

z1
0 uk2u

z2
0 uk3u

z3
0

satisfy kj ≥ k′
j and

3∑
j=1

(kj − k′
j) = 1 = |m| − s = d− z.

Furthermore, we have the following.
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Lemma 113. Fix z, d, w ∈ Z>0 with z < d and assume that FilZ,D,W
z′,d′,w′ Zf

q ⊂ Fz′,d′,w′ is

proven already for z′ ≤ z, d′ < d, w′ < w. Then, for every index k = (k1, . . . , kd) ∈ Zd
>0

and for all permutations σ on {k1, . . . , kd}, 1 ≤ s′ ≤ d − 1, and e = (e1, . . . , ed) ∈ Zd
≥0

satisfying |e| = z, we have

ζ fq

(
uσ(k1)u

e1
0 · · ·uσ(ks′ )

u
es′
0 ∗ uσ(ks′+1)

u
es′+1

0 · · ·uσ(kd)u
ed
0

)
∈ Fz,d,w .

In particular, we have S
(3)
z,d,k ⊂ Fz,d,w.

With the proofs of Theorems 8 and 12, we gave evidence for the following conjecture
for d ≤ 4.

Conjecture 114. Fix z, d, w ∈ Z>0 with z < d and assume that FilZ,D,W
z′,d′,w′ Zf

q ⊂ Fz′,d′,w′

is proven already for all z′ ≤ z, d′ < d, w′ < w. Then, for every k = (k1, . . . , kd) ∈ Zd
>0

and for every word W = uk1u
z1
0 · · ·ukdu

zd
0 ∈ U∗,◦ satisfying zero(W) = z, depth(W) = d,

and wt(W) = w, we have

ζ fq (W) ∈ spanQ

(
S
(2)
z,d,k ∪ S

(3)
z,d,k

)
+ Fz,d,w ⊂ Fz,d,w . (114.1)

In particular, then we have FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w.

Remark 115. Note that the inclusion in (114.1) follows from Lemmas 111 and 113.

Remark 116. We can refine our approach to Conjecture 114 as follows. First, we will

use for k ∈ Zd
>0 satisfying #{kj > 1} ≥ d− z the linear combinations from S

(2)
z,d,k only to

show (114.1). For the remaining cases, we then may assume without loss of generality

that #{kj = 1} ≥ z and use both, S
(2)
z,d,k and S

(3)
z,d,k to prove (114.1). More precise, we

consider the cases of j0 := #{kj = 1} with increasing j0 ≥ z. The intuitive reason for
this is that, for given j0, on the one hand we may assume that the cases for smaller values

of j0 are proven, making the linear combinations from S
(2)
z,d,k easier to handle since parts

of them are in Fz,d,w already. On the other hand, the more entries of k are the same (for
our purposes: one), the less formal Multiple Zeta Values of different words occur in the

linear combinations from S
(3)
z,d,k.

Conclusion. For z < d, our strategy also works in the small cases 1 ≤ d ≤ 4 as shown,
but there is still much to do for the general proof. More concretely, we conclude with
the following open questions:

(i) How can one prove Conjecture 39 in general?
(ii) Conjecturally, Conjecture 39 can be proven via induction on z, d, or z + d.
(iii) Regarding Conjecture 39, we conjecturally have 𝓈z,d = 𝓈d,z for all z, d ∈ Z>0.

Can one prove this equality?
(iv) How to prove Conjecture 47 in general?

(v) How can one prove FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w for z < d in general?

(vi) Similar to Proposition 21, our approach for showing FilZ,D,W
z,d,w Zf

q ⊂ Fz,d,w is

suitable to obtain for all words W ∈ U∗,◦ an explicit formula ζ fq (W) = ζ fq (L),
where L is a linear combination of products of elements in Zf,◦

q . With some
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engagement following our calculations, this already can be done now for all
words W ∈ U∗,◦ satisfying zero(W) + depth(W) ≤ 6. What do they look like?
Can one find some systematics such that one can derive such formulas also
for zero(W) + depth(W) > 6 (which would prove Bachmann’s Conjecture 4 in
particular)?
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The numerical calculations in the paper were done using Python. In this appendix,
the original source code is presented.

Appendix A. Computations regarding Lemma 42

A.1. Setup and basic functions. We begin with the required packages.

1 import numpy as np

2 import itertools

3 import math

4 from ast import literal_eval

The first definitions were elementary for the main calculations.

Function 117. The function d(z,d,s) returns
(
z+d−1
z−s

)
for z, d, s ∈ Z>0 with s ≤ z ≤ d,

which is conjecturally 𝓈z,d,s (see Conjecture 63).

1 def d(z,d,s):

2 if (z <= d) and (s <= z):

3 return(math.comb(z+d-1,z-s))

4 elif (z <= d) and (s > z):

5 return (0)

Function 118. The function part(r,s) returns the list of all ordered partitions of r
into exactly s non-negative integers.

1 def part(r,s):

2 if s<=0:

3 return ([[]])

4 else:

5 P = []

6 for S in set(itertools.combinations(range(r+s-1), s-1)):

7 p = []

8 I = [-1] + list(S) + [r+s-1]

9 for i in range(len(I)):

10 if i > 0:

11 p.append(I[i]-I[i-1] -1)

12 P.append(p)

13 return(P)

Function 119. The function ppart(r,s) returns the list all ordered partitions into
exactly s positive integers.

1 def ppart(r,s):

2 if s<=0 or r<s:

3 return ([[]])

4 else:

5 P = []

6 for p in part(r-s,s):

7 q = p

8 for j in range(len(p)):
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9 q[j] += 1

10 P.append(q)

11 P.sort()

12 return(P)

Function 120. The function Indices(z,d) returns the list of all indices µ ∈ Zd
>0

with |µ| = z + d.

1 def Indices(z,d):

2 if z==0:

3 return ([d*[1]])

4 else:

5 I = []

6 for index in Indices(z-1,d):

7 for k in range(d):

8 indi = index [:k] + [index[k]+1] + index[k+1:]

9 if indi not in I:

10 I.append(indi)

11 I.sort()

12 return(I)

A.2. The box product. In this section, we implement the box product as linear
combination of words uµ ∈ (U\{u0})∗. Furthermore, for a set of box products, we
implement the adjacency matrix whichs rows will correspond to the linear combinations
and the columns to the words uµ, i.e., the entries are the coefficient of a word in a linear
combination of box products.

We begin with the box product.

Function 121. The function box(index1,index2) returns uindex1�uindex2 as follows.
It returns a dictionary D containing as keys the indices ind satisfying that uind occurs
in the box product uindex1 � uindex2 with multiplicity ̸= 0; the value D[ind] then is
the multiplicity of uind in uindex1 � uindex2.

1 def box(index1 ,index2):

2 D = {}

3 s = len(index1)

4 d = len(index2)

5 if s>d:

6 return(D)

7 elif index1 == []:

8 D[str(index2)] = 1

9 else:

10 for S in set(itertools.combinations(range(d), s)):

11 L = list(S)

12 L.sort()

13 ind = []

14 for k in range(d):

15 if k in L:
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16 ind.append(index2[k]+ index1[L.index(k)])

17 else:

18 ind.append(index2[k])

19 D[str(ind)] = 1

20 return(D)

Based on box, we introduce the following function representing uindex1 � uindex2
as dictionary D with keys ind ∈ Zlen(index2)

>0 , satisfying

|ind| = |index1|+ |index2|,
and with D[ind] being the multiplicity of uind in the box product uindex1�uindex2.

1 def BOX(index1 ,index2):

2 s = len(index1)

3 d = len(index2)

4 z = sum(index1)+sum(index2)-d

5 I = Indices(z,d)

6 D = {}

7 for ind in I:

8 D[str(ind)] = 0

9 if s>d or sum(index1)+sum(index2) != z+d:

10 return(D)

11 elif index1 == [] and sum(index2) == z+d:

12 D[str(index2)] = 1

13 else:

14 for ind in box(index1 ,index2):

15 D[ind] = box(index1 ,index2)[ind]

16 return(D)

Let us consider an example to see the difference between the functions box and BOX.

Example 122. We have

u2 � u1u1u1 = u3u1u1 + u1u3u1 + u1u1u3.

Now, box([2],[1,1,1]) returns

1 {’[3, 1, 1]’: 1, ’[1, 3, 1]’: 1, ’[1, 1, 3]’: 1}

and BOX([2],[1,1,1]) returns

1 {’[1, 1, 3]’: 1,

2 ’[1, 2, 2]’: 0,

3 ’[1, 3, 1]’: 1,

4 ’[2, 1, 2]’: 0,

5 ’[2, 2, 1]’: 0,

6 ’[3, 1, 1]’: 1}.

A.3. Dimension of spaces spanned by box products. We considered in the paper
the dimension of spaces spanned by several box products (in particular, 𝒮z,d). Numerically,
we will obtain such dimensions as the rank of the coefficient matrix of the box products
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that span the space we consider, interpreted as linear combination of words uµ ∈
(U\{u0})∗. For this, we introduce the function MATR.

Function 123. The function Dim(P) takes a list P of box products, given in shape
of BOX(index1,index2), and returns the dimension of the space they span. This is done
via computing the rank of the coefficient matrix (as list of lists) of these box products
with rows corresponding to the box products, columns corresponding to the coefficient
of words uµ ∈ (U\{u0})∗.

1 def Dim(P):

2 M = []

3 for prod in P:

4 I = []

5 for index in prod:

6 I.append(prod[index])

7 M.append(I)

8 rk = np.linalg.matrix_rank(M)

9 return(rk)

A.4. LATEX-Output. We will consider subspaces of 𝒮z,d for several z, d ∈ Z>0. Usually,
we skip the cases of z = 1 or d = 1 since we already know the dimension of the
corresponding subspace in these cases. The function MatLatex produces the LATEX-code
of a table in which we collect our calculations.

Function 124. The function MatLatex(M,cap) gives the LATEX-code of the table with
caption cap and three entries in each cell. Here, M is a list of lists with four entries each.
They are all of shape

[z, d, rk, dim],

where z defines the column, d defines the row, rk is the (numerical) dimension of the
subspace of 𝒮z,d we consider, while dim is the corresponding conjectured dimension
each. Every cell consists of two numbers, where the first one in black is the (numerically
obtained) dimension of the subspace of 𝒮z,d we consider and the second number is in
blue the conjectured dimension of the subspace of 𝒮z,d we consider.

1 def MatLatex(M,cap):

2 dmin = M[0][0]

3 dmax = M[ -1][0]

4 zmin = M[0][1]

5 zmax = M[ -1][1]

6 B = "\\begin{figure }[h]\n \\ centering\n \\ caption{"+cap+"}\n \\

begin{tabular }{|" + "c|".join("" for j in range(zmin ,zmax +2)) + "c

|}\n \\ hline\n"

7 E = "\\end{tabular }\n \\end{figure}"

8 newM = (dmax - dmin + 1)*[( zmax - zmin + 1)*["&-"]]

9 S = "d$\\ backslash$ z&" + "&".join(str(j) for j in range(zmin ,zmax

+1)) + "\\\\ \\ hline\n"

10 for result in M:
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11 helpstr = "&" + str(result [2]) + "\\ \\ textcolor{blue}{"+str(

result [3])+"}

12 dact = result [0] - dmin

13 zact = result [1] - zmin

14 rowact = newM[dact]

15 newM = newM [:( result [0] - dmin)] + [rowact [:zact] + [helpstr] +

rowact[zact +1:]] + newM[( result [0] - dmin +1):]

16 for j in range(dmax - dmin + 1):

17 S = S + str(dmin + j)

18 for k in range(zmax -zmin +1):

19 S = S + newM[j][k]

20 S = S + "\\\\ \\hline\n"

21 return(B+S+E)

Next, we produce the function giving the desired table for the dimension of 𝒮z,d,smin

for some smin and 2 ≤ z, d up to an upper bound we declare in the input.

Function 125. Choosing zmax, dmax, smin ∈ Z>0, the following function returns
the tabular according to Function 124 where in black the computed dimension of the
space 𝒮zmax,dmax,smin is displayed, while in blue the conjectured dimension (coming from
Conjecture 63) appears.

1 def Tabular(zmax ,dmax ,smin):

2 M = []

3 for z in range(2,zmax +1):

4 for d in range(2,dmax +1):

5 P = []

6 for k in range(smin ,min(d,z)+1):

7 S = ppart(d+z,d+k)

8 for partition in S:

9 P.append(BOX(partition [:k],partition[k:]))

10 rk = Dim(P)

11 M.append ([d,z,rk,d(z,d,smin)])

12 if smin != 1:

13 cap = "Dimension of $\\ mathcal{S}_{z,d,"+str(smin)+"}$."
14 else:

15 cap = "Dimension of $\\ mathcal{S}_{z,d}$."
16 return(MatLatex(M,cap))

A.5. Results. In the following, we present several results of our calculations. Recall
that every cell of the following tables consists of two numbers, where the first one in
black is the (numerically obtained) dimension of the subspace of 𝒮z,d we consider and
the second number is in blue the conjectured dimension from Conjecture 63.

Remark 126. (i) Using Tabular(8,8,1), we obtain that Conjecture 63 is true
for 2 ≤ z ≤ d ≤ 8 and smin = 1, i.e., Conjecture 39 is true for z, d ≤ 8:
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Figure 1. Dimension of Sz,d.

d\ z 2 3 4 5 6 7 8
2 3 3 - - - - - -
3 4 4 10 10 - - - - -
4 5 5 15 15 35 35 - - - -
5 6 6 21 21 56 56 126 126 - - -
6 7 7 28 28 84 84 210 210 462 462 - -
7 8 8 36 36 120 120 330 330 792 792 1716 1716 -
8 9 9 45 45 165 165 495 495 1287 1287 3003 3003 6435 6435

(ii) Using Tabular(8,8,2), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 2:

Figure 2. Dimension of Sz,d,2.

d\ z 2 3 4 5 6 7 8
2 1 1 - - - - - -
3 1 1 5 5 - - - - -
4 1 1 6 6 21 21 - - - -
5 1 1 7 7 28 28 84 84 - - -
6 1 1 8 8 36 36 120 120 330 330 - -
7 1 1 9 9 45 45 165 165 495 495 1287 1287 -
8 1 1 10 10 55 55 220 220 715 715 2002 2002 5005 5005

(iii) Using Tabular(8,8,3), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 3:

Figure 3. Dimension of Sz,d,3.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 1 1 - - - - -
4 0 0 1 1 7 7 - - - -
5 0 0 1 1 8 8 36 36 - - -
6 0 0 1 1 9 9 45 45 165 165 - -
7 0 0 1 1 10 10 55 55 220 220 715 715 -
8 0 0 1 1 11 11 66 66 286 286 1001 1001 3003 3003

(iv) Using Tabular(8,8,4), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 4:
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Figure 4. Dimension of Sz,d,4.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 1 1 - - - -
5 0 0 0 0 1 1 9 9 - - -
6 0 0 0 0 1 1 10 10 55 55 - -
7 0 0 0 0 1 1 11 11 66 66 286 286 -
8 0 0 0 0 1 1 12 12 78 78 364 364 1365 1365

(v) Using Tabular(8,8,5), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 5:

Figure 5. Dimension of Sz,d,5.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 1 1 - - -
6 0 0 0 0 0 0 1 1 11 11 - -
7 0 0 0 0 0 0 1 1 12 12 78 78 -
8 0 0 0 0 0 0 1 1 13 13 91 91 455 455

(vi) Using Tabular(8,8,6), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 6:

Figure 6. Dimension of Sz,d,6.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 0 0 - - -
6 0 0 0 0 0 0 0 0 1 1 - -
7 0 0 0 0 0 0 0 0 1 1 13 13 -
8 0 0 0 0 0 0 0 0 1 1 14 14 105 105

(vii) Using Tabular(8,8,7), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 7:



60 BENJAMIN BRINDLE

Figure 7. Dimension of Sz,d,7.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 0 0 - - -
6 0 0 0 0 0 0 0 0 0 0 - -
7 0 0 0 0 0 0 0 0 0 0 1 1 -
8 0 0 0 0 0 0 0 0 0 0 1 1 15 15

(viii) Using Tabular(8,8,8), we obtain that Conjecture 63 is true for 2 ≤ z ≤ d ≤ 8
and smin = 8:

Figure 8. Dimension of Sz,d,8.

d\ z 2 3 4 5 6 7 8
2 0 0 - - - - - -
3 0 0 0 0 - - - - -
4 0 0 0 0 0 0 - - - -
5 0 0 0 0 0 0 0 0 - - -
6 0 0 0 0 0 0 0 0 0 0 - -
7 0 0 0 0 0 0 0 0 0 0 0 0 -
8 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Appendix B. Computations regarding Lemma 48

B.1. Setup and basic functions. We use the same setup as in Section A.1 and the
functions part and ppart from there.

B.2. Stuffle product and box product. We define the stuffle product on index level
and call the function stuffleprod.

Function 127. For indices L1 and L2 (input as lists), the function stuffleprod(L1, L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
stuffle product L1 ∗ L2.

1 def stuffleprod(L1,L2):

2 if len(L1) == 0:

3 return ([L2])

4 elif len(L2) == 0:

5 return ([L1])

6 L = []

7 for L3 in stuffleprod(L1[1:],L2):

8 L.append ([L1[0]]+L3)

9 for L3 in stuffleprod(L1 ,L2 [1:]):
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10 L.append ([L2[0]]+ L3)

11 for L3 in stuffleprod(L1[1:],L2 [1:]):

12 L.append ([L1[0]+L2[0]]+L3)

13 return(L)

Furthermore, we define the box product on index level and call the function boxprod.

Function 128. For two indices L1 and L2 (input as lists), the function boxprod(L1, L2)
returns a list of indices (as lists) with the property that their formal sum is exactly the
box product L1 ∗ L2.

1 def boxprod(L1 ,L2):

2 s = len(L1)

3 d = len(L2)

4 if s>d:

5 return ([])

6 elif s==0:

7 return ([L2])

8 L = []

9 for L3 in boxprod(L1[1:],L2 [1:]):

10 L.append ([L1[0]+L2[0]]+L3)

11 for L3 in boxprod(L1,L2 [1:]):

12 L.append ([L2[0]]+ L3)

13 return(L)

B.3. The numbers dimQ spanQ Kz,d. First, we implement for given 1 ≤ z ≤ d the
conjectured dimension of spanQ Kz,d. Following Conjecture 39, (42.1), and (42.2), this
number is

z∑
j=2

(
z + d− 1

d+ j − 1

)
. (128.1)

Function 129. For z, d ∈ Z>0 with z ≤ d, the function kerneldimconj returns the
conjectured dimension of spanQ Kz,d, which is given by (128.1).

1 def kerneldimconj(z,d):

2 S = 0

3 for j in range(d+1,z+d):

4 S = S + math.comb(z+d-1,j)

5 return(S)

The next function returns for given 1 ≤ z ≤ d the number dimQ spanQKz,d.

Function 130. Let be z, d ∈ Z>0 with z ≤ d. The function kerneldim(z,d) returns
the number dimQ spanQKz,d via computing ranks of matrices.

1 def kerneldim(z,d):

2 Rel = []

3 for s in range(d+2,z+d+1):

4 for partition in ppart(z+d,s):
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5 for t in range(d+1,s):

6 Mind = partition[t:]

7 Lind = partition [:d]

8 Nind = partition[d:t]

9 D = {}

10 for s in range(d+1,z+d+1):

11 for ppartition in ppart(z+d,s):

12 D[str(ppartition)] = 0

13 for P in boxprod(Mind ,Lind):

14 D[str(Nind+P)] = D[str(Nind+P)] + 1

15 for P in stuffleprod(Nind ,Mind):

16 D[str(P+Lind)] = D[str(P+Lind)] - 1

17 R = []

18 for key in D:

19 R.append(D[key])

20 Rel.append(R)

21 return(np.linalg.matrix_rank(Rel))

B.4. Results. Via

1 for d in range (2,9):

2 for z in range(2,d+1):

3 print(z,d,( kerneldim(z,d),kerneldimconj(z,d)))

we obtain in the following in each row four entries, the first one corresponding to z,
the second to d, the third to the numerical result for dimQ spanQKz,d, and the fourth is
the value we expect for dimQ spanQKz,d:

1 2 2 (1, 1)

2 2 3 (1, 1)

3 3 3 (6, 6)

4 2 4 (1, 1)

5 3 4 (7, 7)

6 4 4 (29, 29)

7 2 5 (1, 1)

8 3 5 (8, 8)

9 4 5 (37, 37)

10 5 5 (130, 130)

11 2 6 (1, 1)

12 3 6 (9, 9)

13 4 6 (46, 46)

14 5 6 (176, 176)

15 6 6 (562, 562)

16 2 7 (1, 1)

17 3 7 (10, 10)

18 4 7 (56, 56)

19 5 7 (232, 232)

20 6 7 (794, 794)

21 7 7 (2380, 2380)
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22 2 8 (1, 1)

23 3 8 (11, 11)

24 4 8 (67, 67)

25 5 8 (299, 299)

26 6 8 (1093, 1093)

27 7 8 (3473, 3473)

28 8 8 (9949, 9949)

Remark 131. Regarding our results, Lemma 48 is proven.



64 BENJAMIN BRINDLE

References

[Bac14] Henrik Bachmann. Generating series of multiple divisor sums and other interesting q-series.
Talk slides (University of Bristol), 2014. Available at https://www.math.uni-hamburg.de/

home/bachmann/talks/bristol14_multdiv.pdf.
[Bac15] Henrik Bachmann. Multiple Eisenstein series and q-analogs of multiple zeta values. Phd thesis,

University of Hamburg, 2015. Available at https://www.henrikbachmann.com/uploads/7/7/
6/3/77634444/thesis_bachmann.pdf.

[Bac19] Henrik Bachmann. The algebra of bi-brackets and regularized multiple Eisenstein series. J.
Number Theory, 200:260–294, 2019.
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