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Abstract

This paper introduces and analyzes a framework that accommodates general hetero-
geneity in regression modeling. It demonstrates that regression models with fixed or
time-varying parameters can be estimated using the OLS and time-varying OLS meth-
ods, respectively, across a broad class of regressors and noise processes not covered by
existing theory. The proposed setting facilitates the development of asymptotic theory
and the estimation of robust standard errors. The robust confidence interval estimators
accommodate substantial heterogeneity in both regressors and noise. The resulting ro-
bust standard error estimates coincide with White’s (1980) heteroskedasticity-consistent
estimator but are applicable to a broader range of conditions, including models with miss-
ing data. They are computationally simple and perform well in Monte Carlo simulations.
Their robustness, generality, and ease of implementation make them highly suitable for
empirical applications. Finally, the paper provides a brief empirical illustration.
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1 Introduction

Regression analysis is the cornerstone of statistical theory and practice. Ordinary least

squares (OLS) has been applied, within various regression contexts, to build an extensive

toolkit, for the exploration of economic and financial datasets. The basic theory underlying

OLS estimation and inference in regression models has been largely established for over half

of a century (see e.g. Lai and Wei (1982)). The problem of robust estimation has long been a

focus of empirical work in economics, beginning with the seminal work by White (1980). Its

importance is well understood in applied econometrics. At the same time, several important

concerns have been raised by applied researchers. Angrist and Pischke (2010) noted that

“Leamer (1983) diagnosed his contemporaries’ empirical work as suffering from a distress-

ing lack of robustness to changes in key assumptions”, and Leamer (2010) later reflected

that “sooner or later, someone articulates the concerns that gnaw away in each of us and

asks if the Assumptions are valid.” Similarly, Karmakar et al. (2022) observed, that the as-

sumption of parameter constancy, or “stationarity is often an oversimplified assumption that

ignores systematic deviations of parameters from constancy”. Clearly, this concern extends

beyond parameter stability to encompass the stability of regressors, regression noise, and the

underlying modelling assumptions.

In this paper, we focus on the inherent capacity of regression modelling to accommodate

the effects of structural change in settings with both fixed and time-varying parameters. Many

such structural changes influence not only the model parameters but also the regression space

itself. This space comprises both the regressors and regression noise, and improper treatment

of these components may result in incorrect inferences, misinterpretations, and forecasting

distortions. We therefore examine which specifications of regression space can flexibly account

for structural change while still enabling estimation of both fixed and time-varying regression

parameters, the construction of confidence intervals, and the computation of standard errors.

Among recent developments, Wu (2005), Hall et al. (2012), and others, have proposed ad-

vanced theoretical methods for the estimation of the fixed parameters, while Cattaneo et al.

(2018), Jochmans (2019) developed procedures to estimate both fixed parameters and stan-

dard errors in regression models with an increasing number of covariates and heteroscedas-

ticity. Meanwhile, Li et al. (2020), Sun et al. (2021) and Linton and Xiao (2019) introduced

new modelling frameworks that explicitly account for structural change. A common response

to concerns about heteroskedasticity in the recent literature is the use of heteroscedasticity-

robust variance and standard error estimators for linear regression models, see Eicker (1963),

White (1980), MacKinnon (2012) and Cattaneo et al. (2018), among others.

There is also a sizeable and growing literature on the estimation of time-varying coefficient

regression models, including works of Fan and Zhang (1999), Vogt (2012), among others. This

literature further explores tests for different types of parameter variation, see e.g. Bai and

Perron (1998), Zhang and Wu (2012), Zhang and Wu (2015), Hu et al. (2024). In addition,
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specification tests and tests for parameter instability have received significant attention, with

important contributions by Hansen (2000), Georgiev et al. (2018), Hidalgo et al. (2019),

Boldea et al. (2019), Fu et al. (2023), and others.

The modelling of deterministic, smooth parameter evolution has a long history in statis-

tics. Early examples include linear processes with time-varying spectral densities, introduced

by Priestley (1965). This framework is essentially nonparameteric and it has been further

developed by Robinson (1989), Robinson (1991), Dahlhaus (1997), Dahlhaus et al. (2019),

Dahlhaus and Richter (2023), some of whom refer to these processes as locally stationary. The

estimation of time-varying parameters, as well as fixed parameters under heteroskedasticity

in time series models, has been studied in Dahlhaus and Giraitis (1998), Xu and Phillips

(2008), Giraitis et al. (2020), among other. Nonlinear time-varying time series models have

also been developed by Doukhan and Wintenberger (2008), Bardet and Wintenberger (2009),

Vogt (2012) and Karmakar et al. (2022). Despite these advances, such approaches have not

been not been widely adopted in applied economics, where random coefficient models remain

more prevalent.

Various methods have been proposed over the years to identify and handle structural

change. Early contributions assumed that changes were deterministic, rare, and abrupt.

Testing for parameter breaks dates back to the pioneering work by Chow (1960), with fur-

ther contributions by Brown et al. (1975), Ploberger and Krämer (1992), among others. More

recent approaches allow for random evolution of parameters, where changes may be discrete,

as in Markov Switching models by Hamilton (1989) or threshold models by Tong (1990), or

continuous as in smooth transition models by Terasvirta (1998), or those driven by unobserv-

able shocks, as in random coefficient models by Nyblom (1989a). For example, Cogley and

Sargent (2005) use random coefficient models to study stochastic volatility, while Primiceri

(2005) examines whether changes in parameters or in the variance of shocks - policy-induced

or otherwise - contributed to the period of macroeconomic calmness known as the “Great

Moderation” after 1985. In these frameworks, parameters typically evolve as random walks

or autoregressive processes.

Building on this literature, Giraitis et al. (2014), Giraitis et al. (2018), Dendramis et al.

(2021), and others have developed a theoretical time series framework for random coefficient

models and their estimation using kernel-based methods, which performs well in finite sam-

ples. These methods are computationally simple and straightforward to implement in applied

research. For example, Chronopoulos et al. (2022) demonstrated the empirical prevalence of

persistent volatility, suggesting that GARCH-type volatility structures may be less common

than previously thought. Nevertheless, a full treatment of estimation and inference within a

general regression framework has, surprisingly, not yet been provided.

In this paper, we provide a rigorous validation of the asymptotic normality of the feasible

t-statistic for the estimation of both fixed and time-varying parameters in linear regression

models within an extended regresion space of regressors and regression disturbances. Our
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main objective is to describe, in transparent terms, the extended regression space under which

such normality is preserved. The class of admissible regressors and regression noises is broad.

Regressors are obtained by rescaling and shifting stationary short-memory sequences, while

regression errors are generated by arbitrary rescaling of a stationary martingale difference

sequence. The restrictions imposed on the scale factors and mean processes are weak, allowing

these to be either deterministic or stochastic, and to vary over time, possibly abruptly or

through non-stationary (e.g. unit-root) dynamics. Some assumptions on the scale factors

are necessary and resemble the Lindeberg condition in the classical Lindeberg–Feller central

limit theorem. Importantly, the robust feasible t-statistic retains the same form and limiting

distribution as in the standard setting. The infeasible robust standard errors coincide with

the heteroskedasticity-consistent standard error estimator of White (1980). Our assumptions

do not rely on mixing or near-epoch dependence conditions, which prevail throughout the

existing literature. Given the generality of the regression space, these assumptions typically

require no additional empirical verification.

The estimation framework for fixed regression parameters is developed in Section 2, which

introduces the extended regression space, the underlying assumptions, and the main theoreti-

cal results. Section 3 establishes the estimation theory for time-varying regression parameters

within the same framework. The proofs highlight how the results for the fixed-parameter case

naturally extend to time-varying settings, with only negligible additional terms.

Our results are complementary to existing frameworks. The novelty lies in providing a

methodological foundation that confirms the validity of robust regression estimation in an

extended regression space. The fundamental theory in this area traces back to Lai and Wei

(1982), who studied regression models with heteroskedastic martingale difference noise under

eigenvalue-based assumptions. Alternative methods, such as bootstrap procedures, see Hall

et al. (2012); Boldea et al. (2019), are widely used in regression analysis but may not be

directly applicable to such a general class of regressors and regression noises. In contrast,

we demonstrate that White-type standard errors remain applicable and computationally

straightforward.

All theoretical results are supported by detailed, rigorous proofs. Monte Carlo simulations

confirm that the proposed robust regression estimators perform well in finite samples. Overall,

the framework developed in this paper is particularly suited to modelling economic and

financial data, where heterogeneity, structural change, and dependence are inherent features.

The remainder of this paper is organised as follows. Section 2 presents the regression

setting with the extended regression space, accommodating heterogeneity and dependence,

and outlines the theoretical results for infeasible and feasible t-statistics in the case of fixed

parameters. Section 3 extends the analysis to the time-varying regression parameters. Sec-

tion 4 addresses regression modelling with missing data patterns. Section 5 illustrates the

flexibility of our robust estimation method by its application to the estimation of an AR(p)

model generated by a stationary martingale difference noise. Sections 6 presents Monte Carlo
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simulation results. In Section 7, we provide an empirical application of the robust regression

framework to modelling asset returns. Finally, Section 8 concludes. Proofs and additional

simulations are provided in the Supplemental Material.

2 OLS estimation in general regression space

In this section, we focus on ordinary least squares (OLS) estimation in an environment that

permits general heterogeneity in regression modelling. We analyze the model

yt = β′zt + ut, (1)

where β is a p-dimensional parameter vector, zt = (z1t, ...., zpt)
′ is a stochastic regressor and

ut is an uncorrelated noise term. To include an intercept, the first component can be set as

z1t = 1. We refer to the collection of {zt, ut} jointly as “the regression space”.

An applied researcher may want to work within a regression space that accommodates a

wide range of regressors and regression noises, without being hindered by restrictive technical

assumptions. Ideally, such a setting should permit regressors exhibiting non-stationarity and

undefined generic structural change, while enabling estimation and inference under weak

theoretical constraints that do not require empirical verification.

Our goal is to extend the OLS estimation procedure to a broad regression framework

defined by baseline assumptions aligned with empirical research practice. These assumptions

cover a wide variety of types of potentially non-stationary regression variables encountered

in applied work. The framework achieves a level of generality comparable to that in Giraitis

et al. (2024), which addresses testing for absence of correlation and cross-correlation under

general heterogeneity.

We begin with specifying the structure of an uncorrelated regression noise ut. Suppose

that

ut = htεt, (2)

where {εt} is a zero mean stationary uncorrelated martingale difference noise, and {ht} is

a deterministic or stochastic scale factor independent of {εt}. The following assumption

formalizes these conditions.

Assumption 2.1. {εt} is a stationary martingale difference (m.d.) noise with respect to

some σ-field filtration Ft, such that

E[εt|Ft−1] = 0, Eε8t < ∞, Eε2t = 1.

The sequence {εt} is independent of {ht}. Moreover, variable ε1 has a probability density

function f(x) satisfying f(x) ≤ c < ∞ for all |x| ≤ x0, for some x0 > 0.
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The information set Ft is generated by the past history Ft = σ(εs, s ≤ t) and possibly other

variables.

A typical example of an m.d. noise in applied work is provided by the ARCH/GARCH

family and the class of stochastic volatility processes. The specification (2) therefore allows

for conditional heteroskedasticity in ut.

We next specify the regressors zt = (z1t, ..., zpt)
′ which form the key structural component

of our regression space. For k = 1, ..., p, the regressors can be written as

zkt = µkt + gktηkt, t = 1, ..., n, (3)

where ηt = (η1t, ..., ηpt)
′ is a stationary sequence, gt = (g1t, ...., gpt)

′ are deterministic or

stochastic scale factors, and µt = (µ1t, ..., µpt)
′ is a vector of deterministic or stochastic

means. We assume that {µt, gt, ht} are independent of {εt, ηt}. To include an intercept in

model (1), we set

z1t ≡ 1 = µ1t + g1tη1t, µ1t = 0, g1t = η1t = 1. (4)

We further suppose that in (3) Eηkt = 0 except for the intercept (4), where η1t = 1.

In summary, the admissible regressors {zt} in our setting are obtained by shifting and

rescaling a short-memory stationary process {ηt} by the mean process µt and the scale factor

gt:

zt = µt + Igtηt, Igt = diag(g1t, ..., gpt)
′.

The underlying stationary sequence {ηt} is the fundamental component structuring re-

gressors zt. Estimation of the regression parameter β requires only mild assumptions on

{µt, gt}, and short-memory dependence assumption on ηt, satisfied by ARMA and related

stationary time series models. This framework eliminates the need for additional empirical

validation.

Definition 2.1. A (univariate) covariance stationary sequence {ξt} has short memory (SM)

if
∑∞

h=−∞ |cov(ξh, ξ0)| < ∞.

Assumption 2.2. ηt = (η1t, ..., ηpt)
′ is an Ft−1 measurable sequence with E[η2kt] = 1 and

E[η8kt] < ∞.

(i) For k, j = 1, ..., p, the sequences {ηkt} and {ηjtηkt} are covariance stationary and have

short memory (SM).

(ii) The matrix E[η1η
′
1] is positive definite.

The novelty of this regression framework lies in the structural specification (3), which

accommodates regressors zt = (z1t, ...., zpt)
′ that may be deterministic or stochastic, and
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stationary or non-stationary. This flexibility arises from allowing a broad class of scale factors

and mean processes {ht, gt, µt} which brings the OLS estimation closer to empirical practice.

The estimation framework also accommodates triangular arrays of means and scale fac-

tors:
(
µt, gt, ht, t = 1, ..., n

)
=

(
µnt, gnt, hnt, t = 1, ..., n

)
. Throughout the paper, we assume

that these quantities may depend on the sample size n. For brevity of notation, the subscript

n is omitted.

The underlying stationary noise component ηt in the regressors zt in (3) is weakly exoge-

nous with respect to the stationary m.d. noise εt in ut = htεt. The mean and scale factors

{µt, gt} are independent of {εt}, though they may be dependent on {ht}. Overall, {µt, gt, ht}
are mutually independent of {ηt, εt}, while potential dependence among {µt}, {gt} and {ht}
is unrestricted.

The processes µkt and gkt can be interpreted as conditional mean and variance, µkt =

E[zkt |F∗
n], and g2kt = var(zkt|F∗

n) of zkt, where F∗
n = σ

(
µt, gt, ht, t = 1, ..., n

)
denotes the

information set generated by the means and scale factors.

Denote for k = 1, ..., p,

v2k =
n∑

t=1

g2kth
2
t , v2gk =

n∑
t=1

g2kt, (5)

D = diag(v1, ..., vp), Dg = diag(vg1, ..., vgp).

We write an ≍p bn if an = Op(bn) and bn = Op(an).

Assumption 2.3. The scale factors ht ≥ 0 and gt ≥ 0 are deterministic or stochastic non-

negative variables such that, for k = 1, ..., p,

max1≤t≤n g
2
kt

v2gk
= op(1),

max1≤t≤n µ
2
kt

v2gk
= op(1), (6)∑n

t=1 µ
2
kt

v2gk
= Op(1),

∑n
t=1 µ

2
kth

2
t

v2k
= Op(1), v2k ≍p v

2
gk, vk →p ∞. (7)

Assumptions (6)–(7) impose only mild restrictions on the means µt and scale factors gt. In

particular, condition (6) resembles the Lindeberg condition in the classical Lindeberg–Feller

central limit theorem, as it excludes the possibility that the OLS estimation is dominated by

a single extreme observation of zt.

The first restriction on gkt in (6) is necessary. For example, consider the regressor zt =

gtηt, t = 1, ..., n, with scale factors g1 = 1 and g2 = g3 = ... = gn = 0, so that z2 = z3 = ... =

zn = 0. In this case, the OLS estimator of β is inconsistent, and such a scale factor gt does

not satisfy (6).

The second condition (7) ensures that OLS estimation is driven by the stochastic com-

ponent gtηt of the regressor zt, rather than by deterministic or stochastic drift in µt.

7



In the presence of an intercept, condition (7) further implies that
∑n

t=1 h
2
t ≍p n, since

v21 ≍p v
2
g1, g1t = 1, v2g1 = n, and v21 =

∑n
t=1 h

2
t .

To estimate β = (β1, ..., βp)
′, we use the standard OLS estimator

β̂ =
( n∑
j=1

zjz
′
j

)−1( n∑
j=1

zjyj
)

(8)

computed from the sample yj , zj , j = 1, ..., n.

Consistency. We first establish the consistency of the OLS estimator β̂.

Theorem 2.1. Suppose that (y1, ..., yn) is a sample from the regression model (1) and As-

sumptions 2.1, 2.2 and 2.3 are satisfied. Then, the OLS estimator β̂ is consistent, i.e.

D(β̂ − β) =
(
v1(β̂1 − β1), ..., vp(β̂p − βp)

)′
= Op(1). (9)

This result implies that the k-th component β̂k of the OLS estimator is vk-consistent, that

is, β̂k − βk = Op(v
−1
k ). The convergence rate vk may deviate from the conventional

√
n rate

and may differ across components. From the definition of vk and vgk, it follows that

if gkt, ht ≥ c > 0 for all t, n, then vk, vgk ≥ c
√
n. (10)

Asymptotic normality. The asymptotic normality of an element β̂k of the OLS estimator,

as well as the computation of its standard errors, requires additional assumptions on the scale

factors and the stationary processes {ηt, εt}.

Assumption 2.4. (i) For k, j = 1, ..., p, the sequences {ε2t }, {ηjtηktε2t } and {ηjtε2t } are

covariance stationary and have short memory (SM). (ii) For k = 1, ..., p,

max1≤t≤n g
2
kth

2
t

v2k
= op(1),

max1≤t≤n µ
2
kth

2
t

v2k
= op(1). (11)

Assumption 2.4 is not required when εt is i.i.d. Together, Assumptions 2.3 and 2.4(ii) exclude

cases in which the mean process µt or a few extreme observations of zt or ut, dominate the

estimation of the regression parameter. Overall, these assumptions are mild. They accom-

modate both deterministic and stochastic means µt and scale factors ht, gt that may change

abruptly over time unlike other theoretically rigorous treatments which restrict structural

change to be deterministic and smooth. This flexibility makes the framework particularly

suitable for modelling financial data, as it allows for volatility jumps, commonly observed in

empirical finance (see, e.g., Eraker et al. (2003)). In modern macroeconomic VAR models,

the scale factor ht in the uncorrelated noise representation ut = htεt is typically assumed

to be stochastic (see, e.g., Chan et al. (2024), Carriero et al. (2024)), which our framework

naturally encompasses.
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Lemma 2.1 below shows that Assumptions 2.3 and 2.4(ii) holds for regressors zt and noises

ut with bounded 4 + δ moments satisfying (10). The following example provides additional

sufficient conditions.

Example 2.1. Assumptions 2.3 and 2.4(ii) are satisfied by regressors zt and noises ut whose

scale factors ht, gt and means µt satisfy 0 < c ≤ ht, gkt ≤ C, ||µt|| ≤ C, where 0 < c, C < ∞
do not depend on t, n or k = 1, ..., p.

When 0 < c ≤ ht ≤ C, ||µt|| ≤ C for all t, n, Assumptions 2.3 and 2.4(ii) hold for scale

factors gkt satisfying

mint=1,...,n g
2
kt∑n

t=1 g
2
kt

= op(1), k = 1, ..., p.

This condition is, for example, satisfied when gkt follows a unit root process defined by

gkt =
∑n

j=1 ξj , where {ξj} is a sequence of i.i.d (0, σ2) random variables with finite moments

of order θ > 2. The idea of modelling parameters as unit root processes was discussed, for

example, in Nyblom (1989b).

We now describe the infeasible standard errors
√
ωkk using the notation:

Szz =
∑n

t=1 ztz
′
t, Szzuu =

∑n
t=1 ztz

′
tu

2
t ,

Ωn = (E[Szz |F∗
n])

−1E[Szzuu |F∗
n](E[Szz |F∗

n])
−1 = (ωjk), (12)

where ωjk denotes the (j, k)-th element of the matrix Ωn. The infeasible standard error of

β̂k is defined as
√
ωkk, i.e., the square root of the corresponding diagonal element of Ωn.

The generality of our regression setting limits the multivariate asymptotic theory that can

be established for β̂t. While a full joint distribution of β̂t is not available, we can derive

asymptotic normality for linear combinations a′β̂ and then construct feasible inference for

individual component βk.

Existing literature typically imposes stronger assumptions on regressors and errors such as

mixing regressors (White, 2014, Theorem 3.78), locally stationary regressors in (Zhang and

Wu, 2012, eq. (2.3)), or near-epoch dependent errors in (Hall et al., 2012, Assumption 8).

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 and Assumption 2.4 hold.

Then, for any a = (a1, ..., ap)
′ ̸= 0, the OLS estimator β̂ satisfies

a′D(β̂ − β)√
a′DΩnDa

→d N (0, 1). (13)

In particular, for k = 1, ..., p, the t-statistic for βk satisfies

β̂k − βk√
ωkk

→d N (0, 1). (14)
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Property (13) is difficult to implement in practice because it requires estimation of the un-

known matrices D, Ωn, except in the special case a′ = (0, ..., 1, ...0) with only the k-th element

nonzero. In this case, (13) reduces to (14), and the infeasible standard error
√
ωkk can be

consistently estimated by

Ω̂n = S−1
zz SzzûûS

−1
zz = (ω̂jk), ût = yt − β̂′zt. (15)

The feasible standard error
√
ω̂kk is the square root of the diagonal element ω̂kk of Ω̂n.

Corollary 2.1. Under the assumptions of Theorem 2.2, for k = 1, ..., p, as n → ∞,

β̂k − βk√
ω̂kk

→d N (0, 1),
ω̂kk

ωkk
= 1 + op(1),

√
ωkk ≍p v

−1
k . (16)

This result is the main contribution of Section 2. It enables straightforward computation of

standard errors and the construction of confidence intervals for βk in the extended regres-

sion framework. Notably, the estimator Ω̂n coincides with the heteroskedasticity-consistent

standard error estimator of White (1980).

Remark 2.1. The consistency rate vk = (
∑n

k=1 g
2
kth

2
t )

1/2 for the parameter βk may take the

form vk ∼ cnα for any α > 0, ranging from super-slow (0 < α < 1) to super-fast (α > 1)

convergence. To illustrate this, consider the regression model

yt = β1 + β2z2t + β3z3t + ut, ut = htεt with ht = 1,

zkt = gktηkt, gkt = t(αk−1)/2 for k = 2, 3,

where α2 > 1, 0 < α3 < 1, and {η2t}, {η3t}, {εt} are i.i.d. N (0, 1). Then v1 =
√
n and

vk ∼ α
−1/2
k nαk/2 for k = 2, 3, producing different convergence rates across parameters. Even

in this simple case, the usual multivariate asymptotic normality for
√
n(β̂−β) does not hold.

Corollary 2.1 allows us to establish the asymptotic power and consistency of a test for testing

the hypothesis

H0 : βk = β0
k, vs. H1 : βk ̸= β0

k,

i.e., whether the k-th element of the regression parameter β = (β1, . . . , βp)
′ is equal to a

specific value β0
k.

Corollary 2.2. Suppose that β0
k ̸= βk. Then, under the assumptions of Corollary 2.1,

t =
β̂k − β0

k√
ω̂kk

≍p vk →p ∞. (17)

We conclude this section with a lemma that provides simple sufficient moment-type conditions

for the validity of Assumptions 2.3 and 2.4(ii). In particular, condition (10) implies (19).
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Lemma 2.1. Suppose that for k = 1, ..., p,

Ez4kt ≤ c, E|ut|4+δ ≤ c for some δ > 0, (18)

n/v2k = Op(1), n/v2gk = Op(1), (19)

where c < ∞ does not depend on t, n. Then Assumptions 2.3 and 2.4(ii) hold.

In particular, (19) is satisfied if mint=1,...,n h
−1
t = Op(1), mint=1,...,n g

−1
kt = Op(1).

The regular estimator of standard errors in OLS regression estimation is given by

Ω̂(st)
n = S−1

zz σ̂2
u, σ̂2

u = n−1
n∑

j=1

û2j . (20)

Unlike the robust standard errors
√
ω̂kk, these conventional standard errors may produce

coverage distortions, particularly when heteroskedasticity or heterogeneity in gt, ht, or µt is

present, see Section 6. This underscores the robustness and strong empirical performance of

the normal approximation in (16).

In this section, we have provided a rigorous validation of the asymptotic normality of

feasible t-statistics for the components of the OLS estimator in linear regression models with

general heterogeneity. The assumptions imposed are mild yet flexible, allowing a wide class

of (possibly nonstationary) regressors and noise processes beyond those typically considered

in the existing literature. Some conditions on scale factors are analogous to the Lindeberg

condition and remain necessary. Our framework complements, rather than replaces, prior

approaches; for instance, near-unit-root regressors Georgiev et al. (2018) require a distinct

theoretical treatment. Although bootstrap methods, see, e.g., Hall et al. (2012), Boldea

et al. (2019), are widely applied in regression analysis, they may not extend to the heteroge-

neous structures considered here. By contrast, we demonstrate that the heteroskedasticity-

consistent standard errors of White (1980) remain applicable and computationally straight-

forward.

In this paper we focus on the regression model (1), where the regression noise ut in (1) is

uncorrelated. Extending the asymptotic theory to account for dependence in ut is a natural

next step and is currently under consideration.

Detailed proofs of all results are provided in the Online Supplement.

3 Time-varying OLS estimation in extended regression space

This section demonstrates further advantages of the theory of regression estimation with a

fixed parameter, developed in Section 2. Thanks to the flexible setting, estimation of time-

varying parameters naturally follows from our theory for fixed-parameter regression in the
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extended space, along with bounding of some negligible terms.

In the previous section, we discussed the estimation of the regression model (1), yj =

β′zj + uj , with a fixed parameter β. We now extend the model by allowing the regression

parameter to vary over time. Specifically, we consider the model

yj = β′
jzj + uj , j = 1, ..., n, (21)

where the regressors zj and the regression noise uj , as defined in (3) and (2), remain un-

changed. That is, they belong to the same regression space as in Section 2.

The primary objective is to develop a point-wise estimation procedure for the path

β1, ..., βn of the time-varying parameter βj in model (21), while preserving the same regression

space introduced in Section 2.

The literature on estimation of time-varying regression parameters βj is extensive. It

primarily focuses on estimation and testing for parameter stability under relatively strong

assumptions on the regressors and regression noise. For instance, regressors are assumed to

be locally stationary in (Vogt (2012), model (3)), stationary and strongly mixing in (Fu et al.

(2023), Assumption A.1) and strictly stationary in (Hu et al. (2024), Assumption P(d)). It

is clear that the class of regressors considered in our setting is broader, and they may be

neither mixing nor stationary.

The objective of this section is to describe the extended regression space of regressors zt

and disturbances ut that ensures the asymptotic normality of the feasible t-statistic estimating

the components of the time-varying parameter βt. We show that, as long as the regressors

and the disturbance follow the structure zt = µt+ Igtηt and ut = htεt, the class of admissible

means µt and scale factors gt, ht is very broad and characterized by weak restrictions that

may not require empirical verification.

Further extensions of the regression space are possible. For example, the weakly exoge-

nous component ηt of the regressors zt in our paper is assumed to be a short-memory process.

In contrast, Hu et al. (2024) demonstrate that estimation of the time-varying parameter βt

also permits weakly exogenous, strictly stationary regressors zt that exhibit long-memory

behavior.

While most assumptions on the regressors zj and regression noise uj remain unchanged

from Section 2, the estimator requires some modifications. Under an additional smoothness

assumption on {βj}, the time-varying OLS estimator β̂t of parameter βt at time t is the

standard OLS estimator for a fixed regression parameter, obtained by regressing ỹj = b
1/2
n,tjyj

on z̃j = b
1/2
n,tjzj :

β̂t =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j ỹj
)
=

( n∑
j=1

bn,tjzjz
′
j

)−1( n∑
j=1

bn,tjzjyj
)
. (22)

12



The weights bn,tj are generated as follows:

bn,tj = K(
|t− j|
H

), t, j = 1, ..., n, (23)

where H = Hn is a bandwidth parameter such that H → ∞ and H = o(n). The kernel

function K is bounded and there exist a0, δ > 0 and θ > 3 such that

K(x) ≥ a0 > 0, 0 ≤ x ≤ δ, (24)

K(x) ≤ Cx−θ, x > δ.

For example, (24) is satisfied by functions K(x) = I(x ∈ [0, 1]) and K(x) = p(x) where p(x)

is the probability density function of the standard normal distribution.

We impose a smoothness assumption on the time-varying parameter βj , which may be either

deterministic or stochastic.

Assumption 3.1. For some γ ∈ (0, 1] and for t, j = 1, ..., n,

E||βt − βj ||2 ≤ c
( |t− j|

n

)2γ
, (25)

where c < ∞ does not depend on t, j, n.

Next, we briefly outline how our asymptotic theory for the time-varying robust estimator

builds on the results from Section 2 on fixed-parameter regression estimation and the smooth-

ness assumption (25). To demonstrate this, we introduce the following regression model with

a fixed parameter β = βt:

y∗j = β′z̃j + ũj , ũj = b
1/2
n,tjuj , j = 1, ..., n. (26)

Notice that the OLS estimator β̂ of the fixed parameter β satisfies:

β̂ =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃jy
∗
j

)
= β +

( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j ũj
)
. (27)

Since ỹj = y∗j + (βj − βt)
′z̃j , the time-varying estimator β̂t given in (22) satisfies:

β̂t − βt =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j{y∗j + (βj − βt)
′z̃j}

)
− βt

= β̂ − β +Rt, Rt =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j z̃
′
j(βj − βt)

)
. (28)

Notice that β̂ − β in (28) does not depend on β. Additionally, the regression space in

estimation of the fixed parameter in Section 2 permits rescaling, so premultiplying by the

13



kernel weights b
1/2
n,tj does not change the structure of regressors z̃j = (z̃1j , ..., z̃pj)

′ and ũj :

they still satisfy the settings (3) and (2). Consequently, the model (26) is covered by the

regression model (1) with a fixed parameter, and the asymptotic results for β̂−β follow from

Section 2. The main technical task in this section is to show that the remainder term Rt in

(28) is negligible, which follows from the smoothness assumption (25).

The regressors zj and regression noise uj belong to the same regression space as defined

in as in Section 2. While the assumptions on the stationary process {ηj} and the martingale

difference noise {εj} remain unchanged, for simplicity, we replace the previous conditions on

the scale factors gj , hj and the means µj with simple sufficient assumptions similar to those

used in Lemma 2.1. As before, the scale factors {hj , gj , µj} can be deterministic or stochastic,

may vary with n, and are independent of {ηj , εj}.

Denote

v2kt =
∑n

j=1 b
2
n,tjg

2
kjh

2
j , v2gk,t =

∑n
j=1 b

2
n,tjg

2
kj , k = 1, ..., p.

Assumption 3.2. zt and ut are such that, for k = 1, ..., p,

Ez4kt ≤ c, E|ut|4+δ ≤ c for some δ > 0, (29)

H/v2kt = Op(1), H/v2gk,t = Op(1), (30)

where c < ∞ does not depend on t, n.

It is straightforward to show that (30) is valid if gkt, ht ≥ c > 0 for all t, n.

To describe the infeasible standard errors
√
ωkk,t, we use:

Szz,t =
∑n

j=1 bn,tjzjz
′
j , Szzuu,t =

∑n
j=1 b

2
n,tjzjz

′
ju

2
j ,

Ωnt = E[Szz,t|F∗
n]

−1E[Szzuu,t|F∗
n]E[Szz,t|F∗

n]
−1 = (ωjk,t),

where ωjk,t denotes the (j, k)-th element of the matrix Ωnt. The infeasible standard error
√
ωkk,t is defined by the diagonal element ωkk,t of the matrix Ωnt.

The next theorem establishes the consistency rate and asymptotic normality property for the

components of the time-varying OLS estimator β̂t = (β̂1t, ..., β̂pt)
′, and allows for arrays of

integers t = tn ∈ [1, ..., n], which may depend on n.

Theorem 3.1. Suppose that (y1, ..., yn) is a sample from a regression model (21). Assume

that Assumptions 2.1, 2.2, 2.4(i), 3.1 and 3.2 hold. Then, for 1 ≤ t = tn ≤ n and k = 1, ..., p:

β̂kt − βkt = Op

(
H−1/2 + (H/n)γ

)
, (31)

β̂kt − βkt√
ωkk,t

→d N (0, 1) if H = o(n2γ/(2γ+1)), (32)
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and
√
ωkk,t ≍p H

−1/2.

The consistency rate in (31) is determined by the bandwidth parameterH and the smoothness

parameter γ ∈ (0, 1) in (25). The condition H = o(n2γ/(2γ+1)) ensures that in (32) the bias

term remains negligible.

As in the fixed-parameter case, for (zj , uj) from the extended regression space, the asymp-

totic normality can be established in point-wise estimation for each individual component β̂kt

of β̂t.

The unknown standard error
√
ωkk,t can be consistently estimated by:

Ω̂nt = S−1
zz,tSzzûû,tS

−1
zz,t = (ω̂jk,t), ûj = yj − β̂′

jzj . (33)

The feasible standard error
√
ω̂kk,t is defined by the diagonal element ω̂kk,t of Ω̂nt.

Corollary 3.1. Under assumption of Theorem 3.1, for k = 1, ..., p, and H = o(n2γ/(2γ+1))

it holds:

β̂kt − βkt√
ω̂kk,t

→d N (0, 1),
ω̂kk,t

ωkk,t
= 1 + op(1). (34)

Corollary 3.1 allows us to establish the asymptotic power of the test of the hypothesis

H0 : βkt = β0
kt, vs. H1 : βkt ̸= β0

kt,

based on the t-statistics (β̂kt − β0
kt)/

√
ω̂kk,t.

Corollary 3.2. Suppose that |β0
kt − βkt| ≥ a > 0 for t = tn ∈ [1, ..., n] as n → ∞. Then,

under assumption of Corollary 3.1,

β̂kt − β0
kt√

ω̂kk,t

≍p H
1/2 →p ∞. (35)

The estimator Ω̂nt used to obtain robust standard errors in (33) is a time-varying version

of heteroskedasticity-consistent estimator of standard errors by White (1980). Simulation

results confirm that it does not produce coverage distortions in the estimation of βt under

the settings considered in this section.

In conclusion, we provide examples of smoothly varying deterministic and stochastic

parameters βt that satisfy Assumption 3.1.

Example 3.1. A standard example of a deterministic time-varying parameter βt which sat-

isfies Assumption 3.1, is βt = βt,n = g(t/n), t = 1, ..., n, where g(·) is a deterministic smooth

function that has property |g(x)− g(y)| ≤ C|x− y|. Such βt satisfies (25) with γ = 1.
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A standard example of a stochastic smooth parameter βt is a re-scaled random walk βt =

βt,n = n−1/2
∑t

j=1 ej, t = 1, ..., n, where {ej} is an i.i.d. sequence with E[et] = 0 and

E[e2j ] < ∞. It satisfies (25) with γ = 1/2, that is for t > s,

E(βt − βs)
2 = n−1E(

∑t
j=s+1 ej)

2 ≤ C(t− s)/n.

The above results are equipped with thorough and mathematically rigorous proofs, which

can be found in the Online Supplement.

The key new features in the estimation of time-varying parameter βt are similar to those

highlighted in the estimation of the fixed parameter in Section 2. Although the computation is

straightforward, establishing the validity of the robust standard errors
√

ω̂kk,t in the extended

regression space of (zt, ut) is challenging because the scale factors ht, gt, µt in model (21) are

unknown and potentially random, and highly general, while the asymptotic behaviour of

the ωkk,t may not be well-defined. The asymptotic normality of a single component of the

estimator can still be established, even though a full multivariate asymptotic theory is not

available. Unlike most existing literature, βt is permitted to evolve as a smoothly varying

stochastic process.

4 Regression with missing data

In the previous sections, we showed that the extended regression space enables the estimation

of both fixed and time-varying regression parameters. It offers several theoretical advantage,

in particular, the ability to estimate regression models in the presence of missing data. Given

the importance in empirical regression analysis in situations where some observations yt

or regressors zt are missing, see, e.g., Enders (2022), we now present new and somewhat

unexpected results on regression estimation with missing data. We show that the foundational

assumptions underlying the constriction of regression space also allow us to accommodate an

a broad range of missing data patterns.

In this section we suppose that instead of the full sample (y1, z1), ..., (yn, zn), we observe a

subsample

(yk1 , zk1), ..., (ykN , zkN ), N ≤ n, (36)

of dependent variable yt and regressor zt. Our primary interest is to estimate both fixed and

time-varying regression parameters using the subsample (36).

To that end, we represent the observed data as partially observed sample

(ỹj , z̃j) = (τjyj , τjzj), j = 1, ..., n (37)
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where τj is missing-data indicator. In (36) it is defined as

τj =

1 for j = k1, k2, . . . , kN , where k1 < k2 < · · · < kN ≤ n,

0 otherwise.
(38)

We set τj = 1 if both yj and zj are observed, otherwise τj = 0. Throughout this section, τj

is treated as a sequence of random or deterministic variables, allowing for regularly missing,

block-wise missing, or randomly missing data patterns.

In order for the theoretical results of the previous section to apply, we impose the following

assumptions on the missing data indicator τt, the regressors zkt = µkt + gktηkt in (3) and the

regression noise ut = htεt in (2).

Assumption 4.1. The missing-data indicator {τt} is assumed to be independent of {εt, ηt}
in (2) and (3).

Assumption 4.2. (i) Ez4kt ≤ c and E|ut|4+δ ≤ c for some δ > 0, where c > 0 does not

depend on k, t, n.

(ii) gkt ≥ c > 0 and ht ≥ c > 0, where c does not depend on k, t, n.

(iii) εt, ηt satisfy Assumptions 2.1, 2.2, and 2.4(i).

Estimation of a fixed parameter. Suppose that yt = β′zt + ut follows the regression

model (1) with a fixed parameter β as in Section 2. Our primary interest is to estimate

the parameter β using subsample (36). In view of (1), we can write the partially observed

regression model as

ỹt = τtyt = τt(β
′zt + ut),

ỹt = β′z̃t + ũt, ũt = τtut = {τtht}εt. (39)

In (39), the regressors z̃t and the noise ũt can be represented as

z̃kt = µ̃kt + g̃ktηkt, µ̃kt = τtµkt, g̃kt = τtgkt, (40)

ũt = h̃tεt, h̃t = τtht.

They belong to the regression space described in (2) and (3). Therefore, parameter β and

the correspondent standard errors in model (39) can be estimated using the OLS estimator

β̂ and ω̂kk:

β̂ =
( n∑
t=1

z̃tz̃
′
t

)−1( n∑
t=1

z̃tỹt
)
, Ω̂n = S−1

z̃z̃ Sz̃z̃ûûS
−1
z̃z̃ = (ω̂jk), (41)

Sz̃z̃ =
∑n

t=1 z̃tz̃
′
t, Sz̃z̃ûû =

∑n
t=1 z̃tz̃

′
tû

2
t , ût = ỹt − β̂′z̃t.
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Theorem 4.1. The OLS estimator β̂ of parameter β in regression model (40) with missing

data has the following asymptotic properties. If Assumptions 4.1 and 4.2 hold and n/N =

Op(1), then, for k = 1, ..., p, as n → ∞,

β̂k − βk√
ω̂kk

→d N (0, 1),
√

ω̂kk ≍p n
−1/2. (42)

Remark 4.1. Theorem 4.1 shows that ignoring missing data does not affect the estimation

of the fixed parameter. That is, the researcher can compute the estimators β̂ and
√
ω̂kk

directly using subsample ykj , zkj , j = 1, ..., N :

β̂ =
( N∑
j=1

zkjz
′
kj

)−1( N∑
j=1

zkjykj
)
, Ω̂n = S−1

∗,zzS∗,zzûûS
−1
∗,zz = (ω̂jk),

S∗,zz =
∑N

j=1 zkjz
′
kj
, S∗,zzûû =

∑N
j=1 zkjz

′
kj
û2kj , ûkj = ykj − β̂′zkj .

Estimation of a time-varying parameter. Assume now that yt = β′
tzt + ut follows the

regression model (21) with time-varying parameter βt, where regressors zt and regression

noise ut are as in (3) and (2). We are interested in estimating the parameter βt in the

presence of missing data using the subsample (36). Similarly to (39), we base the estimation

on the partially observed regression model with a time-varying parameter,

ỹj = β′
j z̃j + ũj , j = 1, ..., n, (43)

where regressors z̃j and the noise ũj are defined as in (40). They belong to the regression

space described by (2), and (3) and thus results of Section 3 on the estimation of time-varying

parameter βj apply.

We show in the following theorem that under Assumptions 4.1 and 4.2, parameter βt

and standard errors can be estimated point-wise at each time t = 1, ..., n provided that the

missing data pattern satisfies the following condition:

H/Nt = Op(1), Nt =

n∑
j=1

τjbn,tj . (44)

This condition holds, for example, if τj = 1 for |j − t| ≤ ϵH for some ϵ > 0.

The estimator β̂t and the estimator of the robust standard errors ω̂kk,t given in (22) and

(33) are defined as

β̂t =
( n∑
j=1

bn,tj z̃j z̃
′
j

)−1( n∑
j=1

bn,tj z̃j ỹj
)
, (45)

Ω̂nt = S−1
z̃z̃,tSz̃z̃ûû,tS

−1
z̃z̃,t = (ω̂jk,t), ûj = ỹj − β̂′

j z̃j .
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Theorem 4.2. The OLS estimator β̂t of the time-varying parameter βt in regression model

(43) with missing data has the following properties. Assume that 1 ≤ t = tn ≤ n, Assumptions

4.1, 3.1 and 4.2 are satisfied and that the condition H/Nt = Op(1) holds. Then, for k =

1, ..., p, as n → ∞,

β̂kt − βkt = Op

(
H−1/2 + (H/n)γ

)
, (46)

β̂kt − βkt√
ω̂kk,t

→d N (0, 1) if H = o(n2γ/(2γ+1)), (47)

ω̂kk,t ≍p H
−1. (48)

5 Estimation of a stationary AR(p) model with an m.d. noise

In this section we focus on another practical application of our regression framework developed

in Section 2. We show that it covers the estimation of parameters of a stationary AR(p) model

driven by a stationary martingale difference noise εt:

yt = ϕ0 + ϕ1yt−1 + ...+ ϕpyt−p + εt, (49)

where parameters ϕ0, ..., ϕp are such that the model (49) has a stationary solution. Xu and

Phillips (2008) developed estimation theory for AR(p) model yt = ϕ0+ϕ1yt−1+...+ϕpyt−p+ut,

when ut = htεt where ht is smoothly varying deterministic sequence and a m.d. sequence

εt has property E[ε2t |Ft−1] = 1 a.s. Giraitis et al. (2018) were among the first to analyze

the distortions of standard errors caused by m.d. noise in estimation of ARMA models.

This paper shows that the variance of the parameter vector ϕ converges to a well-defined

limit; however, its complex structure complicates the estimation of the limiting variance and

the corresponding standard errors in empirical applications. They restricted the estimation

of standard errors to AR(1) and MA(1) models. In the case of AR(p) model, using our

method we are able to estimate standard errors for any p without relying on asymptotic

approximations which is the main novelty and contribution of this section. Notice that the

model (49) can be written as a special case of the regression model (1),

yt = β′zt + ut, ut = εt. (50)

Here, the parameter β = (β1, ..., βp+1)
′ = (ϕ0, ...., ϕp)

′ is fixed, and the regressors zt =

(z1t, z2t, ..., zp+1,t)
′ = (1, yt−1, yt−2, ..., yt−p)

′ are stationary random variables. It is straight-

forward to verify that the regressors

zkt = µkt + gktηkt, µkt = E[yt−k] = Ey1, gkt = 1, ηkt = yt−k − E[yt−k]

for k = 2, ..., p+1 satisfy the regression assumption (3). In the theorem below, we assume that

the standard stationarity conditions on parameters of the AR(p) model (49) are satisfied, see
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e.g. Theorem 3.1.1 in Brockwell and Davis (1991), which ensure the existence of a stationary

solution

yt = µ+
∞∑
j=0

ajεt−j , where
∞∑
j=0

|aj | < ∞, µ = Eyt. (51)

We assume that εt satisfies Assumption 2.1 and ηt = (yt−1, yt−2, ..., yt−p)
′ satisfy Assumptions

2.2 and 2.4(i). These assumptions impose only mild restrictions on the m.d. noise εt, and their

validity can be verified for typical examples of uncorrelated m.d. noise, such as ARCH-type

processes.

The OLS estimator β̂ of β in regression model (50) is defined as in (8) and ω̂kk as in (15).

Theorem 5.1. Suppose that AR(p) model (49) with m.d. noise εt has a stationary solution

as in (51), that Eε8t < ∞ and that (εt, ηt) satisfy Assumptions 2.1, 2.2, and 2.4(i). Then the

OLS estimator β̂ of parameter β in regression model (50) has the following properties: for

k = 1, ..., p+ 1, as n → ∞,

β̂k − βk√
ω̂kk

→d N (0, 1),
√

ω̂kk ≍p n
−1/2. (52)

The Monte Carlo results presented in Section 6.4 demonstrate that the robust OLS estimation

produces correct 95% confidence intervals for βk, whereas the standard OLS method exhibits

coverage distortions, when the noise εt is not i.i.d. This finding indicates that the robust OLS

estimator has a broader range of applicability than merely addressing heteroscedasticity, and

that it can also be effectively used in regression settings not covered by the standard OLS

estimation and inference theory.

It is worth noting that the papers by Doukhan and Wintenberger (2008), Bardet and

Wintenberger (2009) and Karmakar et al. (2022) provide advanced theoretical results on the

modelling and estimation of general nonlinear time-varying time series models; however, they

address the linear AR(p) model (49) only in the trivial case of an i.i.d. noise εt.

6 Monte Carlo Simulations

In this section, we explore the finite sample performance of the robust and standard OLS

estimation methods in regression settings, outlined in Sections 2 and 3. We examine the

impact of time-varying deterministic and stochastic parameters, means, scale factors and

heteroskedasticity of the regression noise on estimation. Comparison of simulation results for

standard and robust estimation methods shows that, despite the generality of our regression

setting, estimation based on the robust standard errors produces well-sized coverage intervals

for fixed and time-varying regression parameters β and βt, while application of the standard

confidence intervals leads to severe distortion of coverage rates.
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(a) yt (b) z2t (c) ut

Figure 1: Plots of yt, z2t, ut in Model 6.1.

6.1 Estimation of a fixed parameter

We generate arrays of samples of regression model with fixed parameter and an intercept:

yt = β1 + β2z2t + β3z3t + ut, ut = htεt, β = (β1, β2, β3)
′ = (0.5, 0.4, 0.3)′. (53)

We set the sample size to n = 1500 and conduct 1000 replications and set the nominal coverage

probability at 0.95. (Estimation results for n = 200, 800 are available upon request). We also

include a more complex example in the online supplement.

This model includes three parameters and three regressors. We set z1t = 1 and define

zkt = µkt + gktηkt, k = 2, 3, (54)

µkt = 0.5 sin(πt/n) + 1, ηkt = 0.5ηk,t−1 + ξkt,

where ξ2t = εt−1 and ξ3t = εt−2. The stationary martingale difference noise εt in ut is

generated by a GARCH(1, 1) process

εt = σtet, σ2
t = 1 + 0.7σ2

t−1 + 0.2ε2t−1, et ∼ i.i.d.N (0, 1). (55)

Model 6.1. yt follows (53) with deterministic scale factors. We set: ht = 0.3(t/n) and

g2,t = g3,t = 0.4(t/n).

Model 6.2. yt follows (53) with stochastic scale factors. We set

ht =
∣∣∣ 1

2
√
n

t∑
j=1

ζj

∣∣∣+ 0.25, g2t = g3t =
∣∣∣ 1

2
√
n

t∑
j=1

νkj

∣∣∣+ 0.25.

The generating noises {ζj , ν2j , ν3j} are i.i.d. N (0, 1) and independent of {εj}.

Models 6.1 and 6.2 are regression models with fixed parameters. Examples of plots

of the simulated dependent variable, regressor and regression noise are shown in Figure 1

and 2 (z2t and z3t have similar patterns). To verify the validity of the asymptotic normal
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(a) yt (b) z2t (c) ut

Figure 2: Plots of yt, z2t, ut in Model 6.2.

Table 1: Robust OLS estimation in Model 6.1.

Parameters Bias RMSE CP CPst SD

β1 -0.00570 0.04579 95.0 79.2 0.04544
β2 0.00206 0.03407 95.4 72.7 0.03401
β3 0.00204 0.03495 94.0 72.9 0.03489

approximation of Corollary 2.1 in finite samples, we compute empirical coverage rates (CP)

for 95% confidence intervals used in robust OLS estimation, for parameter β. For comparison,

we compute the coverage rates CPst for standard confidence intervals based on the standard

errors (20) used in standard OLS estimation. The robust and standard OLS procedures

share the same estimator β̂, and whence Bias, root mean square error (RMSE) and standard

deviation (SD). Their confidence intervals differ because the variances (and standard errors)

in their normal approximations are different.

Table 1 reports estimation results for Model 6.1 which contains determinist scale factors.

It shows that coverage rate CP for robust confidence intervals is close to the nominal 95%,

while the coverage rate CPst of the standard confidence intervals drops below 80%. The Bias,

RMSE, and SD are small.

Table 2 shows estimation results for Model 6.2 which includes stochastic scale factors.

It shows that the coverage rate CP for robust confidence intervals is close to the nominal

95%, whereas the standard estimation method produces coverage distortions for parameters

β2 and β3.

Table 2: Robust OLS estimation in Model 6.2.

Parameters Bias RMSE CP CPst SD

β1 -0.00420 0.05117 94.6 92.2 0.05100
β2 0.00208 0.03205 94.6 87.4 0.03199
β3 0.00071 0.01542 94.8 85.3 0.01541

22



(a) n = 200 (b) n = 800 (c) n = 1500

Figure 3: Size, power, and adjusted power (%) for test H0 : β3 = 0 in Model 6.1: β3 =
0, · · · , 0.5, n = 200, 800, 1500.

To assess power, we vary β3 in Model 6.1 from 0 to 0.5 and record how often the test rejects

H0 : β3 = 0. Figure 3 reports results for ROLS and OLS at sample sizes n = 200, 800, 1500.

When β3 = 0, ROLS achieves a good size close to the nominal 5%, while the size based on

OLS results starts around 20% and remains heavily oversized even as n increases. For β3 ̸= 0,

power rises monotonically with β3 for both methods. In Figure 3, the blue solid lines represent

power based on ROLS, and the red solid lines correspond to standard OLS. Considering the

OLS estimation has large size distortion, we compute its adjusted power, shown by the red

dotted lines. With small sample size n = 200, OLS appears more powerful for β3 ≤ 0.2,

whereas ROLS catches up and achives good power when β3 ≥ 0.3. For n = 800 and 1500,

both methods already achieve good power around β3 = 0.2. Overall, ROLS provides reliable

size and competitive power across different sample sizes. Similary results are observed for

Model 6.2.

6.2 Estimation of a time-varying parameter

In this section we examine the validity of the normal approximation for the estimator β̂t, (22),

of time-varying parameter βt, as established in Corollary 3.1 of Section 3. We replace the fixed

regression parameter β in the model (53) by a time-varying parameter βt = (β1t, β2t, β3t)
′:

yt = β1t + β2tz2t + β3tz3t + ut, ut = htεt, (56)

where z1t = 1 and z2t, z3t are defined using µ2t, µ3t and η2t, η3t as in (54).

We consider two simulation models. Model 6.3 assumes deterministic parameters and

scale factors, while Model 6.4 combines deterministic and stochastic parameters and scale

factors.

Model 6.3. yt follows (56) with εt as in (55). The scale factors ht, g2t, g3t and parameters

β1t, β2t, β3t are deterministic:

ht = 0.5 sin(2πt/n) + 1, g2t = g3t = 0.5 sin(πt/n) + 1.
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(a) β1,t (b) β2,t (c) β3,t

Figure 4: Robust 95% confidence intervals for time-varying parameters β1t, β2t, β3t in Model
6.3: n = 1500, bandwidth H = n0.5. Single replication.

(a) β1,t (b) β2,t (c) β3,t

Figure 5: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.3: n = 1500, bandwidth H = n0.5.

β1t = 0.5 sin(0.5πt/n) + 1, β2t = 0.5 sin(πt/n) + 1, β3t = 0.5 sin(2πt/n) + 1.

Model 6.4. yt follows (56) with εt ∼ i.i.d.N (0, 1) and scale factors:

ht = 0.5 sin(2πt/n) + 1, g2t =
∣∣∣n−γ

t∑
i=1

ζj

∣∣∣+ 0.2, g3t = 0.5 sin(πt/n) + 1.

Parameters β1t, β2t are the same as in Model 6.3, while β3t is stochastic:

β3t =
∣∣∣n−γ

t∑
i=1

νj

∣∣∣+ 0.3(t/n),

where {ζj}, {νj} are stationary ARFIMA(0, d, 0) processes with memory parameter d = 0.4.

We estimate βt using the estimator β̂t, (22), where the weights bn,tj = K(|t − j|/H) are

computed with the Gaussian kernel function K(x) = (2π)−1/2 exp(−x2/2) with bandwidth

H = nh, h = 0.4, 0.5, 0.6, 0.7.

Figure 4 displays parameter estimation results for a single simulation from Model 6.3.

It depicts the estimates β̂k1, ..., β̂kn (red line) against the true parameters βkt (blue line),

k = 1, 2, 3 obtained with the bandwidth H = n0.5, and their point-wise 95% confidence

24



(a) β1,t (b) β2,t (c) β3,t

Figure 6: RMSE for time-varying parameters β1t, β2t, β3t in Model 6.3: n = 1500, bandwidth
H = nh, h = 0.4, 0.5, 0.6, 0.7.

(a) β1,t (b) β2,t (c) β3,t

Figure 7: Robust 95% confidence bands for time-varying parameters β1t, β2t, β3t in Model
6.4: n = 1500, bandwidth H = n0.5. Single replication.

intervals (grey dashed lines), computed using the robust standard errors. The robust time-

varying confidence intervals cover the true parameters βkt, t = 1, ..., n, for most of the time

points.

Figure 5 reports the point-wise empirical coverage rates (blue line) in time-varying robust

estimation of parameters βkt, k = 1, 2, 3 which are close to the nominal 95% for most of the

time points. Figure 6 shows the RMSE’s for different choices of the bandwidth H = nh,

h = 0.4, 0.5, 0.6, 0.7. As expected, the RMSE depends on the smoothness of the parameter

βkt and often is minimized by moderately large values of H, for example, H = n0.6.

Figure 7 reports estimation results for a single simulation from Model 6.4, and Figure 8

displays point-wise empirical coverage rates for robust 95% confidence intervals. For deter-

ministic parameters β1t and β2t, estimation quality is good and results are similar to those

obtained for Model 6.3. For the stochastic parameter β3t, the robust point-wise confidence

intervals cover the path of stochastic parameter β3t for most of the time points, see Fig-

ure 7(c). Figure 8(c) shows that coverage rates of robust time-varying confidence intervals

for β3t might be slightly affected by stochastic variation in the parameter and scale factors.

Nevertheless, they are still satisfactory and reasonably close to the nominal 95% coverage.
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(a) β1,t (b) β2,t (c) β3,t

Figure 8: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.4: n = 1500, bandwidth H = n0.5.

Table 3: Robust OLS estimation in Model 6.1 with block missing data (Type 1).

Parameters Bias RMSE CP CPst SD

β1 -0.00818 0.04983 94.60 74.60 0.04915
β2 0.00356 0.03875 94.00 67.90 0.03859
β3 0.00246 0.03840 93.80 70.00 0.03832

6.3 Estimation of regression parameter with missing data

To examine the impact of missing data on the robust and standard OLS estimation based

on partially observed data (yj1 , zj1), (yj2 , zj2), ...., (yjN , zjN ), we use two types of missing data

patterns over the time period 1, ..., 1500.

Type 1. The block of data j ∈ [650, 850] is missing.

Type 2. 500 single observations are missing at randomly selected times.

Tables 3 and 4 report robust and standard estimation results for Model 6.1 with fixed

parameter. Table 3 shows that block missing data (Type 1) do not lead to noticeable changes

in Bias, RMSE and SD, and the coverage rate for robust confidence intervals remains around

95%. At the same time, the coverage rate CPst of the standard confidence intervals is

substantially distorted.

Table 4 shows that randomly missing data do not affect the coverage rate of robust

confidence intervals which remains to the nominal 95%, while the coverage rate of the standard

confidence intervals drops to around 65%. This emphasises the flexibility of the robust OLS

Table 4: Robust OLS estimation in Model 6.1 with randomly missing data (Type 2).

Parameters Bias RMSE CP CPst SD

β1 -0.00567 0.05732 94.30 66.60 0.05704
β2 0.00144 0.04251 95.20 63.50 0.04249
β3 0.00289 0.04128 94.80 64.70 0.04118
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(a) β1,t (b) β2,t (c) β3,t

Figure 9: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.3 with block missing data (Type 1), n = 1500, bandwidth H = n0.5.

(a) β1,t (b) β2,t (c) β3,t

Figure 10: Robust 95% confidence bands for time-varying parameters β1t, β2t, β3t in Model
6.3 with block missing data (Type 1), n = 1500, bandwidth H = n0.5. Single replication.

estimation of the fixed parameter in the presence of block or randomly missing data.

Figures 9 – 11 report estimation results for Model 6.3 with time-varying parameter βt.

Figure 9 shows the coverage rates in time-varying robust estimation with block missing

data (Type 1, shaded region) for t = 1, ..., 1500. The coverage is close to the nominal 95%,

with some distortion for parameters β1,t and β2,t and a larger distortion for parameter β3,t

within the shaded region. The distortion peaks at the centre of the block, as expected.

Although the width of missing data block, 200, exceeds the bandwidth H = n0.5 = 39 used in

estimating βt, the coverage distortion seems to be offset by the smooth down-weighting of the

data, and the performance of the robust time-varying OLS estimation exceeds expectations.

Figure 10 reports the path of the estimator β̂kt and the point-wise robust confidence

intervals, for a single simulation. The robust confidence intervals become wider in the shaded

region, which likely explains the satisfactory coverage performance during that period.

Figure 11 shows that randomly missing data (Type 2) do not distort the robust time-

varying OLS estimation. For all three parameters and time periods t, the coverage rate is

close to the nominal. Overall, robust estimation of time-varying parameter does not appear

be affected by randomly missing data.
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(a) β1,t (b) β2,t (c) β3,t

Figure 11: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.3, 500 randomly missing data, n = 1500, bandwidth H = n0.5.

Table 5: Robust OLS estimation in AR(2) model (57).

Parameters Bias RMSE CP CPst SD

β1 -0.00808 0.05250 94.9 92.3 0.05187
β2 0.00104 0.04183 94.5 75.0 0.04182
β3 0.00356 0.03091 94.8 88.8 0.03070

6.4 Estimation of a stationary AR(p) model

We assess the performance of the robust and standard procedures in the case of a stationary

AR(2) model:

yt = β1 + β2yt−1 + β3yt−2 + εt, β = (β1, β2, β3)
′ = (0.5, 0.4, 0.3)′, (57)

where εt = etet−1, et ∼ i.i.d.N (0, 1) is a stationary martingale difference noise. The regres-

sors zt = (z1,t, z2,t, z3,t)
′ = (1, yt−1, yt−2)

′ include an intercept and the two past lags of yt. By

Theorem 5.1, the parameter β can be estimated by using the robust estimation method.

Table 5 shows that the coverage rate for the robust OLS estimation is close to the nominal

95%, while the standard OLS estimation exhibits extensive coverage distortion for β2 and β3.

7 Empirical experiment

In this section, we analyze the structure and dynamics of daily S&P 500 log returns, rt, from

02/01/1990 to 31/12/2019, (sample size n = 7558). We employ robust regression estimation

to assess whether the returns rt can be modelled using a time-varying regression model of

the form

rt = µt + ut, ut = htεt, (58)

where {εt} is an i.i.d.(0, 1) noise, and the time-varying mean and scale factor µt, ht are

independent of {εt}. Our objective is to estimate the time-varying mean µt, the scale factor
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(a) Confidence bands for µt (b) Confidence bands for β1t = htE|εt|

Figure 12: Robust 95% confidence bands for µt in model ( 58) and β1t = htE|εt| in model
(59), n = 7558, H = n0.6.

ht, and to test for the absence of autocorrelation in the absolute residuals |ut| = ht|εt|,
thereby assessing the fit of the model (58) to the data.

It returns rt follows the model (58) with i.i.d. noise εt, then the absolute residuals |ut|’s
are uncorrelated then for t ̸= s:

cov(|ut|, |us|) = cov(ht|εt|, hs|εs|) = E
[
hthscov(|εt|, |εs|)

]
= 0.

Conversely, if the noise εt exhibits ARCH effects (stationary conditional heteroskedasticity),

the sequence |ut| becomes autocorrelated, and the null hypothesis of uncorrelated absolute

residuals |ut| would be rejected.

We estimate the the time varying mean µt using the time-varying OLS estimator with

bandwidths H = n0.4, n0.5, ..., n0.7. Figure 12(a) shows the estimated path of µ̂t and the

associated 95% confidence intervals for bandwidth H = n0.6 indicating that µt is very likely

to change over time.

Assumption (58) implies that

|ut| = |rt − µt| = ht|εt| = htE|εt|+ ht(|εt| − E|εt|).

Therefore, |ût| = |rt− µ̂t| ∼ htE|εt|+ht(|εt|−E|εt|) and thus yt = |ût| follows a time-varying

regression model of the form

yt = β1t + ũt, ũt = gtηt, (59)

where β1t = htE|εt| represents a time-varying intercept, gt = ht denotes the scale factor,

and ηt = |εt| − E|εt| is an i.i.d. noise. Hence β1t can be consistently estimated using the

time-varying OLS estimator β̂1t. Figure 12(b) displays the estimated path of β̂1t and the

corresponding 95% confidence intervals for β1t = htE|εt| with bandwidth H = n0.6, revealing

pronounced time variation in the scale factor ht.
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(a) Testing at individual lag: ̂̃uj (b) Testing at individual lag: û∗
j

Figure 13: Robust and standard tests for absence of correlation in subsample of residuals ̂̃uj ,
û∗j , j ∈ [500, 1000], H = n0.6, significance level 5%.

Figure 13(a) reports testing results for zero correlation at lags k = 1, ..., 20 in the residual

sequence ̂̃ut = yt − β̂1t. We employ the standard test and robust test procedures developed

in Giraitis et al. (2024). Given that the sample size is large (n = 7558) and β1t is estimated

non-parametrically with bandwidth H = n0.6, we restrict the correlation analysis to the

subsample j ∈ [500, 1000]. Both tests provide no evidence of significant correlation within

this subsample, suggesting that the model (58) fits the returns rt well during this time period.

The same is not likely to be true if r∗t = rt − µ̂t follows a GARCH(1,1) process, as

confirmed by the following experiment. We fit a GARCH(1,1) model to the demeaned returns

r∗t = rt − µ̂t,

r∗t = σtεt, σ2
t = 1.563× 10−6 + 0.88913σ2

t−1 + 0.096974r∗ 2t−1.

We generate a simulated GARCH(1,1) sample r∗g1, ...., r
∗
gn, apply the regression model (59) to

the absolute values y∗t = |r∗gt|, and compute the residuals, û∗t = y∗t − β̂1t. Figure 13(b) shows

that both standard and robust tests detect significant correlation in residuals û∗t , confirming

the presence of conditional heteroskedasticity in the simulated GARCH data.

8 Conclusion

The robust OLS and time-varying OLS estimation and inference methods developed in this

paper offer considerable flexibility for modelling economic and financial data. They allow for

general heterogeneity in regression components and for structural change of regression coef-

ficients over time. Moreover, the generalization of the structure of regressors and error terms

further expands the range of empirical settings to which robust OLS regression framework can

be applied. In particular, the paper develops asymptotic theory for general regression models

with stochastic regressors possibly including a time varying mean, and provides data-based
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robust standard errors that enable the construction of confidence intervals for regression

parameters. The Monte Carlo analysis demonstrates the strong performance of the robust

estimation approach under complex settings, and confirms the asymptotic normality property

and consistency of the proposed estimators.
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This Supplement provides proofs of the results given in the text of the main paper. It

is organised as follows: Section 9, 10, 11 provide proofs of the main theorems. Section 12

contains auxiliary technical lemmas used in the proofs.

Formula numbering in this supplement includes the section number, e.g. (8.1), and

references to lemmas are signified as “Lemma 10.#”, e.g. Lemma 10.1. Theorem references

to the main paper include section number and are signified, e.g. as Theorem 2.1, while

equation references do not include section number, e.g. (1), (2).

In the proofs, C stands for a generic positive constant which may assume different values

in different contexts.

9 Proofs of Theorems 2.1 and 2.2, Corollaries 2.1 and 2.2, and

Lemma 2.1

Proof of Theorem 2.1. Notice that in view of (1),

β̂ − β =
( n∑
j=1

zjz
′
j

)−1( n∑
j=1

zj(z
′
jβ + uj)

)
− β

= S−1
zz Szu, Szz =

n∑
j=1

zjz
′
j , Szu =

n∑
j=1

zjuj .

Recall definition (5) of D and Dg. Then

D(β̂ − β) = (DS−1
zz D)(D−1Szu)

= (DD−1
g )(DgS

−1
zz Dg)(D

−1
g D)(D−1Szu) = Op(1), (9.1)

since DD−1
g = Op(1) by (7) of Assumption 2.3, D−1Szu = Op(1) by (12.7) of Lemma 12.2.

Moreover, by (12.6) and (12.3),

DgS
−1
zz Dg = DgE[Szz |F∗

n]
−1Dg + op(1) = Op(1).
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This completes the proof of the consistency claim (9) of the theorem. □

Recall that for p× p symmetric matrices A, B and a p× 1 vector b it holds:

||AB||sp ≤ ||A||sp||B||sp, ||AB|| ≤ ||A||sp||B||, ||A||sp ≤ ||A||,

where ||A||sp denotes the spectral norm and ||A|| the Euclidean norm of the matrix A.

Recall the definition of the information set F∗
n = σ

(
µt, gt, ht, t = 1, ..., n

)
.

Proof of Theorem 2.2. Proof of (13). By (9.1),

D(β̂ − β) = {DS−1
zz D}{D−1Szu}.

Moreover, by the same argument as in the proof of (9.1),

DS−1
zz D = (DD−1

g )(DgS
−1
zz Dg)(D

−1
g D)

= (DD−1
g )(DgE[Szz |F∗

n]
−1Dg + op(1))(D

−1
g D)

= DE[Szz |F∗
n]

−1D + op(1), DS−1
zz D = Op(1). (9.2)

Hence,

a′D(β̂ − β) = a′{DE[Szz |F∗
n]

−1D + op(1)}{D−1Szu}

= dnSzu + op(1), dn = a′(DE[Szz|F∗
n]

−1). (9.3)

By (12.11) of Lemma 12.2,

v2n := (a′DΩnDa) ≥ bn, b−1
n = Op(1). (9.4)

This together with (9.3) implies:

a′D(β̂ − β)√
a′DΩnDa

= v−1
n dnSzu + op(1).

Write

sn = v−1
n dnSzu =

n∑
t=1

ξt, ξt = v−1
n dnztut.

To prove (13), it remains to show that

sn →d N (0, 1). (9.5)

Notice that {ξt} is an m.d. sequence with respect to the σ-field

37



Fn,t = σ(ε1, ..., εt; µs, hs, gs, s = 1, ..., n):

E[ξt |Fn,t−1] = E[v−1
n dnzthtεt|Fn,t−1] = v−1

n dnzthtE[εt|Fn,t−1] = 0. (9.6)

The latter follows noting that the variables v−1
n , dn, ht are Fn,t−1-measurable since they are

function of µs, hs, gs, s = 1, ..., n. Similarly, since ηt’s are Fn,t−1 measurable (see Assump-

tion 2.2), the variables zt = µt + Igtη are also Fn,t−1-measurable. Finally, by assump-

tion, {µs, hs, gs, s = 1, ..., n} and {εs, s = 1, ..., n} are mutually independent, and therefore

E[εt|Fn,t−1] = E[εt|Ft−1] = 0 by Assumption 2.1. This shows that the conditional expecta-

tion property E[ξt |Fn,t−1] = 0 is preserved for ξt and completes the argument showing that

ξt is a martingale difference sequence with respect to the σ-field Fn,t−1.

Therefore, by Corollary 3.1 of Hall and Heyde (1980), to prove (9.5), it suffices to show that

(a)
n∑

t=1

E[ξ2t |Fn,t−1] →p 1, (9.7)

(b)

n∑
t=1

E[ξ2t I(ξ
2
t ≥ ϵ) |Fn,t−1] = op(1) for any ϵ > 0.

Observe that (a) holds with a non-random limit η2 = 1. Thus, the verification of the condition

(3.21) of Corollary 3.1, that the σ-fields are nested, Fn,t ⊂ Fn+1,t for t = 1, ..., n and n ≥ 1,

is unnecessary; see remark on page 59 in Hall and Heyde (1980). To verify (a), notice that

ξ2t = (v−1
n dnztut)

2 = v−2
n dnztz

′
td

′
nu

2
t ,

E[ξ2t |Fn,t−1] = v−2
n dnztz

′
td

′
nE[u2t |Fn,t−1] = v−2

n dnztz
′
td

′
nh

2
tE[ε2t |Ft−1].

Then, setting S
(c)
zzuu =

∑n
t=1 ztz

′
th

2
tE[ε2t |Ft−1], we can write,

n∑
t=1

E[ξ2t |Fn,t−1] = v−2
n dn S

(c)
zzuu d

′
n

= v−2
n a′{DE[Szz|F∗

n]
−1D}{D−1S(c)

zzuuD
−1}{DE[Szz|F∗

n]
−1D}a. (9.8)

Recall that by (9.2), DE[Szz|F∗
n]

−1D = Op(1). We show in (12.14) of Lemma 12.2 that

D−1S(c)
zzuuD

−1 = D−1E[Szzuu|F∗
n]D

−1 + op(1).

Together with (9.4), this implies

n∑
t=1

E[ξ2t |Fn,t−1] = v−2
n a′{DE[Szz|F∗

n]
−1E[Szzuu|F∗

n]E[Szz|F∗
n]

−1D}a+ op(1)

= v−2
n (a′DΩnDa) + op(1) = 1 + op(1)

which proves (a).
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Next we prove (b). We have

ξt = v−1
n dnztut = v−1

n (dnD)(D−1ztut),

ξ2t ≤ v−2
n ||dnD||2||D−1ztut||2.

By definition of dn, ||dnD||2 = ||a′DE[Szz|F∗
n]

−1D||2. On the other hand, by (12.18) of

Corollary 12.1, for any a,

a′D−1E[Szzuu|F∗
n]D

−1a ≥ bn||a||2, b−1
n = Op(1),

where bn is F∗
n measurable, and, thus, also Fn,t−1 measurable. Then,

v2n = a′DΩnDa = {a′D(E[Szz|F∗
n])

−1D}{D−1E[Szzuu|F∗
n]D

−1}{D(E[Szz|F∗
n])

−1Da}

≥ ||a′D(E[Szz|F∗
n])

−1D||2bn = ||dnD||2bn,

ξ2t ≤ b−1
n ||D−1ztut||2.

Hence,

n∑
t=1

E[ξ2t I(ξ
2
t ≥ ϵ) |Fn,t−1] ≤

n∑
t=1

E
[
b−1
n ||D−1ztut||2I

(
b−1
n ||D−1ztut||2 ≥ ϵ

)
|Fn,t−1

]
= op(1),

by (12.54) of Lemma 12.3. This completes the proof (b) and the claim (13) of the theorem.

The claim (14) follows from (13) by setting a = (a1, ..., ap)
′ = (0, ..., 0, 1, 0....)′ where ak = 1

and aj = 0 for j ̸= k. Then a′D = vk and a′DΩnDa = v2kωkk, where ωkk is the (k, k)-th

diagonal element of Ωn. Then,

a′D(β̂ − β)√
a′DΩnDa

=
(β̂ − β)
√
ωkk

→d N (0, 1)

by (13). This completes the proof of the theorem. □

Proof of Corollary 2.1. We will show that

ω̂kk

ωkk
= 1 + op(1) (9.9)

which together with (14) implies (16):

β̂k − βk√
ω̂kk

=
(√ωkk

ω̂kk

) β̂k − βk√
ωkk

= (1 + op(1))
β̂k − βk√

ωkk
→d N (0, 1).

To prove (9.9), we will verify that

DΩ̂nD = DΩnD + op(1) (9.10)
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which implies the following property for diagonal elements:

v2kω̂kk = v2kωkk + op(1).

In (12.11) of Lemma 12.2 it is shown that

a′DΩnDa ≥ bn, a′DΩnDa ≤ bn2 (9.11)

for any a = (a1, ..., ap)
′, ||a|| = 1 where bn, bn2 > 0 do not depend on a, n and b−1

n = Op(1),

bn2 = Op(1). Set a = (0, ..., 1, ...0)′, where aj = 0 for j ̸= k and ak = 1. Then a′DΩnDa =

v2kωkk, and by (9.11), v2kωkk ≥ bn > 0. This proves (9.9):

ω̂kk

ωkk
=

v2kω̂kk

v2kωkk
=

v2kωkk + op(1)

v2kωkk
= 1 + op(1).

In addition, the bounds (9.11) imply that
√
ωkk ≍p v

−1
k :

v−1
k ≤ b−1/2

n

√
ωkk = Op(

√
ωkk), vk

√
ωkk = Op(1),

√
ωkk = Op(v

−1
k ).

Proof of (9.10). Set Vn = DD−1
g . By (7) of Assumption 2.3, Vn = Op(1). We have

DΩ̂nD = Vn{DgS
−1
zz Dg}Vn{D−1SzzûûD

−1}Vn{DgS
−1
zz Dg}Vn,

DΩnD = VnW
−1
zz VnWzzuuVnW

−1
zz Vn,

W−1
zz = DgE[Szz |F∗

n]
−1Dg, Wzzuu = D−1E[Szzuu |F∗

n]D
−1.

By (12.6), (12.3), (12.12) and (12.10) of Lemma 12.2,

DgS
−1
zz Dg = W−1

zz + op(1), W−1
zz = Op(1),

D−1SzzuuD
−1 = Wzzuu + op(1), Wzzuu = Op(1).

We will show that

D−1SzzûûD
−1 = D−1SzzuuD

−1 + op(1). (9.12)

This implies (9.10):

DΩ̂nD = Vn{W−1
zz + op(1)}Vn{Wzzuu + op(1)}Vn{W−1

zz + op(1)}Vn

= VnW
−1
zz VnWzzuuVnW

−1
zz Vn + op(1) = DΩnD + op(1).
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Proof of (9.12). By definition,

||D−1(Szzûû − Szzuu)D
−1|| = ||

n∑
t=1

D−1ztz
′
tD

−1(û2t − u2t )||

≤
n∑

t=1

||D−1zt||2 |û2t − u2t | ≤ in × (

n∑
t=1

||D−1zt||2), in = max
t=1,...,n

|û2t − u2t |.

Notice that
n∑

t=1

||D−1zt||2 ≤ ||D−1Dg||2
n∑

t=1

||D−1
g zt||2 = Op(1),

since ||DgD
−1|| = Op(1) by assumption (7) and

∑n
t=1 ||D−1

g zt||2 = Op(1) by (12.8) of Lemma

12.2. Hence, to verify (9.12), it suffices to show that

in = op(1). (9.13)

Recall the equality û2t − u2t = (ût − ut)
2 + 2(ût − ut)ut. Denote qn = ||D(β − β̂)||. Then,

ût − ut = (β − β̂)′zt = {(β − β̂)′D}{D−1zt},

|ût − ut| ≤ ||D−1zt|| qn,

|û2t − u2t | ≤ (ût − ut)
2 + 2|(ût − ut)ut| ≤ ||D−1zt||2 q2n + 2||D−1zt|| |ut| qn.

Hence,

in ≤ ( max
t=1,...,n

||D−1zt||2) q2n + 2( max
t=1,...,n

||D−1ztut||) qn = op(1),

where qn = Op(1) by Theorem 2.1, and

max
t=1,...,n

||D−1zt||2 = op(1), max
t=1,...,n

||D−1ztut|| = op(1)

by (12.53) of Lemma 12.3. This implies (9.13) and completes the proof of the corollary. □

Proof of Corollary 2.2. Let βk be the true value of the k-th component of the parameter

β, and suppose that βk ̸= β0
k. Write

tn =
β̂k − β0

k√
ω̂kk

=
β̂k − βk√

ω̂kk

+
βk − β0

k√
ω̂kk

=: tn,1 + tn,2.

By (16) of Corollary 2.1, tn,1 →d N (0, 1) and
√
ωkk ≍p v

−1
k . Hence,

tn,1 = Op(1), tn,2 ≍p vk →p ∞.

Then, tn = tn,1+ tn,2 = Op(1)+ tn,2 ≍p vk →p ∞, which proves the claim of Corollary 2.2. □
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Proof of Lemma 2.1. Proof of (6). It suffices to show that

in = v−2
gk max

1≤t≤n
(g2kt + µ2

kt) = op(1). (9.14)

Notice also that z2kt = µ2
kt + 2µktgktηkt + g2ktη

2
kt,

E[z2kt |F∗
n] = µ2

kt + 2µktgktE[ηkt |F∗
n] + g2ktE[η2kt |F∗

n] = µ2
kt + g2kt. (9.15)

In addition, by assumption (19) of lemma, v−2
gk = (

∑n
t=1 g

2
kt)

−1 = Op(n
−1). Thus,

in = Op(1)in,1, in,1 = n−1 max
1≤t≤n

E[z2kt |F∗
n].

We will show that Ein,1 = o(1) which implies (9.14). Observe that for any L ≥ 1,

z2kt ≤ L+ z2ktI(z
2
kt ≥ L) ≤ L+ L−1z4kt.

By assumption (18), E[z4kt] ≤ c < ∞ where c does not depend on t, n. Hence,

in,1 ≤ n−1L+ n−1L−1 max
t=1,...,n

E[z4kt |F∗
n] ≤ n−1L+ n−1L−1

n∑
t=1

E[z4kt |F∗
n],

Ein,1 ≤ n−1L+ n−1L−1
∑n

t=1E[z4kt] ≤ n−1L+ L−1c → 0, n, L → ∞

which implies in = op(1) and proves (6).

Proof of (11). It suffices to verify that

in = v−2
k max

1≤t≤n
(g2kt + µ2

kt)h
2
t = op(1). (9.16)

By assumption (19) of lemma, v−2
k = Op(n

−1). This together with (9.15) implies that

in = Op(1)in,2, in,2 = n−1 max
1≤t≤n

E[z2kth
2
t |F∗

n].

We will show that Ein,2 = o(1) which implies in,2 = op(1) and proves (9.16).

Similarly as above, for any L ≥ 1, setting L0 = logL, for δ > 0 we obtain

z2kth
2
t ≤ L+ z2kth

2
t I(z

2
kth

2
t ≥ L)

≤ L+ L−1
0 z4ktI(h

2
t ≤ L−1

0 z2kt) + L0h
4
t I(h

2
t > L−1

0 z2kt)I(h
4
tL0 ≥ L)

≤ L+ L−1
0 z4kt + h4tL0

( h4t
LL−1

0

)δ
≤ L+ L−1

0 z4kt + h4+4δ
t AL, AL = L−δL1+δ

0 .

By assumption (18), E[z4kt] ≤ c and there exists δ > 0 such that E[|ut|4+4δ] ≤ c, where c < ∞
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does not depend on t, n. Hence, E[h4+4δ
t ] = E[(E[u2t |F∗

n])
2+2δ] ≤ E[|ut|4+4δ] ≤ c. Notice

that AL → 0 as L → ∞. Therefore, as n,L → ∞,

Ein,2 ≤ n−1
∑n

t=1E[z2kth
2
t |F∗

n]

≤ n−1L+ L−1
0 n−1

∑n
t=1E[z4kt] +ALn

−1
∑n

t=1E[h4+4δ
t ]

≤ n−1L+ L−1
0 c+ALc → 0,

which implies in = op(1) and proves (11).

Proof of (7). By assumption (18) of Lemma 2.1, E[z4kt] ≤ c and E[u4t ] ≤ c where c < ∞ does

not depend on t, k, n. By (9.15),

µ2
kt ≤ E[z2kt |F∗

n], E[µ2
kt] ≤ E[z2kt] ≤ c,

g2kt ≤ E[z2kt |F∗
n], E[g2kt] ≤ E[z2kt] ≤ c,

E[µ4
kt] ≤ E[(E[z2kt |F∗

n])
2] ≤ E[(E[z4kt |F∗

n])] ≤ E[z4kt] ≤ c,

E[g4kt] ≤ E[(E[z2kt |F∗
n])

2] ≤ c,

E[h4t ] = E[(E[u2t |F∗
n])

2] ≤ E[(E[u4t |F∗
n])] ≤ E[u4t ] ≤ c,

E[µ2
kth

2
t ] ≤ (E[µ4

kt]E[h4t ])
1/2 ≤ c,

E[g2kth
2
t ] ≤ (E[g4kt]E[h4t ])

1/2 ≤ c, (9.17)

where c < ∞ does not depend on t, n. Hence,

n−1E[
∑n

t=1 µ
2
kt] ≤ c,

∑n
t=1 µ

2
kt = Op(n),

n−1E[
∑n

t=1 µ
2
kth

2
t ] ≤ c,

∑n
t=1 µ

2
kth

2
t = Op(n),

n−1E[
∑n

t=1 g
2
kth

2
t ] ≤ c,

∑n
t=1 g

2
kth

2
t = Op(n)

n−1E[
∑n

t=1 g
2
kt] ≤ c,

∑n
t=1 g

2
kt = Op(n).

By assumption (19), n/v2k = Op(1) and n/v2gk = Op(1). Thus,

v−1
gk

∑n
t=1 µ

2
kt = Op(n/v

2
gk) = Op(1),

v−1
k

∑n
t=1 µ

2
kth

2
t = Op(n/v

2
k) = Op(1),

v−1
gk vk = v−1

gk

∑n
t=1 g

2
kth

2
t = Op(n/v

2
gk) = Op(1),

v−1
k vgk = v−1

k

∑n
t=1 g

2
kt = Op(n/v

2
k) = Op(1),

which proves (7). This completes the proof of the lemma. □
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10 Proofs of Theorem 3.1 and Corollaries 3.1 and 3.2

Proof of Theorem 3.1. Recall the notation introduced in Section 3. Set

ỹj = b
1/2
n,tjyj , z̃j = b

1/2
n,tjzj , ũj = b

1/2
n,tjuj .

Then we can write

ỹj = z̃′jβt + ũj + rj , rj = (βj − βt)
′zj .

Recall the estimator β̂t given in (22). In Section 3 we introduced an auxiliary regression

model with a fixed parameter β = βt:

y∗j = β′z̃j + ũj , ũj = b
1/2
n,tjuj , j = 1, ..., n. (10.1)

Recall the OLS estimator β̂ of the fixed parameter β in this model, given in (27):

β̂ =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃jy
∗
j

)
= β +

( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j ũj
)
.

In (28) we showed that following relation:

β̂t − βt = β̂ − β +Rt, Rt =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j z̃
′
j(βj − βt)

)
(10.2)

The remainder Rt = (R1t, ...., Rpt)
′ arises due to time variation in the parameter βj and

is negligible. We will obtain an upper bound for this term. The term β̃ − β is the main

component We will analyse it using the results of Section 2. Overall, equation (10.2) shows

that properties of β̂t − βt are determined by the properties of β̂ − β, with an additional

negligible term Rt.

First we will show that the components of β̂ − β = (β̃1 − β1, ..., β̃p − βp)
′ and Rt satisfy the

following properties. For k = 1, ..., p,

β̃k − βk = Op(H
−1/2),

β̃k − βk√
ωkk,t

→d N (0, 1),
√
ωkk,t ≍p H

−1/2, (10.3)

Rkt = Op

(
(H/n)γ

)
. (10.4)

Proof of (10.3). Recall that z̃j = (z̃1j , ..., z̃pj)
′, and

z̃kj = µ̃kj + g̃kjηkj , ũj = h̃jεj , (10.5)

µ̃kj = b
1/2
n,tjµkj , g̃kj = b

1/2
n,tjgkj , h̃j = b

1/2
n,tjhj .
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By Lemma 10.1, under assumptions of theorem, µ̃kj and the scale factors {g̃kj , h̃j} satisfy

Assumptions 2.3 and 2.4(ii). Thus, by Theorem 2.1,

β̃k − βk = Op(v
−1
k ) = Op(H

−1/2),

where v2k ≡ v2kt =
∑n

j=1 g̃
2
kj h̃

2
j =

∑n
j=1 bn,tjg

2
kjh

2
j and

v2k ≍p H. (10.6)

Indeed, v−2
kt = Op(H

−1) by (30) of Assumption 3.2. On the other hand, (9.17) implies that

Ev2kt ≤
∑n

j=1 bn,tjE[g2kjh
2
j ] ≤ c

∑n
j=1 bn,tj = O(H), where the last relation easily follows using

definition of bn,tj and (24). Hence v2kt = Op(H), which proves (10.6).

This complete the proof of the first claim in (10.3), while the second claim holds by (14)

of Theorem 2.2. The third claim holds since by (16) of Corollary 2.1 and (10.6),

√
ωkk,t ≍p v

−1
k = (

n∑
j=1

g̃2kj h̃
2
j )

−1/2 ≍p H
−1/2. (10.7)

Proof of (10.4). Write

Rt = S−1
z̃z̃,tSz̃z̃β,t, where Sz̃z̃β,t =

∑n
j=1 z̃j z̃

′
j(βj − βt).

We will show that

||S−1
z̃z̃,t|| = Op(H

−1), ||Sz̃z̃β,t|| = Op

(
H(H/n)γ

)
, (10.8)

which implies ||Rt|| ≤ ||S−1
z̃z̃,t|| ||Sz̃z̃β,t|| = Op

(
(H/n)γ

)
. Then, |Rkt| ≤ ||Rt|| = Op

(
(H/n)γ

)
which proves (10.4).

To verify (10.8), recall notation of the p× p diagonal matrix

Dg̃ = diag(vg̃1, ..., vg̃p), vg̃k =
∑n

j=1 g̃
2
kj , k = 1, ..., p.

Notice that

||S−1
z̃z̃,t|| = ||D−1

g̃ (Dg̃S
−1
z̃z̃,tDg̃)|D−1

g̃ || ≤ ||D−1
g̃ ||2||Dg̃S

−1
z̃z̃,tDg̃|| = Op(H

−1)

because ||D−1
g̃ ||2 =

∑p
k=1 v

−2
g̃k = Op(H

−1) by Assumption 3.2. On the other hand,

Dg̃S
−1
z̃z̃,tDg̃ = Op(1) by (12.6) and (12.3) of Lemma 12.2. This proves the first claim in (10.8).

Next, bound

E||Sz̃z̃β,t|| ≤ E[

n∑
j=1

||z̃j ||2||βj − βt||] ≤
n∑

j=1

(E||z̃j ||4)1/2(E||βj − βt||2)1/2.
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We have ||z̃j ||4 = b2n,tj ||zj ||4. Recall that E||zj ||4 ≤ c by Assumption 3.2, E||βj − βt||2 ≤
c(|t− j|/n)2γ by Assumption 3.1, and it is trivial to show that under (24),

n∑
j=1

bn,tj(|t− j|/H)γ = O(H).

This implies

E||Sz̃z̃β,t|| ≤ CH(H/n)γ
(
H−1

n∑
j=1

bn,tj(|t− j|/H)γ
)
≤ CH(H/n)γ (10.9)

which proves the second claim in (10.8).

We now are ready to prove the claims (31) and (32) of the theorem. First, together with

(10.2), the properties (10.3) and (10.4) establish the consistency result (31):

β̂t − βt = (β̃ − β) +Rt = Op

(
H−1/2 + (H/n)γ

)
.

To prove the asymptotic normality property (32), recall assumption H = o(n2γ/(2γ+1)). Then

β̂kt − βkt√
ωkk,t

=
β̃kt − βkt√

ωkk,t
+ ω

−1/2
kk,t Rt =

β̃kt − βkt√
ωkk,t

+ op(1).

because by (10.7) and (10.4),

ω
−1/2
kk,t Bt = Op

(
H1/2

)
Op

(
(H/n)γ

)
= Op

(
H1/2(H/n)γ

)
= op(1)

under assumption H = o(n2γ/(2γ+1)). Then,

β̂kt − βkt√
ωkk,t

=
β̃kt − βkt√

ωkk,t
+ op(1) →d N (0, 1)

by (10.3) which proves the asymptotic normality property (32) of the theorem. Noting that
√
ωkk,t ≍p H

−1/2, as shown in (10.7), this completes the proof of the theorem. □

Proof of Corollary 3.1. In the proof of Theorem 3.1 we wrote the time-varying regression

model as a regression model

ỹj = z̃′jβ + ũj + rj , rj = (βj − βt)
′z̃j (10.10)

with a fixed parameter β = βt. We showed that the regressors z̃j and the noise ũj satisfy

assumptions of Theorem 2.2 and that the contribution of the term rj is asymptotically neg-

ligible. That allowed us to establish the asymptotic normality property (32) of Theorem 3.1

for β̂kt using results of Section 2.
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Clearly, to prove Corollary 3.1, it suffices to verify the second claim in (34),

ω̂kk,t

ωkk,t
= 1 + op(1).

Proof of the corresponding result in the case of fixed parameter in Corollary 2.1 shows that

we need to verify the validity of (9.12) for our regression model (10.10), i.e. to show that

jn = D−1Sz̃z̃ûûD
−1 = D−1Sz̃z̃ũũD

−1 + op(1), (10.11)

where ûj = ỹj − β̂′z̃j , β̂ = β̂t, D = diag(v1, ...., vk)
′ and v2k =

∑n
j=1 g̃

2
kj h̃

2
j .

Set û∗j = (βt − β̂t)
′z̃j + ũj . Write

jn = D−1Sz̃z̃û∗û∗D−1 +D−1(Sz̃z̃ûû − Sz̃z̃û∗û∗)D−1 = jn1 + jn2.

By (9.12), jn1 = D−1Sz̃z̃ũũD
−1 + op(1). Hence, to prove (10.11), we need to show that

jn2 = op(1). (10.12)

By Assumption 3.2, ||D−1|| = Op(H
−1/2). Hence,

||jn2|| ≤ ||D−1||2||Sz̃z̃ûû − Sz̃z̃û∗û∗ || = Op(1)||jn3||, jn3 = H−1(Sz̃z̃ûû − Sz̃z̃û∗û∗).

We will show that jn3 = op(1) which implies (10.12). Notice that

ûj = ỹj − β̂′
tz̃j = (βt − β̂t)

′z̃j + ũj + rj = û∗j + rj ,

û2j − û∗ 2j = (ûj − û∗j )
2 + 2(ûj − û∗j )û

∗
j

= r2j + 2rj û
∗
j = r2j + 2rj(βt − β̂t)

′z̃j + 2rj ũj . (10.13)

Using the inequality 2|ab| ≤ a2 + b2, we can bound in (10.13),

2|rj(βt − β̂t)
′z̃j | ≤ r2j +

(
(βt − β̂t)

′z̃j
)2 ≤ r2j + ||βt − β̂t||2||z̃j ||2.

Next we evaluate |rj ũj | in (10.13). Let L > 1 be large number. Then,

|rj | ≤ L−1||z̃j || I
(
|rj | ≤ L−1||z̃j ||

)
+ |rj |I

(
|rj | > L−1||z̃j ||

)
≤ L−1||z̃j ||+ Lr2j ||z̃j ||−1,

|rj ũj | ≤ L−1||z̃j || |ũj |+ Lr2j ||z̃j ||−1 |ũj |.

Hence,

|û2j − û∗ 2j | ≤ 2r2j + ||βt − β̂t||2||z̃j ||2 + 2L−1||z̃j || |ũj |+ 2L||z̃j ||−1 |ũj |r2j .

Since r2j ≤ ||βj − βt||2||z̃j ||2, this yields

||z̃j ||2|û2j − û∗ 2j | ≤ 2||βj − βt||2||z̃j ||4 + ||βt − β̂t||2||z̃j ||4 + 2L−1||z̃j ||3 |ũj |
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+2L||z̃j ||3 |ũj | ||βj − βt||2.

Recall that z̃j = b
1/2
n,tjzj and ũj = b

1/2
n,tjuj . Denote θj = 2||zj ||4 + 2||zj ||3|uj |. Then,

||z̃j ||2|û2j − û∗ 2j | ≤ Lb2n,tj ||βj − βt||2θj +
(
||βt − β̂t||2 + L−1

)
b2n,tjθj .

Hence,

|jn3| = H−1
∣∣∑n

j=1 z̃j z̃
′
j(û

2
j − û∗ 2j )

∣∣ ≤ H−1
∑n

j=1 ||z̃j ||2|û2j − û∗ 2j |

≤ L{H−1
∑n

j=1 b
2
n,tj ||βj − βt||2θj}+ (||βt − β̂t||2 + L−1){H−1

∑n
j=1 b

2
n,tjθj}

≤ L{
∑n

j=1 bn,tj ||βj − βt||2}{H−1
∑n

j=1 bn,tjθj}

+(||βt − β̂t||2 + L−1){H−1
∑n

j=1 b
2
n,tjθj}

= Lqn1qn2 + (||βt − β̂t||2 + L−1)qn3. (10.14)

By (31) of Theorem 3.1, ||βt − β̂t||2 = op(1), and L−1 can be made arbitrarily small by

selecting large L. We will show that

Eqn1 = o(1), Eqn2 = O(1), Eqn3 = O(1). (10.15)

Combining this with (10.14), we obtain

|jn3| = Lop(1) +
(
op(1) + L−1

)
Op(1),

so that the right hand side can be made arbitrarily small by selecting a large enough L and

letting n → ∞. This proves (10.12).

To bound Eqn1 observe that by Assumption 3.1, E||βt − βj ||2 ≤ C(|t − j|/n)2γ , where
0 < γ ≤ 1 and and recall (10.9). Then,

Eqn1 ≤
n∑

j=1

bn,tjE||βj − βt||2 ≤ C
(
H(

H

n
)2γ

)
{H−1

n∑
j=1

bn,tj(
|t− j|
H

)2γ}

≤ CH(H/n)2γ = o(1)

when H = o(n2γ/(2γ+1)). This proves (10.15) for Eqn1.

To bound Eqn2 and Eqn3, recall that by Assumption 3.2, Ez4kj ≤ C and Eu4j ≤ C

which implies that Eθj ≤ C. Moreover, under (24) it holds H−1
∑n

j=1 bn,tj = O(1) and

b2n,tj ≤ Cbn,tj . Hence,

Eqn2 ≤ H−1
∑n

j=1 bn,tjEθj ≤ CH−1
∑n

j=1 bn,tj = O(1),

Eqn3 ≤ H−1
∑n

j=1 b
2
n,tjEθj ≤ CH−1

∑n
j=1 bn,tj = O(1).

This completes the proof of (10.15) and the corollary. □
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Proof of Corollary 3.2. Let βkt be the true value of the k-th component of the time-varying

parameter βt. Suppose that |β0
kt − βkt| ≥ a > 0 for t = tn ∈ [1, ..., n] as n → ∞. Write

τn,t =
β̂kt − β0

kt√
ω̂kk,t

=
β̂kt − βkt√

ω̂kk,t

+
βkt − β0

kt√
ω̂kk,t

=: τn1,t + τn2,t.

By (34) of Corollary 3.1, τn1,t →d N (0, 1) and
√
ωkk,t ≍p H

−1/2. Hence,

τn1,t = Op(1), τn2,t ≍p H
1/2 →p ∞.

Then, τn,t = τn1,t + τn2,t = Op(1) + τn2,t ≍p H1/2 →p ∞, which proves the claim of the

Corollary 3.2. □

Lemma 10.1. Suppose that Assumption 3.2 holds and Assumptions 2.1, 2.2 are satisfied.

Then {µ̃kj , g̃kj , h̃j} in (10.5) satisfy Assumption 2.3 and Assumption 2.4(ii).

Proof of Lemma 10.1. Notice that assumptions (24) imply
∑n

j=1 bn,tj ≍ H. Thus, the

claim of Lemma 10.1 follows using the same argument as in the proof of Lemma 2.1. □

11 Proofs of Theorems 4.1, 4.2 and Theorem 5.1

Proof of Theorem 4.1. Suppose that yt = β′zt + ut follows the regression model (1). In

the presence of missing data, estimation of the parameter β is based on a regression model

with the fixed parameter (39):

ỹt = β′z̃t + ũt, (11.1)

where the regressors z̃t = (z̃1t, ..., z̃pt)
′ and the noise ũt take the form

z̃kt = µ̃kt + g̃ktηkt, µ̃kt = τtµkt, g̃kt = τtgkt, (11.2)

ũt = h̃tεt, h̃t = τtht,

and τt is the missing data indicator. Under Assumptions 4.1 and 4.2 of the theoren, {µ̃t, g̃t, h̃t}
are independent of {εt, ηt}. Therefore, (zt, ut) belongs to the regression space described in

(2) and (3) of Section 2.

We estimate the fixed parameter β using the estimator defined in (41):

β̂ =
( n∑
t=1

z̃tz̃
′
t

)−1( n∑
t=1

z̃tỹt
)
. (11.3)

We will show that (z̃t, ũt) satisfy Assumptions 2.1, 2.2, 2.3 and 2.4 of Theorem 2.2 of Section

2. Then, the required result (42) for β̂ of this theorem follows directly from the claims (16)

of Corollary 2.1.
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We split Assumptions 2.1, 2.2, 2.3 and 2.4 into two groups:

(a) Assumptions 2.1, 2.2, and 2.4(i), and

(b) Assumptions 2.3 and 2.4(ii).

Assumptions (a) imposed on the stationary processes ηt, εt are part of Assumption 4.2 of

Theorem 4.1.

It remains to show the validity of the assumptions in group (b), i.e. that the means µ̃t and

the scales h̃t, g̃t satisfy Assumptions 2.3 and 2.4(ii). By Assumption 4.2, we have Ez4kt ≤ c

and Eu4t ≤ c. Moreover, gkt ≥ c1 > 0 and ht ≥ c1 > 0 where c, c1 > 0 do not depend on k, t

and n. For k = 1, ..., p, define:

ṽ2k =

n∑
t=1

g̃2kth̃
2
t , ṽ2gk =

n∑
t=1

g̃2kt. (11.4)

Notice that

ṽ2k ≥ c41

n∑
t=1

τt = c41N, ṽ2gk ≥ c21

n∑
t=1

τt = c21N,

where N is the size of the subsample (36). By assumption of the theorem, n/N = Op(1).

Thus,

Ez̃4kt ≤ Ez4kt ≤ c, E|ũt|4+δ ≤ E|ut|4+δ ≤ c, (11.5)

n/ṽ2k = O(n/N) = Op(1), n/ṽ2gk = O(n/N) = Op(1), (11.6)

which confirms the validity of Assumptions 2.3 and 2.4(ii); see Lemma 2.1. This completes

the proof of the theorem. □

Proof of Theorem 4.2. Now, suppose that yt = β′
tzt + ut follows the regression model

(21) with a time-varying parameter βt. In the presence of missing data, estimation of the

time-varying parameter βt is based on a model (43):

ỹt = β′
tz̃t + ũt. (11.7)

Here, the regressors z̃t = (z̃1t, ..., z̃pt)
′ and the noise ũt are the same as in (11.2). We showed

in the proof of the Theorem 4.1 that (zt, ut) belongs to the regression space described in (2)

and (3) of Section 2.

The estimator of the time-varying parameter βt is given in (45):

β̂t =
( n∑
j=1

bn,tj z̃j z̃
′
j

)−1( n∑
j=1

bn,tj z̃j ỹj
)
. (11.8)

We will show that (z̃t, ũt) satisfy Assumptions 2.1, 2.2, 2.4(i), 3.1 and 3.2 of Theorem 3.1.

Then, the results (46), (47) and (48) for β̂t of Theorem 4.2 follow from the results (31) of
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Theorem 3.1 and (34) of Corollary 3.1.

Observe that Assumptions 2.1, 2.2, 2.4(i) on ηt, εt are part of Assumption 4.1 of this

theorem, which also includes Assumption 3.1 for βt.

It remains to show that z̃t, ũt satisfy Assumption 3.2. This requires to prove the validity

of (11.5) and (11.6) under Assumption 4.2 of this theorem, which we showed in the proof of

Theorem 4.1. □

Proof of Theorem 5.1. We consider a stationary AR(p) model (49),

yt = ϕ0 + ϕ1yt−1 + ...+ ϕpyt−p + εt,

where εt is a stationary m.d. sequence with respect to the information set Ft = σ(εs, s ≤ t).

Write it as a regression model (1),

yt = β′zt + ut, ut = εt (11.9)

with fixed parameter β = (β1, ..., βp+1)
′ = (ϕ0, ...., ϕp)

′ and regressors zt = (z1t, z2t, ..., zp+1,t)
′ =

(1, yt−1, yt−2, ..., yt−p)
′. Under assumption (51) of theorem, AR(p) model has a stationary so-

lution:

yt = µ+
∞∑
j=0

ajεt−j , where
∞∑
j=0

|aj | < ∞, µ = Eyt, (11.10)

and regressors

zkt = µkt + gktηkt, µkt = E[yt−k] = Ey1, gkt = 1, ηkt = yt−k − E[yt−k],

for k = 2, ..., p + 1, satisfy regression assumption (3). From (11.10) it follows that the

regressors ηt = (η1t, ...., ηpt)
′ = (yt−1, yt−2, ..., yt−p)

′ are Ft−1 = σ(εs, s ≤ t − 1) measurable.

Moreover, under the assumptions of the theorem, (εt, ηt) satisfy Assumptions 2.1, 2.2, 2.3

and 2.4 of Theorem 2.2 in Section 2. Finally, we show that Ey8t ≤ C < ∞. Recall that by

the assumption of theorem, εt is a stationary m.d. sequence such that Eε8t < ∞. It is known

that if E|εt|p < ∞, for some p > 2, then

E
∣∣ ∞∑
j=0

ajεt−j

∣∣p ≤ C
( ∞∑
j=0

a2j
)p/2

,

where C < ∞ does not depend on n; see e.g., Lemma 2.5.2 in Giraitis et al. (2012). Hence

E(yt − µ)8 < ∞ and Eη8kt < ∞ from k = 1, ..., p.

Thus, regressors zt and regression noise ut = εt satisfy Assumptions 2.1, 2.2, 2.3 and 2.4

of Section 2. Therefore, the robust OLS estimator β̂ of β has properties derived in Corollary

2.1 which implies Theorem 5.1. □
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12 Proofs of Section 2: Auxiliary lemmas

This section contains auxiliary lemmas used in the proofs of the main results for Section 2.

For the ease of referencing, we include the statement of Lemma 12.1(i) established in Giraitis

et al. (2024).

Lemma 12.1. Assume that sequences {βt} and {zt} are mutually independent.

(i) If {zt} is a covariance stationary short memory sequence, then

n∑
t=1

βtzt =
( n∑

t=1

βt

)
Ez1 +Op

(
(

n∑
t=1

β2
t )

1/2
)
. (12.1)

(ii) If E|zt| < ∞, then

∣∣ n∑
t=1

βtzt
∣∣ = Op

( n∑
t=1

|βt|
)
( max
t=1,...,n

E|zt|). (12.2)

Proof of Lemma 12.1. The claim (i) of Lemma 12.1 was derived in (Giraitis et al. (2024),

Lemma A5). To prove (ii), denote sn =
∑n

t=1 |βt|. Then,

E
[
s−1
n

∑n
t=1 |βt| |zt|

]
=

∑n
t=1E[s−1

n |βt|]E[|zt|]

≤ (maxt=1,...,nE|zt|)E[s−1
n

∑n
t=1 |βt|] = maxt=1,...,nE|zt|,

s−1
n

∑n
t=1 |βt| |zt| = Op

(
maxt=1,...,nE|zt|

)
.

This implies

∣∣∑n
t=1 βtzt

∣∣ ≤ sn
{
s−1
n

∑n
t=1 |βt| |zt|

}
= snOp

(
maxt=1,...,nE|zt|

)
.

This completes the proof of (12.2) and the lemma. □

Recall notation

Szz =
∑n

t=1 ztz
′
t, Szzuu =

∑n
t=1 ztz

′
tu

2
t , Szu =

∑n
t=1 ztut,

D = diag(v1, ..., vp), vk = (
∑n

t=1 g
2
kth

2
t )

1/2,

Dg = diag(vg1, ..., vgp), vgk = (
∑n

t=1 g
2
kt)

1/2.

Recall definition F∗
n = σ(µt, gt, t = 1, ..., n) and Fn,t−1 in (9.6). Denote

Wzz = D−1
g E[Szz|F∗

n]D
−1
g , Wzzuu = D−1E[Szzuu|F∗

n]D
−1,

Ωn = (E[Szz|F∗
n])

−1(E[Szzuu|F∗
n])(E[Szz|F∗

n])
−1.

Lemma 12.2. Suppose that zt and ut satisfy Assumptions 2.1, 2.2 and 2.3. Then the fol-
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lowing holds.

(i) There exists bn > 0 such that b−1
n = Op(1) and such that for any a = (a1, ..., ap)

′, ||a|| = 1,

a′Wzza ≥ bn, ||W−1
zz ||sp ≤ b−1

n , (12.3)

||Wzz|| ≤ b2n = Op(1). (12.4)

Moreover,

D−1
g SzzD

−1
g = Wzz + op(1), (12.5)

DgS
−1
zz Dg = W−1

zz + op(1), (12.6)

D−1Szu = Op(1), (12.7)
n∑

t=1

||D−1
g zt||2 = Op(1). (12.8)

(ii) In addition, if Assumption 2.4 holds, then there exists bn > 0 such that b−1
n = Op(1) and

such that for any a = (a1, ..., ap)
′, ||a|| = 1,

a′Wzzuua ≥ bn, ||W−1
zzuu||sp ≤ b−1

n , (12.9)

||Wzzuu|| ≤ b2n = Op(1), (12.10)

a′DΩnDa ≥ bn, a′DΩnDa ≤ b2n = Op(1). (12.11)

Moreover,

D−1SzzuuD
−1 = Wzzuu + op(1), (12.12)

DS−1
zzuuD = W−1

zzuu + op(1), (12.13)

D−1S(c)
zzuuD

−1 = Wzzuu + op(1), S(c)
zzuu =

n∑
t=1

ztz
′
tE[u2t |Fn,t−1]. (12.14)

Before the proof of lemma, we will state the following corollary. Denote

c∗,n =

n∑
t=1

||D−1
g µt||2, c∗∗,n =

n∑
t=1

||D−1µtht||2. (12.15)

Notice that under (7) of Assumption 2.3,

c∗,n =

p∑
k=1

{v−2
gk

n∑
t=1

µ2
kt} = Op(1), c∗∗,n =

p∑
k=1

{v−2
k

n∑
t=1

µ2
kth

2
t } = Op(1). (12.16)
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Corollary 12.1. In Lemma 12.2, the claims (12.3) and (12.9) hold with bn as below:

a′Wzza ≥ bn =

c−1 : Case 1 (intercept not included),

c−1(1 + c∗,n)
−1 : Case 2 (intercept included),

(12.17)

a′Wzzuua ≥ bn =

c−1(1 + c∗∗,n)
−4 : Case 1 (intercept not included),

c−1(1 + c∗∗,n)
−9 : Case 2 (intercept included),

(12.18)

where c > 0 does not depend on n, b−1
n = Op(1) and bn is F∗

n measurable.

Proof of Lemma 12.2(i). Proof of (12.3). Set Igt = diag(g1t, ..., gpt). By definition,

zt = µt + Igtηt = µt + z̃t, z̃t = Igtηt. (12.19)

Then

ztz
′
t = (µt + z̃t)(µt + z̃t)

′ = z̃tz̃
′
t + µtµ

′
t + µtz̃

′
t + z̃tµ

′
t,

E[ztz
′
t|F∗

n] = E[z̃tz̃
′
t|F∗

n] + µtµ
′
t + µtE[z̃′t|F∗

n] + E[z̃t|F∗
n]µ

′
t

= E[z̃tz̃
′
t|F∗

n] + µtµ
′
t + µte

′
t + etµ

′
t

= E[z̃tz̃
′
t|F∗

n] + (µt + et)(µt + et)
′ − ete

′
t, (12.20)

where et = E[z̃t|F∗
n] = IgtE[ηt]. Using (12.20), we can write

a′Wzza =

n∑
t=1

a′D−1
g E[ztz

′
t|F∗

n]D
−1
g a

=
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a+

n∑
t=1

(a′D−1
g µt)

2 + 2
n∑

t=1

(a′D−1
g µt)(e

′
tD

−1
g a) (12.21)

=
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a+

n∑
t=1

(a′D−1
g (µt + et))

2 −
n∑

t=1

(a′D−1
g et)

2. (12.22)

We split the proof into two cases when regression model (1) does not include intercept and

when intercept is included.

Case 1 (no intercept): et = IgtE[ηt] = (0, ..., 0)′.

Case 2 (intercept included): et = IgtE[ηt] = Igt(1, 0, ..., 0)
′ = (g1t, 0, ..., 0)

′, g1t = 1.

Case 1. Let et = 0. Then (12.21) implies

a′Wzza ≥
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a. (12.23)

In this instance,

E[z̃tz̃
′
t|F∗

n] = IgtE[ηtη
′
t]Igt = IgtΣIgt,

54



where E[ηtη
′
t] = Σ = (σjk)j,k=1,...,p. By Assumption 2.2(ii), the matrix Σ is positive definite.

Therefore, there exists b > 0 such that for any α = (α1, ..., αp)
′,

α′Σα ≥ b||α||2.

Hence, setting γkt = v−1
gk gkt, we derive

n∑
t=1

a′D−1
g E[ztz

′
t|F∗

n]D
−1
g a =

n∑
t=1

{a′D−1
g Igt}Σ{IgtD−1

g a}

≥ b

n∑
t=1

||a′D−1
g Igt||2 = b

n∑
t=1

[ p∑
k=1

a2kγ
2
kt

]
= b

p∑
k=1

a2k (
n∑

t=1

γ2kt) = b

p∑
k=1

a2k = b||a||2 = b,

since
∑n

t=1 γ
2
kt = 1 and ||a|| = 1. With (12.23) this proves the first claim in (12.3):

a′Wzza ≥ b. (12.24)

Matrix Wzz is symmetric and, thus, it has real eigenvalues. The bound (12.24) implies that

the smallest eigenvalue of Wzz has property λmin ≥ bn > 0. Therefore Wzz is positive definite,

and the largest eigenvalue θmax of W−1
zz has property θmax = λ−1

min ≤ 1/bn, which implies that

||W−1
zz ||sp ≤ 1/bn. This proves the second claim in (12.3).
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Case 2 (intercept included): et = IgtE[ηt] = Igt(1, 0, ..., 0)
′ = (g1t, 0, ..., 0)

′. Recall that in

presence of intercept, g1t = 1 and η1t = 1.

Proof of (12.3). Set a = (a1, ..., ap)
′, ã = (a2, ..., ap)

′. Recall that

1 = ||a||2 = a21 + ....+ a2p = a21 + ||ã||2. (12.25)

We will show that there exists b > 0 such that for any a and n ≥ 1,

a′Wzza ≥ b||ã||2, (12.26)

a′Wzza ≥ b||ã||2 + {a21 − 2|a1| ||ã||c1/2∗,n}, (12.27)

where c∗,n is defined as in (12.15). These bounds imply (12.3). Indeed, suppose that ||ã|| >
(1− b)|a1|/(2c1/2∗,n ). By (12.25), this is equivalent to

||ã||2 > (1− b)2a21
4c∗,n

=
(1− b)2(1− ||ã||2)

4c∗,n
, ||ã||2 > (1− b)2

(1− b)2 + 4c∗,n
.

Then, by (12.26),

a′Wzza ≥ b||ã||2 = b(1− b)2

(1− b)2 + 4c∗,n
.

On the other hand, if ||ã|| ≤ (1− b)|a1|/(2c1/2∗,n ), then in (12.27),

a21 − 2|a1| ||ã||c1/2∗,n ≥ a21 − (1− b)a21 = b a21

which together with (12.27) implies

a′Wzza ≥ b||ã||2 + a21b = b(||ã||2 + a21) = b||a||2 = b.

Therefore,

a′Wzza ≥ min
( b(1− b)2

(1− b)2 + 4c∗,n
, b

)
=

b(1− b)2

(1− b)2 + 4c∗,n
.

This implies that there exists c > 0 such that

a′Wzza ≥ bn = c−1(1 + c∗,n)
−1, (12.28)

where b−1
n = c(1 + c∗,n) = Op(1) by (12.16). This verifies the first claim in (12.3).
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Proof of (12.26). Below we will show that there exists b > 0 such that

in =
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a ≥ a21 + b||ã||2. (12.29)

In addition, observe that in Case 2,

e′tD
−1
g a = a1v

−1
g1 g1t,

n∑
t=1

(a′D−1
g et)

2 = a21v
−2
g1

n∑
t=1

g21t = a21. (12.30)

Then from (12.22), using (12.29) and (12.30) we arrive at (12.26):

a′Wzza ≥
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a−

n∑
t=1

(a′D−1
g et)

2

≥ {a21 + b||ã||2} − a21 = b||ã||2.

Proof of (12.27). By (12.21) and (12.29),

a′Wzza ≥
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a− 2

∣∣ n∑
t=1

(a′D−1
g µt)(e

′
tD

−1
g a)

∣∣ (12.31)

≥ {a21 + b||ã||2} − 2|qn|, qn =

n∑
t=1

(a′D−1
g µt)(e

′
tD

−1
g a).

By Cauchy inequality and (12.30),

|qn| ≤
{ n∑

t=1

(a′D−1
g µt)

2
n∑

t=1

(e′tD
−1
g a)2

}1/2
= |a1|

( n∑
t=1

(a′D−1
g µt)

2
)1/2

.

Since µ1t = 0, then |a′D−1
g µt| ≤ ||ã|| ||D−1

g µt||. Hence, using notation c∗,n introduced in

(12.15), we obtain

n∑
t=1

(a′D−1
g µt)

2 ≤ ||ã||2(
n∑

t=1

||D−1
g µt||2) = ||ã||2c∗,n,

which together with (12.31) and (12.29) proves (12.27):

a′Wzza ≥ {a21 + b||ã||2} − 2|a1|||ã||c1/2∗,n = b||ã||2 + {a21 − 2|a1| ||ã||c1/2∗,n}.

Proof of (12.29). Recall, that in presence of intercept, ηt = (1, η2t, ..., ηpt)
′ and E[ηkt] = 0.

Denote η̃ = (η2t, ...., ηpt)
′ and Σ̃ = E[η̃η̃′]. Then

E[z̃tz̃
′
t|F∗

n] = IgtE[ηtη
′
t]Igt = Igtdiag(1, Σ̃)Igt = diag

(
g21t, ĨgtΣ̃Ĩgt

)
,
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where diag(1, Σ̃) is a block diagonal matrix and Ĩgt = diag(g2t, ..., gpt). By assumption, the

matrix Σ̃ is positive definite. Denote D̃g = diag(vg2, ..., vgp). Then,

in =
n∑

t=1

a′D−1
g E[z̃tz̃

′
t|F∗

n]D
−1
g a

= a21{v−2
g1

n∑
t=1

g21t}+
n∑

t=1

ã′D̃−1
g ĨgtΣ̃ĨgtD̃

−1
g ã

= in,1 + in,2.

Observe that in,1 = a21 since v−2
g1

∑n
t=1 g

2
1t = 1. Recall that ||ã|| ≤ 1. Hence, by (12.24),

in,2 ≥ b||ã||2, in ≥ a21 + b||ã||2

for some b > 0 which does not depend on n and a. This implies (12.29).

Summarizing, note that by (12.24) and (12.28),

a′Wzza ≥ bn =

c−1 : Case 1 (intercept not included),

c−1(1 + c∗,n)
−1 : Case 2 (intercept included),

(12.32)

where c > 0 does not depend on n. Notice that b−1
n ≤ c(1 + c∗,n) = Op(1) by (12.16). This

proves the first claim in (12.3).

Proof of the second claim in (12.3) is the same as in Case 1.

Proof of (12.4). Observe that

||Wzz|| ≤ ||E
[
(

n∑
t=1

D−1
g ztz

′
tD

−1
g

∣∣F∗
n]|| ≤ E

[
||

n∑
t=1

D−1
g ztz

′
tD

−1
g )||

∣∣F∗
n]

≤
n∑

t=1

E[||D−1
g zt||2 |F∗

n] ≤ c(1 + c∗,n) = Op(1)

by (12.51) of Lemma 12.3. This proves (12.4).

Proof of (12.5), (12.6), (12.7) and (12.8). Denote by δjk the jk-th element of the matrix

D−1
g SzzD

−1
g −Wzz =

n∑
t=1

D−1
g {ztz′t − E[ztz

′
t|F∗

n]}D−1
g =

(
δjk

)
. (12.33)

To prove (12.5), it remains to show that

δjk = op(1). (12.34)
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Case 1: et = 0. Then, by (12.20), we have

ztz
′
t − E[ztz

′
t|F∗

n] = Igt(ηtη
′
t − E[ηtη

′
t])Igt + µtη

′
tIgt + Igtηtµ

′
t.

Therefore, setting γjt = v−1
gj gjt, we can write

δjk =
n∑

t=1

γjtγkt(ηjtηkt − E[ηjtηkt]) +
n∑

t=1

{v−1
gj µjtγkt}ηkt +

n∑
t=1

{v−1
gk µktγjt}ηjt

= Sn,1 + Sn,2 + Sn,3, (12.35)

δ2jk ≤ 3(S2
n,1 + S2

n,2 + S2
n,3).

By assumption, sequences {w1t = ηjtηkt − E[ηjtηkt]}, {w2t = ηkt} and {w3t = ηjt} are

covariance stationary short memory sequences with zero mean, and the weights {b1t = γjtγkt}
are independent of {w1t}, {b2t = v−1

gj µjtγkt} are independent of {w2t} and {b3t = v−1
gk µktγjt}

are independent of {w3t}, Thus, applying Lemma 12.1 to Sn,i, i = 1, 2, 3, we obtain

δ2jk = Op

( n∑
t=1

(b21t + b22t + b23t)
)
.

Denote rjn = maxt=1,...,n γ
2
jt. Then,

n∑
t=1

(b21t + b22t + b23t) ≤ rjn

n∑
t=1

γ2kt + rkn(v
−2
gj

n∑
t=1

µ2
jt) + rjn(v

−2
gk

n∑
t=1

µ2
kt).

Notice that
∑n

t=1 γ
2
kt = 1. Observe that rjn = op(1) by (6) and v−2

gj

∑n
t=1 µ

2
jt = Op(1) by (7)

of Assumption 2.3. This implies δ2jk = op(1) which proves (12.34).

Case 2. Let et = (1, 0, ..., 0)′.

To prove (12.5), it suffices to show that δjk, j, k = 1, ..., p in (12.33) have property (12.34):

δjk = op(1). Recall that in presence of intercept we have zt = (1, z2t, ..., zpt)
′.

First, observe that for j, k = 2, ..., p, δjk are the same as in (12.35) and whence δjk = op(1)

by (12.34). Second, δ11 = 0 since z1t = 1. Finally, for k = 2, ..., p, we have

z1tzkt = zkt = µkt + gktηkt,

E[z1tzkt|F∗
n] = E[zkt|F∗

n] = µkt.

Then,

δ1k =
n∑

t=1

v−1
g1 {z1tzkt − E[z1tzkt|F∗

n]}v−1
gk

= v−1
g1

n∑
t=1

{v−1
gk gkt}ηkt = n−1/2

n∑
t=1

γktηkt.

59



By assumption, {ηkt} is a covariance stationary short memory sequence with E[ηkt] = 0, and

{ηkt} and {γkt} are mutually independent. Therefore, by Lemma 12.1,

δ1k = n−1/2Op

(
(

n∑
t=1

γ2kt)
1/2

)
= n−1/2Op(1) = op(1)

which proves (12.34). This completes the proof of (12.5) in Case 2.

Proof of (12.6). It follows using the same argument as in Case 1.

Proof of (12.7). To prove that D−1Szu = Op(1), write

D−1Szu =
n∑

t=1

D−1ztut =
n∑

t=1

D−1(µt + Igtηt)htεt = (ν1, ..., νp)
′.

It suffices to show that

νk = Op(1). (12.36)

We have

νk =
n∑

t=1

{v−1
k µktht}εt +

n∑
t=1

{v−1
k gktht}ηktεt

= Sn,1 + Sn,2,

ν2k ≤ 2S2
n,1 + 2S2

n,2.

By Assumptions, 2.1 and 2.2, the sequences {w1t = εt}, {w2t = ηktεt} are covariance station-

ary short memory sequences with zero mean, the weights {b1t = v−1
k µktht} are independent

of {w1t}, and {b2t = v−1
k gktht} are independent of {w2t}.

Thus, applying Lemma 12.1 to each of the sum Sn,1, Sn,2, we obtain

ν2k = Op

( n∑
t=1

(b21t + b22t)
)
.

Notice that,

n∑
t=1

(b21t + b22t) = v−2
k

n∑
t=1

µ2
kth

2
t + v−2

k

n∑
t=1

g2kth
2
t = v−2

k

n∑
t=1

µ2
kth

2
t + 1 = Op(1)

by (7) of Assumption 2.3 which proves (12.36).

Proof of (12.8). Observe that by (12.5) and (12.4) of Lemma 12.2, D−1
g (

∑n
t=1 ztz

′
t)D

−1
g =
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Op(1). Therefore,

n∑
t=1

||D−1
g zt||2 = trace

(
D−1

g (
n∑

t=1

ztz
′
t)D

−1
g

)
= Op(1).

This proves (12.8) and completes the proof of the part (i) of the lemma.

Proof of Lemma 12.2 (ii). Proof of (12.9). We can write

a′Wzzuua =
n∑

t=1

a′D−1E[ztz
′
tu

2
t |F∗

n]D
−1a

= E
[( n∑

t=1

||a′D−1ztht||2ε2t
)
|F∗

n

]
.

Let δ > 0 be a small number which will be selected below. Then,

ε2t = {ε2t I(ε2t ≥ δ) + δI(ε2t < δ)}+ (ε2t − δ)I(ε2t < δ)

≥ δ − δI(ε2t < δ).

Thus,

a′Wzzuua ≥ δ
{
E
[( n∑

t=1

||a′D−1ztht||2
)
|F∗

n

]
− E

[( n∑
t=1

||a′D−1ztht||2I(ε2t < δ)|F∗
n

]}
= δ{q1,n − q2,n}. (12.37)

We will show that there exist bn > 0 and δ = δn > 0 such that b−1
n = Op(1), δ

−1
n = Op(1)

and for any a = (a1, ..., ap)
′, ||a|| = 1 and n ≥ 1,

q1,n ≥ bn, (12.38)

q2,n ≤ bn/2. (12.39)

Using these bounds in (12.37), we obtain

a′Wzzuua ≥ b∗n = δn{bn − (bn/2)} = δnbn/2, 1/b∗n = Op(1). (12.40)

First we prove (12.38). Setting

Zt = {htµt}+ {htIgt}ηt = µ∗
t + Ig∗tηt, where µ∗

t = htµt, g
∗
t = htgt,

Dg∗ = (vg∗1, ..., vg∗p)
′, vg∗k = (

∑n
t=1 g

∗ 2
kt )

1/2,

we can write

q1,n =
n∑

t=1

a′D−1
g∗ E[ZtZ

′
t|F∗

n]D
−1
g∗ a = a′WZZ a.
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Observe that the variables Zt = µ∗
t + Ig∗tηt satisfy assumptions of Lemma 12.2(i). Hence by

(12.32),

a′WZZa ≥ bn =

c−1 : Case 1 (intercept not included),

c−1(1 + c∗∗,n)
−1 : Case 2 (intercept included),

(12.41)

where c > 0 does not depend on n. Notice that b−1
n ≤ c(1 + c∗∗,n) = Op(1) by (12.16). This

proves (12.38).

To prove (12.39), recall that ||a|| = 1. Bound

qn,2 ≤ ||a||2q∗n,2 = q∗n,2, q∗n,2 =
n∑

t=1

E[||D−1ztht||2I(ε2t < δ)|F∗
n

]
.

In (12.52) of Lemma 12.3 we show that q∗n,2 ≤ c1(1+c∗∗,n)δ
1/4, where c1 > 0 does not depend

on n and c∗∗,n is defined in (12.15). Thus, selecting

δn =
( bn/2

c1(1 + c∗∗,n)

)4
,

we obtain qn,2 ≤ c1(1 + c∗∗,n)δ
1/4
n = bn/2, which proves the bound (12.39). Notice that

δn ≤ (2cc1)
−4 can be made small by selecting large c in (12.41).

In turn, by (12.40),

a′Wzzuua ≥ (bn/2)δn = (bn/2)
( (bn/2)

c1(1 + c∗∗,n)

)4

where bn is defined in (12.41). This implies

a′Wzzuua ≥ b∗n =

c−1(1 + c∗∗,n)
−4 : Case 1 (intercept not included),

c−1(1 + c∗∗,n)
−9 : Case 2 (intercept included)

(12.42)

for some c > 0 which does not depend on n. Notice that b∗n is F∗
n measurable, and (b∗n)

−1 ≤
c(1 + c∗∗,n)

9 = Op(1) by (12.16). This proves the first claim in (12.9). The second claim

follows using the same argument as in the proof of (12.3).

Proof of (12.10). Observe that

||Wzzuu|| ≤ ||E
[
(

n∑
t=1

D−1ztz
′
tu

2
tD

−1)
∣∣F∗

n]|| ≤ E
[
||

n∑
t=1

D−1ztu
2
t z

′
tD

−1||
∣∣F∗

n]

≤
n∑

t=1

E[||D−1ztut||2 |F∗
n] ≤ bn3 = c(1 + c∗∗,n) = Op(1)

by (12.51) of Lemma 12.3 which implies (12.10).
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Proof of (12.11). Write DΩnD = W−1
zz WzzuuW

−1
zz , (DΩnD)−1 = WzzW

−1
zzuuWzz. By (12.3),

(12.4), (12.9) and (12.10),

||DΩnD||sp ≤ ||DΩnD|| ≤ ||W−1
zz || ||Wzzuu|| ||W−1

zz || ≤ bn4 = Op(1), (12.43)

||(DΩnD)−1||sp ≤ ||(DΩnD)−1|| ≤ ||Wzz|| ||W−1
zzuu|| ||Wzz|| ≤ bn5 = Op(1). (12.44)

We will show that

a′DΩnDa ≥ bn := b−1
n5 . (12.45)

Since b−1
n = bn5 = Op(1) this proves the first claim in (12.11). To verify (12.45), notice

that the smallest eigenvalue λmin of the matrix DΩD and the largest eigenvalue θmax of the

inverse matrix (DΩnD)−1 are related by the equality θmax = λ−1
min. By (12.44), θmax ≤ bn5.

Thus, for ||a|| = 1,

a′DΩnDa ≥ λmin = θ−1
max ≥ bn := b−1

n5 ,

where b−1
n = bn5 = Op(1) which proves (12.45). Finally, by (12.43), for ||a|| = 1, a′DΩnDa ≤

||DΩnD||sp ≤ bn4 = Op(1) which proves the second bound in (12.11).

Proof of (12.12), (12.13) and (12.14). Write

D−1SzzuuD
−1 −Wzzuu =

n∑
t=1

D−1{ztz′tu2t − E[ztz
′
tu

2
t |F∗

n]}D−1 =
(
δjk

)
.

To prove (12.12), it suffices to verify that

δjk = op(1). (12.46)

Recall that zt = µt + z̃t and ut = htεt, where Eε2t = 1. Hence,

E[u2t |F∗
n] = h2t ,

E[z̃tu
2
t |F∗

n] = h2t IgtE[ηtε
2
t ] = Igth

2
t ē, ē = E[η1ε

2
1].

By (12.20),

ztz
′
tu

2
t = z̃tz̃

′
tu

2
t + µtµ

′
tu

2
t + µtz̃

′
tu

2
t + z̃tµ

′
tu

2
t ,

E[ztz
′
tu

2
t |F∗

n] = E[z̃tz̃
′
tu

2
t |F∗

n] + µtµ
′
tE[u2t |F∗

n] + µtE[z̃′tu
2
t |F∗

n] + E[z̃tu
2
t |F∗

n]µ
′
t

= E[z̃tz̃
′
tu

2
t |F∗

n] + µtµ
′
th

2
tE[ε2t ] + {htµt}ē′{htIgt}+ {htIgt}ē{htµ′

t}.

Then,

ztz
′
tu

2
t − E[ztz

′
tu

2
t |F∗

n] = htIgt(ηtη
′
tε

2
t − E[ηtη

′
tε

2
t ])htIgt + µtµ

′
th

2
t (ε

2
t − E[ε2t ])

+htµt(η
′
tε

2
t − E[η′tε

2
t ])htIgt + htIgt(ηtε

2
t − E[η′tε

2
t ])htµ

′
t.
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Therefore, setting γjt = v−1
j gjtht, it follows that

δjk =

n∑
t=1

γjtγkt(ηjtηktε
2
t − E[ηjtηktε

2
t ]) +

n∑
t=1

{v−1
j µjtht}γkt(ηktε2t − E[ηktε

2
t ])

+
n∑

t=1

{v−1
k µktht}γjt(ηjtε2t − E[ηjtε

2
t ]) +

n∑
t=1

{v−1
j µjtht}{v−1

k µktht}(ε2t − E[ε2t ])

= r
(1)
n,jk + r

(2)
n,jk + r

(3)
n,jk + r

(4)
n,jk.

To prove (12.46), it suffices to show that

r
(i)
n,jk = op(1), i = 1, ..., 4. (12.47)

By Assumption 2.4, {ηjtηktε2t }, {ηktε2t } and {ε2t } are covariance stationary short memory

zero mean sequences, and these sequences are mutually independent of the weights {γjtγkt},
{v−1

j µjthtγkt} and {(v−1
j µjtht)(v

−1
k µktht)}. Moreover, definition of vk and γkt and (7) of

Assumption 2.3 imply that

n∑
t=1

γ2kt = 1, v−2
k

n∑
t=1

µ2
kth

2
t = Op(1)

and by (11) of Assumption 2.4,

max
t=1,...,n

γ2kt = op(1), v−2
k max

t=1,...,n
µ2
kth

2
t = op(1).

Thus, (12.47) follows by using Lemma 12.1 and applying a similar argument as in the proof

of (12.5). This completes the proof of (12.12).

The claim (12.13) follows using (12.12) and property W−1
zzuu = Op(1) of (12.9):

DS−1
zzuuD =

(
D−1SzzuuD

−1
)−1

=
(
Wzzuu + op(1)

)−1
= W−1

zzuu

(
1 +W−1

zzuu × op(1)
)−1

= W−1
zzuu

(
1 + op(1)

)−1
= W−1

zzuu + op(1).

Proof of (12.14). Write

D−1S(c)
zzuuD

−1 = D−1SzzuuD
−1 +D−1(S(c)

zzuu − Szzuu)D
−1. (12.48)

By (12.12), D−1SzzuuD
−1 = Wzzuu + op(1). We will show that

D−1(S(c)
zzuu − Szzuu)D

−1 = op(1), (12.49)

which together with (12.48) implies (12.14): D−1S
(c)
zzuuD−1 = Wzzuu + op(1). We have, u2t −

64



E[u2t |Fn,t−1] = h2t (ε
2
t − σ2

t ), where σ2
t = E[ε2t |Ft−1]. Write

D−1(Szzuu − S(c)
zzuu)D

−1 =
n∑

t=1

D−1ztz
′
t(u

2
t − E[u2t |Fn,t−1])D

−1 =
(
δjk

)
.

Then (12.49) follows if we show that

δjk = op(1). (12.50)

We have zt = µt + z̃t and ut = htεt. So,

ztz
′
t = z̃tz̃

′
t + µtµ

′
t + µtz̃

′
t + z̃tµ

′
t,

ztz
′
t(u

2
t − E[u2t |Fn,t−1]) = ztz

′
th

2
t (ε

2
t − σ2

t )

= htIgtηtη
′
tIgtht(ε

2
t − σ2

t ) + µtµ
′
th

2
t (ε

2
t − σ2

t )

+htµtη
′
tIgtht(ε

2
t − σ2

t ) + Igtηtµ
′
th

2
t (ε

2
t − σ2

t ).

Hence, denoting γjt = v−1
j gjtht, we obtain

δjk =
n∑

t=1

γjtγkt{ηjtηkt(ε2t − σ2
t )}+

n∑
t=1

{v−1
j µjtht}γkt{ηkt(ε2t − σ2

t )}

+
n∑

t=1

{v−1
k µktht}γjt{ηjt(ε2t − σ2

t )}+
n∑

t=1

{v−1
j µjtht}{v−1

k µktht}{ε2t − σ2
t }

= r
(1)
n,jk + r

(2)
n,jk + r

(3)
n,jk + r

(4)
n,jk.

Observe, that sequences {w1t = ηjtηkt(ε
2
t − σ2

t )}, {w2t = ηkt(ε
2
t − σ2

t )}, {w3t = ηjt(ε
2
t − σ2

t )},
{w4t = ε2t −σ2

t } are sequences of uncorrelated random variables with zero mean and constant

variance. For example, by assumption, ηjtηkt are Ft−1 measurable. Then, for t ≥ s,

E[w1t] = E
[
E[w1t|Ft−1]

]
= E

[
ηjtηktE[(ε2t − σ2

t )|Ft−1]
]
= 0,

E[w1tw1s] = E
[
ηjtηktηjsηks(ε

2
s − σ2

s)E[(ε2t − σ2
t )|Ft−1]

]
= 0,

E[w2
1t] = E

[
η2jtη

2
ktE[(ε2t − σ2

t )
2|Ft−1]

]
≤ E

[
η2jtη

2
ktE[ε4t |Ft−1]

]
= E

[
E[η2jtη

2
ktε

4
t |Ft−1]

]
= E

[
η2j1η

2
k1ε

4
1

]
< ∞.

Then using the same argument as in the proof of (12.47) it follows

r
(i)
n,jk = op(1), i = 1, ..., 4.

which proves (12.50) and completes the proof of (12.14).

This completes the proof of the part (ii) and of the lemma. □
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Proof of Corollary 12.1. The claim (12.17) is shown in (12.32), and the claim (12.18) is

shown in (12.42). □

Lemma 12.3. Under Assumptions of Theorem 2.1, the exists c > 0 such that

n∑
t=1

E
[
||D−1

g zt||2 |F∗
n

]
≤ c(1 + c∗,n),

n∑
t=1

E
[
||D−1ztut||2 |F∗

n

]
≤ c(1 + c∗∗,n), (12.51)

n∑
t=1

E
[
||D−1ztht||2I(ε2t < δ)|F∗

n

]
≤ c(1 + c∗∗,n)δ

1/4, (12.52)

for sufficiently small δ > 0, where c does not depend on n and δ and c∗,n = Op(1),

c∗∗,n = Op(1).

In addition, under assumptions of Theorem 2.2,

max
t=1,...,n

||D−1ztut||2 = op(1), max
t=1,...,n

||D−1
g zt||2 = op(1), (12.53)

n∑
t=1

E
[
b−1
n ||D−1ztut||2I

(
b−1
n ||D−1ztut||2 ≥ ϵ

)
|Fn,t−1

]
= op(1) for any ϵ > 0,(12.54)

where bn is F∗
n measurable, b−1

n = Op(1) and Fn,t−1 is defined as in (9.6).

Proof of Lemma 12.3. Proof of (12.51). Denote

b1t = ||D−1
g µt||2 + ||D−1

g Igt||2, θ1t = 1 + ||ηt||2,

b2t = ||D−1
g µtht||2 + ||D−1

g Igtht||2, θ2t = ε2t + ||ηt||2ε2t .

By (12.19),

||D−1
g zt||2 = ||D−1

g µt +D−1
g Igtηt||2 ≤ 2(||D−1

g µt||2 + ||D−1
g Igt||2||ηt||2)

≤ 2b1tθ1t, (12.55)

||D−1
g ztut||2 = ||D−1

g µthtεt +D−1
g Igtηthtεt||2 ≤ 2b2tθ2t.

By Assumption 2.2(i) and Assumption 2.4(i),

E[θ1t |F∗
n] = E[θ1t] = E[θ11], E[θ2t |F∗

n] = E[θ2t] = E[θ21].

This implies

E
[
||D−1

g zt||2 |F∗
n

]
≤ 2b1tE[θ11], (12.56)

E
[
||D−1ztut||2 |F∗

n

]
≤ 2b2tE[θ21],∑n

t=1E
[
||D−1

g zt||2 |F∗
n

]
= 2E[θ11](

∑n
t=1 b1t),∑n

t=1E
[
||D−1

g ztut||2 |F∗
n

]
= 2E[θ21](

∑n
t=1 b2t).

66



Notice that

∑n
t=1 b1t =

∑n
t=1 ||D−1

g µt||2 +
∑n

t=1 ||D−1
g Igt||2 = c∗,n + p,∑n

t=1 b2t =
∑n

t=1 ||D−1µtht||2 +
∑n

t=1 ||D−1Igtht||2 = c∗∗,n + p, (12.57)

by definition (12.15) of c∗,n and c∗∗,n and because

∑n
t=1 ||D−1

g Igt||2 =
∑p

k=1 v
−2
gk (

∑n
t=1 g

2
kt) = p,∑n

t=1 ||D−1Igtht||2 =
∑p

k=1 v
−2
k (

∑n
t=1 g

2
kth

2
t ) = p.

Moreover, c∗,n = Op(1), c∗∗,n = Op(1) by (12.16). Clearly, (12.56) and (12.57) prove (12.51).

Proof of (12.52). Denote

θ2t(δ) = I(ε2t < δ) + ||ηt||2I(ε2t < δ).

Recall, that by assumption, εt is a stationary sequence, and by Assumption 2.2(i), E[||ηt||4] =
E[||η1||4]. Then,

E[θ2t(δ)] ≤ E[I(ε2t < δ)] + (E[||ηt||4)1/2(E[I(ε2t < δ)])1/2

= E[I(ε21 < δ)] + (E[||η1||4)1/2(E[I(ε21 < δ)])1/2.

We will show that for sufficiently small δ > 0,

E[I(ε21 < δ)] ≤ Cδ1/2.

Indeed, by Assumption 2.1, the variable ε1 has probability distribution density f(x) and

f(x) ≤ c < ∞ when |x| ≤ x0 for some x0 > 0. Without restriction of generality assume that

δ ≤ x0. Then,

E[I(ε21 < δ)] =
∫
I(|x| ≤ δ1/2)f(x)dx ≤ c

∫
I(|x| ≤ δ1/2)dx ≤ Cδ1/2.

Therefore, E[θ2t(δ)] ≤ Cδ1/4, and as in (12.56), we obtain

E
[
||D−1ztht||2I(ε2t < δ) |F∗

n

]
≤ 2b2tE[θ2t(δ)] ≤ Cδ1/4b2t,

n∑
t=1

E
[
||D−1ztht||2I(ε2t < δ) |F∗

n

]
≤ Cδ1/4(

n∑
t=1

b2t) ≤ Cδ1/4(p+ c∗∗,n),

which proves (12.52).

Proof of (12.53). We will prove the first claim (the proof of the second claim is similar). By

(12.55), ||D−1ztut||2 ≤ 2b2tθ2t. Let K > 0 be a large number. Then, θ2t ≤ K+θ2tI(θ2t ≥ K).

Therefore,

max
t=1,...,n

||D−1ztut||2 ≤ 2K( max
t=1,...,n

b2t) + 2
n∑

t=1

b2t θ2tI(θ2t ≥ K). (12.58)
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By (11) of Assumption 2.4 and (12.57),

max
t=1,...,n

b2t = op(1),
n∑

t=1

b2t = Op(1). (12.59)

Since {bt} and {θ2t} are mutually independent, then by (12.2) of Lemma 12.1,

n∑
t=1

b2t θ2tI(θ2t ≥ K) = Op

( n∑
t=1

b2t
)
∆n,K , ∆n,K = max

t=1,...,n
E[θ2tI(θ2t ≥ K)]. (12.60)

We will show that

∆n,K ≤ ∆K , (12.61)

where ∆K → 0, K → ∞ and ∆K does not depend on n. Together with (12.58) this implies

max
t=1,...,n

||D−1ztut||2 ≤ Kop(1) +Op(1)∆K = op(1), n,K → ∞.

Next we prove (12.61). Set L = K1/4. Then, letting ε2+L,t = ε2t I(ε
2
t > L), we obtain

θ2t = ε2t (||ηt||2 + 1) ≤ {ε2+L,t + LI(ε2t ≤ L)}(||ηt||2 + 1),

θ2tI(θ2t ≥ K) ≤ ε2+L,t(||ηt||
2 + 1) + L(||ηt||2 + 1)I

(
L(||ηt||2 + 1) ≥ K

)
,

E[θ2tI(θ2t ≥ K)] ≤ (E[(ε2+L,t)
2])1/2(E[(||ηt||2 + 1)2])1/2 + LE[(||ηt||2 + 1)4](K/L)−1

≤ (E[(ε2+L,1)
2])1/2(E[(||η1||2 + 1)2])1/2 + (L2/K)E[(||η1||2 + 1)2]

=: ∆K → 0, K → ∞

since, as K → ∞, L2/K = K−1/2 → 0, E[(ε2+L,1)
2] → 0 and E[||η1||4 < ∞. This implies

(12.61).

Proof of (12.54). Denote by in the left hand side of (12.54). By (12.55), ||D−1ztut||2 ≤ 2b2tθ2t.

Let K > 0 be a large number. Then,

b−1
n ||D−1ztut||2I(b−1

n ||D−1ztut||2 ≥ ϵ) ≤ 2b−1
n b2tθ2tI

(
2b−1

n b2tθ2t ≥ ϵ
)

≤ 2b−1
n b2tKI

(
2b−1

n b2tK ≥ ϵ
)
I(θ2t ≤ K) + 2b−1

n b2tθ2tI(θ2t > K)

≤ ϵ−1
n K2(2b−1

n b2t)
2 + 2b−1

n b2tθ2tI(θ2t > K).

Observe, that b−1
n b2t is Fn,t−1 measurable. Then,

in ≤ ϵ−1
n K2(2b−1

n )2
∑n

t=1 b
2
2t + 2b−1

n

∑n
t=1 b2tθ2tI(θ2t > K).

Together with (12.60), (12.61) and (12.59), this implies:

in ≤ ϵ−1
n K2(2b−1

n )2(maxt=1,...,n b2t)(
∑n

t=1 b2t) + 2b−1
n (

∑n
t=1 b2t)∆K
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≤ ϵ−1
n K2Op(1)op(1) +Op(1)∆K = op(1), n,K → ∞.

This proves (12.54) and completes the proof of the lemma. □

13 Additional Monte Carlo simulation results

In this section, we further evaluate the finite-sample performance of our robust OLS esti-

mation method using two examples of regression models with fixed parameters, where the

regressors zt and regression noise ut exhibit complex, non-standard structures.

Example 1. As in the Monte Carlo section of the main paper, we generate arrays of samples

from a regression model with a fixed parameter and an intercept, using a sample size of

n = 1500 and 1000 replications. We first consider the following model:

yt = β1 + β2z2t + β3z3t + ut, ut = htεt,

β = (β1, β2, β3)
′ = (0.5, 0.4, 0.3)′. (13.1)

We specify the scale factor ht in the regression noise ut = htεt as a deterministic trend ht =

0.4(t/n), and a stationary martingale difference noise εt is generated from a GARCH(1, 1)

process

εt = σtet, σ2
t = 1 + 0.7σ2

t−1 + 0.2ε2t−1, et ∼ i.i.d.N (0, 1). (13.2)

Define the regressors as z1t = 1 and zkt = µkt + gktηkt for k = 2, 3, where

µ2t = 0.5 sin(πt/n) + 1, g2t =
∣∣∣ 1

2
√
n

t∑
j=1

νj

∣∣∣+ 0.25, νj ∼ i.i.d.N (0, 1),

µ3t = 0.5 sin(0.5πt/n) + 1, g3t = 0.5 sin(3πt/n) + 1,

ηkt = 0.5ηk,t−1 + ξkt, ξ2t = εt−1, ξ3t = εt−2. (13.3)

Figure 14 displays plots of a sample of variables yt, zt, and ut for t = 1, . . . , 1500 gen-

erated by Model (13.1)-(13.3), which exhibit clear patterns of non-stationary behavior. The

Monte Carlo simulation results for sample size n = 1500 based on 1000 replications are re-

ported in the Table 6. Since the regressors zt and regression noise ut in this model satisfy the

assumptions of Corollary 2.1, as expected, the Monte Carlo simulation results confirm excel-

lent performance of the robust OLS estimator. In particular, the empirical coverage of the

95% confidence intervals is close to the nominal 95%, whereas the standard OLS estimator

exhibits significant coverage distortions.
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Table 6: Robust OLS estimation in Model (13.3), n = 1500.

Parameters Bias RMSE CP CPst SD

β1 -0.00036 0.02738 94.3 89.8 0.02738
β2 0.00050 0.01681 93.8 79.5 0.01680
β3 -0.00003 0.00682 95.6 85.5 0.00682

(a) yt (b) ut

(c) z2t (d) z3t

Figure 14: Plots of yt, ut, z2t and z3t in Model (13.3), n = 1500.

Example 2. Next, we provide an example of a regression model in which the components

β1, β2, β3 of the fixed regression parameter are estimated at different rates. Consider regres-

sion model (13.1) with εt, η2t, η3t defined as in Example 1. Set ht ≡ 1, and let the means µkt

and scale factors gkt, k = 2, 3 be defined as follows:

µ2t = [0.5 sin(10πt/n) + 1]
√
g2t, g2t = t,

µ3t = [0.5 sin(5πt/n) + 1] g3t, g3t = tγ , γ =
1

2
, 0,−1

4
,−1

2
. (13.4)

This model satisfies the assumptions of Corollary 2.1 (see also Remark 2.1 in the main paper).
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Therefore, the corresponding t-statistics for k = 1, 2, 3 have the following property:

β̂k − βk√
ω̂kk

→d N (0, 1),
√

ω̂kk ≍p v
−1
k , (13.5)

where, the robust standard errors
√
ω̂kk are inversely proportional to the consistency rate

vk =
( n∑
j=1

g2jt
)1/2

.

In this model, the intercept β1 associated with the regressor z1t = 1 is estimated at the

consistency rate v1 =
√
n; the parameter β2 linked with the regressor z2t (with g2t = t) at

the rate v2 ∼ n3/2, and the parameter β3 linked with the regressor z3t (with g3t = tγ) at the

rate v3 ∼ nγ+1/2. The rate v3 is super-fast, n, when γ = 1/2; standard, n1/2, when γ = 0;

super-slow, n1/4, when γ = −1/4; and logarithmic, log n, when γ = −1/2. Monte Carlo

results reported in Table 7 confirm the validity of the normal approximation (13.5) in finite

samples (n = 1500, based on 1000 replications). In particular, the coverage of the robust 95%

confidence intervals is close to the nominal level for all three parameters β1, β2, βt and for all

values of γ considered in the construction of the regressor z3t. In contrast, the coverage rates

based on the standard OLS method exhibit noticeable distortions, especially for β2t and β3t.

As expected, smaller values of γ are associated with slower consistency rates v3, wider

confidence intervals, and larger standard deviations for the estimator of β3.

Table 7: Robust OLS estimation in Model (13.4), n = 1500.

γ Parameters Bias RMSE CP CPst SD

β1 -0.00331 0.08888 94.1 93.3 0.08882
1/2 β2 2.4E-06 0.00004 95.3 86.4 0.00004

β3 -0.00008 0.00128 94.5 85.6 0.00128

β1 -0.00406 0.08976 94.5 93.4 0.08967
0 β2 2.4E-06 0.00004 95.8 86.9 0.00004

β3 0.00272 0.03384 94.9 85.9 0.03373

β1 -0.00397 0.08884 94.6 93.9 0.08875
−1/4 β2 2.6E-06 0.00004 95.6 85.9 0.00004

β3 0.01275 0.14219 95 87.2 0.14162

β1 -0.00319 0.08628 95 94.7 0.08622
−1/2 β2 3.0E-06 0.00004 95.5 86.3 0.00004

β3 0.04468 0.43022 95.1 91.3 0.42790

Table 8 reports the estimation results for the parameters β1, β2, β3 for sample sizes n =

200, 800, 1500, 3000, when the regressor zt is generated with γ = −1/4 and β3 is estimated

with the super-slow rate v3 = n1/4. The coverage rates for the robust OLS method are close

to the nominal level in all cases. As expected, as n increases, the standard errors of all three

parameter estimates decrease; however, for β3, which is estimated with the super-slow rate
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n1/4, the reduction in the standard deviation is relatively slow.

Table 8: Robust OLS estimation in Model (13.4), γ = −1/4, n = 1500.

n Parameters Bias RMSE CP CPst SD

β1 -0.01307 0.23584 94.9 95.1 0.23548
200 β2 0.00008 0.00073 92.5 86.6 0.00073

β3 0.03138 0.22902 94.6 91.7 0.22686

β1 -0.00740 0.12187 95.1 94.6 0.12164
800 β2 0.00001 0.00010 94.3 86.3 0.00009

β3 0.01302 0.16151 94.8 88.1 0.16098

β1 -0.00397 0.08884 94.6 93.9 0.08875
1500 β2 2.6E-06 0.00004 95.6 85.9 0.00004

β3 0.01275 0.14219 95 87.2 0.14162

β1 -0.00319 0.06599 93.2 92.2 0.06592
3000 β2 0.00000 0.00001 94.1 83.3 0.00001

β3 0.00913 0.12430 94.8 84.3 0.12396

Figure 15 displays plots of a single sample of the variables yt and z3t for t = 1, . . . , 1500

generated by Model (13.4) for γ = 1/2, 0,−1/4,−1/2. These samples exhibit clear patterns

of non-stationary behavior.
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(a) yt (γ = 1/2) (b) z3t (γ = 1/2)

(c) yt (γ = 0) (d) z3t (γ = 0)

(e) yt (γ = −1/4) (f) z3t (γ = −1/4)

(g) yt (γ = −1/2) (h) z3t (γ = −1/2)

Figure 15: Plots of yt, z3t of a single sample of the model (13.4) for γ = 1/2, 0,−1/4,−1/2 .
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