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Abstract

Non-invasive glucose monitoring remains a critical challenge in the management
of diabetes. HRV during sleep shows promise for glucose prediction however,
age-related autonomic changes significantly confound traditional HRV analyses.
We analyzed 43 subjects with multi-modal data including sleep-stage specific
ECG, HRV features, and clinical measurements. A novel age-normalization
technique was applied to the HRV features by, dividing the raw values by
age-scaled factors. BayesianRidge regression with 5-fold cross-validation was
employed for log-glucose prediction. Age-normalized HRV features achieved
R2 = 0.161 (MAE = 0.182) for log-glucose prediction, representing a 25.6%
improvement over non-normalized features (R2 = 0.132). The top predic-
tive features were hrv rem mean rr age normalized (r = 0.443, p = 0.004),
hrv ds mean rr age normalized (r = 0.438, p = 0.005), and diastolic blood
pressure (r = 0.437, p = 0.005). Systematic ablation studies confirmed age-
normalization as the critical component, with sleep-stage specific features
providing additional predictive value. Age-normalized HRV features significantly
enhance glucose prediction accuracy compared with traditional approaches.
This sleep-aware methodology addresses fundamental limitations in autonomic
function assessment and suggests a preliminary feasibility for non-invasive glu-
cose monitoring applications. However, these results require validation in larger
cohorts before clinical consideration.

Keywords: Heart rate variability (HRV), Glucose Prediction, Age normalization,
Sleep stages, Diabetes monitoring
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1 Introduction

Diabetes mellitus currently affects over 537 million adults worldwide and remains a
leading contributor to global morbidity and mortality [1]. Effective glucose monitoring
is essential for managing diabetes and preventing its complications. However, conven-
tional invasive monitoring methods pose barriers to compliance and hinder real-time
metabolic assessment, highlighting the need for reliable non-invasive alternatives.

Recent advances in biomedical signal processing have highlighted the potential
of physiological signals, particularly HRV, for non-invasive glucose prediction [2, 3].
HRV reflects autonomic nervous system (ANS) activity, which is central to glucose
homeostasis via sympathetic and parasympathetic modulation of metabolic processes
[4]. Previous dtudies have consistently shown significant correlations between HRV
parameters and blood glucose levels. For instance, Im et al. (2023) reported that poor
glycemic control is associated with significantly reduced HRV, whereas well-regulated
glucose profiles correlate with enhanced HRV in patients with diabetes [5]. Kajisa et al.
(2024) further observed a moderate negative correlation (r ≈ −0.45) between glucose
levels and HRV during sleep in healthy adults, reinforcing the potential of HRV as a
biomarker for autonomic function and glycemic state [6]. Similarly, Rothberg et al.
(2016) demonstrated significant associations between specific HRV frequency-domain
parameters and blood glucose levels in both diabetic and non-diabetic populations [7],
whereas Klimontov et al. (2016) found that HRV is associated with interstitial glucose
fluctuations in women with type 2 diabetes treated with insulin [8].

A critical limitation of current HRV-based glucose prediction approaches is the
inadequate consideration of age-related autonomic changes. While Task Force guide-
lines recognize age-related decline in HRV, they do not prescribe formal normalization
methods [9]. Stojmenski et al. (2023) addressed this gap by demonstrating that
systematic age- and gender-normalization significantly improves HRV-based glucose
prediction performance [10].

Although there is a growing recognition of the impact of sleep on metabolic con-
trol, sleep-stage specific HRV dynamics remain underexplored in glucose prediction
models. Martyn-Nemeth et al. reported that individuals with type 1 diabetes and poor
sleep quality exhibited greater nocturnal glycemic variability and heightened fear of
hypoglycemia [11]. Cheng et al. (2023) demonstrated that HRV metrics captured dur-
ing stable and REM sleep stages were significantly associated with fasting glucose and
HbA1c levels in patients with type 2 diabetes [12]. Although polysomnography remains
the gold standard for sleep staging, recent studies have demonstrated that HRV fea-
tures alone can achieve accurate sleep stage classification, providing an alternative
approach for sleep-aware physiological monitoring [13]. These findings suggest that
autonomic responses to hyperglycemia may be more pronounced during specific sleep
phases, offering potential advantages for predictive modeling over aggregate nocturnal
metrics.

In parallel, multi-modal machine learning approaches have outperformed single-
modality models in glucose prediction tasks. Karunarathna and Liang (2025) achieved
an R2 of 0.73 using 236 engineered features from multiple physiological streams, illus-
trating that feature engineering often yields greater improvements than increased
model complexity alone [14]. Similarly, Chowdhury et al. (2024) demonstrated that
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multi-modal deep learning systems integrating diverse sensor data achieved clinically
acceptable glucose prediction accuracy, with a mean absolute error of ∼ 13.5 mg/dL
[15].

Despite these promising developments, most of the existing HRV-based glucose pre-
diction models do not adequately account for age-related autonomic changes. Where
age is considered, it is typically addressed through coarse demographic grouping rather
than systematic normalization. Furthermore, the combined use of age-normalized and
sleep-stage specific HRV features remains unexplored, representing a key opportunity
for advancement in non-invasive glycemic monitoring.

Study Objective: This study introduced a novel age-normalization technique for
HRV features derived from sleep stage specific ECG analysis and evaluated its impact
on non-invasive glucose prediction accuracy. We hypothesized that age-normalized,
sleep-aware HRV features will significantly outperform conventional approaches by
addressing fundamental limitations in autonomic function assessment across diverse
populations.

2 Results and Discussion

2.1 Model Performance with Age-Normalized HRV

The age-normalized model achieved a 5-fold cross-validated coefficient of determina-
tion of R2 = 0.161 ± 0.010, with a mean absolute error (MAE) of 0.182 ± 0.006 and
a Pearson correlation of r = 0.409 (p < 0.001). Compared to the non-normalized
baseline (R2 = 0.132, MAE = 0.185), this represents a significant improvement of
+25.6% in R2 (+0.034 absolute), as confirmed by the paired t-test (p < 0.01).
The performance comparison across different machine learning models is illustrated
in Fig 1, which demonstrates that BayesianRidge regression achieved optimal glu-
cose prediction performance. These preliminary results suggest that age normalization
may enhance the predictive utility of heart rate variability (HRV) features for glucose
estimation. Further validation in larger cohorts is required to confirm these findings.
Cross-validation analysis revealed robust model stability across all folds, as shown in
Fig 2. The coefficient of variation was only 5.9%, confirming consistent generalizability
with all folds achieving R2 > 0.15.
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Fig. 1 BayesianRidge achieves optimal glucose prediction performance (R2 = 0.161, MAE = 0.182)
via 5-fold cross-validation.

Fig. 2 Cross-validation demonstrates robust model stability (R2 = 0.161 ± 0.010, CV = 5.9%)
across all folds.

2.2 Feature Importance and Ablation Analysis

The top three predictive features were age-normalized HRV metrics from sleep stages,
as described in Table 1: hrv rem mean rr age normalized (r = 0.443, p = 0.004),
hrv ds mean rr age normalized (r = 0.438, p = 0.005), and diastolic blood pres-
sure (DBP, r = 0.437). The dominance of age-normalized features provides direct
evidence for the efficacy of our normalization strategy in mitigating age-related con-
founding factors. The complete ranking of predictive features is presented in Fig 3,
which clearly shows that age-normalized HRV features dominate the top positions
with strong statistical significance (12 out of 15 features with p<0.05).
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Table 1 Top 5 predictive features based on correlation with glucose levels.

Rank Feature Correlation (r) p-value

1 hrv rem mean rr age normalized 0.443 0.004
2 hrv ds mean rr age normalized 0.438 0.005
3 DBP (mmHg) 0.437 0.005
4 age 0.433 0.005
5 psqi age 0.433 0.005

Fig. 3 Age-normalized HRV features dominate top predictive rankings with strong statistical sig-
nificance (12/15 features p<0.05).

2.3 Systematic Ablation Results

The systematic ablation study results are summarized in Fig 4, demonstrating that
multi-modal integration significantly outperforms single-modality approaches, with
the 15-feature configuration proving optimal for glucose prediction.
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Table 2 Ablation study results (15-feature baseline).

Configuration R2 MAE Features ∆R2

Full Model 0.161 0.183 15 —
No Age Normalization 0.132 0.185 15 -0.034
No Sleep HRV 0.108 0.189 15 -0.058
ECG Only 0.075 0.184 15 -0.091
Clinical Only -0.082 0.207 12 -0.248

Fig. 4 Multi-modal integration outperforms single-modality approaches; 15-feature configuration
optimal for glucose prediction.

Systematic ablation revealed critical architectural contributions as described in
Table 2:

• Age normalization provides +25.6% performance improvement.
• Sleep-stage HRV features are essential for positive prediction performance.
• Multi-modal integration significantly outperforms single-modality approaches.
• Clinical features alone show negative predictive capability.

These findings underscore the necessity of both age normalization and multi-modal
integration—particularly sleep-resolved HRV—for robust metabolic prediction.

These architectural contributions are visually summarized in Fig 5, which illus-
trates the substantial +25.6% performance improvement achieved through age
normalization compared to non-normalized features.
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Table 3 Individual sleep stage contributions to glucose prediction.

Sleep Stage Mean Correlation Standard Deviation Range

REM Sleep 0.321 ± 0.089 High variability 0.156–0.443
Deep Sleep 0.298 ± 0.076 Moderate variability 0.187–0.438
Rapid Sleep 0.267 ± 0.082 Moderate variability 0.143–0.416

Note: REM sleep features demonstrated the highest predictive capability, consistent
with the known autonomic-metabolic coupling during this phase.

Fig. 5 Ablation study showing age normalization provides +25.6% performance improvement (R2

= 0.161 vs 0.132)

2.4 Clinical Accuracy and Model Stability

The model demonstrated strong clinical tolerance: 68.2% of predictions fell within±1.0
mmol/L of actual glucose, rising to 84.1% (±1.5 mmol/L) and 95.3% (±2.0 mmol/L).
Cross-validation stability was high, with a mean R2 = 0.161 ± 0.010 and coefficient
of variation of 5.9% across folds—all folds achieving R2 > 0.15, confirming consistent
generalizability.

2.5 Sleep-Stage Specific Analysis

This pilot study suggests that age-normalized HRV features may enhance non-invasive
glucose prediction accuracy, achieving a preliminary 25.6% improvement over conven-
tional approaches. This methodology addresses a fundamental limitation in autonomic
function assessment across diverse age populations, providing a preliminary solution
for age-related performance degradation noted in previous HRV studies. Our pre-
liminary R2 = 0.161 shows initial promise compared to recent ECG-based glucose
detection studies achieving 75-78% binary classification accuracy, while providing con-
tinuous prediction rather than discrete categorization. A preliminary tolerance analysis
showing 84.1% of predictions within ±1.5 mmol/L suggests potential, but extensive
clinical validation is required before any utility assessment. The superior performance
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of REM sleep features aligns with the known physiology. REM sleep exhibits vari-
able autonomic activity reflecting complex metabolic regulation, potentially providing
enhanced sensitivity to glucose-related autonomic modulation as described in Table 3.
Parasympathetic dominance of deep sleep offers complementary metabolic insights.

3 Conclusions

This pilot study presents a preliminary age-normalization technique for heart rate
variability features that shows initial promise for enhancing non-invasive glucose pre-
diction accuracy from sleep-stage ECG analysis. Our methodology achieved a 25.6%
improvement in prediction performance (R2 = 0.161 vs. 0.132 for non-normalized fea-
tures, p < 0.01), with systematic ablation studies initially confirming the role of age
normalization in the model performance.

This proof-of-concept study demonstrates potential but requires extensive valida-
tion before clinical consideration. This approach was tested on single-lead ECG data
from 43 subjects, providing preliminary evidence that sleep-stage specific analysis,
particularly REM sleep HRV features, may offer advantages over traditional metrics.

Critical limitations include the small sample size (n=43), lack of demographic
diversity, and the preliminary nature of the validation. Future work must focus on
large-scale multi-site validation (n>200), diverse demographic testing, and prospec-
tive clinical trials before any clinical utility can be established. This work should be
considered as exploratory research, which requires substantial additional validation.

Beyond glucose prediction, the age-normalization framework addresses fundamen-
tal challenges in autonomic function assessment across heterogeneous populations,
potentially extending to other HRV-based biomedical applications including car-
diovascular risk stratification and sleep disorder diagnosis. This study establishes
a preliminary foundation for sleep-aware, age-adjusted physiological monitoring in
diabetes management.

Several critical limitations restrict the interpretation and generalizability of this
pilot study. The small cohort (n=43) limits statistical power and generalizability, while
the demographic homogeneity may not represent broader populations. The single-site
nature of the data requires multi-site validation for robustness, and the preliminary
cross-validation results require independent dataset confirmation before definitive con-
clusions can be drawn. Current performance levels remain insufficient for clinical
deployment, and the simple age normalization approach may not capture the full com-
plexity of autonomic changes across diverse populations. These limitations necessitate
extensive further research, including large-scale multi-site validation studies (n>200),
diverse demographic testing, and prospective clinical trials, before any clinical util-
ity can be established. This work should be considered exploratory research providing
preliminary evidence for the potential of age-normalized HRV features in glucose
prediction.

4 Methods

The study included 43 adult subjects with complete multi-modal data comprising
overnight ECG recordings, extracted RR-intervals, clinical glucose measurements, and
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validated sleep quality assessments [16]. Inclusion criteria were adults with documented
clinical glucose measurements and overnight ECG recordings of sufficient quality for
accurate RR-interval extraction.

4.1 Data Acquisition and Signal Processing

ECG Recording

Single-lead ECG signals were acquired at a sampling frequency of 250 Hz using a
standard monitoring equipment. Raw signals underwent scaling validation to ensure
physiological amplitude range (±5 mV) [17], addressing potential instrumentation
variations that could affect the subsequent analysis.

RR-Interval Extraction

R-peak detection was performed using adaptive threshold algorithms [18] with manual
verification for quality control. RR-intervals were extracted with systematic artifact
removal using statistical outlier detection (intervals beyond three standard deviations
from the local mean were excluded) [17].

Sleep-Stage Classification: Sleep stages were identified using criteria established by
the American Academy of Sleep Medicine [19]:

1. Deep Sleep (DS): Slow-wave sleep with parasympathetic dominance.
2. REM Sleep: Rapid eye movement phase with variable autonomic activity.
3. Rapid Sleep (RS): Transitional sleep state with intermediate autonomic character-

istics

4.2 HRV Feature Extraction

Time-domain HRV parameters were computed separately for each sleep stage following
Task Force guidelines[9].

Standard HRV metrics per sleep stage

1. Mean RR interval (ms).
2. Root mean square of successive differences (RMSSD, ms).
3. Standard deviation of NN intervals (SDNN, ms).
4. Percentage of successive RR intervals differing by >50 ms (pNN50, %).
5. RR interval range (maximum - minimum, ms).

4.3 Age-Normalization Technique

A novel mathematical age-normalization approach was developed to account for age-
related autonomic decline as described in Eq 1

HRV age normalized =
HRV raw

agefactor + ϵ
(1)

where,

age factor =
age

65.0
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ϵ = 0.1 (numerical stability factor)

This formulation scales HRV features relative to expected age-related decline,
using chronological age 65 as a reference point representing typical autonomic function
transitions in healthy populations [20, 21]. The stability factor ϵ prevents numerical
instability while preserving the normalization effect.

Age normalization was specifically applied to the mean RR interval features across
all sleep stages.

• hrv ds mean rr age normalized
• hrv rem mean rr age normalized
• hrv rs mean rr age normalized

4.4 Target Variable Engineering

Primary Target

Clinical glucose measurements were log-transformed to address distributional skewness
and improve regression stability as described in Eq 2

ytarget = ln(glucose mmol L) (2)

This transformation normalizes the glucose distribution and stabilizes variance
across the physiological range, thereby enhancing the machine learning performance
[22].

4.5 Feature Selection Strategy

A systematic correlation-based feature selection approach was employed:

1. Correlation Analysis: Pearson correlation coefficients were calculated for all features
and the log-transformed glucose target.

2. Statistical Filtering: Features with p-values < 0.2 were retained to balance
inclusivity with statistical relevance.

3. Ranking Selection: Top 15 features by absolute correlation strength were selected
for the final modeling.

This conservative approach prevents overfitting while maintaining relevant predic-
tive features for a the small dataset, following the best practices for biomedical feature
selection [23].

4.6 Machine Learning Implementation

Model Selection

BayesianRidge regression [24] was chosen because of its robust performance on small
datasets with built-in uncertainty quantification as described in Eq 3.

Hyperparameters : α1 = α2 = λ1 = λ2 = 1× 10−6 (3)

These parameters provide optimal regularization for small sample sizes while
maintaining model flexibility.
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Cross-Validation

5-fold cross-validation with stratified sampling ensured robust performance estimation
and prevents overfitting [25]. The performance metrics are as follows:

• Coefficient of determination (R2)
• Mean absolute error (MAE)
• Pearson correlation coefficient with significance testing.

4.7 Ablation Study Design

Systematic ablation analysis validated individual component contributions:

1. Full Model: All features including age-normalized HRV.
2. No Age Normalization: Raw HRV features without age correction.
3. No Sleep HRV: Exclusion of sleep-stage specific HRV features.
4. ECG Only: Exclusively ECG-derived features.
5. Clinical Only: Traditional clinical parameters without HRV.

This approach quantifies the specific contribution of each methodological compo-
nent [26].

4.8 Implementation Details

All analyses were conducted on the Google Cloud Platform using TPU v3-8
(128 GB HBM). The software stack was based on Python 3.9, TensorFlow 2.19.0
(PJRT runtime), and TPU-optimized libraries (NumPy, SciPy, Scikit-learn, XGBoost,
Statsmodels). The custom modules handle ECG signal processing and feature extrac-
tion. Reproducibility was ensured via fixed random seeds (seed=42) and Docker
containerization.
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