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Abstract

Transformer models have revolutionized NLP,
yet many morphologically rich languages
remain underrepresented in large-scale pre-
training efforts. With SindBERT, we set out
to chart the seas of Turkish NLP, providing
the first large-scale RoBERTa-based encoder
for Turkish. Trained from scratch on 312 GB
of Turkish text (mC4, OSCAR?23, Wikipedia),
SindBERT is released in both base and large
configurations, representing the first large-scale
encoder-only language model available for
Turkish. We evaluate SindBERT on part-
of-speech tagging, named entity recognition,
offensive language detection, and the TUR-
BLIMP linguistic acceptability benchmark.
Our results show that SindBERT performs com-
petitively with existing Turkish and multilin-
gual models, with the large variant achieving
the best scores in two of four tasks but showing
no consistent scaling advantage overall. This
flat scaling trend, also observed for XLM-R
and EuroBERT, suggests that current Turkish
benchmarks may already be saturated. At the
same time, comparisons with smaller but more
curated models such as BERTurk highlight that
corpus quality and diversity can outweigh sheer
data volume. Taken together, SindBERT con-
tributes both as an openly released resource for
Turkish NLP and as an empirical case study
on the limits of scaling and the central role
of corpus composition in morphologically rich
languages. The SindBERT models are released
under the MIT license and made available in
both fairseq and Huggingface formats.

1 Introduction

The advent of transformer-based models such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) has reshaped natural language process-
ing (NLP), providing contextualized word repre-
sentations that generalize across a wide range of
tasks. While early efforts focused on English and
multilingual approaches, research has consistently

shown that monolingual pre-training on large, high-
quality corpora yields superior results for the target
language (Delobelle et al., 2020a; Scheible et al.,
2024; Scheible-Schmitt and Frei, 2025).

For Turkish NLP, several transformer-based en-
coders have been introduced in recent years. No-
table examples include BERTurk (Schweter, 2025),
trained on a 35 GB corpus of Turkish OSCAR,
Wikipedia, and OPUS data; ELECTRA (Clark
et al., 2020) and ConvBERT (Jiang et al., 2021)
models trained on both OSCAR and mC4 (35-242
GB)(Jiao et al., 2020). While these models provide
important milestones, most are relatively small en-
coder models trained with earlier-generation meth-
ods or focus on architectures other than RoBERTa.
The only RoBERTa models out there were not com-
puted in its fullest extend, but rather with small
batch size for relatively small period (Toraman
et al., 2023; Tas, 2024). Futher, Turkish still lacks
a large-scale, high-quality encoder-only model.

To address this gap, we introduce SindBERT, a
RoBERTa-based encoder model pre-trained specif-
ically for Turkish. SindBERT builds on the
design principles of the German model Gott-
BERT (Scheible et al., 2024) and adapts them to
the morphological richness and agglutinative struc-
ture of Turkish. We construct a byte-level BPE
vocabulary optimized for Turkish, train both base
and large variants with fairseq (Ott et al., 2019),
and leverage TPUv4 hardware (Jouppi et al., 2023)
for efficient large-scale pre-training. SindBERT is
designed to combine scalability and reproducibility
while directly targeting Turkish, resulting in the
first large-scale ROBERTa-style encoder model for
Turkish. Our contributions are as follows:

* We release SindBERT,s and SindBERT e,
trained from scratch on Turkish web-text.

* We benchmark SindBERT against existing
Turkish and multilingual models.
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2 Related Work

The introduction of transformer-based language
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) marked a paradigm
shift in NLP, enabling significant improvements
across a wide range of tasks. Building on
these foundations, multilingual extensions such as
mBERT and in particular XLM-RoBERTa (Chan,
2020) became widely used as strong general-
purpose baselines across more than 100 languages.
At the same time, a wave of monolingual adap-
tations demonstrated that language-specific pre-
training often outperforms multilingual alternatives
when sufficient high-quality data is available (Delo-
belle et al., 2020b; Martin et al., 2020; Chan et al.,
2020; Scheible et al., 2024; Scheible-Schmitt and
Frei, 2025).

Recently, multilingual encoder-only models
have seen a revival. EuroBERT (Boizard et al.,
2025) revisits the encoder paradigm with inno-
vations from decoder-only models, introducing a
family of multilingual encoders for European and
global languages with native support for sequences
up to 8,192 tokens. Similarly, mmBERT (Marone
et al., 2025) scales encoder pretraining to 3T tokens
across 1,800+ languages, introducing novel sam-
pling schedules and showing strong performance
on both high- and low-resource languages. These
developments highlight that encoder-based archi-
tectures remain competitive even in an era domi-
nated by large decoder models.

For Turkish, the first widely adopted trans-
former encoder was BERTurk (Schweter, 2020),
trained on a 35 GB mixture of OSCAR, Wikipedia,
OPUS, and additional resources. Variants included
cased/uncased models and vocabularies of 32k
or 128k tokens. Distilled versions (DistilBER-
Turk) (Jiao et al., 2020) and subsequent models
such as ELECTRA (Clark et al., 2020) and Con-
vBERTurk expanded the model zoo, with some
trained on the Turkish portion of mC4 (up to
242 GB) (Schweter, 2025). These provided im-
portant baselines but generally followed smaller
encoder configurations or explored alternative pre-
training architectures rather than scaling RoOBERTa.

Building on this line of work, RoBERTurk (Tas,
2024) introduced a RoBERTa-style encoder specif-
ically adapted for Turkish, showing that refined
pre-training objectives and tokenizer design can
yield competitive results. In parallel, research
has underscored the critical role of tokenization

in morphologically rich languages. Toraman et al.
(2023) systematically analyzed the impact of vo-
cabulary size and segmentation strategy, showing
that larger vocabularies can notably improve perfor-
mance in morphosyntactic evaluations. However,
all these RoBERTa-based models were not exten-
sively trained, typically using moderate batch sizes
and relatively few update steps, resulting in com-
paratively shallow pretraining regimes.

Taken together, these contributions highlight
steady progress in Turkish NLP. However, despite
the availability of increasingly large corpora and
modern training infrastructure, Turkish has lacked
a RoBERTa-based encoder model trained from
scratch at scale. SindBERT addresses this gap by
providing the first large-scale ROBERTa encoder
dedicated to Turkish, trained on modern corpora
and released openly to the community.

An overview of existing Turkish transformer-
based language models is provided in Table 1.

3 Methods

3.1 Training Data

SindBERT was trained on three Turkish corpora:
Wikipedia, OSCAR23 (Jansen et al., 2022), and
mC4. The corpus was shuffled and lightly filtered,
restricted to the removal of documents containing
invalid character encodings. The extracted sizes
are approximately 242 GB for mC4, 69 GB for
OSCAR, and 0.6 GB for Wikipedia, resulting in a
combined pre-training corpus of about 312 GB of
Turkish text.

3.2 Pre-processing

Similar to RoOBERTa, SindBERT relies on byte pair
encoding (BPE) (Radford et al., 2019) for subword
segmentation, which directly operates on raw text
without the need for pre-tokenization or auxiliary
tools such as Moses (Koehn et al., 2007). Since
the original GPT-2 tokenizer was designed for En-
glish, we instead constructed a tokenizer tailored
for Turkish. Following the strategy applied in Gott-
BERT (Scheible et al., 2024), we trained a dedi-
cated vocabulary using 40 GB of randomly sam-
pled Turkish text, resulting in a 52k subword inven-
tory optimized for the language. In our experience,
sampling around 40 GB of text is already enough
for the subword statistics to stabilize, while scaling
vocabulary training to the entire corpus would pri-
marily increase computational cost without offer-
ing substantial gains. While we did not separately



Model Architecture Pre-training Data Corpus Size
BERTurkszox 128k BERT base OSCAR, Wikipedia, OPUS, non-public 35GB
DistilBERTurk DistilBERT Distilled from BERTurk (subset) 7 GB
ELECTRAgman ELECTRA small OSCAR, Wikipedia, OPUS, non-public 35GB
ELECTRApse ELECTRA base OSCAR, Wikipedia, OPUS, non-public 35GB
ELECTRA ¢4 ELECTRA base mC4 242 GB
ConvBERTurk ConvBERT base OSCAR, Wikipedia, OPUS, non-public 35GB
ConvBERTurk,,c4 ConvBERT base mC4 242 GB
RoBERTurk RoBERTa-mid OSCAR, Turkish C4 subset (1 GB) 28 GB
(12L, 1024H)
SindBERT e RoBERTa base mC4, OSCAR23, Wikipedia 312 GB
SindBERT ;g RoBERTa large mC4, OSCAR23, Wikipedia 312 GB

Table 1: Overview of models evaluated in this work. We only consider cased variants even if uncased versions exist.

evaluate the effect of this adaptation on storage size
or downstream accuracy, previous work in Dutch
(Delobelle et al., 2020a) and German (Scheible
et al., 2024) indicates that language-specific tok-
enizers can yield improvements in both efficiency
and performance.

3.3 Pre-training

Following the setup of GottBERT, we pre-trained
both SindBERT},se and SindBERT ;e using the
fairseq framework on a 128-core TPUv4 pod
(Jouppi et al., 2023). Mixed-precision training
(fp16/bfloat16) was not employed, so both models
were trained entirely in full precision (fp32). This
ensures that training dynamics can be attributed
directly to model size, without numerical precision
optimizations acting as additional factors.

SindBERT},,se completed training in approxi-
mately 29.2 hours, while SindBERT ;e required
around 6.0 days. We followed the standard
RoBERTa pretraining schedule with 100k up-
date steps, a global batch size of 8k, a 10k-step
warmup, and polynomial learning rate decay. The
base model used a peak learning rate of 0.0004,
and the large model 0.00015. Similar to Gott-
BERT (Scheible et al., 2024), we evaluated af-
ter each epoch and stored checkpoints through-
out training. Since the dataset size only permitted
roughly four epochs, the final checkpoint coincided
with the best-performing one.

3.4 Downstream Tasks

To assess the capabilities of SindBERT, we fine-
tuned the model on a diverse suite of Turkish
downstream benchmarks covering sequence label-
ing, text classification, and linguistic acceptabil-
ity. Training was performed with the Flair frame-

work (Akbik et al., 2019) v0.15.1, using standard-
ized experiment configurations provided in the
repository. Hyperparameter optimization was car-
ried out over batch size and learning rate (Table 2),
with training capped at a maximum of 30 epochs
and early stopping applied (patience = 3). All mod-
els employed a linear learning rate schedule with a
10% warmup phase. We evaluated SindBERT on
the following tasks:

Part-of-Speech Tagging We used the concate-
nation of five Turkish Universal Dependencies
(UD) datasets: Atis, BOUN, FrameNet, IMST, and
Tourism. This diverse set reflects different domains
such as spoken language, newswire, and tourism.
Providing a measure of syntactic and morphologi-
cal coverage, we report model’s performance using
micro F1.

Named Entity Recognition For NER, we fine-
tuned on the Turkish NER dataset introduced in the
WikiANN corpus (Pan et al., 2017) and widely used
for multilingual evaluation. We used the splits from
Rahimi et al. (2019) and report micro F1 across all
entity types.

Offensive Language Detection To evaluate ro-
bustness on user-generated content, we employed
the OffensEval-TR 2020 dataset (Coltekin, 2020), a
corpus of Turkish tweets annotated for the presence
of offensive language. The dataset contains over
31k training and 3.5k test instances, labeled in a bi-
nary fashion as either NOT (not offensive) or OFF
(offensive). Mentions and URLs were anonymized
during preprocessing (e.g., replaced by @USER
or URL), while the tweets otherwise preserve the
linguistic and pragmatic properties of social media
text. We report performance using macro F1.



Linguistic Acceptability To assess fine-grained
grammatical knowledge, we include evaluation on
TURBLIMP (Basar et al., 2025), a benchmark of
16 core linguistic phenomena ranging from anaphor
agreement and argument structure to scrambling
and suspended affixation. Each phenomenon is rep-
resented by 1,000 minimal pairs, and models are
scored following the BLiMP protocol (Warstadt
et al., 2020), i.e., assigning higher probability to
the grammatical sentence of each pair. For each
model we compute the accuracy within every phe-
nomenon and report the average across all 16 cat-
egories as the overall TURBLIMP score. This
measure complements PoS tagging, NER, and sen-
timent classification by probing deeper syntactic
and morphosyntactic competence.

3.5 Hyperparameters

We focused our grid search on batch sizes and learn-
ing rates, selected based on the most frequent best-
performing values in prior experiments (GottBERT,
GeistBERT (Scheible-Schmitt and Frei, 2025); see
Table 2). Training was applied to PoS, NER and
classification and capped at a maximum of 30
epochs, with early stopping applied using a pa-
tience of three epochs. All models employed a lin-
ear learning rate schedule with a warmup phase of
10% of the total training steps. All downstream fine-
tuning experiments were conducted with a fixed
random seed of 1 for the base models and 42 for
the large models. This setup ensures reproducibil-
ity and consistency within each scale while main-
taining overall comparability across model groups;
nonetheless, minor deviations may still arise from
seed-related variance (Dodge et al., 2020).

Parameter Values
Batch Size 16, 32
Learning Rate  5e-6, 7e-6, le-5, 2e-5, 5e-5
Epochs up to 30
(Early stopping, patience = 3)
Table 2: Hyperparameter configurations for down-

stream fine-tuning. Each model-task combination was
trained with all permutations, yielding 10 runs per
model and task. Reported scores are averaged across
seeds for the best configuration.

3.6 Model Properties

Table 3 summarizes the vocabulary sizes and pa-
rameter counts of the Turkish and multilingual
models included in our evaluation. The smallest

encoder is ELECTRA g,y (13.7M parameters), fol-
lowed by DistilBERTurk (67M). Base-scale Turk-
ish encoders, such as ConvBERTurk (cased and
mC4 variants), ELECTRA, (cased and mC4),
and BERTurk (cased/uncased), cluster between
106M and 111M parameters with 32k vocabularies.
RoBERTurk, another RoBERTa-style encoder with
a 50k vocabulary, is slightly larger at 125M param-
eters. SINdBERTa5e grows further to 126M owing
to its 52k vocabulary and extended RoBERTa de-
sign.

At the mid-scale, mBERT has 178M parame-
ters with a WordPiece vocabulary of nearly 120k
tokens, while the 128k-token BERTurk variants
reach 184M. Among larger models, XLLM-Rygse
contains 278M parameters, while SindBERT ;g
grows to 357M. The largest encoder considered is
XLM-Rjyrge, With 560M parameters and a 250k-
token vocabulary. All values were extracted using
Hugging Face’s transformers library.

Table 3: Vocabulary size and total parameter count
for Turkish transformer-based models. Values were
extracted using Hugging Face’s transformers library.

Model Vocab Size #Params

ELECTRAman 32000 13,672,192
DistilBERTurk 32,000 67,497,984
ConvBERTurk 32,000 106,815,624
ConvBERTurk,c4 32,000 106,815,624
ELECTRApuse, mca 32,000 110,026,752
BERTurksx 32,000 110,617,344
RoBERTurk 50,265 124,644,864
SindBERTase 52,009 125,985,024
mmBERT a1 256,000 140,493,696
BERTurk os¢ 128,000 184,345,344
EuroBERT,0m 128,256 211,766,016
XLM-Rpase 250,002 278,043,648
mmBERT a5 256,000 306,939,648
SindBERT arge 52,009 357,145,600
XLM-Riarge 250,002 559,890,432
EuroBERTg10m 128,256 607,874,688

4 Results

4.1 Pre-training

During pre-training, we monitored perplexity both
on the training set (at each optimization step) and
on the validation set (after each epoch; see Fig-
ure 1). Across all configurations, the curves follow
a consistent convergence pattern. An initial plateau
phase can be observed, which is relatively brief for
the base models but more pronounced for the large
ones. Occasional short upward spikes appear in the
training curves; if taken in isolation, these might
be misread as divergence, yet they quickly subside
as training progresses.



The base models typically stabilize after
20k-30k steps, while the large models require
slightly longer but consistently converge by around
40k steps. By the end of training, both config-
urations achieve comparably low perplexity, un-
derscoring the efficiency of the pre-training setup.
This trend is mirrored in the validation perplex-
ity, which shows steady improvements after each
epoch. Overall, training perplexity decreased from
about 54.5k to 3.93 for the base models and from
about 52.2k to 3.24 for the large models, reflecting
robust and reliable convergence.
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Figure 1: Perplexity of the SindBERT models. Top:
validation perplexity measured at checkpoints. Bottom:
training perplexity measured at each optimization step.

4.2 Downstream Tasks

Part-of-Speech Tagging Across base-scale mod-
els, performance on the Turkish Universal De-
pendencies treebank is consistently high, with
micro-F1 values exceeding 93% for nearly all en-
coders. The strongest overall results are achieved
by ConvBERTurkp,c4 (94.57), closely followed by
SindBERT}ase (94.47) and BERTurk a5k (94.44).
Interestingly, both ConvBERTurk variants, trained

with different corpora, maintain a narrow mar-
gin over ELECTRA-based and RoBERTa-style en-
coders, suggesting that architectural innovations
like dynamic convolution offer slight but consistent
gains in token-level syntactic tagging. The rela-
tively low score of RoBERTurk (87.99) indicates
the limitations of early RoOBERTa replications for
Turkish, likely due to smaller corpora and shorter
training schedules. SindBERT},,. performs com-
petitively within this saturated range, demonstrat-
ing strong generalization across tasks despite a
larger 52k BPE vocabulary.

Among large-scale encoders, SindBERT ;g at-
tains the highest F1 (94.63), marginally outperform-
ing XLM-Rjage (94.39). This indicates that Sind-
BERT’s pre-training on modern Turkish data con-
tributes positively to syntactic coverage, even when
compared to substantially larger multilingual mod-
els. The weaker performance of EuroBERTg gm
(93.33) may reflect its more domain-diverse, less
Turkish-focused corpus composition.

Overall, POS tagging performance appears satu-
rated across both scales, with nearly all base mod-
els exceeding 94 F1 and only marginal gains from
scaling. SindBERT maintains parity with top-tier
baselines, confirming that syntactic coverage in
Turkish is largely solved for transformer-based en-
coders.

Named Entity Recognition The best base-
scale performance is reached by BERTurksyk
(94.38), confirming its robustness for token-
level classification. Close behind are ConvBER-
Turk (94.03) and BERTurkjogx (93.81), while
SindBERT},, achieves a solid 93.19, comparable
to ELECTRApue (93.49) and XLM-Rpase (92.9).
This indicates that SindBERT’s RoBERTa-like
setup neither clearly surpasses nor lags behind the
most established Turkish encoders, suggesting that
the NER task may already be approaching an up-
per limit with current dataset size and annotation
quality.

At the large scale, XLM-Ryye slightly leads
(94.44), followed closely by SindBERT g (93.64).
Given that XLM-R was trained on over 2 TB
of multilingual text, this narrow margin under-
scores the efficiency of SindBERT’s more compact,
Turkish-focused pretraining corpus.

In general, NER results reveal minimal separa-
tion between base and large encoders, indicating
that model size has limited impact once sufficient
Turkish data are used. SindBERT performs on



par with the strongest monolingual models, under-
scoring the stability of its representations across
token-level semantic tasks.

Offensive Language Detection For offensive
language classification (OffensEval-TR 2020),
we observe more pronounced differences be-
tween architectures. ConvBERTurk reaches the
highest macro-F1 among base models (81.99),
with ConvBERTurk,c4 (81.90) and BERTurk gk
(81.77) performing almost identically. ELEC-
TRA variants and SindBERT}, (81.14) cluster
slightly below, while distilled and multilingual
models trail more clearly. These results highlight
that models trained on monolingual Turkish cor-
pora still offer clear advantages for pragmatic and
domain-sensitive tasks. SindBERT}y,. thus per-
forms solidly but not at the very top, suggesting that
further pre-training on informal or social-media
text could enhance its stylistic robustness.

In the large model group, SindBERT ;e again
performs best (82.29), surpassing XLM-Rj,ree
(81.99) and far exceeding EuroBERT¢ oM (75.57).
This consistent lead across two of four downstream
tasks emphasizes SindBERT’s balanced architec-
ture and effective use of Turkish-specific corpora.

TURBLIMP Table 5 reports the detailed TUR-
BLIMP results for all base and large models. Over-
all, SindBERT},,s achieves an average score of
90.3, which is comparable to ELECTR Ay, and
ELECTRA ¢4 (both 89.9), while trailing behind
the strongest baselines BERTurksy, (93.8) and
BERTurkgx (95.1). A closer look at the per-
phenomenon results shows that SindBERTp,se i
particularly strong on scrambling, suspended affix-
ation, subject agreement, and irregular forms (all
>98), which are central morphosyntactic phenom-
ena of Turkish. At the same time, it struggles with
ellipsis (59.0) and island effects (64.0), two cate-
gories that remain challenging across most models.

For the large models, SindBERT ;e reaches
an average of 89.8, placing it slightly below
EuroBERT¢0m (90.0) and XLM-R e (92.7). Its
strengths mirror the base variant: ceiling-level per-
formance in morphologically rich categories such
as suspended affixation, scrambling, and irregular
forms. However, SindBERT,¢. shows a severe
weakness in ellipsis (27.8), which strongly lowers
its overall average.

These findings highlight that monolingual mod-
els like SindBERT capture Turkish-specific mor-
phosyntax particularly well, while multilingual

models such as XLLM-R generalize more effectively
to harder syntactic phenomena (e.g., ellipsis and
binding). This suggests a trade-off between special-
ization in language-specific structures and broader
generalization capacities learned from multilingual
corpora.

5 Discussion

5.1 Principal Findings

Our evaluation shows that SindBERTYy, per-
forms competitively with other widely used Turk-
ish encoders, confirming the robustness of its
RoBERTa-style pretraining setup. At the same
time, SindBERT),¢. achieves the best overall re-
sults in two of four downstream tasks, notably in
part-of-speech tagging and offensive language de-
tection, and also performs strongly on several lin-
guistic control tests. While scaling does not pro-
duce uniform gains across all benchmarks, these
task-specific improvements suggest that larger con-
textual capacity primarily benefits pragmatically
and syntactically complex settings. Similar satura-
tion effects are visible for EuroBERT and XLM-
R, indicating that many Turkish benchmarks may
no longer be sufficiently discriminative to reveal
consistent scaling trends. Nonetheless, diagnostic
evaluations such as TURBLIMP underscore Sind-
BERT’s strengths in Turkish-specific grammatical
phenomena (e.g., scrambling, suspended affixation,
subject agreement), highlighting the model’s lin-
guistic depth beyond aggregate scores.

5.2 Corpora

A likely factor explaining the limited scaling gains
lies in the training corpus composition. SindBERT
was trained on 312 GB of text—dominated by mC4
(242 GB), which provides broad coverage but is
considerably noisier than smaller, curated datasets.
By contrast, BERTurk, trained on only a fraction
of that volume but sourced from cleaner collec-
tions (OSCAR, Wikipedia, OPUS, and non-public),
achieves excellent results, particularly on linguis-
tically sensitive evaluations. This mirrors trends
observed in other monolingual models such as Gott-
BERT, CamemBERT, and GeistBERT, where per-
formance gains stemmed not merely from data size
but from an effective balance of quality, domain
diversity, and linguistic representativeness. Our
findings therefore reinforce that corpus curation,
not scale alone, is decisive for progress in Turkish
NLP.



Model PoS WikiANN OffensEval-TR 2020 | TURBLIMP AVG
ELECTRAqmar 9428 9192 78.17 80.6
DistIBERTurk 9401  91.54 79.19 87.2
ConvBERTurk 9441  94.03 81.99 60.8
ConvBERTurkncs 9457  93.56 81.90 55.5
ELECTR Apyee 9429  93.49 81.54 89.9
ELECTRA 4 944 9343 81.38 89.9
BERTurks 93.16 9438 81.03 93.8
RoBERTurk 87.99  81.09 70.01 -
SindBER T 9447  93.19 81.14 90.3
mmBERT a1 9375 9251 77.28 85.1
BERTurkppye 9444 93581 8177 95.1
EuroBERT,j0v 9297  90.91 75.73 86.3
XLM-Rpyg 9423 929 79.77 89.2
mmBERT 9375  93.35 78.49 89.3
SindBERT g 94.63  93.64 82.29 89.8
XLM-Rigrge 9439  94.44 81.99 92.7
EuroBERTgoq 9333 91.85 75.57 90.0

Table 4: Evaluation results across four Turkish downstream tasks. Best results are shown in bold and second-best
results are underlined, with rankings reported separately for base and large model groups. For the 13 base models,
third-best results are additionally marked with a dotted underline. PoS: micro-F1 on concatenated UD datasets.
NER: entity-level F1 on WikiANN Turkish. Sentiment: macro-F1 on OffensEval-TR 2020. TurBLiMP: average
accuracy over 16 linguistic acceptability phenomena. Reported scores for PoS, NER and classification are computed
on the test set, with the best checkpoint per model—task combination selected based on validation performance.
TURBLIMP was evaluated using its predefined configuration.

Model Ana. Agr. Arg. Tr. Arg. Ditr. Bind. Det. Ellip. Irr. Isl. Nom. NPI Pass. Quant. RelCl. Scramb. Subj. Agr. Susp. Aff. | AVG
ELECTRAgman 74.1 86.6 79.3 70.7 91.8 10.6 98.7 39.1 90.0 90.9 100.0 979 799  99.5 82.8 97.5 80.6
DistilBERTurk 96.9 97.5 95.4 93.0 829 136 941 474 956 92.1 988 984 920 99.8 97.0 100.0 |87.2
ConvBERTurk 343 419 68.1 874 0.0 405 912 993 556 81.5 100.0 99.0 509 559 35.7 30.9 60.8
ConvBERTurkpcsa  40.7 49.9 432 03 0.0 347 84.1 955 67.3 88.1 100.0 99.0 49.1 479 46.3 41.5 55.5
ELECTRApgse 94.3 99.6 96.1  96.2 99.3 49.7 979 353 96.6 96.1 91.2 98.0 90.7 100.0 99.0 99.0 89.9
ELECTRA 4 94.3 99.4 95.5 91.4 982 463 99.0 41.8 97.0 950 936 98.0 920 100.0 97.2 99.1 89.9
BERTurksi 96.7 99.7 99.8 99.9 99.9 874 988 494 974 982 822 957 977 100.0 98.3 100.0 |93.8
RoBERTurk - - - - - - - - - - - - - - - - -

SindBERTpgse 93.7 98.3 92.9 94.6 942 59.0 98.0 64.0 939 887 84.8 983 899 100.0 94.0 100.0 | 903
mmBERT a1 73.3 87.6 86.5 642 929 658 913 65.1 902 81.0 90.1 939 885 99.4 92.3 99.0 85.1
BERTurk s 97.3 99.8 96.1  97.7 99.0 96.6 999 609 989 972 844 980 97.0 99.6 99.1 100.0 | 95.1
EuroBERT; oM 88.3 86.5 83.2 82.7 98.8 48.6 98.5 557 893 84.8 90.0 944 90.0 100.0 91.9 98.0 86.3
XLM-Rpgase 94.6 91.4 89.2 927 98.6 659 92.8 524 914 924 904 96.0 846 100.0 95.0 99.7 89.2
mmBERT},6¢ 85.2 91.5 93.6 86.2 947 825 963 589 925 848 931 934 836 99.6 94.2 99.4 89.3
SindBERT arge 90.4 98.4 91.6 953 97.1 27.8 100.0 67.2 953 91.1 948 988 944 100.0 94.9 100.0 | 89.8
XLM-Rjgrge 94.7 96.5 96.7 98.5 98.7 86.9 948 68.8 91.6 913 850 934 914 99.8 95.8 100.0 | 92.7
EuroBERTg 0m 90.1 96.6 924 921 958 783 959 53.0 94.1 849 879 922 92.0 100.0 95.7 99.5 |90.0

Table 5: Detailed TURBLIMP evaluation across 16 linguistic acceptability phenomena. Best results are shown in
bold and second-best results are underlined, with rankings reported separately for base and large model groups. For
the 13 base models, third-best results are additionally marked with a dotted underline.



A further dimension concerns vocabulary design.
SindBERT employs a 52k BPE vocabulary that bal-
ances coverage and efficiency, whereas BERTurk
also released a 128k-token variant, which ranks
among the strongest performers in our benchmarks,
especially on TURBLIMP. Recent work by Tora-
man et al. (2023) corroborates that vocabulary size
has a substantial impact on Turkish models due
to the language’s agglutinative morphology. They
report that optimal vocabulary scales differ by tok-
enization strategy: for BPE or WordPiece, vocabu-
laries around 20% of model parameters tend to be
most effective, while morphological or word-level
tokenizers may benefit from substantially larger
ratios. Our results align with this observation:
BERTurk 55k profits from an expanded vocabulary
despite its smaller corpus, whereas SindBERT’s
52k vocabulary remains sufficiently expressive to
achieve competitive results given its broader but
noisier training data.

5.3 Efficiency

From an efficiency perspective, our findings high-
light a favorable trade-off between scale and per-
formance. While SindBERT},.. achieves results
comparable to its larger counterpart at a fraction of
the computational cost, SIndBERT e still demon-
strates measurable advantages on more demanding
or pragmatically complex tasks. This indicates that
the large model’s additional capacity is not wasted,
but rather contributes selectively where richer con-
textual representations are required. Nevertheless,
for most real-world scenarios, the base configura-
tion offers an excellent balance between efficiency
and accuracy. Taken together, the flat scaling behav-
ior across multiple Turkish model families suggests
that future progress will hinge less on parameter
growth and more on corpus quality, tokenization,
and task design.

6 Future Directions

Future work may extend SindBERT in several di-
rections. First, while GeistBERT built on the Gott-
BERT checkpoint through continued pre-training
on in-domain data (Scheible-Schmitt and Frei,
2025), and ChristBERT explored the effects of
continued pre-training versus training from scratch
using both general and domain-specific vocabu-
laries, a similar ablation study has not yet been
conducted for Turkish. SindBERT provides a natu-
ral starting point for replicating these approaches,

enabling systematic comparisons of domain adap-
tation strategies in Turkish.

Second, our findings indicate that many existing
benchmarks are already saturated, as they fail to
reveal consistent improvements from larger mod-
els. To overcome this limitation, future evaluations
should adopt more comprehensive and discrimina-
tive test suites. In particular, the recently released
TrGLUE benchmark! offers a promising step in
this direction, providing a diverse collection of
tasks. It includes natural language inference, para-
phrase detection, sentiment analysis, and question
answering, that more closely mirror the breadth of
the original GLUE suite. Incorporating TrGLUE
into future experiments would enable a more fine-
grained assessment of SindBERT’s generalization
capabilities across both syntactic and semantic di-
mensions.

Third, extending evaluation to specialized do-
mains such as biomedical or legal language remains
an important frontier for Turkish NLP, where Sind-
BERT could serve as a foundation for targeted do-
main adaptation, just as GottBERT (Scheible et al.,
2024) and GeistBERT (Scheible-Schmitt and Frei,
2025) did for ChristBERT (He et al., 2025).

Finally, future pre-training efforts could further
improve linguistic coverage by considering docu-
ment or sentence boundaries during sampling and
by employing WWM (Martin et al., 2020; Chan
et al., 2020).

7 Conclusion

We introduced SindBERT, the first large-scale
RoBERTa encoder trained from scratch on 312
GB of Turkish text. Across four benchmarks, it
performs competitively with existing models, with
SindBERT ), achieving the best results in two
tasks. While scaling brings only selective gains,
this mirrors trends in XLM-R and EuroBERT, sug-
gesting that Turkish benchmarks are nearing satu-
ration. The contrast with BERTurk highlights the
decisive role of corpus quality and variance over
size. Together, these findings show that progress
in Turkish NLP will depend less on scaling and
more on curated data, adaptive tokenization, and
challenging evaluation suites. As the first openly
released large-scale RoBERTa model for Turkish,
SindBERT establishes a solid foundation for future
Turkish NLP.

1https://huggingface.co/datasets/
turkish-nlp-suite/TrGLUE


https://huggingface.co/datasets/turkish-nlp-suite/TrGLUE
https://huggingface.co/datasets/turkish-nlp-suite/TrGLUE

Limitations

This work has several limitations. First, SindBERT
was trained on three large-scale Turkish corpora
(mC4, OSCAR23, Wikipedia) with only light filter-
ing applied, restricted to the removal of documents
containing invalid character encodings. No addi-
tional cleaning, quality filtering, or cross-source
deduplication was performed. As a result, resid-
ual noise, duplicated content, and potential biases
are likely to remain in the training data and may
influence the learned representations.

Second, the training data was drawn exclusively
from web-based sources, without explicit control
for dialectal or register variation (e.g., Ottoman vs.
Modern Turkish, formal vs. colloquial, or regional
varieties). This may limit the model’s robustness
on underrepresented varieties or in specialized do-
mains such as biomedical or legal text, unless addi-
tional domain-adaptive pre-training is performed.

Third, SindBERT was pre-trained with conserva-
tive hyperparameter settings and without extensive
exploration of alternative masking strategies (e.g.,
Whole Word Masking) or longer training schedules.
Pre-training was also conducted without mixed pre-
cision, which increased computational cost and
limited the feasibility of scaling to larger model
sizes or more training steps.

Fourth, we did not perform a systematic error
analysis of downstream results. Such an analysis
could provide insights into systematic weaknesses
(e.g., frequent PoS confusions, NER boundary er-
rors, sentiment misclassifications, or TURBLIMP
minimal pair failures) and help prioritize future
improvements in model design and dataset compo-
sition.

Fifth, baseline reproducibility introduces some
uncertainty. ConvBERTurk and ConvBERTurk,,c4
are based on the ELECTRA codebase, but dur-
ing conversion from the original checkpoints to
HuggingFace Transformers the distinction between
generator and discriminator is not explicit. While
ELECTRA’s conversion script allows specifying
this choice, ConvBERTurk appears to default to
the discriminator. This may not invalidate com-
parisons, but it does leave open the possibility of
subtle architectural differences and explains the
suboptimal performance on TURBLIMP.

Lastly, our evaluation focused on four down-
stream tasks (PoS tagging, NER, sentiment classifi-
cation, TURBLIMP). While these cover a diverse
range of morphosyntactic, semantic, and syntactic

phenomena, they do not capture the full scope of
Turkish NLP challenges such as question answer-
ing, natural language inference, summarization, or
long-context understanding. The generalization of
SindBERT to these settings remains to be estab-
lished.

Ethical Considerations

Like all large-scale language models, SindBERT
may inherit biases from its training data, which can
influence downstream tasks such as classification
or decision-making. While no deduplication was
applied, the corpus may still contain redundancy
and noise, as well as deeper societal or representa-
tional biases. Furthermore, training on large web-
based corpora raises privacy concerns, as models
may inadvertently retain sensitive information. Re-
sponsible deployment is especially important in
high-stakes domains like legal, medical, or finan-
cial NLP.

Despite optimizations for efficiency, pre-training
and evaluating transformer models remain com-
putationally demanding, contributing to energy
use and carbon emissions. These environmental
costs highlight the need for balancing model per-
formance with sustainable development goals.
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A Runtime

Table 7 lists the hyperparameters of the best Sind-
BERT models (selected by validation performance)
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for each benchmark, supporting reproducibility of
our results. For transparency, Table 6 reports the
total computation time per task, showing that all
Turkish downstream experiments together required
roughly 425 GPU hours (about 17.7 days). All base
model experiments were run on an NVIDIA RTX
3090, and large model experiments on an NVIDIA
H100 GPU.

TURBLIMP is not reported, as the pipeline did
not record training time. Since no hyperparameter
search was involved, this omission is minor and
corresponds to only a few additional hours.

Task Computation Time
PoS 200:21
WikiANN 131:02
OffensEval-TR 2020 93:37
Total 425:01

Table 6: Computation time in hours and minutes for the
Turkish downstream tasks, summing to about 425 hours
and 1 minute (approximately 17.7 days).
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PoS NER Sentiment

BF LR BF LR BF LR
ELECTRAgman 5e-05 32 5e05 16 2e-05 16
DistilBERTurk 2¢-05 16 5e-05 16 7e-06 16
ConvBERTurk 5e-05 32 1e-05 16 7e-06 16
ConvBERTurky,cs4 5e-05 32 2e-05 32 5e-06 32
ELECTRApse 5e-05 16 2e-05 32 7e-06 32

Model

BERTurksok 2e-05 32 2e05 16 7e-06 16
RoBERTurk 5e-05 16 2e-05 16 1e-05 32
SindBERT} ¢ le-05 16 1e-05 32 2e-05 32
mmBERT 11 5e-05 32 2e05 16 2e-05 32
BERTurk,gx 7e-06 16 5e-05 32 7e-06 32
EuroBERT;0m 7e-06 16 5e-06 16 1le-05 32
XLM-Rpase 5e-06 16 1e-05 16 7e-06 16
SindBERT yge le-05 32 7e-06 16 7e-06 16
XLM-Rarge 7e-06 16 5e-06 16 7e-06 32

EuroBERT¢0Mm le-05 16 5e-06 32 5e-06 32

Table 7: Hyperparameters of the best-performing downstream task model for each pre-trained model. BF denotes
the batch size, LR the learning rate.
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