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Abstract

We present a conditional diffusion model for electromagnetic inverse design that
generates structured media geometries directly from target differential scattering
cross-section profiles, bypassing expensive iterative optimization. Our 1D U-Net
architecture with Feature-wise Linear Modulation learns to map desired angular
scattering patterns to 2 x 2 dielectric sphere structure, naturally handling the non-
uniqueness of inverse problems by sampling diverse valid designs. Trained on
11,000 simulated metasurfaces, the model achieves median MPE below 19% on
unseen targets (best: 1.39%), outperforming CMA-ES evolutionary optimization
while reducing design time from hours to seconds. These results demonstrate that
employing diffusion models is promising for advancing electromagnetic inverse
design research, potentially enabling rapid exploration of complex metasurface
architectures and accelerating the development of next-generation photonic and
wireless communication systems. The code is publicly available at https://
github.com/mikzuker/inverse_design_metasurface_generation,

1 Introduction

Engineered metasurfaces enable precise control of electromagnetic waves, with applications spanning
high-resolution imaging, compact optical devices [Hu et al.l [2024] [Faraji-Dana et al., 2018]], and
next-generation wireless communications [Hajiaghajani et al., 2021]]. However, inverse design—
finding a structure that produces an object scattering response—is challenging due to nonlinear
boundary conditions, high dimensionality, and the one-to-many nature of the problem [Li et al.,
2022]. Traditional methods, such as topology optimization or genetic algorithms, rely on iterative
simulations, often requiring expert tuning while incurring prohibitive computational costs [[Q1ian
and Ye| [2020]. Furthermore, the complex design space complicates brute-force search, making
data-driven approaches appealing [Lee et al., 2023]].

Machine learning has emerged as a promising alternative, learning the structure—response mapping
from data to bypass iterative solvers [Bastek et al.,2022]. Generative models, in particular, address
the one-to-many challenge by sampling from the distribution of viable designs rather than predicting
a single solution [Wang et al., [2020]. For instance, VAEs and GANs have successfully generated
metamaterials with tailored optical or mechanical properties [[Pahlavani et al.,|[2022]], and diffusion
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models, recently dominant in high-dimensional generation, offer stable training and diverse out-
puts [Ho et al.,[2020]]. Early applications in photonics and mechanics suggest that diffusion models
can capture complex physics, enabling fast, accurate inverse design [[An et al.,2019].

Building on these successes across physical domains, we investigate whether diffusion models can
similarly be applied to electromagnetic inverse design. We propose a diffusion-based framework for
inverse scattering design, focusing on conditional generation of metasurfaces from target differential
scattering cross-section (DSCS) profiles. In this work, we specifically generate structured media
consisting of dielectric spheres arranged in 2 x 2 grids. Our one-dimensional diffusion model maps
desired angular scattering patterns to metasurface structures, explicitly handling nonuniqueness by
producing diverse valid designs. The trained model generalizes to novel out-of-distribution targets
and exceeds the performance of the evolutionary optimization algorithm.

2 Problem

Natural and engineered objects exhibit complex electromagnetic scattering patterns that are challeng-
ing to reproduce directly. In the electromagnetic community, metasurfaces—man-made engineered
structures, are considered as a solution in cases where electromagnetic wave propagation shall be
controlled at will. However, the inverse problem of finding a structure tailoring a specific electro-
magnetic response remains a challenge and, in many cases, leads to over-complicated designs. This
motivates our inverse design problem: Given a set of differential scattering cross-section (DSCS)
values at predefined polar angles, generate a structured medium geometry that reproduces the target
scattering profile. While our approach specifically generates structured media composed of dielectric
spheres, we adopt the term “metasurface” throughout this work for consistency with established
terminology in the electromagnetic community.

In this work, we focus on a specific class of metasurfaces composed of dielectric spheres arranged
on a regular grid. The parametrization of our metasurface geometry is illustrated in Figure[T{B). A
square virtual substrate is discretized into an N x N grid of square cells (black lines). Within each
cell, we place a single dielectric sphere with a fixed refractive index (treated as a hyperparameter).
Each sphere is characterized by three parameters: its center position (z,y) and radius r, all defined
relative to the enclosing cell boundaries. For simplicity, in this study, we focus on the metasurfaces
with N = 2, and leave larger grids for future research.

For further training, we encode these geometric parameters into a one-dimensional representation
suitable for neural network processing. As illustrated in Figure[T[C), each metasurface is represented
as a vector of dimension 3N, where consecutive triplets (p,, Py, pr) encode the relative horizontal
position, vertical position, and radius of each sphere. All parameters are normalized to the range [0, 1],
ensuring consistent scaling across different metasurface configurations and stabilizing gradient-based
optimization. This normalized representation enables it to learn patterns across diverse geometries
while ensuring that the generated structures are physically valid.

The complete illustration of the problem components is presented in Figure [T(A).

3 Diffusion Model for Inverse Design

In this section, we present our conditional diffusion-based approach for inverse metasurface design.
We first describe the forward electromagnetic solver and dataset generation process, then detail our
model architecture and training methodology.

Forward solver and dataset generation The foundation of any data-driven inverse design approach
is a reliable forward solver that calculates electromagnetic responses based on geometric parameters.
We employ the SMUTHI package [Egel et al.,|2021]], which efficiently computes electromagnetic
scattering from spherical objects using T-matrices [Schulz et al., [1998]|]. This solver provides fast
and accurate computation of differential scattering cross-sections for our metasurface configurations,
enabling large-scale dataset generation. Using this framework, we generated a dataset of metasurfaces
2 x 2, consisting of 11,000 unique samples with their corresponding DSCS values calculated at 10
polar angles.
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Figure 1: (A) Schematic outline of the problem; (B) Parametrization of metasurface with spheres
placed in a 2 x 2 grid; (C) Schematic of the encoded geometry vector for a metasurface.

Model architecture To address the one-to-many nature of inverse scattering, we employ a condi-
tional diffusion model that learns to generate metasurface geometries from target DSCS profiles. As
illustrated in Figure [2] the model operates through two complementary phases: a forward process
that gradually adds noise to training examples, and a learned reverse process that iteratively denoises
initial random configurations while respecting the conditioning DSCS values.
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Figure 2: Architecture of the conditional diffusion model for metasurface generation.

The denoising is performed by a 1D U-Net [Ronneberger et al.|[2015] architecture that predicts noise
removal operations at each step, with target scattering profiles incorporated through Feature-wise
Linear Modulation (FiLM) [Perez et al.,[2017] of the network’s layers. This conditioning mechanism
allows the model to adapt its generation process to specific electromagnetic response requirements.
The complete mathematical formulation of the diffusion process is provided in Appendix [A]

Training and evaluation We train the model using the standard diffusion loss that minimizes the
expected L distance between predicted and true noise across all timesteps, with training hyperpa-
rameters detailed in Appendix [B] To quantitatively assess generation quality, we evaluate the Mean
Percentage Error (MPE) between conditioning input and generated structure DSCS values.

For a more detailed analysis of the MPE evolution during training, we saved intermediate versions of
the model every 1000 steps. Using these checkpoints, we sampled 10 metasurfaces for the inverse
design of a randomly generated spectrum.



4 Experimental Results and Discussion

To evaluate our diffusion model’s performance, we tracked the MPE evolution throughout training
and tested its ability to generate novel metasurfaces. As shown in Figure[3(A), all three statistical
measures—mean, median, and standard deviation—exhibit consistent decline over 116 epochs. This
convergence pattern indicates that the model successfully learns the physics-to-geometry mapping
inherent in electromagnetic scattering.

To test generalization beyond the training set, we evaluated the model on a metasurface configuration
not seen during training. This experiment assesses whether the model has learned the underlying
electromagnetic principles rather than memorizing training examples. We sampled 40 candidate
metasurfaces conditioned on the target DSCS profile of this unseen structure. The best-performing
sample (Figure[3(B)) achieved an MPE of 1.39%, demonstrating accurate reproduction of the target
scattering response at the specified angles.

The distribution of MPE values across all 40 generated samples (Figure [3(C)) provides insights
into model robustness. With a median error of 18.91% and a relatively tight interquartile range, the
model shows consistent performance without significant outliers. While the generated metasurfaces
accurately match the target DSCS at the 10 specified conditioning angles, they naturally differ from
the ground-truth structure at other angles—a consequence of the fundamental non-uniqueness in
inverse scattering problems (see Appendix [C]for geometric comparison).
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Figure 3: Performance of the trained diffusion model. (A) MPE statistics over training epochs. (B)
DCSC spectra comparison between ground-truth (black dashed line) and best generated metasurface
sample with MPE = 1.39% (red solid line). (C) MPE distribution for 40 generated samples for
selected out-of-distribution conditioning.

One of the major advantages of using the diffusion model for electromagnetic inverse design is
its fast inference speed compared to generating designs through optimization processes. However,
this comparison would not be fair without taking into account the training time of the diffusion
model. We compare our model’s training time and performance with the commonly used evolutionary
optimization algorithm. For this, we perform inverse design optimization using the CMA-ES [Hansen
and Ostermeier, |1996] algorithm, which is widely employed in various electromagnetic optimization
problems [Martinez et al., 2013} |Gregory et al.,|2011]]. We use the Python implementation from [No+
mura and Shibata, 2024] with parameters detailed in Appendix[E} which were derived from successful
experiments in recent studies.

We observe that in addition to better evaluation results (3% MPE for the diffusion model vs. 5%
for CMA-ES), the diffusion model offers significant computational savings (6 hours for one-time
training followed by seconds per generation, compared to 15-20 hours per optimization for CMA-ES
across four seeds). This significant gap stems from the objective function calculation (using a forward
solver) required during the evolutionary optimization algorithm, which is not needed during the
diffusion model’s training.



However, this comparison requires careful interpretation. For CMA-ES, the typical computational
cost scales with problem dimensionality: the recommended population size is A = 4 + |31n(d)]
[Hansen| 2016], and convergence typically requires O(100d) to O(1000d) iterations [Hansen et al.,
2003], yielding approximately 10* to 10° forward solver evaluations per run. In our experiments,
this resulted in approximately 1.05 x 10° evaluations per optimization run (1,500 iterations x 70
population size). In contrast, the diffusion model requires only 1.1 x 10* evaluations to generate
its training dataset (a one-time cost). Once trained, the diffusion model can generate new designs
without additional solver calls, whereas CMA-ES must repeat the full optimization for each new
problem instance. Thus, the diffusion approach amortizes its computational cost across multiple
inference tasks, making it increasingly advantageous when solving multiple related inverse problems.

While this is still not a complete comparison of two fundamentally different methodologies, we
consider it a promising direction for electromagnetic inverse design.

Although demonstrated here for 2 x 2 structured media, our approach readily scales to higher-
dimensional designs, where the computational advantages over iterative optimization would be even
more significant. These results establish diffusion models as a promising direction for accelerating
electromagnetic inverse design workflows.
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A Model Implementation Details

Diffusion Process Our model follows the DDPM framework [Nakkiran et al., [2024], with:
Y =Vor-yo+ V91— -e
using a cosine noise schedule [Nichol and Dhariwal, 2021]:
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Reverse Process The denoising model learns (g¢(yy, t) is predicted by the U-Net noise):
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FiLM Conditioning The U-Net uses feature-wise transformations:
FlLM(Fz,C) = Yi,c* Fi,c + ﬂi,c
with v; ¢, 3; . generated by two-layer networks processing the DSCS conditions.

B Model Training Parameters

The model was trained using the parameters shown in Table

Table 1: Hyperparameters of the trained diffusion model.

Category Parameter Value
U-Net dimensions {16, 32, 64, 128, 128, 64, 32, 16}
Architecture Conditional vector size 10
FiLM hidden dimension 128
e Number of denoising steps 1000
Diffusion Process EMA decay coefficient 0.995
Learning rate 4x107°
Training Batch size 16
Epochs 116

C Ground Truth vs Generated Metasurface Comparison

To illustrate the non-uniqueness inherent in inverse scattering problems, Figure [ compares the
ground truth metasurface with our best generated sample. Figure [d(A) shows the original structure
from which target DSCS values were extracted at ten specified polar angles. Figure (B) presents the
generated metasurface achieving 1.39% MPE on these angles. Despite matching scattering responses,
the structures exhibit distinct geometries—demonstrating that multiple physical realizations can
produce nearly identical electromagnetic signatures at selected observation angles.

D Feasibility of Generated Structures

Although all simulation parameters are expressed relative to the wavelength of the incident wave,
they can be readily converted into physical units once the wavelength is specified. For instance,
in our experiments, the wavelength was normalized to 1, and the unit cell length of the generated
metasurfaces was set to 5. The refractive index of the spheres composing the metasurface was equal
to 2. By defining one relative unit as 3 cm, we find that the incident wave’s frequency corresponds to
approximately 10 GHz, and the unit cell length corresponds to 15 cm (with the total metasurface side
length equal to 30 cm). These frequency and size ranges fall within the radio frequency domain and
can be feasibly realized under laboratory conditions, consistent with experimentally demonstrated
metasurfaces of comparable dimensions (10 cm) [Mikhailovskaya et al., [2025]].
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Figure 4: Comparison of the ground truth and generated metasurface.

E CMA-ES Parameters Used For Comparison

For comparison with our diffusion model, we employed the CMA-ES algorithm with parameters
selected based on successful configurations from recent electromagnetic optimization studies Do
brykh et al. [2025, Mikhailovskaya et al.,2025]]. The algorithm was initialized with a uniformly
random mean vector in the normalized parameter space [0, 1]*2, corresponding to the 12-dimensional
geometry representation of our 2 x 2 structured media. The optimization was run for four independent

seeds to account for the stochastic nature of the evolutionary search with the parameters shown in
Table 2

Table 2: CMA-ES algorithm parameters used for inverse design comparison.

Parameter Value
Initial mean vector  Uniform random in [0, 1]™2
o 0.07
Population size 70
Iterations 1500
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