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Abstract. Clinical guidelines recommend performing left ventricular
(LV) linear measurements in B-mode echocardiographic images at the
basal level–typically at the mitral valve leaflet tips–and aligned perpen-
dicular to the LV long axis along a virtual scanline (SL). However, most
automated methods estimate landmarks directly from B-mode images for
the measurement task, where even small shifts in predicted points along
the LV walls can lead to significant measurement errors, reducing their
clinical reliability. A recent semi-automatic method, EnLVAM, addresses
this limitation by constraining landmark prediction to a clinician-defined
SL and training on generated Anatomical Motion Mode (AMM) images
to predict LV landmarks along the same. To enable full automation,
a contour-aware SL placement approach is proposed in this work, in
which the LV contour is estimated using a weakly supervised B-mode
landmark detector. SL placement is then performed by inferring the
LV long axis and the basal level- mimicking clinical guidelines. Build-
ing on this foundation, we introduce WiseLVAM – a novel, fully auto-
mated yet manually adaptable framework for automatically placing the
SL and then automatically performing the LV linear measurements in the
AMM mode. WiseLVAM utilizes the structure-awareness from B-mode
images and the motion-awareness from AMM mode to enhance robust-
ness and accuracy with the potential to provide a practical solution for
the routine clinical application. The source code is publicly available at
https://github.com/SFI-Visual-Intelligence/wiselvam.git.

Keywords: LV linear measurements · scanline placement · M-mode im-
ages · landmark detection .
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1 Introduction

Measuring the left ventricle (LV) internal dimension (LVID), interventricular
septum (IVS), and posterior wall (LVPW) at end-diastole (ED) and end-systole
(ES) is essential for estimating LV volume and mass [12, 13]. To standardize
these measurements, guidelines [11, 20] recommend identifying an anchor frame
corresponding to ES or ED, and placing a virtual scanline (SL) perpendicular
to the LV long axis at the basal level—typically near the mitral valve leaflet
tips—in a B-mode echocardiography image acquired from the parasternal long-
axis view. Accurate placement of the SL is critical, as measurement reliability
depends heavily on anatomical consistency. While the placement at the basal
level is considered standard, anatomical variations, such as the existence of the
septal bulge, may require slight adjustments of the SL position, for example,
moving the SL slightly towards the LV apex to just beyond the septal bulge. This
aligns with broader clinical insights [18] indicating that improper SL placement
can result in significant errors in LV wall thickness and cavity size estimates,
potentially contributing to diagnostic errors. Deep learning methods typically
automate LV linear measurements by framing them as a landmark detection
task, using heatmap-based localization to estimate key points from B-mode im-
ages [2, 3, 5, 6, 14, 21, 25]. However, small errors in peak estimation can cause
clinically significant landmark shifts, affecting measurement accuracy. Two main
challenges remain: (i) predicted landmarks are not explicitly constrained to the
SL, and (ii) models often struggle to perform contour-aware SL placement due to
directly regressing LV landmarks from the B-mode input. To address (i), Gilbert
et al. [3] combined heatmap and coordinate supervision, while Wan et al. [25]
applied a weighted L1 loss to enhance precision. Mokhtari et al. [21] found that
label smoothing displaces landmarks and proposed a graph-based network to
improve accuracy. EnLVAM [16] is a semi-automatic framework that enhances
landmark prediction reliability by generating and predicting on Anatomical Mo-
tion Mode (AMM) images [9] through the combination of a user-defined SL
and B-mode echocardiography video. Landmark predictions are explicitly con-
strained along this SL, which helps to mitigate over- and underestimation errors
caused by misaligned or shifted keypoints. While this design improves accuracy
and interpretability, the dependency on manual SL placement limits its scalabil-
ity and reproducibility.

In this work, we extend EnLVAM by introducing Wise (Weakly supervised,
scanline estimator), a LV contour-aware method for automatic SL placement that
eliminates the need for manual input (Figure 1). LV contours are estimated using
a weakly supervised B-mode landmark detector, followed by inference of the long
axis and basal level to align the SL with true LV geometry. Unlike direct land-
mark regression, this geometry-driven approach improves accuracy and stability
in SL placement, leading to more reliable automatic LV linear measurements
when integrated with EnLVAM. For training the Wise, in order to compensate
for the absence of dense contour annotations, a weakly supervised LVID contour
generation via EnLVAM is introduced (Figure 2). Building on this foundation,
we propose WiseLVAM—a fully automated yet user-adjustable framework for
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the automatic LV linear measurement—which integrates the benefits from both
B-mode and AMM-based landmark detection and addresses issues (i) and (ii) to
improve robustness and accuracy.

The contributions of this work are summarized as follows:

- A contour-aware method for automatic SL placement model (Wise) is intro-
duced, extending EnLVAM by leveraging geometric context to infer the LV
long axis and the basal level for anatomically consistent placement.

- WiseLVAM, a fully automated and manually adjustable framework for LV
linear measurements, is proposed. It integrates B-mode and AMM-based
landmark detection to enhance LV linear measurement accuracy.

- A novel weakly supervised training strategy is utilized to train the Wise
based on the inferred LVID landmarks from EnLVAM, enabling structure-
aware learning without the need for dense manual annotations.

2 Related works

Landmark detection is typically performed through heatmap regression or clas-
sification applied to B-mode frames. In prior work, a U-Net architecture [23] was
used by Gilbert et al. [3], and the DSNT method [22] was integrated to infer
landmark coordinates. To improve localization accuracy, a multi-component loss
based on heatmap and coordinate errors was proposed. Similarly, atrous convo-
lutions [1] were applied by Duffy et al. [2] to enhance LV landmark detection.
In another study, Wan et al. [25] trained an improved U-Net backbone, intro-
ducing a weighted smooth L1 loss to refine the landmark predictions. Despite
these advancements, most of these methods rely on heatmap outputs to derive
coordinates, often resulting in imperfect localization and subsequent over- or
underestimation of LV dimensions. Alternatively, M-mode tracing along a user-
defined scanline has been used to visualize cardiac motion in high temporal
resolution, facilitating detailed assessment of LV dimensions and wall motion.
Although this modality provides a viable route for landmark localization, its
automation remains challenging. Accurate M-mode recordings must be acquired
with the transducer (M-line) positioned perpendicular to the LV long axis during
scanning to prevent oblique measurements. This dependence on operator preci-
sion impacts the quality of training data and limits the generalizability of recent
M-mode-based approaches [7, 24]. These limitations motivate the development
of a more robust and anatomically consistent approach to automatic LV linear
measurement, which we describe in the following section.

3 Proposed method

This section presents the proposed framework, WiseLVAM, as detailed in Sec-
tions 3.2 and 3.3, beginning with a brief introduction to the landmark detection
task in Section 3.1.
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Fig. 1. Proposed WiseLVAM framework for automatic LV linear measurements.

3.1 LV landmark detection

Given an input m containing a single-cycle B-mode echo video fm, with each
frame of size H×W , and an anchor frame A ∈ fm corresponding to the ED/ES
phase, the landmark detection model generates softmax-normalized heatmaps
Ĥm

i for each landmark i ∈ N . The heatmaps have the same resolution as A,
and are optionally converted to coordinates via the Differentiable Spatial-to-
Numerical Transform (DSNT) [22]. The model is trained with a combined loss:
L = Lheatmap + λLCE, where Lheatmap ensures heatmap fidelity and LCE mini-
mizes coordinate error:

Lheatmap =
1

N

N∑
i=1

∥Hm
i − Ĥm

i ∥2, LCE =
1

N

N∑
i=1

∥Ĉm
i − Cm

i ∥2

Here, Hm
i and Ĥm

i are the ground truth and predicted heatmaps, and Cm
i ,

Ĉm
i are the corresponding coordinates.

3.2 Wise: Weakly Supervised Scanline Estimation

Accurate contour-aware automatic placement of the SL is critical for LV linear
measurements [11,20]. To facilitate this, a weakly supervised approach has been
developed for estimating the LV contour and determining anatomically consis-
tent SL position from B-mode images.

Training B-mode LV contour estimator Without ground-truth LV con-
tours, surrogate supervision is employed by sweeping NLV SLs across the B-mode
anchor frame A (Figure 2), and inferring LVID coordinates along each SL using
the pre-trained EnLVAM model [16]. Two additional SLs, located at the mitral
valve leaflet tips to represent the basal level, are obtained from LVID annotations
in the training set. In total, this yields (NLV + 2) × 2 landmarks for training a
B-mode-based LV contour estimator. To handle uncertainty in the inferred land-
marks, a weak supervision strategy is applied, with uncertainty quantified via
the Expected Radial Error (ERE):
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EREm
i =

∑
(k∈H,l∈W )

Ĥm
i,k,l · ∥Cm

i,k,l − Ĉm
i ∥2

where Ĥm
i,k,l is the predicted confidence at location (k, l), Cm

i,k,l is the grid co-
ordinate, and Ĉm

i is the predicted landmark for landmark i ∈ N and input m.
During training, loss contributions for each landmark are weighted inversely by
ERE, reducing the influence of uncertain landmarks. This enables learning from
weak or noisy annotations without requiring dense contour labels.

LV contour-aware scanline placement To ensure anatomically consistent
measurements, the SL is placed at the basal level and aligned with the LV cavity
orientation (Figure 1). The trained contour estimator predicts (NLV + 2) × 2
landmarks from the B-mode anchor frame A. Midpoints of the NLV predicted
LVID segments are used to approximate the LV long axis via ridge regression
(regularization α). The SL is then placed at the center of four (2x2) basal LVID
landmarks and oriented perpendicular to the estimated long axis, mimicking
clinical guidelines [11,20].

3.3 WiseLVAM : an automatic yet adaptable framework for LV
linear measurements

Building on the contour-aware SL placement strategy (Wise), the proposed
WiseLVAM framework enables fully automatic yet adaptable LV linear mea-
surements. The SL is automatically positioned at the basal level from Wise.
Clinicians can review and adjust the predicted SLs prior to generating AMM
images (Figure 1), allowing flexibility in cases with anatomical variations (e.g.,
septal bulge) or low-quality frames where strict automation may be suboptimal.
Once finalized—either automatically or with clinical refinement—the SL is used
to extract a virtual AMM image from the B-mode sequence. This image is then
processed by the EnLVAM detector, which localizes landmarks along the SL to
measure key LV dimensions, including LVID, IVS, and LVPW, with enhanced
accuracy and consistency.

4 Experiments

In this section, we cover data processing, experimental setups, and baseline meth-
ods adopted in our experiments.

Dataset The training dataset extends Gilbert et al. [3], consisting of 493 PLAX
echocardiography videos from 306 patients, annotated for ED and ES frames
with IVS, LVID, and LVPW measurements, yielding 986 images. It is split as
30% test, 70% train & validation (approx. 80% training, 20% internal validation
used for 5-fold cross validation) such that each patient belongs to only one split
to avoid data leakage.
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Fig. 2. Weakly supervised LVID contour generation using EnLVAM [16]. X indicates
ground-truth landmarks; ♦ denotes EnLVAM-inferred landmarks with associated un-
certainty (ERE).

Model training & baselines Gilbert et al. [3] used a U-Net [23] combined with
a DSNT module [22] for landmark detection, while Wan et al. [25] introduced
an improved variant of U-Net. These models serve as primary baselines and
are retrained on the dataset described above, each with their respective loss
function. For the proposed scanline estimation model, Wise, a vanilla U-Net
is trained using an L2 loss. The EnLVAM model [16] is also trained with U-
Net+DSNT, with the multi-component loss in the AMM image space using the
same dataset. All models are trained for 60 epochs with a batch size of 2, using 8
gradient accumulation steps and the Adam optimizer [?]. A multi-step learning
rate schedule is applied, with the initial learning rate 1 × 10−3 reduced by a
factor of 0.1 at epochs 20 and 40. For WiseLVAM, the hyperparameters are set
as α = 1, NLV = 20, and P = 64. The AMM model hyperparameter λ (used in
EnLVAM) is tuned on the validation set.

Evaluation metrics Model performance is evaluated using MAE, MAPE, and
CE. MAE measures absolute differences in lengths, MAPE normalizes MAE by
the ground truth, and CE computes the Euclidean distance between predicted
and true coordinates. MAPE is reported in percentage points (pp), MAE and
CE in centimeters (cm).

MAPE =
1

N − 1

N−1∑
i=1,j=i+1

∣∣∣Ĉij − Cij

∣∣∣
Cij

, CE =
1

N

N∑
i=1

∥∥∥Ĉi − Ci

∥∥∥
2
,

MAE =
1

N − 1

N−1∑
i=1,j=i+1

∣∣∣Ĉij − Cij

∣∣∣
Where Ĉij and Cij denote the predicted and ground-truth distances between
pairs of LV landmarks i and j, respectively, and Ĉi and Ci represent the predicted
and ground-truth coordinates of the i-th LV landmark.
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Table 1. Performance metrics were compared using 5-fold cross-validation. Bold num-
bers indicate improvements achieved by our approach, bold numbers indicate improve-
ment over both baselines.

Metric Structure WiseLVAM Gilbert et al. Wan et al.
(Ours) [3] [25]

MAE IVS 0.17±0.04 0.17±0.03 0.18±0.05
LVID 0.24±0.06 0.32±0.02 0.30±0.05
LVPW 0.15±0.01 0.19±0.01 0.28±0.06
Overall 0.19±0.03 0.23±0.01 0.25±0.05

CE IVS 0.89±0.19 0.82±0.11 0.80±0.09
LVPW 0.93±0.22 1.22±0.08 1.09±0.14
LVID 0.90±0.20 1.02±0.06 0.91±0.08
Overall 0.90±0.19 1.02±0.06 0.94±0.08

MAPE IVS 0.19±0.04 0.19±0.03 0.20±0.05
LVPW 0.16±0.01 0.20±0.02 0.31±0.07
LVID 0.06±0.01 0.08±0.00 0.07±0.01
Overall 0.13±0.02 0.16±0.01 0.19±0.04

Table 2. Comparing the SL placement from different methods, with the ground-truth
SL in terms of midpoint distance (SL(D), in centimeters) and angle (SL(A), in degrees).

Metric Wise Gilbert et al. Wan et al.
(Ours) [3] [25]

SL(D) 0.76±0.10 0.94±0.05 0.84±0.12
SL(A) 6.07±1.24 8.24±0.86 8.19±0.94

5 Results & discussion

Performance evaluation The superior accuracy of WiseLVAM in LVPW and
LVID measurements, as shown in Table 1, can be attributed to contour shape-
aware B-mode scanline placement and AMM-constrained landmark predictions
from the EnLVAM. This approach ensures more precise measurements, resulting
in reduced MAE, MAPE, and CE values.

Quality of the predicted SL The quality of the contour-aware SL placement
is assessed by comparing the predicted SL with the ground-truth SL derived
from annotated LVID landmarks in the test data, using angle SL(A) and mid-
point distance SL(D) as evaluation metrics. For the baseline methods, the SL is
inferred from the predicted LVID landmarks. As shown in Table 2, our method
demonstrates higher accuracy across both metrics, indicating improved align-
ment with expert-defined scanlines resulting in better LV linear measurement
estimates.

Success Detection Rate for LVID Success Detection Rate (SDR) quantifies
the proportion of LVID predictions that fall within an acceptable error threshold,
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Fig. 3. SDR analysis and comparison with human annotator

Fig. 4. Visualization of Ground Truth (GT) and predicted landmarks with WiseLVAM.
(X) denotes GT landmarks, + denotes predicted landmarks along the SL, with the
predicted B-mode contour (orange) and basal level (blue). (Best viewed in color)

making it a clinically relevant metric. Given a test set of size |Mtest| the SDR
can be computed as:

SDR =
1

|Mtest|

|Mtest|∑
m=1

1[MAELVID
m ≤ E]

where MAELVID
m is the mean absolute error for LVID measurement in the m-th

test sample, and E is the predefined threshold (0-2 mm). As shown in Figure 3,
our method consistently outperforms baselines across error margins up to 2 mm,
highlighting its clinical utility in improving LVID measurement precision.

Comparison with human annotator Figure 3 presents the Pearson corre-
lation coefficients (ρ) between predicted linear measurements and ground truth
annotations for IVS, LVID, and LVPW. Our approach shows the highest correla-
tion for LVID measurements (ρ = 0.95), followed by LVPW (ρ = 0.81), with the
lowest correlation for IVS (ρ = 0.66), where the model tends to underestimate.

Visualization Figure 4 illustrates the process of estimating LV linear mea-
surements from B-mode images. The Wise model predicts the LV contour using
NLV = 20 landmark segments, identifies the basal level, and estimates the LV
long axis. A virtual SL is then placed perpendicular to the estimated long axis,
and EnLVAM is used to predict landmarks for automatic LV linear measurement.
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6 Conclusion

In this work, WiseLVAM, a novel framework for LV linear measurements, is pro-
posed. A contour-aware, weakly supervised scanline estimation model—Wise is
introduced to enable anatomically consistent SL placement by learning true LV
geometry. The framework integrates B-mode and AMM-based landmark detec-
tion in a fully automated yet manually adjustable manner, improving measure-
ment accuracy and demonstrating strong potential for routine clinical applica-
tion.
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