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Abstract

This paper introduces and analyzes a framework that accommodates general hetero-
geneity in regression modeling. It demonstrates that regression models with fixed or
time-varying parameters can be estimated using the OLS and time-varying OLS meth-
ods, respectively, across a broad class of regressors and noise processes not covered by
existing theory. The proposed setting facilitates the development of asymptotic theory
and the estimation of robust standard errors. The robust confidence interval estimators
accommodate substantial heterogeneity in both regressors and noise. The resulting ro-
bust standard error estimates coincide with White’s (1980) heteroskedasticity-consistent
estimator but are applicable to a broader range of conditions, including models with miss-
ing data. They are computationally simple and perform well in Monte Carlo simulations.
Their robustness, generality, and ease of implementation make them highly suitable for
empirical applications. Finally, the paper provides a brief empirical illustration.
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1 Introduction

Regression analysis is the cornerstone of statistical theory and practice. Ordinary least
squares (OLS) has been applied, within various regression contexts, to build an extensive
toolkit, for the exploration of economic and financial datasets. The basic theory underlying
OLS estimation and inference in regression models has been largely established for over half
of a century (see e.g. Lai and Wei (1982)). The problem of robust estimation has long been a
focus of empirical work in economics, beginning with the seminal work by White (1980). Its
importance is well understood in applied econometrics. At the same time, several important
concerns have been raised by applied researchers. Angrist and Pischke (2010) noted that
“Leamer (1983) diagnosed his contemporaries’ empirical work as suffering from a distress-
ing lack of robustness to changes in key assumptions”, and Leamer (2010) later reflected
that “sooner or later, someone articulates the concerns that gnaw away in each of us and
asks if the Assumptions are valid.” Similarly, Karmakar et al. (2022) observed, that the as-
sumption of parameter constancy, or “stationarity is often an oversimplified assumption that
ignores systematic deviations of parameters from constancy”. Clearly, this concern extends
beyond parameter stability to encompass the stability of regressors, regression noise, and the

underlying modelling assumptions.

In this paper, we focus on the inherent capacity of regression modelling to accommodate
the effects of structural change in settings with both fixed and time-varying parameters. Many
such structural changes influence not only the model parameters but also the regression space
itself. This space comprises both the regressors and regression noise, and improper treatment
of these components may result in incorrect inferences, misinterpretations, and forecasting
distortions. We therefore examine which specifications of regression space can flexibly account
for structural change while still enabling estimation of both fixed and time-varying regression

parameters, the construction of confidence intervals, and the computation of standard errors.

Among recent developments, Wu (2005), Hall et al. (2012), and others, have proposed ad-
vanced theoretical methods for the estimation of the fixed parameters, while Cattaneo et al.
(2018), Jochmans (2019) developed procedures to estimate both fixed parameters and stan-
dard errors in regression models with an increasing number of covariates and heteroscedas-
ticity. Meanwhile, Li et al. (2020), Sun et al. (2021) and Linton and Xiao (2019) introduced
new modelling frameworks that explicitly account for structural change. A common response
to concerns about heteroskedasticity in the recent literature is the use of heteroscedasticity-
robust variance and standard error estimators for linear regression models, see Eicker (1963),
White (1980), MacKinnon (2012) and Cattaneo et al. (2018), among others.

There is also a sizeable and growing literature on the estimation of time-varying coefficient
regression models, including works of Fan and Zhang (1999), Vogt (2012), among others. This
literature further explores tests for different types of parameter variation, see e.g. Bai and
Perron (1998), Zhang and Wu (2012), Zhang and Wu (2015), Hu et al. (2024). In addition,



specification tests and tests for parameter instability have received significant attention, with
important contributions by Hansen (2000), Georgiev et al. (2018), Hidalgo et al. (2019),
Boldea et al. (2019), Fu et al. (2023), and others.

The modelling of deterministic, smooth parameter evolution has a long history in statis-
tics. Early examples include linear processes with time-varying spectral densities, introduced
by Priestley (1965). This framework is essentially nonparameteric and it has been further
developed by Robinson (1989), Robinson (1991), Dahlhaus (1997), Dahlhaus et al. (2019),
Dahlhaus and Richter (2023), some of whom refer to these processes as locally stationary. The
estimation of time-varying parameters, as well as fixed parameters under heteroskedasticity
in time series models, has been studied in Dahlhaus and Giraitis (1998), Xu and Phillips
(2008), Giraitis et al. (2020), among other. Nonlinear time-varying time series models have
also been developed by Doukhan and Wintenberger (2008), Bardet and Wintenberger (2009),
Vogt (2012) and Karmakar et al. (2022). Despite these advances, such approaches have not
been not been widely adopted in applied economics, where random coefficient models remain

more prevalent.

Various methods have been proposed over the years to identify and handle structural
change. FEarly contributions assumed that changes were deterministic, rare, and abrupt.
Testing for parameter breaks dates back to the pioneering work by Chow (1960), with fur-
ther contributions by Brown et al. (1975), Ploberger and Kréamer (1992), among others. More
recent approaches allow for random evolution of parameters, where changes may be discrete,
as in Markov Switching models by Hamilton (1989) or threshold models by Tong (1990), or
continuous as in smooth transition models by Terasvirta (1998), or those driven by unobserv-
able shocks, as in random coefficient models by Nyblom (1989a). For example, Cogley and
Sargent (2005) use random coefficient models to study stochastic volatility, while Primiceri
(2005) examines whether changes in parameters or in the variance of shocks - policy-induced
or otherwise - contributed to the period of macroeconomic calmness known as the “Great
Moderation” after 1985. In these frameworks, parameters typically evolve as random walks

or autoregressive processes.

Building on this literature, Giraitis et al. (2014), Giraitis et al. (2018), Dendramis et al.
(2021), and others have developed a theoretical time series framework for random coefficient
models and their estimation using kernel-based methods, which performs well in finite sam-
ples. These methods are computationally simple and straightforward to implement in applied
research. For example, Chronopoulos et al. (2022) demonstrated the empirical prevalence of
persistent volatility, suggesting that GARCH-type volatility structures may be less common
than previously thought. Nevertheless, a full treatment of estimation and inference within a

general regression framework has, surprisingly, not yet been provided.

In this paper, we provide a rigorous validation of the asymptotic normality of the feasible
t-statistic for the estimation of both fixed and time-varying parameters in linear regression

models within an extended regresion space of regressors and regression disturbances. Our



main objective is to describe, in transparent terms, the extended regression space under which
such normality is preserved. The class of admissible regressors and regression noises is broad.
Regressors are obtained by rescaling and shifting stationary short-memory sequences, while
regression errors are generated by arbitrary rescaling of a stationary martingale difference
sequence. The restrictions imposed on the scale factors and mean processes are weak, allowing
these to be either deterministic or stochastic, and to vary over time, possibly abruptly or
through non-stationary (e.g. unit-root) dynamics. Some assumptions on the scale factors
are necessary and resemble the Lindeberg condition in the classical Lindeberg—Feller central
limit theorem. Importantly, the robust feasible t-statistic retains the same form and limiting
distribution as in the standard setting. The infeasible robust standard errors coincide with
the heteroskedasticity-consistent standard error estimator of White (1980). Our assumptions
do not rely on mixing or near-epoch dependence conditions, which prevail throughout the
existing literature. Given the generality of the regression space, these assumptions typically

require no additional empirical verification.

The estimation framework for fixed regression parameters is developed in Section 2, which
introduces the extended regression space, the underlying assumptions, and the main theoreti-
cal results. Section 3 establishes the estimation theory for time-varying regression parameters
within the same framework. The proofs highlight how the results for the fixed-parameter case

naturally extend to time-varying settings, with only negligible additional terms.

Our results are complementary to existing frameworks. The novelty lies in providing a
methodological foundation that confirms the validity of robust regression estimation in an
extended regression space. The fundamental theory in this area traces back to Lai and Wei
(1982), who studied regression models with heteroskedastic martingale difference noise under
eigenvalue-based assumptions. Alternative methods, such as bootstrap procedures, see Hall
et al. (2012); Boldea et al. (2019), are widely used in regression analysis but may not be
directly applicable to such a general class of regressors and regression noises. In contrast,
we demonstrate that White-type standard errors remain applicable and computationally

straightforward.

All theoretical results are supported by detailed, rigorous proofs. Monte Carlo simulations
confirm that the proposed robust regression estimators perform well in finite samples. Overall,
the framework developed in this paper is particularly suited to modelling economic and

financial data, where heterogeneity, structural change, and dependence are inherent features.

The remainder of this paper is organised as follows. Section 2 presents the regression
setting with the extended regression space, accommodating heterogeneity and dependence,
and outlines the theoretical results for infeasible and feasible t-statistics in the case of fixed
parameters. Section 3 extends the analysis to the time-varying regression parameters. Sec-
tion 4 addresses regression modelling with missing data patterns. Section 5 illustrates the
flexibility of our robust estimation method by its application to the estimation of an AR(p)

model generated by a stationary martingale difference noise. Sections 6 presents Monte Carlo



simulation results. In Section 7, we provide an empirical application of the robust regression
framework to modelling asset returns. Finally, Section 8 concludes. Proofs and additional

simulations are provided in the Supplemental Material.

2 OLS estimation in general regression space

In this section, we focus on ordinary least squares (OLS) estimation in an environment that

permits general heterogeneity in regression modelling. We analyze the model

ye = Bz + uy, (1)

where 3 is a p-dimensional parameter vector, z; = (21t, ..., 2pt)’ 1S a stochastic regressor and
u; is an uncorrelated noise term. To include an intercept, the first component can be set as

z1t = 1. We refer to the collection of {z;, u;} jointly as “the regression space”.

An applied researcher may want to work within a regression space that accommodates a
wide range of regressors and regression noises, without being hindered by restrictive technical
assumptions. Ideally, such a setting should permit regressors exhibiting non-stationarity and
undefined generic structural change, while enabling estimation and inference under weak

theoretical constraints that do not require empirical verification.

Our goal is to extend the OLS estimation procedure to a broad regression framework
defined by baseline assumptions aligned with empirical research practice. These assumptions
cover a wide variety of types of potentially non-stationary regression variables encountered
in applied work. The framework achieves a level of generality comparable to that in Giraitis
et al. (2024), which addresses testing for absence of correlation and cross-correlation under

general heterogeneity.

We begin with specifying the structure of an uncorrelated regression noise u;. Suppose
that
ur = heey, (2)

where {e:} is a zero mean stationary uncorrelated martingale difference noise, and {h:} is
a deterministic or stochastic scale factor independent of {e;}. The following assumption

formalizes these conditions.

Assumption 2.1. {g;} is a stationary martingale difference (m.d.) noise with respect to
some o-field filtration F;, such that

Eles|Fi_1] =0, Eeb <oo, Ee?=1.

The sequence {e.} is independent of {h;}. Moreover, variable €1 has a probability density

function f(x) satisfying f(z) < ¢ < oo for all |z| < xg, for some xy > 0.



The information set F; is generated by the past history F; = o(es, s < t) and possibly other

variables.

A typical example of an m.d. noise in applied work is provided by the ARCH/GARCH
family and the class of stochastic volatility processes. The specification (2) therefore allows

for conditional heteroskedasticity in ;.

We next specify the regressors z; = (214, ..., zpt)’ which form the key structural component

of our regression space. For kK =1, ..., p, the regressors can be written as

Zkt = Mkt + 9ktNkt, t= 17 w1 (3)
where 7y = (N1t,...,mpt)" is a stationary sequence, g+ = (git, ..., gpt) are deterministic or
stochastic scale factors, and gy = (g1, ..., ppe)’ is a vector of deterministic or stochastic

means. We assume that {uq, g, hi} are independent of {e;, 7;}. To include an intercept in

model (1), we set

210 = 1= p1g +gume, p1e=0, gu=mn=1 (4)

We further suppose that in (3) Eng = 0 except for the intercept (4), where 1y, = 1.

In summary, the admissible regressors {z;} in our setting are obtained by shifting and
rescaling a short-memory stationary process {n;} by the mean process u; and the scale factor
gt

2o = pe + Iy, Iy = diag(gue, - gpt)

The underlying stationary sequence {n;} is the fundamental component structuring re-
gressors z;. Estimation of the regression parameter § requires only mild assumptions on
{pt, g+ }, and short-memory dependence assumption on 7, satisfied by ARMA and related
stationary time series models. This framework eliminates the need for additional empirical

validation.

Definition 2.1. A (univariate) covariance stationary sequence {&} has short memory (SM)

Zf Zzozfoo ’COV(£h7§0)| < 0.

Assumption 2.2. 5 = (914, ..., M)’ is an Fy—1 measurable sequence with E[n,%t] =1 and
E[n,%t] < 00.

(i) For k,j = 1,...,p, the sequences {ni} and {njmit} are covariance stationary and have
short memory (SM).

(i) The matriz Elmny] is positive definite.

The novelty of this regression framework lies in the structural specification (3), which

accommodates regressors z; = (21, ...., zpt) that may be deterministic or stochastic, and



stationary or non-stationary. This flexibility arises from allowing a broad class of scale factors

and mean processes {h¢, gt, 11 } which brings the OLS estimation closer to empirical practice.

The estimation framework also accommodates triangular arrays of means and scale fac-
tors: (,ut,gt,ht, t=1, ,n) = (,um,gnt,hnt, t=1, ,n) Throughout the paper, we assume
that these quantities may depend on the sample size n. For brevity of notation, the subscript

n 1s omitted.

The underlying stationary noise component 7; in the regressors z; in (3) is weakly exoge-
nous with respect to the stationary m.d. noise &; in u; = hsey. The mean and scale factors
{1, g+ } are independent of {e;}, though they may be dependent on {h;}. Overall, {pu, g¢, h+}
are mutually independent of {n,e;}, while potential dependence among {x.}, {g:} and {h:}

is unrestricted.

The processes ug: and gg: can be interpreted as conditional mean and variance, pg =
Elzi |Fy], and g3, = var(zp|Fy) of g, where Fi = o(ps, g, he,t = 1,...,n) denotes the

information set generated by the means and scale factors.

Denote for k=1, ..., p,

n n
o= D bl v=) gk (5)
t=1 t=1

D = diag(vi,...,vp), Dy =diag(vgi,...,vgp).

We write a,, <, by, if ap, = Op(by) and by, = Op(an,).

Assumption 2.3. The scale factors hy > 0 and g > 0 are deterministic or stochastic non-
negative variables such that, for k=1,...,p,
2 2
maxi<t<n g maxi<t<n M,
st =0p(l), 5 = 0p(1), (6)
Ygk Ygk
Dot M% Dot N% hi 2 2
: 2 L= OP(1)7 : L = Op(1)7 Vi =p vgkv Vg —>p O0. (7)
Vok Vi

Assumptions (6)—(7) impose only mild restrictions on the means p; and scale factors g;. In
particular, condition (6) resembles the Lindeberg condition in the classical Lindeberg—Feller
central limit theorem, as it excludes the possibility that the OLS estimation is dominated by

a single extreme observation of z;.

The first restriction on gg; in (6) is necessary. For example, consider the regressor z; =
g, t =1, ..., n, with scale factors g =1 and g0 = g3 = ... = g, =0, so that zo0 = 23 = ... =
zn = 0. In this case, the OLS estimator of § is inconsistent, and such a scale factor g; does
not satisfy (6).

The second condition (7) ensures that OLS estimation is driven by the stochastic com-

ponent g:1; of the regressor z;, rather than by deterministic or stochastic drift in .



In the presence of an intercept, condition (7) further implies that Y 1, h? =, n, since
v3 =, vgl, g1t = 1, vzl =n, and v¥ = Y | h.

To estimate 8 = (f1, ..., Bp)’, we use the standard OLS estimator
N n 1 n
B= (=) (D 2ws) (®)
j=1 j=1

computed from the sample y;, z;, 7 =1, ..., n.

Consistency. We first establish the consistency of the OLS estimator B .

Theorem 2.1. Suppose that (y1,...,yn) is a sample from the regression model (1) and As-
sumptions 2.1, 2.2 and 2.3 are satisfied. Then, the OLS estimator B 18 consistent, i.e.

D(B = B) = (v1(B1 = 1), s 0p(Bp — Bp)) = Op(1). (9)

This result implies that the k-th component Bk; of the OLS estimator is vi-consistent, that
is, Bk — By = Op(vk_l). The convergence rate vy may deviate from the conventional \/n rate

and may differ across components. From the definition of vy, and vgy, it follows that

if gre, he > ¢ > 0 for all t,n, then vg, vy > cv/n. (10)

Asymptotic normality. The asymptotic normality of an element Bk of the OLS estimator,
as well as the computation of its standard errors, requires additional assumptions on the scale

factors and the stationary processes {n,¢t}.

Assumption 2.4. (i) For k,j = 1,...,p, the sequences {e?}, {njmmesr} and {nje?} are

covariance stationary and have short memory (SM). (i) For k=1, ...,p,

2 12 2 12
maxi<i<n giphy _ maxi<e<n My _
o2 = op(1), o2 = op(1). (11)

Assumption 2.4 is not required when ¢; is i.i.d. Together, Assumptions 2.3 and 2.4(ii) exclude
cases in which the mean process pu; or a few extreme observations of z; or u;, dominate the
estimation of the regression parameter. Overall, these assumptions are mild. They accom-
modate both deterministic and stochastic means u; and scale factors h¢, g; that may change
abruptly over time unlike other theoretically rigorous treatments which restrict structural
change to be deterministic and smooth. This flexibility makes the framework particularly
suitable for modelling financial data, as it allows for volatility jumps, commonly observed in
empirical finance (see, e.g., Eraker et al. (2003)). In modern macroeconomic VAR models,
the scale factor h; in the uncorrelated noise representation u; = he; is typically assumed
to be stochastic (see, e.g., Chan et al. (2024), Carriero et al. (2024)), which our framework

naturally encompasses.



Lemma 2.1 below shows that Assumptions 2.3 and 2.4(ii) holds for regressors z; and noises
ug with bounded 4 + 6 moments satisfying (10). The following example provides additional

sufficient conditions.

Example 2.1. Assumptions 2.3 and 2.4(ii) are satisfied by regressors z; and noises u; whose
scale factors hy, g; and means p; satisfy 0 < ¢ < hy, gir < C, ||| < C, where 0 < ¢, C < o0
do not depend on t,n or k =1,...;p.

When 0 < ¢ < hy < C, ||| < C for all t,n, Assumptions 2.3 and 2.4(ii) hold for scale

factors gp; satisfying

: 2
ming—i,__n g,
> 9h

t=1 Y9kt

This condition is, for example, satisfied when gi; follows a unit root process defined by
gt = Z’;:l &;, where {¢;} is a sequence of i.i.d (0,0?%) random variables with finite moments
of order # > 2. The idea of modelling parameters as unit root processes was discussed, for
example, in Nyblom (1989b).

We now describe the infeasible standard errors ,/wgi using the notation:

_ n /! o n /,,2
S.e = Zt:l 22 Szzuu = Zt:l Rty

Q, = (E[Szz ’f;])_lE[szzuu ‘}-;:](E[Szz |~7:n*])_1 = (ij)a (12)

where wj;, denotes the (j, k)-th element of the matrix €,. The infeasible standard error of

Ek is defined as /wgg, i.e., the square root of the corresponding diagonal element of €2,,.

The generality of our regression setting limits the multivariate asymptotic theory that can
be established for Bt. While a full joint distribution of B\t is not available, we can derive
asymptotic normality for linear combinations a’ B\ and then construct feasible inference for

individual component [y,.

Existing literature typically imposes stronger assumptions on regressors and errors such as
mixing regressors (White, 2014, Theorem 3.78), locally stationary regressors in (Zhang and
Wu, 2012, eq. (2.3)), or near-epoch dependent errors in (Hall et al., 2012, Assumption 8).

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 and Assumption 2.4 hold.
Then, for any a = (a1, ...,ap) # 0, the OLS estimator B satisfies

a'D(B — B)

In particular, for k =1, ...,p, the t-statistic for B satisfies

Br — Bi
WKk

—a N(0,1). (14)



Property (13) is difficult to implement in practice because it requires estimation of the un-
known matrices D, €2, except in the special case a’ = (0, ..., 1,...0) with only the k-th element
nonzero. In this case, (13) reduces to (14), and the infeasible standard error /wg, can be

consistently estimated by
Qn =57 S.cau5 = @), U=y — Bla. (15)

The feasible standard error /@y, is the square root of the diagonal element Wy of (AZn

Corollary 2.1. Under the assumptions of Theorem 2.2, for k=1,...,p, as n — oo,

B — B Wk 1
———" =  N(0,1), —= =140,(1), +wpk =pv; . 16
Tkk d ( ) Wi p( ) kk ~p Vg ( )

This result is the main contribution of Section 2. It enables straightforward computation of
standard errors and the construction of confidence intervals for S in the extended regres-
sion framework. Notably, the estimator ﬁn coincides with the heteroskedasticity-consistent
standard error estimator of White (1980).

Remark 2.1. The consistency rate vy, = (3 _p_; gith?)l/ 2 for the parameter 3 may take the
form vy ~ en® for any a > 0, ranging from super-slow (0 < o < 1) to super-fast (a > 1)

convergence. To illustrate this, consider the regression model

ye = B1+ Peza+ Pazze +wy,  ug = hyey with by =1,
2kt = et Gre =t/ for k= 2,3,

where ag > 1, 0 < as < 1, and {nx}, {na}, {et} are i.i.d. N(0,1). Then v; = /n and
1/

-1/2 . .
Vg~ n/2 for k = 2,3, producing different convergence rates across parameters. Even

in this simple case, the usual multivariate asymptotic normality for \/ﬁ(ﬁ — f3) does not hold.

Corollary 2.1 allows us to establish the asymptotic power and consistency of a test for testing

the hypothesis
Ho:ﬂk:ﬂgv Vs. Hl :/Bk#/Bl(g)?

i.e., whether the k-th element of the regression parameter 5 = (B1,...,08p) is equal to a

specific value /3.
Corollary 2.2. Suppose that ﬁg # Br. Then, under the assumptions of Corollary 2.1,

_ By, — B9
V Wk

t =p Uk —p 00. (17)

We conclude this section with a lemma that provides simple sufficient moment-type conditions

for the validity of Assumptions 2.3 and 2.4(ii). In particular, condition (10) implies (19).
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Lemma 2.1. Suppose that for k =1,...,p,

Ezl, < ¢ Elw[**? <c for somed >0, (18)

n/vi = Op(1), n/fug = O0y(1), (19)

where ¢ < 0o does not depend on t,n. Then Assumptions 2.3 and 2.4 (i) hold.
In particular, (19) is satisfied if ming— . ht_1 = O0p(1), ming—1,__, g,;fl = 0p(1).

The regular estimator of standard errors in OLS regression estimation is given by

n

O (st —1-~2 =2 -1 ~2

Qb = 5152 52=n Zuj. (20)
j=1

Unlike the robust standard errors /Wi, these conventional standard errors may produce

coverage distortions, particularly when heteroskedasticity or heterogeneity in g, hy, or ug is

present, see Section 6. This underscores the robustness and strong empirical performance of

the normal approximation in (16).

In this section, we have provided a rigorous validation of the asymptotic normality of
feasible t-statistics for the components of the OLS estimator in linear regression models with
general heterogeneity. The assumptions imposed are mild yet flexible, allowing a wide class
of (possibly nonstationary) regressors and noise processes beyond those typically considered
in the existing literature. Some conditions on scale factors are analogous to the Lindeberg
condition and remain necessary. Our framework complements, rather than replaces, prior
approaches; for instance, near-unit-root regressors Georgiev et al. (2018) require a distinct
theoretical treatment. Although bootstrap methods, see, e.g., Hall et al. (2012), Boldea
et al. (2019), are widely applied in regression analysis, they may not extend to the heteroge-
neous structures considered here. By contrast, we demonstrate that the heteroskedasticity-
consistent standard errors of White (1980) remain applicable and computationally straight-

forward.

In this paper we focus on the regression model (1), where the regression noise u; in (1) is
uncorrelated. Extending the asymptotic theory to account for dependence in u; is a natural

next step and is currently under consideration.

Detailed proofs of all results are provided in the Online Supplement.

3 Time-varying OLS estimation in extended regression space

This section demonstrates further advantages of the theory of regression estimation with a
fixed parameter, developed in Section 2. Thanks to the flexible setting, estimation of time-

varying parameters naturally follows from our theory for fixed-parameter regression in the

11



extended space, along with bounding of some negligible terms.

In the previous section, we discussed the estimation of the regression model (1), y; =
B'zj + uj, with a fixed parameter 5. We now extend the model by allowing the regression

parameter to vary over time. Specifically, we consider the model
yj = ﬁ}zj +uj, j=1,..,n, (21)

where the regressors z; and the regression noise uj, as defined in (3) and (2), remain un-

changed. That is, they belong to the same regression space as in Section 2.

The primary objective is to develop a point-wise estimation procedure for the path
B1, ..., By of the time-varying parameter 3; in model (21), while preserving the same regression

space introduced in Section 2.

The literature on estimation of time-varying regression parameters 3; is extensive. It
primarily focuses on estimation and testing for parameter stability under relatively strong
assumptions on the regressors and regression noise. For instance, regressors are assumed to
be locally stationary in (Vogt (2012), model (3)), stationary and strongly mixing in (Fu et al.
(2023), Assumption A.1) and strictly stationary in (Hu et al. (2024), Assumption P(d)). It
is clear that the class of regressors considered in our setting is broader, and they may be

neither mixing nor stationary.

The objective of this section is to describe the extended regression space of regressors z;
and disturbances u; that ensures the asymptotic normality of the feasible t-statistic estimating
the components of the time-varying parameter 8;. We show that, as long as the regressors
and the disturbance follow the structure z; = u; + I and u; = hey, the class of admissible
means p; and scale factors g¢, hy is very broad and characterized by weak restrictions that

may not require empirical verification.

Further extensions of the regression space are possible. For example, the weakly exoge-
nous component 7, of the regressors z; in our paper is assumed to be a short-memory process.
In contrast, Hu et al. (2024) demonstrate that estimation of the time-varying parameter [,
also permits weakly exogenous, strictly stationary regressors z; that exhibit long-memory

behavior.

While most assumptions on the regressors z; and regression noise u; remain unchanged
from Section 2, the estimator requires some modifications. Under an additional smoothness
assumption on {f;}, the time-varying OLS estimator Bt of parameter f; at time ¢ is the
standard OLS estimator for a fixed regression parameter, obtained by regressing y; = bn/ 7Y

1/2
on zj = bnt]

Z:’ZJNQ Z yj = ant]Z]] I(mejzjyj). (22)
= = j=1

12



The weights by, ;; are generated as follows:

|t = Jl

buty = K(*—

)a tv] = 17"'7”7 (23)

where H = H,, is a bandwidth parameter such that H — oo and H = o(n). The kernel
function K is bounded and there exist ag, 6 > 0 and # > 3 such that

K(x) > ap>0, 0<z <4, (24)
K(z) < Cz7% z>0.

For example, (24) is satisfied by functions K(z) = I(z € [0,1]) and K(z) = p(z) where p(z)

is the probability density function of the standard normal distribution.

We impose a smoothness assumption on the time-varying parameter 3;, which may be either

deterministic or stochastic.

Assumption 3.1. For some v € (0,1] and fort,j=1,...n

t—7l\2
B116, 811 < (=2, (25)
where ¢ < co does not depend on t,j,n

Next, we briefly outline how our asymptotic theory for the time-varying robust estimator
builds on the results from Section 2 on fixed-parameter regression estimation and the smooth-
ness assumption (25). To demonstrate this, we introduce the following regression model with

a fixed parameter § = [;:

* ~ L~ o~ 1/2 .
Yy, = Bz +uj, u;= bn/tjuj, i=1..,n. (26)

Notice that the OLS estimator 3 of the fixed parameter 3 satisfies:

Zz” ) (D oz =8+ Z%f; %;). (27)
Jj=1 j=1

Since y; = yj + (Bj — Bt)'z;, the time-varying estimator B\t given in (22) satisfies:

n n

B\t—ﬁt = (Z%%},)_I(Z’Zj{yj + (B85 — Bt) Z]})
j=1 j=1
= B—ﬁ‘i‘Rt, Ry = (Z%%)_I(Z% J(ﬂ /Bt)) (28)

j=1 j=1

Notice that B S in (28) does not depend on (. Additionally, the regression space in

estimation of the fixed parameter in Section 2 permits rescaling, so premultiplying by the
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kernel weights b:l/ 152] does not change the structure of regressors z; = (21, ..., 2pj)’ and u;:
they still satisfy the settings (3) and (2). Consequently, the model (26) is covered by the
regression model (1) with a fixed parameter, and the asymptotic results for B\ — f follow from
Section 2. The main technical task in this section is to show that the remainder term R; in

(28) is negligible, which follows from the smoothness assumption (25).

The regressors z; and regression noise u; belong to the same regression space as defined
in as in Section 2. While the assumptions on the stationary process {7;} and the martingale
difference noise {¢;} remain unchanged, for simplicity, we replace the previous conditions on
the scale factors g, h; and the means p; with simple sufficient assumptions similar to those
used in Lemma 2.1. As before, the scale factors {h;, gj, tj} can be deterministic or stochastic,

may vary with n, and are independent of {n;,&;}.

Denote

2 _ n 2 2 12 2 _ n 2 2 —
Ukt = Zj:l bn7t]gkjh’]7 ng,t = Zj:l bn7tjgkj, k= ]., ey P

Assumption 3.2. z; and u; are such that, for k=1,....p,

Hjvi, = 0p(1),  H/vg, = 0p(1), (30)

Ezl, < ¢, Elu|*™ <c for some § >0, (29)

where ¢ < oo does not depend on t,n.

It is straightforward to show that (30) is valid if gg¢, hy > ¢ > 0 for all ¢, n.

To describe the infeasible standard errors | /g, we use:

_\"n ., X 12 2
Sezt = Zj:l bn,tJZJZja Sezuut = Zj:l bn,tjzjzjuj7

Qi = E[Szzﬂf|F;]71E[Szzuu7t|f;]E[Szz,t|F;]il - (ij,t))
where wji,; denotes the (j,k)-th element of the matrix €2,;. The infeasible standard error

\/Wkk,t is defined by the diagonal element wyy; of the matrix €2,,.

The next theorem establishes the consistency rate and asymptotic normality property for the
components of the time-varying OLS estimator Et = (,/6’\”, . Ept)’ , and allows for arrays of

integers t = t,, € [1,...,n], which may depend on n.

Theorem 3.1. Suppose that (yi,...,yn) is a sample from a regression model (21). Assume
that Assumptions 2.1, 2.2, 2.4(i), 3.1 and 3.2 hold. Then, for1 <t=t, <nandk=1,...,p:

Brt — B = Op(H™Y? 4 (H/n)?), (31)
Brt — Bre o J(29+1)
o —a N(0,1) if H=o(n®/(2F1)), (32)
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and \/WOkkt =p H-1/2,

The consistency rate in (31) is determined by the bandwidth parameter H and the smoothness
parameter v € (0,1) in (25). The condition H = o(n®/(*¥*1) ensures that in (32) the bias

term remains negligible.

As in the fixed-parameter case, for (z;,u;) from the extended regression space, the asymp-
totic normality can be established in point-wise estimation for each individual component Bkt
of Bt'

The unknown standard error /Wiy ; can be consistently estimated by:
Qnt = S;;tszz@ﬂ,tszizl,t = ((’/ij,t)7 aj =Y — 5521 (33)

The feasible standard error /@y ¢+ is defined by the diagonal element Wy, of ﬁm.

Corollary 3.1. Under assumption of Theorem 3.1, for k =1,....p, and H = o(n®/7+1)
it holds:

~

B —Bu L, pr(0,1), Dbt 1y 0, (1). (34)

A /(Dkkﬂg WEkk,t

Corollary 3.1 allows us to establish the asymptotic power of the test of the hypothesis

Ho: Bre = By, vs. Hi: B # By,

based on the t-statistics (Bkt — BY) )\ @kt

Corollary 3.2. Suppose that |82, — Bre| > a > 0 for t = t, € [1,...,n] as n — co. Then,

under assumption of Corollary 3.1,

ﬁkt - 5/%
Wkl ¢

=, H'/? =, . (35)

The estimator (Alm used to obtain robust standard errors in (33) is a time-varying version
of heteroskedasticity-consistent estimator of standard errors by White (1980). Simulation
results confirm that it does not produce coverage distortions in the estimation of §; under

the settings considered in this section.
In conclusion, we provide examples of smoothly varying deterministic and stochastic

parameters 3; that satisfy Assumption 3.1.

Example 3.1. A standard example of a deterministic time-varying parameter 8; which sat-
isfies Assumption 3.1, is By = P = g(t/n), t = 1,...,n, where g(-) is a deterministic smooth
function that has property |g(x) — g(y)| < Clz —y|. Such B satisfies (25) with v = 1.
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A standard example of a stochastic smooth parameter B; is a re-scaled random walk By =
Btn = n~1/2 Z;Zl ej, t = 1,...,n, where {e;} is an i.i.d. sequence with Ele;] = 0 and
E[e?] < oo. It satisfies (25) with v = 1/2, that is fort > s,

B~ )" = n'E(Cj 1) <Ot —s)/n.

The above results are equipped with thorough and mathematically rigorous proofs, which

can be found in the Online Supplement.

The key new features in the estimation of time-varying parameter (§; are similar to those
highlighted in the estimation of the fixed parameter in Section 2. Although the computation is
straightforward, establishing the validity of the robust standard errors \/@ in the extended
regression space of (2, u) is challenging because the scale factors hy, g4, ¢ in model (21) are
unknown and potentially random, and highly general, while the asymptotic behaviour of
the wir+ may not be well-defined. The asymptotic normality of a single component of the
estimator can still be established, even though a full multivariate asymptotic theory is not
available. Unlike most existing literature, f8; is permitted to evolve as a smoothly varying

stochastic process.

4 Regression with missing data

In the previous sections, we showed that the extended regression space enables the estimation
of both fixed and time-varying regression parameters. It offers several theoretical advantage,
in particular, the ability to estimate regression models in the presence of missing data. Given
the importance in empirical regression analysis in situations where some observations y;
or regressors z; are missing, see, e.g., Enders (2022), we now present new and somewhat
unexpected results on regression estimation with missing data. We show that the foundational
assumptions underlying the constriction of regression space also allow us to accommodate an

a broad range of missing data patterns.

In this section we suppose that instead of the full sample (y1,21), ..., (Yn, 2n), We observe a

subsample
(yk’uzk’l)a---,(ykzvvzkzv)? N <n, (36)

of dependent variable 3; and regressor z;. Our primary interest is to estimate both fixed and

time-varying regression parameters using the subsample (36).

To that end, we represent the observed data as partially observed sample

(gjvgj) = (ijjv szj)? J=1..n (37)
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where 7; is missing-data indicator. In (36) it is defined as

1 for j=ki,ko,...,kn, where ki <ko<---<ky<n,
Tj = (38)
0 otherwise.

We set 7; = 1 if both y; and z; are observed, otherwise 7; = 0. Throughout this section, 7;
is treated as a sequence of random or deterministic variables, allowing for regularly missing,

block-wise missing, or randomly missing data patterns.

In order for the theoretical results of the previous section to apply, we impose the following
assumptions on the missing data indicator 7, the regressors zi; = pgt + grenie in (3) and the

regression noise u; = hyey in (2).

Assumption 4.1. The missing-data indicator {T;} is assumed to be independent of {e¢,m}
in (2) and (3).

Assumption 4.2. (i) Ez{, < ¢ and Elu|**° < ¢ for some § > 0, where ¢ > 0 does not
depend on k,t,n.
(ii) ggt > ¢ > 0 and hy > ¢ > 0, where ¢ does not depend on k,t,n.

(iil) ¢, m4 satisfy Assumptions 2.1, 2.2, and 2.4(i).

Estimation of a fixed parameter. Suppose that y; = 'z + u; follows the regression
model (1) with a fixed parameter 8 as in Section 2. Our primary interest is to estimate
the parameter § using subsample (36). In view of (1), we can write the partially observed

regression model as

g = =18 m+w),
nw o= Ba+u, w=mnw={rhle. (39)

In (39), the regressors z; and the noise u; can be represented as

Zt = [t + GutMkt, Pkt = Telkts Gkt = TtGkt (40)

ug = hey,  hy = Tihy.

They belong to the regression space described in (2) and (3). Therefore, parameter § and
the correspondent standard errors in model (39) can be estimated using the OLS estimator

,g and &\}kk:

= (X227 OCam), Q=52 S=wmSs = @), (41)
t=1 t=1

R _ N 352 o Al
Sz = Zt:l ZtZt, Szzaa = Zt:l 22Uy, Ut = Yt — B'z.
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Theorem 4.1. The OLS estimator 3 of parameter 3 in regression model (40) with missing
data has the following asymptotic properties. If Assumptions 4.1 and 4.2 hold and n/N =
Op(1), then, for k=1,...,p, as n — oo,

Br — Bi

Wkk

—q N(0,1), Wik =p n Y2 (42)

Remark 4.1. Theorem 4.1 shows that ignoring missing data does not affect the estimation
of the fixed parameter. That is, the researcher can compute the estimators B and /Wy
directly using subsample y, z¢;, j = 1,..., N:

N N
> -1 AN _ _ —~
/6 - ( Z zkj z;g-]) ( Z ijykj)a QTL - 5*7;25*72zm5*7;z = ((.U]k),
=1 =1

_ N / _ N 152 o= ol
Sizz = Zj:l Pkj Ak Sy zotn = Zj:l Phj Pk Uy Uk = Yk — B R; -

Estimation of a time-varying parameter. Assume now that y; = 3}z + u; follows the
regression model (21) with time-varying parameter [3;, where regressors z; and regression
noise u; are as in (3) and (2). We are interested in estimating the parameter f; in the
presence of missing data using the subsample (36). Similarly to (39), we base the estimation

on the partially observed regression model with a time-varying parameter,
gj :6§z]+17], ] = 1,...,’0, (43)

where regressors z; and the noise u; are defined as in (40). They belong to the regression
space described by (2), and (3) and thus results of Section 3 on the estimation of time-varying

parameter 3; apply.

We show in the following theorem that under Assumptions 4.1 and 4.2, parameter [;
and standard errors can be estimated point-wise at each time ¢ = 1,...,n provided that the

missing data pattern satisfies the following condition:
n

H/N; = 0p(1), Ny=> Tibny. (44)
j=1

This condition holds, for example, if 7; =1 for |j — t| < eH for some € > 0.

The estimator Bt and the estimator of the robust standard errors Wy, given in (22) and
(33) are defined as

n n
a ~ ~\—1 ~ ~
Beo= (Do tnaiZE) (D baaiZil), (45)
j=1 j=1
Qe = S5, SzaniSmy = Gjne), U =75 — BjZ

2z,
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Theorem 4.2. The OLS estimator Bt of the time-varying parameter [B; in regression model
(43) with missing data has the following properties. Assume that1 <t =t, < n, Assumptions
4.1, 3.1 and 4.2 are satisfied and that the condition H/N; = O,(1) holds. Then, for k =

1,...,p, as n — oo,

Bt — B = Op(H™Y2 1 (H/n)"), (46)

Brt — Bt .

- = _>d N(O> 1) ZfH = O(n27/(2’y+1))7 (47)
Okt

Okt =p H . (48)

5 Estimation of a stationary AR(p) model with an m.d. noise

In this section we focus on another practical application of our regression framework developed
in Section 2. We show that it covers the estimation of parameters of a stationary AR(p) model

driven by a stationary martingale difference noise &;:

Yt = 0 + P1Yi—1 + ... + OpYi—p + €4, (49)

where parameters ¢y, ..., ¢, are such that the model (49) has a stationary solution. Xu and
Phillips (2008) developed estimation theory for AR(p) model y; = ¢o+P1yi—1+...+Ppyr—p+us,
when u; = hie; where hy is smoothly varying deterministic sequence and a m.d. sequence
g; has property E[e?|F;_1] = 1 a.s. Giraitis et al. (2018) were among the first to analyze
the distortions of standard errors caused by m.d. noise in estimation of ARMA models.
This paper shows that the variance of the parameter vector ¢ converges to a well-defined
limit; however, its complex structure complicates the estimation of the limiting variance and
the corresponding standard errors in empirical applications. They restricted the estimation
of standard errors to AR(1) and MA(1) models. In the case of AR(p) model, using our
method we are able to estimate standard errors for any p without relying on asymptotic
approximations which is the main novelty and contribution of this section. Notice that the

model (49) can be written as a special case of the regression model (1),
yr = Bz +ug,  up = e (50)

Here, the parameter 8 = (B1,..., Bp+1) = (¢Po,....,¢p)" is fixed, and the regressors z; =
(2165 22t s 2p11t) = (L, Yt—1, Y4—2, ..., Yt—p)’ are stationary random variables. It is straight-

forward to verify that the regressors

2kt = Mkt + Grtiets Pkt = Ely—k) = Byi,  gee =1, Mkt = Yot — Elye—i]

for k = 2, ..., p+1 satisfy the regression assumption (3). In the theorem below, we assume that

the standard stationarity conditions on parameters of the AR(p) model (49) are satisfied, see
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e.g. Theorem 3.1.1 in Brockwell and Davis (1991), which ensure the existence of a stationary

solution
[ee) o0
Y= p+ Zajet,j, where Z laj| < oo, u= Ey. (51)
j=0 Jj=0

We assume that &; satisfies Assumption 2.1 and 7y = (y¢—1, Yt—2, ..., Yt—p)’ satisfy Assumptions
2.2 and 2.4(i). These assumptions impose only mild restrictions on the m.d. noise ¢, and their
validity can be verified for typical examples of uncorrelated m.d. noise, such as ARCH-type

processes.

The OLS estimator 3 of 3 in regression model (50) is defined as in (8) and Wy as in (15).

Theorem 5.1. Suppose that AR(p) model (49) with m.d. noise £; has a stationary solution
as in (51), that B < oo and that (4,m;) satisfy Assumptions 2.1, 2.2, and 2.4(i). Then the
OLS estimator B of parameter [ in regression model (50) has the following properties: for
k=1,...,p4+1, asn — oo,

/B’“W\/:Tf’“ —q N(0,1), Dk, =p 012, (52)
The Monte Carlo results presented in Section 6.4 demonstrate that the robust OLS estimation
produces correct 95% confidence intervals for 3;, whereas the standard OLS method exhibits
coverage distortions, when the noise ¢; is not i.i.d. This finding indicates that the robust OLS
estimator has a broader range of applicability than merely addressing heteroscedasticity, and
that it can also be effectively used in regression settings not covered by the standard OLS

estimation and inference theory.

It is worth noting that the papers by Doukhan and Wintenberger (2008), Bardet and
Wintenberger (2009) and Karmakar et al. (2022) provide advanced theoretical results on the
modelling and estimation of general nonlinear time-varying time series models; however, they

address the linear AR(p) model (49) only in the trivial case of an i.i.d. noise ;.

6 Monte Carlo Simulations

In this section, we explore the finite sample performance of the robust and standard OLS
estimation methods in regression settings, outlined in Sections 2 and 3. We examine the
impact of time-varying deterministic and stochastic parameters, means, scale factors and
heteroskedasticity of the regression noise on estimation. Comparison of simulation results for
standard and robust estimation methods shows that, despite the generality of our regression
setting, estimation based on the robust standard errors produces well-sized coverage intervals
for fixed and time-varying regression parameters 5 and S, while application of the standard

confidence intervals leads to severe distortion of coverage rates.
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Figure 1: Plots of v, 2o, us in Model 6.1.

6.1 Estimation of a fixed parameter

We generate arrays of samples of regression model with fixed parameter and an intercept:

yr = P14 Bozor + Bazae +wp,  wp = hyer, B = (B1,B2,03) =(0.5,04,0.3).  (53)

We set the sample size to n = 1500 and conduct 1000 replications and set the nominal coverage
probability at 0.95. (Estimation results for n = 200, 800 are available upon request). We also

include a more complex example in the online supplement.

This model includes three parameters and three regressors. We set z1; = 1 and define

Zkt = Mkt + GrtNkt, k= 27 37 (54)
pe = 0.5sin(mt/n) + 1, g = 050,11 + &kt

where &9 = €1 and &3 = e4_9. The stationary martingale difference noise ¢; in wuy is
generated by a GARCH(1, 1) process

e =orer, 0r=1+0.702,+022,, e ~iidN(01). (55)

Model 6.1. y; follows (53) with deterministic scale factors. We set: hy = 0.3(t/n) and
92t = g3 = 0.4(t/n).

Model 6.2. y; follows (53) with stochastic scale factors. We set

t t
1 1
b= 5= DG +025, gu =g = |52 D w| +025.
' Qﬁ;@ +0.25,  go = g3 Nﬁ;wﬂ +0.25

The generating noises {(;, vo;,v3;} are i.i.d. N'(0,1) and independent of {¢;}.

Models 6.1 and 6.2 are regression models with fixed parameters. Examples of plots
of the simulated dependent variable, regressor and regression noise are shown in Figure 1

and 2 (z9; and z3; have similar patterns). To verify the validity of the asymptotic normal
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Figure 2: Plots of v, zo;, uy in Model 6.2.
Table 1: Robust OLS estimation in Model 6.1.
Parameters Bias RMSE CP CPgy SD
051 -0.00570 0.04579 95.0 79.2 0.04544
B9 0.00206 0.03407 954 72.7 0.03401
B3 0.00204 0.03495 94.0 72.9 0.03489

approximation of Corollary 2.1 in finite samples, we compute empirical coverage rates (CP)
for 95% confidence intervals used in robust OLS estimation, for parameter 5. For comparison,
we compute the coverage rates CPg for standard confidence intervals based on the standard
errors (20) used in standard OLS estimation. The robust and standard OLS procedures
share the same estimator E, and whence Bias, root mean square error (RMSE) and standard
deviation (SD). Their confidence intervals differ because the variances (and standard errors)

in their normal approximations are different.

Table 1 reports estimation results for Model 6.1 which contains determinist scale factors.
It shows that coverage rate CP for robust confidence intervals is close to the nominal 95%,
while the coverage rate CPg of the standard confidence intervals drops below 80%. The Bias,
RMSE, and SD are small.

Table 2 shows estimation results for Model 6.2 which includes stochastic scale factors.
It shows that the coverage rate CP for robust confidence intervals is close to the nominal

95%, whereas the standard estimation method produces coverage distortions for parameters
B2 and fs.

Table 2: Robust OLS estimation in Model 6.2.

Parameters Bias RMSE CP CPgy SD
51 -0.00420 0.05117 94.6 92.2 0.05100
5o 0.00208 0.03205 94.6 87.4 0.03199
53 0.00071 0.01542 94.8 85.3 0.01541
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Figure 3: Size, power, and adjusted power (%) for test Hy : f3 = 0 in Model 6.1: 3 =
0,---,0.5, n =200, 800, 1500.

To assess power, we vary 83 in Model 6.1 from 0 to 0.5 and record how often the test rejects
Hy : B3 = 0. Figure 3 reports results for ROLS and OLS at sample sizes n = 200, 800, 1500.
When B3 = 0, ROLS achieves a good size close to the nominal 5%, while the size based on
OLS results starts around 20% and remains heavily oversized even as n increases. For 83 # 0,
power rises monotonically with 83 for both methods. In Figure 3, the blue solid lines represent
power based on ROLS, and the red solid lines correspond to standard OLS. Considering the
OLS estimation has large size distortion, we compute its adjusted power, shown by the red
dotted lines. With small sample size n = 200, OLS appears more powerful for g3 < 0.2,
whereas ROLS catches up and achives good power when 3 > 0.3. For n = 800 and 1500,
both methods already achieve good power around 83 = 0.2. Overall, ROLS provides reliable
size and competitive power across different sample sizes. Similary results are observed for
Model 6.2.

6.2 Estimation of a time-varying parameter

In this section we examine the validity of the normal approximation for the estimator B\t, (22),
of time-varying parameter f3;, as established in Corollary 3.1 of Section 3. We replace the fixed

regression parameter 3 in the model (53) by a time-varying parameter 3; = (01, Bat, B3t)":
Yt = Bit + Barzat + Batzse + ur,  ur = ey, (56)

where z1; = 1 and 294, 234 are defined using o, ugr and 19¢, 93¢ as in (54).

We consider two simulation models. Model 6.3 assumes deterministic parameters and
scale factors, while Model 6.4 combines deterministic and stochastic parameters and scale

factors.

Model 6.3. y; follows (56) with g4 as in (55). The scale factors hy, gat, g3 and parameters

B, Bot, B3 are deterministic:
hy = 0.5sin(2nt/n) +1, go = g3 = 0.5sin(nt/n) + 1.
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Figure 4: Robust 95% confidence intervals for time-varying parameters (1, 82¢, 83 in Model
6.3: n = 1500, bandwidth H = n%5. Single replication.
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Figure 5: Coverage rates (in %) of robust confidence intervals for time-varying parameters
/Blta B2t>53t in Model 6.3: n = 1500, bandwidth H = n0-5.

Bir = 0.5sin(0.57t/n) +1, P2 = 0.5sin(nwt/n)+1, B = 0.5sin(27t/n) + 1.

Model 6.4. y; follows (56) with ¢ ~ i.i.d. N'(0,1) and scale factors:
t
he = 0.5sin(27t/n) +1, goy = ‘n—’y 3 gj‘ 102, gy = 0.5sin(rt/n) + 1.
i=1
Parameters B¢, Por are the same as in Model 6.3, while Bs; is stochastic:

t
Bar = ‘nivzw‘ +0.3(t/n),
=1

where {(;},{v;} are stationary ARFIMA(0, d,0) processes with memory parameter d = 0.4.

We estimate f3; using the estimator B3, (22), where the weights bntj = K(|t — j|/H) are
computed with the Gaussian kernel function K (z) = (2r)~"/2 exp(—22/2) with bandwidth
H=n" h=0.4,05,0.6,0.7.

Figure 4 displays parameter estimation results for a single simulation from Model 6.3.
It depicts the estimates Bkl, - B;m (red line) against the true parameters [i; (blue line),
k = 1,2,3 obtained with the bandwidth H = n0%, and their point-wise 95% confidence
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Figure 6: RMSE for time-varying parameters S1¢, S2¢, B3¢ in Model 6.3: n = 1500, bandwidth
H=n" h=0.4,05,0.6,0.7.

— B — B -~ - CB(95%) — B2 — 3 - - ~CB(95%) —Bs — 5 - -~ CB(95%)

A ol . 04
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

(a) Br,e (b) Ba (c) B3

Figure 7: Robust 95% confidence bands for time-varying parameters (514, 82¢, B3¢ in Model
6.4: n = 1500, bandwidth H = n%5. Single replication.

intervals (grey dashed lines), computed using the robust standard errors. The robust time-
varying confidence intervals cover the true parameters By, t = 1,...,n, for most of the time

points.

Figure 5 reports the point-wise empirical coverage rates (blue line) in time-varying robust
estimation of parameters Sy;, k = 1,2, 3 which are close to the nominal 95% for most of the
time points. Figure 6 shows the RMSE’s for different choices of the bandwidth H = n”,
h = 0.4,0.5,0.6,0.7. As expected, the RMSE depends on the smoothness of the parameter

B and often is minimized by moderately large values of H, for example, H = n%.

Figure 7 reports estimation results for a single simulation from Model 6.4, and Figure 8
displays point-wise empirical coverage rates for robust 95% confidence intervals. For deter-
ministic parameters B1; and (9, estimation quality is good and results are similar to those
obtained for Model 6.3. For the stochastic parameter (3;, the robust point-wise confidence
intervals cover the path of stochastic parameter B3; for most of the time points, see Fig-
ure 7(c). Figure 8(c) shows that coverage rates of robust time-varying confidence intervals
for B3; might be slightly affected by stochastic variation in the parameter and scale factors.

Nevertheless, they are still satisfactory and reasonably close to the nominal 95% coverage.
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Figure 8: Coverage rates (in %) of robust confidence intervals for time-varying parameters
Bit, Bot, B3¢ in Model 6.4: n = 1500, bandwidth H = n05.

Table 3: Robust OLS estimation in Model 6.1 with block missing data (Type 1).

Parameters Bias RMSE CP CPy SD

b1 -0.00818 0.04983 94.60 74.60 0.04915
B2 0.00356  0.03875 94.00 67.90 0.03859
B3 0.00246 0.03840 93.80 70.00 0.03832

6.3 Estimation of regression parameter with missing data

To examine the impact of missing data on the robust and standard OLS estimation based
on partially observed data (yj,, 25, ), (Yjas Zjs ), s (Yjn» Zjn ), WE Use two types of missing data

patterns over the time period 1, ..., 1500.

Type 1. The block of data j € [650, 850] is missing.

Type 2. 500 single observations are missing at randomly selected times.

Tables 3 and 4 report robust and standard estimation results for Model 6.1 with fixed
parameter. Table 3 shows that block missing data (Type 1) do not lead to noticeable changes
in Bias, RMSE and SD, and the coverage rate for robust confidence intervals remains around
95%. At the same time, the coverage rate CPg of the standard confidence intervals is

substantially distorted.

Table 4 shows that randomly missing data do not affect the coverage rate of robust
confidence intervals which remains to the nominal 95%, while the coverage rate of the standard

confidence intervals drops to around 65%. This emphasises the flexibility of the robust OLS

Table 4: Robust OLS estimation in Model 6.1 with randomly missing data (Type 2).

Parameters Bias RMSE CP CPg SD

B1 -0.00567 0.05732 94.30 66.60 0.05704
B2 0.00144 0.04251 95.20 63.50 0.04249
B3 0.00289 0.04128 94.80 64.70 0.04118
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Figure 9: Coverage rates (in %) of robust confidence intervals for time-varying parameters
B¢, Bat, B3¢ in Model 6.3 with block missing data (Type 1), n = 1500, bandwidth H = n%.
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Figure 10: Robust 95% confidence bands for time-varying parameters S, Sot, B3 in Model
6.3 with block missing data (Type 1), n = 1500, bandwidth H = n%5. Single replication.

estimation of the fixed parameter in the presence of block or randomly missing data.
Figures 9 — 11 report estimation results for Model 6.3 with time-varying parameter S;.

Figure 9 shows the coverage rates in time-varying robust estimation with block missing
data (Type 1, shaded region) for ¢ = 1,...,1500. The coverage is close to the nominal 95%,
with some distortion for parameters 51; and B2; and a larger distortion for parameter (3 ;
within the shaded region. The distortion peaks at the centre of the block, as expected.
Although the width of missing data block, 200, exceeds the bandwidth H = n°%® = 39 used in
estimating S, the coverage distortion seems to be offset by the smooth down-weighting of the

data, and the performance of the robust time-varying OLS estimation exceeds expectations.

Figure 10 reports the path of the estimator Bkt and the point-wise robust confidence
intervals, for a single simulation. The robust confidence intervals become wider in the shaded

region, which likely explains the satisfactory coverage performance during that period.

Figure 11 shows that randomly missing data (Type 2) do not distort the robust time-
varying OLS estimation. For all three parameters and time periods t, the coverage rate is
close to the nominal. Overall, robust estimation of time-varying parameter does not appear

be affected by randomly missing data.
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Figure 11: Coverage rates (in %) of robust confidence intervals for time-varying parameters
B, Pat, B3¢ in Model 6.3, 500 randomly missing data, n = 1500, bandwidth H = n?5.

Table 5: Robust OLS estimation in AR(2) model (57).

Parameters Bias RMSE CP CPgy SD

51 -0.00808 0.05250 94.9 92.3 0.05187
B2 0.00104 0.04183 94.5 75.0 0.04182
B3 0.00356 0.03091 94.8 88.8 0.03070

6.4 Estimation of a stationary AR(p) model

We assess the performance of the robust and standard procedures in the case of a stationary
AR(2) model:

Yt = 61 + /BZyt—l + /BSyt—Q + Et, /8 - (617 /827 ﬂ3)/ = (057 047 0'3)/) (57)

where ; = ese;_1, €; ~ i.i.d. N'(0,1) is a stationary martingale difference noise. The regres-
sors zp = (21,4, 22,4, 23¢)" = (1, yt—1, yr—2)’ include an intercept and the two past lags of y. By

Theorem 5.1, the parameter 8 can be estimated by using the robust estimation method.

Table 5 shows that the coverage rate for the robust OLS estimation is close to the nominal

95%, while the standard OLS estimation exhibits extensive coverage distortion for 32 and fs.

7 Empirical experiment

In this section, we analyze the structure and dynamics of daily S&P 500 log returns, r¢, from
02/01/1990 to 31/12/2019, (sample size n = 7558). We employ robust regression estimation
to assess whether the returns r; can be modelled using a time-varying regression model of
the form

Ty = e+ U, up = ey, (58)

where {g;} is an 1.i.d.(0,1) noise, and the time-varying mean and scale factor g, h: are

independent of {e;}. Our objective is to estimate the time-varying mean pu, the scale factor
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Figure 12: Robust 95% confidence bands for p; in model ( 58) and 1 = hyE|e;| in model
(59), n = 7558, H = n"5.

hi, and to test for the absence of autocorrelation in the absolute residuals |u;| = hye,
thereby assessing the fit of the model (58) to the data.

It returns r; follows the model (58) with i.i.d. noise &, then the absolute residuals |u;|’s

are uncorrelated then for t # s:
cov(|ugl, [us|) = cov(hyler|, hsles|) = E[hehscov(led], |es|)] = 0.

Conversely, if the noise e; exhibits ARCH effects (stationary conditional heteroskedasticity),
the sequence |us| becomes autocorrelated, and the null hypothesis of uncorrelated absolute

residuals |u¢| would be rejected.

We estimate the the time varying mean pu; using the time-varying OLS estimator with
bandwidths H = n%4 n%5 .. n%7. Figure 12(a) shows the estimated path of iy and the
associated 95% confidence intervals for bandwidth H = n®9 indicating that p; is very likely

to change over time.

Assumption (58) implies that
lug| = |re — pe| = hele] = hiEleg| + hy(|ee| — Elel).

Therefore, |tt| = |t — fit] ~ heElet| 4+ he(|ee] — Elet|) and thus v = |uy| follows a time-varying
regression model of the form

Yr = Pt + U, U = GeNy, (59)

where (1 = hyE|es| represents a time-varying intercept, g = h; denotes the scale factor,
and 1, = |gy| — E|ey| is an ii.d. noise. Hence f1; can be consistently estimated using the
time-varying OLS estimator B\lt. Figure 12(b) displays the estimated path of Blt and the
corresponding 95% confidence intervals for 81, = hyE|e| with bandwidth H = n%5, revealing

pronounced time variation in the scale factor h;.
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Figure 13: Robust and standard tests for absence of correlation in subsample of residuals ﬁj,
uj, j € [500,1000], H = n%6  significance level 5%.

Figure 13(a) reports testing results for zero correlation at lags k = 1, ..., 20 in the residual
sequence /ﬂ\t =y — 31,5. We employ the standard test and robust test procedures developed
in Giraitis et al. (2024). Given that the sample size is large (n = 7558) and [ is estimated

06 we restrict the correlation analysis to the

non-parametrically with bandwidth H = n
subsample j € [500,1000]. Both tests provide no evidence of significant correlation within

this subsample, suggesting that the model (58) fits the returns r; well during this time period.

The same is not likely to be true if r; = r; — i follows a GARCH(1,1) process, as
confirmed by the following experiment. We fit a GARCH(1,1) model to the demeaned returns

7"2‘ =Tt — :at?
rF =0, o0 =1.563 x 107% 4 0.8891307 ; + 0.096974r} 2.

We generate a simulated GARCH(1,1) sample Tg1s -+ Tgn, apply the regression model (59) to
the absolute values y; = |r7,|, and compute the residuals, u} = y; — B1;. Figure 13(b) shows
that both standard and robust tests detect significant correlation in residuals uy, confirming

the presence of conditional heteroskedasticity in the simulated GARCH data.

8 Conclusion

The robust OLS and time-varying OLS estimation and inference methods developed in this
paper offer considerable flexibility for modelling economic and financial data. They allow for
general heterogeneity in regression components and for structural change of regression coef-
ficients over time. Moreover, the generalization of the structure of regressors and error terms
further expands the range of empirical settings to which robust OLS regression framework can
be applied. In particular, the paper develops asymptotic theory for general regression models

with stochastic regressors possibly including a time varying mean, and provides data-based

30



robust standard errors that enable the construction of confidence intervals for regression
parameters. The Monte Carlo analysis demonstrates the strong performance of the robust
estimation approach under complex settings, and confirms the asymptotic normality property

and consistency of the proposed estimators.
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This Supplement provides proofs of the results given in the text of the main paper. It
is organised as follows: Section 9, 10, 11 provide proofs of the main theorems. Section 12

contains auxiliary technical lemmas used in the proofs.

Formula numbering in this supplement includes the section number, e.g. (8.1), and
references to lemmas are signified as “Lemma 10.#”, e.g. Lemma 10.1. Theorem references
to the main paper include section number and are signified, e.g. as Theorem 2.1, while

equation references do not include section number, e.g. (1), (2).

In the proofs, C' stands for a generic positive constant which may assume different values

in different contexts.

9 Proofs of Theorems 2.1 and 2.2, Corollaries 2.1 and 2.2, and

Lemma 2.1

Proof of Theorem 2.1. Notice that in view of (1),

n

B-6 = (=) (O uEs+u) -8
j=1

j=1
n n
= Sz_zlszua SZZ = sz'zé-, SZ’[L = Z ZJ’LL]
Jj=1 =1
Recall definition (5) of D and D,. Then

D(B3—pB) = (DS;'D)(D7"S..)
= (DD, ) (DyS.'Dy)(Dy ' D)(D71S.0) = Op(1), (9.1)

since DDg_1 = Op(1) by (7) of Assumption 2.3, D71S,,, = O,(1) by (12.7) of Lemma 12.2.
Moreover, by (12.6) and (12.3),

Dgsz_leg = DgE[Szz |-7'—;]_1Dg +0p(1) = Op(1).
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This completes the proof of the consistency claim (9) of the theorem. O

Recall that for p x p symmetric matrices A, B and a p x 1 vector b it holds:
|AB||sp < |[Allspl| Bllsps  [ABII < [[Allspl[BI],  [[Allsp < [[All;

where ||Al|sp denotes the spectral norm and ||A|| the Euclidean norm of the matrix A.

Recall the definition of the information set F,; = U(,ut, gt,he, t =1, ..., n)

Proof of Theorem 2.2. Proof of (13). By (9.1),
D(B - B) = {Dsz_le}{D—lszu}
Moreover, by the same argument as in the proof of (9.1),

DS;'D = (DD;')(DyS..'Dy)(D;' D)
= (DD, )(DyE[S. | Fy] "Dy + 0p(1))(D, ' D)

= DE[S..|F]'D+o0,(1), DS'D=0,(1). (9.2)
Hence,
d D(B-B) = a{DE[S..|F;]"'D+0,(1){D'S.,.}
= dpSeu+0p(1), dp = d (DE[S..|F;] 7). (9:3)
By (12.11) of Lemma 12.2,
v2 = (a'DQ,Da) > by, byt =0,(1). (9.4)
This together with (9.3) implies:
a'D(B - B)

-1
——————= =0, dpSu + 0p(1).
VaDQ,Da " T p(1)
Write
n
Sp = v;ldnSw = Z&t, & = v;ldnztut.
t=1
To prove (13), it remains to show that

$n —a N(0,1). (9.5)

Notice that {&;:} is an m.d. sequence with respect to the o-field
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fn,t = U(Ely - €ty s, h87gsa s = ]-7 "‘7”):
E[& | Fni-1] = E[v,  dnzihiet| Fri—1] = vy, tdnzihi Eleg| Fri—1] = 0. (9.6)

The latter follows noting that the variables v, L d,, hy are Fn,t—1-measurable since they are
function of i, hs, gs, s = 1,...,n. Similarly, since 7;’s are F;, 1 measurable (see Assump-
tion 2.2), the variables zz = p; + Iyun are also F,;_i-measurable. Finally, by assump-
tion, {us, hs,gs,s = 1,...,n} and {e5,s = 1,...,n} are mutually independent, and therefore
Elet|Fnt—1] = Elet|Fi—1] = 0 by Assumption 2.1. This shows that the conditional expecta-
tion property E[&; |Frn—1] = 0 is preserved for & and completes the argument showing that

& is a martingale difference sequence with respect to the o-field F, ;1.

Therefore, by Corollary 3.1 of Hall and Heyde (1980), to prove (9.5), it suffices to show that

(a) Y B | Fn] —=p L, (9.7)
=1

() Y _E[&I(& > €)|Fnp1] =o0p(1) for any € > 0.
t=1

Observe that (a) holds with a non-random limit % = 1. Thus, the verification of the condition
(3.21) of Corollary 3.1, that the o-fields are nested, F,; C Fpq1 for t =1,...,n and n > 1,

is unnecessary; see remark on page 59 in Hall and Heyde (1980). To verify (a), notice that

2 -1 2 -2 ’ gl 2
& = (v, dpziu)® = v, “dpzizidyug,

B[ | Foi1] = v 2dnzizid, Blu? | Foio1] = vy 2dnzzid, B2 Ele? | Fii).

Then, setting S\ = Sr zzhiEle? | Fi—1], we can write,

Z E[gtz |Fnt—1] = 7)7:2dn S,g?uu dy,
t=1

= v, d{DE[S..|F;] ' DHD "5

zZzuu

D 'Y{DE[S..|F;] ' D}a.  (98)
Recall that by (9.2), DE[S,.|F;]71D = O,(1). We show in (12.14) of Lemma 12.2 that
D718 D7 = DT E[S. .| FEID T + 0,(1).

zZzuu

Together with (9.4), this implies
Z El¢ [Fnp-1] = v, 2 d'{D E[S.:|F3) 7 ElSaeuul Fr) E[S| F) "' DYa + op(1)
t=1
= v, 2(ad’ DD a) + 0,(1) = 1 + 0,(1)
which proves (a).
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Next we prove (b). We have

& = v;ldnztut:vgl(an)(Dflztut),
& < 02| dnD|P||D zpu| .

N

By definition of d,, ||d,D||* = ||a’D E[S,.|F;:] 'D|>. On the other hand, by (12.18) of
Corollary 12.1, for any a,

d DE[Suu| FYIDra > byllall?, bt = 0,(1),

n

where b, is F,; measurable, and, thus, also F,;—1 measurable. Then,

v2 =d' DD a = {a'D(E[S..|F]) 'DHD 'E[S..uu| F1D ' }{D(E[S..|F:]) ' Da}
> ||a' D(E[S..|F;]) ' D||*by = ||dnD)||*bn,

& < by 1D 2.

Hence,

n

Y BIEGIE > ) |Fuia) <D B[ MD 2w PI(0, ID ™ 2w P > €) | Fuia] = 0p(1),
t=1 t=1

by (12.54) of Lemma 12.3. This completes the proof (b) and the claim (13) of the theorem.

The claim (14) follows from (13) by setting a = (ay, ...,ap) = (0, ...,0,1,0....)" where a; =1
and a; = 0 for j # k. Then a’D = vy, and a’DQ,Da = viwyy, where wyy is the (k,k)-th

diagonal element of €2,,. Then,

vVa' DQ,Da o [k

by (13). This completes the proof of the theorem. O

@DB-B) _(B-8) ,

(0,1)

Proof of Corollary 2.1. We will show that

®
KR — 14 0,(1) (9.9)
Wik

which together with (14) implies (16):

Br, — B Wik \ Bk — Br Br. — B
Wik ( Wik ) V/Wkk ( »(1) VWkk a N(0,1)
To prove (9.9), we will verify that
DQ,D = DV, D + o0,(1) (9.10)
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which implies the following property for diagonal elements:
VDKL = Viwkk + 0p(1).
In (12.11) of Lemma 12.2 it is shown that
a'DQy,Da > by, a'DQ,Da < by (9.11)

for any a = (a1, ...,a,), ||a]| = 1 where by, bya > 0 do not depend on a,n and b} = O,(1),
bp2 = Op(1). Set a = (0,...,1,...0)', where a; = 0 for j # k and a;, = 1. Then a'DQ,Da =
v2wk, and by (9.11), v2wgy > by, > 0. This proves (9.9):

% Uzakk v,%wkk + Op(l)

= = =14 0,(1).
P
Wk Viwkk V2 Wik

In addition, the bounds (9.11) imply that \/wgr =) vk_lz

’Uk_l < b;l/Z,/wkk = Op(\/wkk), Vpr/WEE = Op(l), VWEE = Op(vk_l).

Proof of (9.10). Set V,, = DDg_l. By (7) of Assumption 2.3, V;, = O,(1). We have

DﬁnD = Vn{DgS;,leg}Vn{DilSzzﬁﬁDil}Vn{DQSzileg}Vn’
DQ,D = VoW VW, VW Vi,
W' = DyE[S.. |F: "Dy, Wasww = D E[Sou | Fi]1 DL

By (12.6), (12.3), (12.12) and (12.10) of Lemma 12.2,

DyS.'Dy = Wi'+op(1), Wi =0,(1),
D_lszzuuD_l - szuu"’Op(l)a szuu:Op(l)-

We will show that
D7'S..aaD™ ' = DS D+ 0,(1). (9.12)
This implies (9.10):

DD = VW2 + 0p(1)}WValWesuu + 0p(1) IV WL + 0,(1)} V5,
= VW VW VW Vi + 0,(1) = DQ,, D + 0,(1).
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Proof of (9.12). By definition,
n
HD_l(Szzﬂﬁ - Szzuu)D_lH = || ZD_lztng_l(a? - u%)H
t=1

n n
<UD P (@ — ] <in x (NP alP), i = max (32 - ud.
t=1 t=1

=1,...,

Notice that . .
S ID P < [IDT'D|1P Y 11Dzl P = 0p(1),
t=1 t=1

since ||DyDY| = O,(1) by assumption (7) and >_j, |\Dg_1zt||2 = Op(1) by (12.8) of Lemma
12.2. Hence, to verify (9.12), it suffices to show that

in = 0p(1). (9.13)

Recall the equality u? — u? = (U — ug)? + 2(U — ug)ug. Denote g, = ||D(B — B)H Then,

U —u = (B—B)z={(B-B)DHD '4},
[uy —u| < ||D_lthQn7
a7 —u?| < (T —w)?® + 2)(T — u)ue) < [[D7 2|2 + 2D 2| e gn.

Hence,

in < (maxc [[D™1]|%) g2 +2( max (1D zpul) gn = 0p(1),

[RAS}

where ¢, = O,(1) by Theorem 2.1, and

Jmax [ID7 52 = 0,(1), max (D z]| = 0p(1)

=1,..., =1,...,

by (12.53) of Lemma 12.3. This implies (9.13) and completes the proof of the corollary. O

Proof of Corollary 2.2. Let 85 be the true value of the k-th component of the parameter
B, and suppose that £ # Bg. Write

CBe—BY  Bu—Bk  Be—By
= — = — + — =: tn,l + tmg.
V Wk vV Wkk vV Wkk

By (16) of Corollary 2.1, t, 1 —4 N (0, 1) and /wgi <, v,;l. Hence,

tn

tn71 = Op(l), tn72 =p Vg —rp O0.

Then, t, = ty1 +tn2 = Op(1) +ty2 =<, vy —p 00, which proves the claim of Corollary 2.2. OJ
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Proof of Lemma 2.1. Proof of (6). It suffices to show that

in = Vg max (g + i) = 0p(1). (9.14)

Notice also that z,%t = pit + 20kt Gt it + g%tnzt,
2 *1 2 s 2 2 *1 2 2
Elziy |Fal = by + 200090 Bt | 7] + i Bl | F0] = tice + i (9.15)
In addition, by assumption (19) of lemma, vg_,f = (X 92) " =0,(n7t). Thus,

in - Op(l)iN,la Z‘n,l = nil IQ%XnE[let “F;]

We will show that Ei, 1 = o(1) which implies (9.14). Observe that for any L > 1,
s S Lzl (2, > L) < L+ L7z,

By assumption (18), E[z{,] < ¢ < oo where ¢ does not depend on ¢, n. Hence,

n
ing < n'L+4+n 'Lt tirllaXnE[zﬁt \Fil<n'L+n 'Lt Z Elz}, | F1,
t=1
Einy < n 'L+n L7230  Elzl)<n 'L+ L7lce—0, nL—o0

which implies ¢, = 0,(1) and proves (6).

Proof of (11). Tt suffices to verify that

in = v max (gi + ui)hi = op(1). (9.16)

By assumption (19) of lemma, v, 2 = Op(n~'). This together with (9.15) implies that
in = O0p(1)in2, ina=n"" g%an[zzthf | F.

We will show that Eiy 2 = o(1) which implies 4,2 = 0,(1) and proves (9.16).

Similarly as above, for any L > 1, setting Ly = log L, for § > 0 we obtain

zphi < L4 2yhiI(zphi > L)
< LA Ly'2h I(h? < Lytzd,) + LohtI(h > Ly'z2)I(hiLo > L)
h s
< L+ L7%4 v hirL t
= 0 ~kt t O(LLEI)
< LA Ltz + b 0AL, AL =LOLLY.

By assumption (18), E[z},] < ¢ and there exists § > 0 such that E[|u;|[*T%] < ¢, where ¢ < oo
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does not depend on t,n. Hence, E[hit*] = E[(E[u? |F:])**¥] < E[jus|***] < ¢. Notice

that A;, — 0 as L — oo. Therefore, as n, L — oo,

IN

Eina n~tY 0 Bz hi | F

< n L4 Lytn T S0 Bl + Apn Tt E[hiTY)

< n_lLJrLalchALc% 0,

which implies i, = 0,(1) and proves (11).

Proof of (7). By assumption (18) of Lemma 2.1, E[z},] < ¢ and E[uj] < ¢ where ¢ < co does

not depend on t, k,n. By (9.15),

e < Bl | F) Elukd < Elzg] <c,
g < Bl |F), Bloi] < Bleiy] < e,
Eluy] < El(Blzy |F)?) < Bl(Eleg |F3))] < Eleg] < ¢
Blgy] < ElElR | F]?] < e
Elhy] = BB} |F;)?) < B(Blu} |F;)] < Blu;] < ¢
Elufhi] < (Bl B < ¢,
Elgihi] < (E[glgt]E[hAt])l/z <¢

where ¢ < 0o does not depend on t,n. Hence,

TERT mi) <o i ki = Op(n),
B mihi] S e Y pihi = Op(n),
[
[

3

3

S

B thl gﬁtht] <c Zt:l gl%th% = Op(n)
B Z?:1 g}%t] <c, Z?:1 gﬁt = Op(n)'

3

By assumption (19), n/vi = Op(1) and n/vgk = Op(1). Thus,

Vo ot My = Op(n/vZ) = Op(1),

e L oty iehi = Op(n/vf) = Op(1),
”gk: Uk = ng Y1 Ghi = Op(n/v2y) = Oy(1),
Vg vgk =y Zt:l i = Op(n/v}) = Op(1),

which proves (7). This completes the proof of the lemma.

43

(9.17)



10 Proofs of Theorem 3.1 and Corollaries 3.1 and 3.2
Proof of Theorem 3.1. Recall the notation introduced in Section 3. Set
= bn/tjy]7 Zj = brlz/tzgzw uj = bn/tj
Then we can write
Jj =ZiBe iy +rj, v = (85— Br)'%

Recall the estimator Bt given in (22). In Section 3 we introduced an auxiliary regression

model with a fixed parameter 5 = S;:

~ ~ 1 .
vi o= B+, 4 =bliu, =10 (10.1)

Recall the OLS estimator 3 of the fixed parameter 8 in this model, given in (27):
R n 1 n n
= (2_5%) " (X)) =8+ szé 25).
j=1 j=1 j=1

In (28) we showed that following relation:

~ ~ N R
Bi—B = B—B+R, Re=(> %) (D ZZ(B—5)) (10.2)
j=1 j=1
The remainder R; = (Riy,...., Rp) arises due to time variation in the parameter ; and

is negligible. We will obtain an upper bound for this term. The term 5 — [ is the main
component We will analyse it using the results of Section 2. Overall, equation (10.2) shows
that properties of Bt — (Bt are determined by the properties of 3 — B, with an additional
negligible term R;.

First we will show that the components of B —p= (51 — By ey Bp — Bp) and Ry satisfy the
following properties. For k=1, ..., p,

o _ —1/2 5k Br S
Bk Bkz OP<H )) \/‘Tk,t —d N(Oa 1)7 VWkk,t =p H ; (103)

Rie = Op((H/n)). (10.4)

Proof of (10.8). Recall that z; = (21, ..., 2pj), and

gkj = ﬁkj + §kjnkj, ﬁj = 71,]'8]', (10.5)

~ 1)2 ~ 1)2 1/2
Pkj = by yibkejs  Gkj = by 1i9k5, Py = b4y
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By Lemma 10.1, under assumptions of theorem, fi;; and the scale factors {@'kj,ﬁj} satisfy
Assumptions 2.3 and 2.4(ii). Thus, by Theorem 2.1,

B = B = Op(v) = Op(H%),
where v? = v, = > i1 Q%J%? =7 1bn t]gkjh and
vi =<, H. (10.6)

Indeed, v,;f = O,(H™Y) by (30) of Assumption 3.2. On the other hand, (9.17) implies that
Ev?, < Y bt E [g,%jh?] < cy7% ) butj = O(H), where the last relation easily follows using
definition of by, ;; and (24). Hence v, = O,(H), which proves (10.6).

This complete the proof of the first claim in (10.3), while the second claim holds by (14)
of Theorem 2.2. The third claim holds since by (16) of Corollary 2.1 and (10.6),

n

Wk =p vt = O gyhd) T =, HTY2, (10.7)
j=1
Proof of (10.4). Write
Rt = Szz tSzz@t, Where Sgg@t = Z?:l Zjég(ﬁ] — Bt)
We will show that
I1SZ4 |1 = Op(H™),  [|Szz34ll = Op(H(H/n)7), (10.8)

which implies ||R;|| < HS
which proves (10.4).

zza.ll = Op((H/n)Y). Then, |Ry| < |[Rel| = Op((H/n)?)

To verify (10.8), recall notation of the p x p diagonal matrix

D; = diag(vg1, ..., vgp), Vg = Z?Zl @%j, k=1,..,0p.
Notice that

15

zth

105 (DgSz:, D7) | D3| < || D711 DgSz]

ZZ,t ZZ,t

Dgl| = Op(H™)

because | |Di

D3 St Dz = O,(1) by (12.6) and (12.3) of Lemma 12.2. This proves the first claim in (10.8).

zz,t

NE=3"r_, vgk = O,(H~') by Assumption 3.2. On the other hand,

Next, bound

B|Sszpall < ED_ NP8 — Bill] < ZEHZJH )2 (E]8; = Bil ).
j=1
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We have |[Z;||* = b?lt]|12j]|4. Recall that E||z;||* < ¢ by Assumption 3.2, E||8; — B|]* <

c(|t — 7|/n)* by Assumption 3.1, and it is trivial to show that under (24),
n
> bugi(It = j1/H)Y = O(H).
j=1
This implies
E|lSsz54l| < CH(H/n) ( -1 Z bt ([t — ] /H)7> <CH(H/n)  (10.9)

which proves the second claim in (10.8).

We now are ready to prove the claims (31) and (32) of the theorem. First, together with
(10.2), the properties (10.3) and (10.4) establish the consistency result (31):

Br—Bi=(B—B)+ R = Oy(H 2 + (H/n)").
To prove the asymptotic normality property (32), recall assumption H = o(n?"/(27+1)), Then

ﬁkt Bre 5kt Bt wPR Brt — /Bkt+0(1)
(1)

+
Wkt VWEkk,t kit WEkk,t
because by (10.7) and (10.4),

Wes” By = Op(HY) 0, ((H/n)") = Op(HY*(H/n)") = 0,(1)
under assumption H = o(n?/(27t1)), Then,

Brt = Brt _ Brt — Bre
 WEkk,t Wkt

by (10.3) which proves the asymptotic normality property (32) of the theorem. Noting that
VOt =p H~1/2_ as shown in (10.7), this completes the proof of the theorem. ]

+0p(1) =4 N(0,1)

Proof of Corollary 3.1. In the proof of Theorem 3.1 we wrote the time-varying regression

model as a regression model
U =zZB4u;+r;, 1= (85— Bz (10.10)

with a fixed parameter 5 = ;. We showed that the regressors z; and the noise u; satisfy
assumptions of Theorem 2.2 and that the contribution of the term r; is asymptotically neg-
ligible. That allowed us to establish the asymptotic normality property (32) of Theorem 3.1

for Bkt using results of Section 2.
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Clearly, to prove Corollary 3.1, it suffices to verify the second claim in (34),

~

Wkk,t
Wkk,t

=1+ 0,(1).

Proof of the corresponding result in the case of fixed parameter in Corollary 2.1 shows that

we need to verify the validity of (9.12) for our regression model (10.10), i.e. to show that
jn =D SszaaD ™t = D7 Szma D 4 0,(1), (10.11)

where u; = y; — B\"zvj, B=pB, D= diag(v1, ....,vx)" and v} = Z?ﬂ@%ﬁ?

Set @5 = (B — B1)'Z; + . Write ]
jn =D Szgeae D™ + D™ (Szzam — Szzarar) D' = n1 + Jina-
By (9.12), jn1 = D™ 1S5z D! + 0,(1). Hence, to prove (10.11), we need to show that
jnz = 0p(1). (10.12)
By Assumption 3.2, ||[D7!|| = O,(H~'/?). Hence,
ln2ll < 1D P Szzam — Szzaea- || = Op(Dlljnsll,  dns = H ' (Szam — Szarar)-

We will show that j,3 = 0,(1) which implies (10.12). Notice that

uj = ;- Bz = (B — Br)'Z + U+ =u; + 1y,
Wt = (@ =)+ 2T — )
= v 2r5uF =15 4 2r (B — )% + 2rj;. (10.13)

Using the inequality 2|ab|] < a? + b?, we can bound in (10.13),
20r; (B = Bl < 75+ ((Be— BY'%)” < v + 118 = BUPIZI.
Next we evaluate |r;u;| in (10.13). Let L > 1 be large number. Then,
il < LTHIZE (1) < ZHIZ) + gl 2 (Il > LY < LTHIZ] -+ Leg |z
Irjti) < L7Y\Z5 0| ] + L1251 Jugl.

Hence,

a3 — a2 < 2% + |18 — Bel PlIZ11° + 2L Y|Z51] 5] + 2L 7" [a]r3.
Since 7“]2- <||8; = Bel|?||Z;][%, this yields

IZIPa5 — @52l < 20185 — Bl PIZ " + 118 — Bl PIIZ NI + 207 HIZ511 (a1

J J -
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+2LI[Z [a;1118; — Bell*.
Recall that z; = b, / 1% and u; = b:l/f u;. Denote 0; = 2||z;|[* + 2||2j]|?|u;]. Then,
125115 — 52| < Lbp 451185 — Bill?60; + (118e = Bell” + L7") b7 1,65

Hence,

|jns| 1‘2—1% J(“?_U )‘<H 12] 1||Z]|| |U _U*Q‘
L{HTY 20, 02 41185 — Bil 265} + (118: — Bil P+ L) {H ), 82 1,65}
LT3 1 baggl B — BelPHH ™ 327 bn tj‘9‘}

+(118: = Bel P+ L=H{H 0, 82 505

Lanianz + (18 — Bl + L") gus. (10.14)

IA

IN

By (31) of Theorem 3.1, ||5; — BtHQ = 0p(1), and L' can be made arbitrarily small by
selecting large L. We will show that

Egn =0(1), Eguo=0(1), Eg;3=0(1). (10.15)
Combining this with (10.14), we obtain
ldns| = Lop(1) + (0p(1) + L) Op(1),

so that the right hand side can be made arbitrarily small by selecting a large enough L and
letting n — oo. This proves (10.12).

To bound Egy; observe that by Assumption 3.1, E||3: — B;]|> < C(|t — j|/n)*", where
0 < <1 and and recall (10.9). Then,

C( ( 27 {H 1an] ]‘)2'\/}

< CH(H[n)* = 0(1)

n
Ein < an,tjEHBj - 615”2

Jj=1

IN

when H = o(n?"/(7+1)). This proves (10.15) for Eqy;.

To bound FEg¢ne and Egq,3, recall that by Assumption 3.2, Ezﬁj < C and Eu? <C
which implies that E6; < C. Moreover, under (24) it holds H~! > i=1bng = O(1) and

bi 1 < Cby,j. Hence,
Eqp < H! 27-1_ bn, tjEG- <CH™! Zﬂ_ bntj = O(l),
Eqn3<H 12] 1 ntjEG <CH 12 ntJZO(l)
This completes the proof of (10.15) and the corollary. O
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Proof of Corollary 3.2. Let Si; be the true value of the k-th component of the time-varying
parameter 3;. Suppose that |8), — Bkt| > a >0 for t =t, € [1,...,n] as n — co. Write

o Bkt - /31215 . Bkt - Bkt /Bkt - 521;
Tnt = = = — + —
\ Wkk,t v Wkk.t \/@

By (34) of Corollary 3.1, 7,14 —a N(0,1) and | /@xry <, H~ /2. Hence,

=:Tplt + Thot-

- 1/2
Tnlt = Op(l), Tn2,t =p H / —>p Q.

Then, 7t = Tnit + Tnze = Op(l) + Tuar =, HY/?2 —p 00, which proves the claim of the
Corollary 3.2. O
Lemma 10.1. Suppose that Assumption 3.2 holds and Assumptions 2.1, 2.2 are satisfied.
Then {ﬁkj,ﬁkj,ﬁj} in (10.5) satisfy Assumption 2.3 and Assumption 2.4 (ii).

Proof of Lemma 10.1. Notice that assumptions (24) imply Z’;:l bntj < H. Thus, the

claim of Lemma 10.1 follows using the same argument as in the proof of Lemma 2.1. 0

11 Proofs of Theorems 4.1, 4.2 and Theorem 5.1

Proof of Theorem 4.1. Suppose that y; = 3z + u; follows the regression model (1). In
the presence of missing data, estimation of the parameter 5 is based on a regression model
with the fixed parameter (39):

Ui = B'% + (11.1)
where the regressors z; = (Z14, ..., 2pt)’ and the noise u; take the form

Zit = [kt + GktMkt, Mkt = Telkts Gkt = TtGkt (11.2)

up = }NltEm %t = Tthe,
and 73 is the missing data indicator. Under Assumptions 4.1 and 4.2 of the theoren, {i, gt, }VLt}
are independent of {e4,7;}. Therefore, (z;,u;) belongs to the regression space described in

(2) and (3) of Section 2.

We estimate the fixed parameter § using the estimator defined in (41):

n n
Bo= (Y zz2)7(Y ). (11.3)
t=1 t=1
We will show that (z, us) satisfy Assumptions 2.1, 2.2, 2.3 and 2.4 of Theorem 2.2 of Section
2. Then, the required result (42) for B of this theorem follows directly from the claims (16)
of Corollary 2.1.
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We split Assumptions 2.1, 2.2, 2.3 and 2.4 into two groups:
(a) Assumptions 2.1, 2.2, and 2.4(i), and
(b) Assumptions 2.3 and 2.4(ii).

Assumptions (a) imposed on the stationary processes 7, ; are part of Assumption 4.2 of
Theorem 4.1.

It remains to show the validity of the assumptions in group (b), i.e. that the means fi; and
the scales hy, §; satisfy Assumptions 2.3 and 2.4(ii). By Assumption 4.2, we have Ez}, < ¢
and Eugl < ¢. Moreover, gi: > ¢1 > 0 and hy > ¢; > 0 where ¢,c; > 0 do not depend on k,t
and n. For kK =1, ..., p, define:

n n
51% = Z@%th?: @ZZ@%- (11.4)
t=1 t=1

Notice that . .
@%ZC%ZHZC%N, '1731920%27}:6%]\7,
t=1 t=1
where N is the size of the subsample (36). By assumption of the theorem, n/N = Op(1).
Thus,

EZ;, < Ezy<c, Elm*" < Eul[** <c, (11.5)

n/T = O(n/N)=0y(1), n/tg =O0(n/N)=0,(1), (11.6)

IN

which confirms the validity of Assumptions 2.3 and 2.4(ii); see Lemma 2.1. This completes
the proof of the theorem. O

Proof of Theorem 4.2. Now, suppose that y; = f;2z; + uy follows the regression model
(21) with a time-varying parameter ;. In the presence of missing data, estimation of the

time-varying parameter (; is based on a model (43):
U = BiZ + Uy (11.7)

Here, the regressors z; = (Zit, ..., zpt)’ and the noise u; are the same as in (11.2). We showed
in the proof of the Theorem 4.1 that (z, u;) belongs to the regression space described in (2)
and (3) of Section 2.

The estimator of the time-varying parameter [3; is given in (45):
R n 1 n
Beo= (D_bnniZZ) (D buasZili). (11.8)
j=1 Jj=1

We will show that (z;,u;) satisfy Assumptions 2.1, 2.2, 2.4(i), 3.1 and 3.2 of Theorem 3.1.
Then, the results (46), (47) and (48) for j3; of Theorem 4.2 follow from the results (31) of
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Theorem 3.1 and (34) of Corollary 3.1.

Observe that Assumptions 2.1, 2.2, 2.4(i) on n,e; are part of Assumption 4.1 of this

theorem, which also includes Assumption 3.1 for S;.

It remains to show that Z;, us satisfy Assumption 3.2. This requires to prove the validity
of (11.5) and (11.6) under Assumption 4.2 of this theorem, which we showed in the proof of
Theorem 4.1. ]

Proof of Theorem 5.1. We consider a stationary AR(p) model (49),
Yr = o + G1yi—1 + .. + OpYi—p + €,

where £, is a stationary m.d. sequence with respect to the information set F; = o(es, s < t).

Write it as a regression model (1),

y=Fz+u, u=¢g (11.9)
with fixed parameter 8 = (81, ..., Bp+1) = (@0, ..., ¢p)" and regressors z; = (21, 22t, .., Zp+1t) =
(1, 9t—1,Yt—2, .., yt—p)'. Under assumption (51) of theorem, AR(p) model has a stationary so-
lution: - -

Yt = p+ Z%Et—j, where Z laj| < oo, p= Ey, (11.10)
§=0 §=0

and regressors

2kt = Pt + Gt Pkt = Elye—i) = Eyt, G =1, e = Ye—k — Elyi—i],

for k = 2,...,p + 1, satisfy regression assumption (3). From (11.10) it follows that the
regressors 1 = (Nigy ooy Mpt) = (Ye—1, Yt—2, -, Yt—p) are Fr_1 = o(es, s < t — 1) measurable.
Moreover, under the assumptions of the theorem, (e, 1) satisfy Assumptions 2.1, 2.2, 2.3
and 2.4 of Theorem 2.2 in Section 2. Finally, we show that Eyf < C < oco. Recall that by
the assumption of theorem, ¢; is a stationary m.d. sequence such that Eed < oco. It is known
that if Ele|P < oo, for some p > 2, then

E|Y ajeyl’ < C( Z“?)mv

§=0 §=0
where C' < oo does not depend on n; see e.g., Lemma 2.5.2 in Giraitis et al. (2012). Hence
E(y — p)® < oo and Enf, < oo from k =1, ..., p.

Thus, regressors z; and regression noise u; = &; satisfy Assumptions 2.1, 2.2, 2.3 and 2.4
of Section 2. Therefore, the robust OLS estimator 3 of 8 has properties derived in Corollary
2.1 which implies Theorem 5.1. U
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12 Proofs of Section 2: Auxiliary lemmas

This section contains auxiliary lemmas used in the proofs of the main results for Section 2.
For the ease of referencing, we include the statement of Lemma 12.1(i) established in Giraitis
et al. (2024).

Lemma 12.1. Assume that sequences {B:} and {z:} are mutually independent.

(i) If {2t} is a covariance stationary short memory sequence, then
n n n
S Gz = (D0 6) Bar + 0, (X0 62)12). (12.1)
t=1 t=1 t=1
(ii) If E|z| < oo, then

1S B = op(z |ﬁt|)(t:nllaan]zt|). (12.2)
t=1 t=1

Proof of Lemma 12.1. The claim (i) of Lemma 12.1 was derived in (Giraitis et al. (2024),
Lemma A5). To prove (ii), denote s, =Y ;" |3|. Then,

Bls, ' 0 Bellel] = X0 Elsy Bl E[J2]
< (maxi=t,.n Blze|) Blsy, ' Y01, [Bel] = maxim1 . n B2l
St 2y 1Bl 2] = Op(maxtzl,...,n E|Zt\>-

This implies

| Sohy Beze| < sn{spt 3oy 18] 2]} = $nOp(maxi—y,..n Elz).
This completes the proof of (12.2) and the lemma. O

Recall notation

Szz = Z?zl théa Szzuu = Z?zl ZthgU%, Szu = Z?:1 ZtUt,
D = diag(vlv ey Up)’ Vg = (Z?zl gl%th?)l/Qa
Dy = diag(vg1, .-, Vgp),  Vgk = (D244 let)l/Q-

Recall definition F}; = o(ps, g1, = 1,...,n) and F, ;1 in (9.6). Denote

sz = D;IE[SZZLFZ]D;la szuu = DilE[Szzuu‘-Fr*L]Dily
Qn = (B[S F3]) T E[Szzuul Fal) (BIS:: | FR]) 7

Lemma 12.2. Suppose that z; and u; satisfy Assumptions 2.1, 2.2 and 2.3. Then the fol-
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lowing holds.

(i) There exists b, > 0 such that b,;* = O,(1) and such that for any a = (a1, ...,ap)’, ||a|| =

dWaa > by, WL s <057, (12.3)
Moreover,
D;'S..D;t = W+ op(1), (12.5)
D,S'D, = W_'+o0,(1), (12.6)
D_ISzu = Op(l)’ (127)
SUID | = 0,(1). (12.8)
t=1

i) In addition, if Assumption 2.4 holds, then there exists b, > 0 such that b7' = O, (1) and
n p

such that for any a = (a1, ...,ap,), ||a|]] =1,

AWzt > by, HW;ZLUHSP < b;l’ (12.9)
a'DQ,Da > by, dDQ,Da < by, =0,(1). (12.11)
Moreover,
D' D™t = Wasiu + 0p(1), (12.12)
DS L.D = WL +o0,(1), (12.13)
D_ls,gg)uuD_l = Wezuu + 0p(1), Sg?uu = Zztng[uf | Fnt—1]- (12.14)
t=1

Before the proof of lemma, we will state the following corollary. Denote

n n
Com =D DG wel?y e = D 1D e (12.15)
t=1 t=1

Notice that under (7) of Assumption 2.3,

p n P n
Cyx,n = Z{U;]f Zﬂit} = Op(l)a Cxe,n = Z{%;Q Z/‘%thg} = Op(l)' (12'16)
k=1 t=1 k=1 t=1
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Corollary 12.1. In Lemma 12.2, the claims (12.3) and (12.9) hold with b, as below:

, c Case 1 (intercept not included),
aWy,a > b,= (12.17)

L1+ cun)™t: Case 2 (intercept included),

¢ (1 4+ ey . Case 1 (intercept not included),
AWt > by = ( ) ( b / (12.18)

¢ 1+ cawn) ™ Case 2 (intercept included),
where ¢ > 0 does not depend on n, byt = O,(1) and by, is F;; measurable.

Proof of Lemma 12.2(i). Proof of (12.3). Set 1, = diag(gis, ..., gpt). By definition,

Ze = U+ Igt"?t = Ut + :27,5, gt = LgtNt- (12.19)
Then
zzp = (e+Z) (e + 2) = 22 4 ey + ez + Zo,
Elziz|Fyl = EZz)Fy] + ey + e B2 Fo] + E[Z| Folpg

= E[&Z|F] + ey + peey + epy
= E[&Z|F] + (e +ee)(ue + er) — ecey, (12.20)

where e, = E[Z|F;] = I E[n]. Using (12.20), we can write

aW,.a = Za’D;lE[ztzﬂF;]D !
t=1

n
o' D E[%Z|F;) D, a—i—ZaD 1) Z (@' Dy ) (€; Dy a) (12.21)
t=1 t=1
n

a' D E[%7|F;) D, a+2 (@'Dy (e 4 e))® = Y (a'Dyter)?. (12.22)
t=1 t=1

M: 1 M:

#
Il
—

We split the proof into two cases when regression model (1) does not include intercept and

when intercept is included.
Case 1 (no intercept): e; = I E[n:] = (0,...,0)".
Case 2 (intercept included): e; = It En] = I5:(1,0,...,0)" = (91,0, ...,0), g1t = 1.

Case 1. Let ¢; = 0. Then (12.21) implies
n

dW..a > > a'D;'E[Zz|F;]D; a. (12.23)
t=1

In this instance,
Bz | Fol = Lp Elnenlge = T X1,
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where E[nn;] = ¥ = (0jk)jk=1,..p- By Assumption 2.2(ii), the matrix ¥ is positive definite.

Therefore, there exists b > 0 such that for any a = (o, ..., o),
o' Ta > bl|al)?.

Hence, settin =v ! we derive
) g Vkt gk 9kt

n n
> ' Dy Elzz| FylDyta =Y {a' Dy Iy} S{Iu Dy a}
t=1 t=1

n n p

b la' Dy pl? =Y [> aivi]
t=1 t=1 k=1
p n p

b ai (O i) =b>_ai =blal]> =0,
k=1 k=1

t=1

>

since Y 72, = 1 and ||a|| = 1. With (12.23) this proves the first claim in (12.3):
aW,,a > b (12.24)

Matrix W, is symmetric and, thus, it has real eigenvalues. The bound (12.24) implies that
the smallest eigenvalue of W, has property A\pmin > b, > 0. Therefore W, is positive definite,
and the largest eigenvalue 0,5 of I/VZ_Z1 has property Opax = )\;én < 1/by,, which implies that
[|W_|sp < 1/by. This proves the second claim in (12.3).
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Case 2 (intercept included): e; = Iz E[n:] = I14(1,0,...,0) = (g1t,0,...,0)". Recall that in

presence of intercept, gi; = 1 and n1; = 1.

Proof of (12.3). Set a = (a1, ...,a,)", @ = (az, ..., ap)". Recall that
1=la|?=a}+ ... +d%=da}+||a|*

P

We will show that there exists b > 0 such that for any a and n > 1,

aW,.a bH'dHQ,

dWo.a > bljal]® + {a} — 2| |[@l|ci7},

v

(12.25)

(12.26)
(12.27)

where ¢, ,, is defined as in (12.15). These bounds imply (12.3). Indeed, suppose that |[a|| >

(1= b)|ar|/(2cx/2). By (12.25), this is equivalent to

el (=D (a-pPa-j@p) o
falf? > = = S SIS
*M *,M

(1-1b)
(1-0)2+4cin

Then, by (12.26),

b(1 —b)?
(1-0)244ciyn

dW..a > blla|]® =

On the other hand, if ||@|| < (1 — b)|a1|/(2c2), then in (12.27),

a? = 2lan| |[alless > a? — (1 - b)a} = ba}
which together with (12.27) implies
d'W,.a > bl[al[® + a?b = b(|[a||* + a3) = bl|a||> = b.

Therefore,

b(1 —b)? b) _ o b(1— b)?

'"W,.a > mi ( .
@ = 0 02 1 des (1—b)2 + 4csm

This implies that there exists ¢ > 0 such that

aW,.a > b, = 0_1(1 + c*yn)_l,

where b1 = ¢(1 + c.,) = Op(1) by (12.16). This verifies the first claim in (12.3).
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Proof of (12.26). Below we will show that there exists b > 0 such that
in :Za/Dg—lE Et~£|]:*] la > a2 +bHaH2 (12'29)

In addition, observe that in Case 2,

n

eéDg_la = alv;llglt, Z( D = alvgl Zglt =al. (12.30)
t=1

Then from (12.22), using (12.29) and (12.30) we arrive at (12.26):

adW,.a > Z a’D;lE[Etzt\F;]Dgla - Z(a'D;let)2
t=1 t=1
{ai +bllall*} — af = bl[all*.

Y

Proof of (12.27). By (12.21) and (12.29),

n n
dW..a > Y /Dy E[EF|IFD, e — 2] (a/Dy ) (eiDy ) (12.31)
= t=1
n
> {a} +0l[all’} = 2lqnl, @ = _(a'Dy i) (€;D; " a).

t=1
By Cauchy inequality and (12.30),

n n n
Ign| < {Z(G'Dg_lut 22 1/2 = |a1] Z aD L) 1/2
t=1 t=1

t=1

Since p1; = 0, then |a’Dg_1,ut| < |la|| ||Dg_1ut]|. Hence, using notation ¢, introduced in
(12.15), we obtain

n n
> @Dyt u)? < 11l 11D el *) = llalPesn,

t=1 t=1

which together with (12.31) and (12.29) proves (12.27):

~ ~ 1/2 ~ ~ 1/2
dWo.a > {a} +b|[al?} — 2lai]|[allctss = bl[al|> + {a? — 2las| |[@l|c¥

Proof of (12.29). Recall, that in presence of intercept, n; = (1,n2¢, ..., mpt) and E[ng] = 0.
Denote 77 = (¢, ..., )’ and X = E[fjif]. Then

E[zz|Fy] = 1Bl g = Igdiag(l, Z) gt = dlag(glt,f tijgt)y
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where diag(1, f)) is a block diagonal matrix and .7975 = diag(gat, ..., gpt). By assumption, the

matrix 3 is positive definite. Denote l~)g = diag(vg2, ..., Ugp). Then,
n
in = Y daD;'E[ZZ|F;]D; a
t=1
n n " o
= a%{vg_f ngt} + Za/Dgljgtzlgthla
t=1 t=1
= Z'n,l + Z"n,2-
Observe that i, 1 = a3 since vg_f Sr g% = 1. Recall that |[a|| < 1. Hence, by (12.24),
in2 > bl[all?, in > af +bl[al|?

for some b > 0 which does not depend on n and a. This implies (12.29).
Summarizing, note that by (12.24) and (12.28),

, 7l Case 1 (intercept not included),
aW,,a>b, = (12.32)
c (1 +cn)™t:  Case 2 (intercept included),

where ¢ > 0 does not depend on n. Notice that b, < ¢(1 + c.,) = Op(1) by (12.16). This
proves the first claim in (12.3).

Proof of the second claim in (12.3) is the same as in Case 1.

Proof of (12.4). Observe that

n n
IWaell < [IB[(QC Dy taeei Dy | Filll < B[l Y Dyt zezi Dy I )
t=1 t=1

< Y ElID; 2P |F] < o1+ enn) = Op(1)
t=1

by (12.51) of Lemma 12.3. This proves (12.4).

Proof of (12.5), (12.6), (12.7) and (12.8). Denote by 0, the jk-th element of the matrix
n

DS'S..Dyt =W, = > Dy auz — Elazf|Fi}Dy ' = (3;1). (12.33)
t=1

To prove (12.5), it remains to show that

Sir = 0p(1). (12.34)
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Case 1: e; = 0. Then, by (12.20), we have
zzy — Elaz] Fol = L (mn, — Elnem]) Lo + pengLoe + ey

. —1 .
Therefore, setting v;; = v i Jjt» We can write

n n n
Ok = Z Vit Vet (it et — E[njenke]) + Z{Ug_jlujt’m}nkt + Z{U;klukt’)/jt}njt
t=1 t=1 t=1
= Sp1+ Sn2+ Sns, (12.35)

0, < 3(Spi+SnatShs).

By assumption, sequences {wi; = nimke — Enjinie]}, {war = mie} and {wsy = n;} are
covariance stationary short memory sequences with zero mean, and the weights {b1¢ = 7,1kt }
are independent of {wy;}, {boy = vg_jl Ljt vk} are independent of {ws;} and {bs; = vgkl ket it}
are independent of {ws;}, Thus, applying Lemma 12.1 to S,,;, i = 1,2, 3, we obtain

n
6j2'k = Op(Z(b%t + b%t + b%t))'
t=1
Denote rj, = max;—1,..n ’y]?t. Then,
n n n n
Z(b%t +05, +03) < Tin Z Ve + Tkn(U;f Z 1) + Tjn(U;kQ Z M)
t=1 t=1 t=1

t=1

Notice that > ;' ; 72, = 1. Observe that r;, = 0,(1) by (6) and vg_j2 Sy 5 = Op(1) by (7)
of Assumption 2.3. This implies 532‘k = 0p(1) which proves (12.34).

Case 2. Let ¢, = (1,0,...,0)".
To prove (12.5), it suffices to show that ¢z, j,k = 1,...,p in (12.33) have property (12.34):

d;i = 0p(1). Recall that in presence of intercept we have z; = (1, 2o, ..., 2pt)’.

First, observe that for j,k = 2,..., p, 6, are the same as in (12.35) and whence 6, = 0,(1)
by (12.34). Second, 6117 = 0 since z1; = 1. Finally, for k = 2, ..., p, we have

Z1t2kt = 2kt = Mkt T GrtMkt;

E[thzkt|~7::;] = E[Zkt’]:;] = MUkt

Then,
n
o1 = Z v;f{zltzkt - E[zltzkt\]:;]}vg_kl
t=1
n n
= Ug_11 Z{Ug_klgkt}ﬁkt =n"1/? Z Vet Tkt
t=1 t=1
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By assumption, {7} is a covariance stationary short memory sequence with E[ng] = 0, and

{nkt} and {~x¢} are mutually independent. Therefore, by Lemma 12.1,

b = 1720, (3 A2)Y2) = n120,(1) = 0,(1)
t=1

which proves (12.34). This completes the proof of (12.5) in Case 2.
Proof of (12.6). 1t follows using the same argument as in Case 1.
Proof of (12.7). To prove that D™1S,, = O,(1), write
n n
D718, = Z D'z = ZD‘I(W + Ipm)heer = (v1, -y 1)
t=1 t=1

It suffices to show that
v = Op(1). (12.36)

We have

n n
ve = > {op mehiyer+ > {og greheYmes
=1 =1

= Sn,l + Sn,Z;
i < 25,2%1 + 253172.

By Assumptions, 2.1 and 2.2, the sequences {w1; = ¢}, {war = nxeeL} are covariance station-
ary short memory sequences with zero mean, the weights {b1; = v,;l urthy} are independent

of {wy}, and {ba; = vk_lgktht} are independent of {wg;}.
Thus, applying Lemma 12.1 to each of the sum S, 1, .S, 2, we obtain
n
V/? = OP(Z(b%t + b%t))'
t=1
Notice that,

Z(b%t"i_bgt) = v;QZuith? +Uk_2291%th? = UJ:QZNith?"‘ 1=0p(1)
t=1 t=1 t=1 t=1
by (7) of Assumption 2.3 which proves (12.36).

Proof of (12.8). Observe that by (12.5) and (12.4) of Lemma 12.2, D' (37, z2{) D, =
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Op(1). Therefore,

n n
Z |\D;1zt||2 = trace(Dg_l(Z ztzé)Dg_l) = 0,(1).
t=1 =1

This proves (12.8) and completes the proof of the part (i) of the lemma.

Proof of Lemma 12.2 (ii). Proof of (12.9). We can write
n
a/szuua = Za,D_lE[thllfuﬂf;]D !

n
= E[(D_lldD " zh?e) | Fy].
t=1
Let 0 > 0 be a small number which will be selected below. Then,

e = {elI(e} > 8) +0I(e? <)} + (e7 — 6)I(e? < 9)
> §—06I(e? <0).

Thus,
dWeoswa > 6{E] ZH@D Lokl [?) | FE] - Z la' D 2ehy|21(e7 < 8)|F2]}
=1 =1
= (5{q17n—q2’n}. (12.37)

We will show that there exist b, > 0 and § = &, > 0 such that b,' = 0,(1), §,;} = O0,(1)

n

and for any a = (ay,...,ap)’, |la]| =1 and n > 1,
Qi = b, (12.38)
@n < ba/2. (12.39)

Using these bounds in (12.37), we obtain

a'Wozyua > bl = 8, {bp, — (b/2)} = 6nbn/2,  1/b), = O,(1). (12.40)

First we prove (12.38). Setting

Zy {hepe} + {hidge e = i + Igeme,  where pf = hypy, g7 = hege,
Dy = (vg*l,...,vg*p)/, Vgl = (Zt 19*2)1/27

we can write

n
Gin=> D, E[Z,Z{|F})D a=d Wyza.
t=1
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Observe that the variables Z; = py + I« satisfy assumptions of Lemma 12.2(i). Hence by
(12.32),

, c Case 1 (intercept not included),
a sza > bn = (12.41)
¢ (1 + cuwp)”t: Case 2 (intercept included),

where ¢ > 0 does not depend on n. Notice that b, < ¢(1 + cuxpn) = Op(1) by (12.16). This
proves (12.38).

To prove (12.39), recall that ||a|| = 1. Bound

n
a2 < llalPano = dha ana =Y EllD 2 P1(] < 8)IF;).
t=1

In (12.52) of Lemma 12.3 we show that g}, , < 01(1+c**7n)51/4, where ¢; > 0 does not depend
on n and Cyy p is defined in (12.15). Thus, selecting

on = <c1(1bi/c2**,n))4’

we obtain gn2 < c¢1(1 + c**7n)6,11/4 = by, /2, which proves the bound (12.39). Notice that
8n < (2cc1)™* can be made small by selecting large ¢ in (12.41).

In turn, by (12.40),

AW > (bn/z)gn:(bn/2)<(bn/2)))4

Cl(l + Cxx,n

where b, is defined in (12.41). This implies

c 11+ cun)™:  Case 1 (intercept not included),

a'Wua > bl = (12.42)

11+ cuupn)™®:  Case 2 (intercept included)

for some ¢ > 0 which does not depend on n. Notice that b7 is F;; measurable, and (b})~! <
c(1 + caxn)? = Op(1) by (12.16). This proves the first claim in (12.9). The second claim

follows using the same argument as in the proof of (12.3).

Proof of (12.10). Observe that

Wezwall < B[] D aezpu? DY) | F)N < B[S D a2 DY || 7]
t=1 t=1
< S ED au] P1F) < bus = el + ann) = Op(1)

t=1

by (12.51) of Lemma 12.3 which implies (12.10).
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Proof of (12.11). Write DQ,D = W_'W,,.u W}, (DQ, D)~ = W, ,W_L W... By (12.3),
(12.4), (12.9) and (12.10),

I1DDllsp < [IDDI] < [IWZHWezwal W] < ba = Op(1),  (12.43)
1(DQD) My < [(DRD)H| < ([Wea [ Wl Wz < bus = Op(1). (12.44)

We will show that
a'DQyDa > by, =1, 3. (12.45)

Since b,' = bus = O,(1) this proves the first claim in (12.11). To verify (12.45), notice
that the smallest eigenvalue A,,;, of the matrix DQD and the largest eigenvalue 0,,,, of the
inverse matrix (D, D)~! are related by the equality 0,4 = )\;ﬁn. By (12.44), Opaz < bns.
Thus, for ||a|| =1,

a' Dy Da > Apin = 071 > b, =071

max nb»

where b, ! = b5 = Op(1) which proves (12.45). Finally, by (12.43), for ||a]| = 1, ¢’ DQ,,Da <
[|1DQ,D||sp < bra = Op(1) which proves the second bound in (12.11).

Proof of (12.12), (12.13) and (12.14). Write
t=1

To prove (12.12), it suffices to verify that
Sk = 0p(1). (12.46)

Recall that z; = pu + 2z and wy = hyey, where Esf = 1. Hence,

ENi|Fy] = hi,
Elzui|Fi] = hilgEnei] = Ighie, €= E[mel).
By (12.20),
nzd = BEE 4 il + ezl + Sl
Elzzpui|Fy = ElZzd | Fr) + i Eluf | Fi] + meE[Zui | Fr) + E[Zug | Filw
= E[zZzu;|Fy] + pmpshi Ele7] + {hep}e' {hel gt} + {helgeye{hpi}.
Then,

zziu; — Elzzpuf|Fr] = hilge(mmie; — Elnenjei))helg + pepiihi (€7 — E[€7))

Fhope (e} — Blie) helge + helge(nee? — Blnjef])hops.
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Therefore, setting ~v;; = v; 1 gjthe, it follows that

n n
djk = Z Vjt’th(thnkﬁ? - E[thﬁkté?g]) + Z{Uflujtht}%t(nkté?g - E[Ukﬁa)
t=1 t=1
n n
+ > {vy akehiviemjee? — Elnjeei]) + Y vy wehe oy, peha }e? — Elef))
t=1 t=1
_ .M (2 3) (4)
- Tn,jk; + Tn,jk + Tn,jk + Tn,jk'

To prove (12.46), it suffices to show that
e =op(1), =14 (12.47)

By Assumption 2.4, {njmiei}, {neee?} and {7} are covariance stationary short memory
zero mean sequences, and these sequences are mutually independent of the weights {71kt },
{vj_lujtht'ykt} and {(v;lujtht)(vk_luktht)}. Moreover, definition of vy and 7% and (7) of
Assumption 2.3 imply that

n n
Z’Y}%t =1, v,QQZMith? =0p(1)
t=1 t=1
and by (11) of Assumption 2.4,

max T = op(1), %72 max pihi = op(1).
n t=1,....n

=1,...,

Thus, (12.47) follows by using Lemma 12.1 and applying a similar argument as in the proof

of (12.5). This completes the proof of (12.12).
The claim (12.13) follows using (12.12) and property WL, = O,(1) of (12.9):

ZZUU

DSZL D = (D7'Suu DY) = (Wasua + 0p(1)) " = WL, (14 WL, x 0,(1))

= Wil (14 0,(1) 7 = Wik, +0,(1).

-1

Proof of (12.14). Write
D89, D" = D7'S,.Dt + DS, — Sezun) D7 (12.48)
By (12.12), D718, D™t = W0y + 0,(1). We will show that
D7H89 = Seeun) D7 = 0,(1), (12.49)

zZzuu

which together with (12.48) implies (12.14): D189, D=1 = W. ..y + 0,(1). We have, u? —
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E[u?|Fni-1] = hi(e? — o), where 0} = Ele} | Fi—1]. Write
D_l(Szzuu - nguu Z D tht E[uﬂfn,t*l])D_l = ((531‘3)

Then (12.49) follows if we show that
Sik = op(1). (12.50)
We have z; = ur + 2 and uy = hyey. So,

2zp = 22+ ety + ez + 2oy,
22y (ui — Bluf| Fpi-1]) = z2izihi (6] — of)
= helgnenIgchi (6 — 07) + popihi (e} — o7)
+hepeIgihi(ef — 07) + Tgnepughi (€ — 07).

Hence, denoting v;; = vj_l g;tht, we obtain

S = Y vl — o }+Z{U Lgehe v e (7 — o)}

t=1
n
+> o preh v me(ed — o2)} + Z{vjlujtht}{vglumht}{st — ot}
t=1 t=1
- M (2) ®) (4)
- Tn,jk: + Tn,jk + rn,jk + rn,jk‘
Observe, that sequences {wi; = (€7 — 07)}, {war = re(e7 — o)}, {wsr = nje(e? — o)},
{wys = €2 — 07} are sequences of uncorrelated random variables Wlth zero mean and constant

variance. For example, by assumption, 7;:m; are F;_1 measurable. Then, for ¢ > s,

Elwy] = E[Ewy|Fi-]] = EnjmmEl(e} — 0f)|Fi-1]] =0,
Eluwywis) = E[mmktmsnks —02)E[(} — o7)| Fi1]] =0,
E[w%t] = E[Ugt"?kt - )2|~7:t71]]
< E[pmiEle Ift 1] = E[EWmjimie;| Fi]] = E[nfiniie1] < oo

Then using the same argument as in the proof of (12.47) it follows
r =0 (1), 1=1,...,4
nik »(1), S

which proves (12.50) and completes the proof of (12.14).

This completes the proof of the part (ii) and of the lemma. O
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Proof of Corollary 12.1. The claim (12.17) is shown in (12.32), and the claim (12.18) is
shown in (12.42). O

Lemma 12.3. Under Assumptions of Theorem 2.1, the exists ¢ > 0 such that

Y EID; w1 Fr] < c(l+cen), D E[ID™ 2w [Fr] < e(1+ cann), (12.51)
t=1 t=1
S E[D | PI(e? < 0)|Fr) < el + cann)dH, (12.52)
t=1

for sufficiently small § > 0, where ¢ does not depend on n and 6 and c,,, = Op(1),
C**,TL == Op(l).

In addition, under assumptions of Theorem 2.2,

max ||[D™ zul|? = 0,(1), max ||Dg_lz,5|\2 = 0p(1), (12.53)
t=1 t=1,....n

n
ZE[b;l\]D_lztut\|2I(b;1\|D_1ztutH2 > e) ].7-"”7t_1] = op(1) for any e > 0,(12.54)
t=1

where by, is F;: measurable, bt = O,(1) and F, ;-1 is defined as in (9.6).
Proof of Lemma 12.3. Proof of (12.51). Denote

bie = [|Dy el P+ 1D, el P, 010 = 14 [|mil
bar = ||Dy  pehal|* + 1| Dy  Tgehal |, 020 = €7 + [Ime]|?e7.

By (12.19),

1D, 2l | = 11Dy e + Dy L gemy||?

IA

201Dy el * + 1D Lyl 1P [1me] 1)
< 2by1401s, (12.55)
||D;1ztut\|2 = ||Dg_1/ltht5t + Dg_lfgtntht€t||2 § 2b2t92t-

A

By Assumption 2.2(i) and Assumption 2.4(i),
Elby |F;] = El6w] = El6n],  Elba

Fr] = E[0a]) = E[f21].
This implies
E[HDg_thH2 |Fx] < 2buElfn], (12.56)
E[|D™ zw||* |[F] < 2byE[0a1],
S E[IIDS 2P | Fr] = 2B[01] (X7, bu),
Sty E[IID; o) | Fr] = 2E[021] (3072 bar).-
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Notice that

Do bue = 20 1Dy el P+ 300 11Dy g2 = con + p,
Doimn boe = D5 (1D b2+ 300 [[D ™ geha]|* = o + 1, (12.57)

by definition (12.15) of Cxm and cy4y p, and because

S 1Dy e P = 2002, Vgk 20 98 =
> e HDilIgthtH2 = k:1 Vg (Zt:l gktht) =D

Moreover, ¢y pn = Op(1), Coxn = Op(1) by (12.16). Clearly, (12.56) and (12.57) prove (12.51).
Proof of (12.52). Denote

020(6) = I(ef < 0) + [|mel[*1 (7 < 9).
Recall, that by assumption, ¢, is a stationary sequence, and by Assumption 2.2(i), E[||n:||*] =
E[||m[*]. Then,

E[§2(5)] < E[I(ef < &)+ (Elllml|) (B (eF < 0))'/
= B} <8)]+ (Elllm|[)'*(B[I(e} < &)V

We will show that for sufficiently small 6 > 0,

E[I(e3 < 8)] < CsY/2.
Indeed, by Assumption 2.1, the variable 1 has probability distribution density f(x) and

f(z) < ¢ < oo when |z| <z for some zy > 0. Without restriction of generality assume that
6 < zg. Then,

E[I(2 < 8)] = [I(Jz] < 6Y2)f(z)dx < c [ I(|Jz] < 6Y?)dx < CSY/2.
Therefore, E[f:(5)] < C6/4, and as in (12.56), we obtain

[HD Laehe| 21 (e} < 6) |~7:*] < 2094 E[02:(9)] < C5/ by,

ZE D™ zeha| P17 < 6) | Fy] < COVACY bar) < C6V4(p + Cann),
t=1 t=1

which proves (12.52).

Proof of (12.53). We will prove the first claim (the proof of the second claim is similar). By
(12.55), || D~ zpuq||? < 2bgs02¢. Let K > 0 be a large number. Then, 6 < K +602,1(02; > K).

Therefore,

max 1D 2> < 2K ( max by) +22b2t02t1(02t>1() (12.58)
""" t=1



By (11) of Assumption 2.4 and (12.57),

 max by = oy(1), Zb% = 0,(1). (12.59)

-----

Since {b:} and {6y} are mutually independent, then by (12.2) of Lemma 12.1,

Zbgt 92,5] 92t > K Z b2t n,K n,K = tfllax E[GztI(GQt Z K)] (1260)
t=1 el

We will show that
Ap g < Ax, (12.61)
where A — 0, K — 0o and Ag does not depend on n. Together with (12.58) this implies

 max ID7 zpug||? < Kop(1) + Op(1)Ax = 0,(1), n, K — 0.

=1,...,

Next we prove (12.61). Set L = K%, Then, letting ELt =e2I(e? > L), we obtain

O = ef(llnel® +1) < {7l + LI < L)} (|Imel* + 1),
02l(02 > K) < 5Lt(”77t||2+1)+L(||77t”2+1) (L(mel? +1) > K),
El0201 (02 > K)] < (B[(e7)"D)2(E((nel* + 12DV + LE[(||nel* + 1)) (/L)
< (BIEE)DAEImP + 1))V + (L2 K)E(llm]* + 1)%]

= Ag—0, K-—>o0

since, as K — oo, L?/K = K~/ — 0, E[(ELl)Q] — 0 and E[||m]|[* < oo. This implies
(12.61).

Proof of (12.54). Denote by i, the left hand side of (12.54). By (12.55), ||[D ™ zius||?> < 2b9404;.
Let K > 0 be a large number. Then,

by D™ Pz PI(b, M| D™ Pz |? > €) < 26y, MboyBai I (207, M borr > €)
< 20, Moo KT (2, oo K > €)1(02¢ < K) + 2b;, b0 I (02 > K)
< 6, LK (2b, bar)? + 26y, oo I (020 > K).

Observe, that b, Lhys is Fn,t—1 measurable. Then,
in < e VK2 (20,1)7 300 0, 4+ 20,1 300 oyl I (B2 > K).
Together with (12.60), (12.61) and (12.59), this implies:

in <€, "K2(2b, 1) (maxy—1,..pn bae) (30 bae) + 2651 (D01 bae) A
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< €, K20,(1)0,(1) + O,(1) Ak = 0,(1), n, K — .

This proves (12.54) and completes the proof of the lemma. ]

13 Additional Monte Carlo simulation results

In this section, we further evaluate the finite-sample performance of our robust OLS esti-
mation method using two examples of regression models with fixed parameters, where the

regressors z; and regression noise u; exhibit complex, non-standard structures.

Example 1. As in the Monte Carlo section of the main paper, we generate arrays of samples
from a regression model with a fixed parameter and an intercept, using a sample size of

n = 1500 and 1000 replications. We first consider the following model:

Ye = B1 + Bazor + Bazse +ur,  ur = hyey,
B = (B1, P, ﬁg)/ = (0.5,0.4, 0.3)/. (13.1)

We specify the scale factor h; in the regression noise u; = hie; as a deterministic trend hy =
0.4(t/n), and a stationary martingale difference noise ¢; is generated from a GARCH(1,1)

process
et =oper, o0f =14+0T07 1 +027 1, e ~iid N(0,1). (13.2)

Define the regressors as z1; = 1 and zp; = pgt + greMie for k = 2,3, where

t
1
por = 0.5sin(mt/n) +1,  gop = ‘ﬁ ; uj’ +0.25, v; ~iidN(0,1),

wse = 0.5sin(0.57t/n) + 1, g3 = 0.5sin(37t/n) + 1,
Mkt = 050k -1 + &ty St = €1-1, &3t = €2 (13.3)

Figure 14 displays plots of a sample of variables y;, z;, and u; for ¢ = 1,...,1500 gen-
erated by Model (13.1)-(13.3), which exhibit clear patterns of non-stationary behavior. The
Monte Carlo simulation results for sample size n = 1500 based on 1000 replications are re-
ported in the Table 6. Since the regressors z; and regression noise wu; in this model satisfy the
assumptions of Corollary 2.1, as expected, the Monte Carlo simulation results confirm excel-
lent performance of the robust OLS estimator. In particular, the empirical coverage of the
95% confidence intervals is close to the nominal 95%, whereas the standard OLS estimator

exhibits significant coverage distortions.
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Table 6: Robust OLS estimation in Model (13.3), n = 1500.

Parameters Bias RMSE CP CPgy SD

51 -0.00036 0.02738 94.3 89.8 0.02738
B9 0.00050 0.01681 93.8 79.5 0.01680
B3 -0.00003 0.00682 95.6 85.5 0.00682
20 6
4
2
0
-2
410 4
0 500 1000 1500 0 500 1000 1500
(a) (b) ut
307 40
201 30
10 ¢
0
-10
-20
0 500 1000 1500 0 500 1000 1500

(c) 22 (d) zs¢

Figure 14: Plots of y;, us, 29 and z3; in Model (13.3), n = 1500.

Example 2. Next, we provide an example of a regression model in which the components
51, B2, B3 of the fixed regression parameter are estimated at different rates. Consider regres-
sion model (13.1) with &4, n9;, n3; defined as in Example 1. Set hy = 1, and let the means puy;

and scale factors gx:, k = 2,3 be defined as follows:

poe = [0.5sin(107t/n) + 1] /g2, g2 = 1,
1 1 1

pse = [0.5sin(57t/n) + 1] g3, g =1t", v==,0,

- ——. 13.4
5075 (13.4)

This model satisfies the assumptions of Corollary 2.1 (see also Remark 2.1 in the main paper).
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Therefore, the corresponding t-statistics for £ = 1, 2,3 have the following property:

B _ B —a N(0,1), Vo =p v, (13.5)

Wkk

where, the robust standard errors /Wy, are inversely proportional to the consistency rate

Uk = (2932'01/2-
j=1

In this model, the intercept (5 associated with the regressor zy; = 1 is estimated at the
consistency rate v; = y/n; the parameter By linked with the regressor zo; (with go = t) at

the rate vy ~ n3/ 2 and the parameter 33 linked with the regressor z3; (with g3y = t7) at the

rate v3 ~ n¥TY2, The rate vs is super-fast, n, when v = 1/2; standard, nl/2

1/4

, when v = 0;
super-slow, n'/* when v = —1/4; and logarithmic, logn, when v = —1/2. Monte Carlo
results reported in Table 7 confirm the validity of the normal approximation (13.5) in finite
samples (n = 1500, based on 1000 replications). In particular, the coverage of the robust 95%
confidence intervals is close to the nominal level for all three parameters 31, 82, 8 and for all
values of v considered in the construction of the regressor zs;. In contrast, the coverage rates

based on the standard OLS method exhibit noticeable distortions, especially for Bo; and [Bs;.

As expected, smaller values of + are associated with slower consistency rates vz, wider

confidence intervals, and larger standard deviations for the estimator of 3s.

Table 7: Robust OLS estimation in Model (13.4), n = 1500.

y Parameters Bias RMSE CP CPgy SD

b1 -0.00331 0.08888 94.1 93.3 0.08882

1/2 B2 2.4E-06 0.00004 95.3 86.4 0.00004
B3 -0.00008 0.00128 94.5 85.6 0.00128

b1 -0.00406 0.08976 94.5 93.4 0.08967

0 B2 2.4E-06 0.00004 95.8 86.9 0.00004
B3 0.00272  0.03384 94.9 85.9 0.03373

b1 -0.00397 0.08884 94.6 93.9 0.08875

—1/4 Ba 2.6E-06 0.00004 95.6 85.9 0.00004
B3 0.01275 0.14219 95 87.2 0.14162

51 -0.00319 0.08628 95  94.7 0.08622

-1/2 B2 3.0E-06 0.00004 95.5 86.3 0.00004
B3 0.04468 0.43022 95.1 91.3 0.42790

Table 8 reports the estimation results for the parameters 31, 82,83 for sample sizes n =
200, 800, 1500, 3000, when the regressor z; is generated with v = —1/4 and S3 is estimated
with the super-slow rate v3 = n'/4. The coverage rates for the robust OLS method are close
to the nominal level in all cases. As expected, as n increases, the standard errors of all three

parameter estimates decrease; however, for (3, which is estimated with the super-slow rate
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n'/4, the reduction in the standard deviation is relatively slow.

Table 8: Robust OLS estimation in Model (13.4), v = —1/4, n = 1500.

n Parameters Bias RMSE CP CPgy SD

B1 -0.01307 0.23584 94.9 95.1 0.23548
200 B2 0.00008 0.00073 92.5 86.6 0.00073
B3 0.03138 0.22902 94.6 91.7 0.22686
B1 -0.00740 0.12187 95.1 94.6 0.12164
800 B2 0.00001 0.00010 94.3 86.3 0.00009
B3 0.01302 0.16151 94.8 88.1 0.16098
B1 -0.00397 0.08884 94.6 93.9 0.08875
1500 B2 2.6E-06 0.00004 95.6 85.9 0.00004
B3 0.01275 0.14219 95 87.2 0.14162
B1 -0.00319 0.06599 93.2 92.2 0.06592
3000 B2 0.00000 0.00001 94.1 83.3 0.00001
B3 0.00913 0.12430 94.8 84.3 0.12396

Figure 15 displays plots of a single sample of the variables y; and z3; for ¢ = 1,...,1500
generated by Model (13.4) for v = 1/2,0,—1/4,—1/2. These samples exhibit clear patterns

of non-stationary behavior.
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Figure 15: Plots of y;, z3; of a single sample of the model (13.4) for v =1/2,0,—1/4,-1/2 .
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