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Abstract
We introduce AuriStream, a biologically inspired model for
encoding speech via a two-stage framework inspired by the hu-
man auditory processing hierarchy. The first stage transforms
raw audio into a time-frequency representation based on the
human cochlea, from which we extract discrete cochlear to-
kens. The second stage applies an autoregressive sequence
model over the cochlear tokens. AuriStream learns meaningful
phoneme and word representations, and state-of-the-art lexical
semantics. AuriStream shows competitive performance on di-
verse downstream SUPERB speech tasks. Complementing Au-
riStream’s strong representational capabilities, it generates con-
tinuations of audio which can be visualized in a spectrogram
space and decoded back into audio, providing insights into the
model’s predictions. In summary, we present a two-stage frame-
work for speech representation learning to advance the develop-
ment of more human-like models that efficiently handle a range
of speech-based tasks1

Index Terms: speech perception, computational paralinguis-
tics, human-inspired modeling

1. Introduction
Humans possess a remarkable ability to perform a wide range of
tasks on speech inputs, from recognizing words in noise to sep-
arating speakers’ voices and interpreting emotional tone. These
processes are carried out by the human ear and networks of bio-
logical neurons. However, developing artificial neural networks
that mirror the human ability to flexibly and efficiently under-
stand and interact with the world through speech remains a sig-
nificant challenge[1, 2, 3]. To bridge this gap, we introduce
AuriStream, a biologically-inspired model that learns ver-
satile speech representations through a simple and scalable
autoregressive prediction objective on a time-frequency rep-
resentation inspired by the human cochlea.

1.1. Related Work: Speech Representation Learning

Speech representation models, also known as audio encoders,
broadly transform audio signals into discrete tokens or contin-
uous embeddings for various downstream audio tasks [3]. One
popular approach is neural audio codecs, which learn com-
pressed representations by retaining the essential information
for audio reconstruction, enabling them to recover the original
signal from the learned codes [4, 5, 6, 7, 8, 9, 10, 11]. These au-
dio codes can then serve as representation for downstream audio
tasks [12, 2, 10]. However, although these models retain high-
fidelity information about acoustic details due to the reconstruc-

1Website and model weights:
https://tukoresearch.github.io/auristream-speech/

tion objective, learning the appropriate acoustic invariances re-
mains a challenge [2]. Further, high-fidelity signal reconstruc-
tion is unlikely to be a biologically plausible objective; in-
stead, human speech perception mechanisms critically abstract
away from the low-level acoustics and learn robust invariances
over the audio signal [13, 14]. A second popular approach
is prediction-based modeling, where models are trained to
predict features derived from the raw waveform [15, 16, 17]
or a time-frequency representation of audio [18, 19, 20, 21].
These prediction-based speech models broadly fall into two cat-
egories: autoregressive models, which predict future frames
[18, 19, 20, 21], and masked prediction models, which predict
masked frames from surrounding frames [22, 15, 16] (analo-
gous to the causal and bi-directional prediction approaches in
language modeling). The learned representations are then ap-
plied to various downstream audio tasks, for instance language
modeling [15, 23, 24, 25]. One of the most widely used pre-
dictive models is HuBERT [15], which adapts the bi-directional
BERT [26] objective for speech representation learning using
self-generated k-means pseudolabels. A third common ap-
proach is contrastive learning, in which frames from different
audio samples are pushed together or pulled apart in the embed-
ding space according to a specified objective [27, 28, 29, 30].
One popular model is wav2vec2 [28] which contrasts masked-
out audio segments from distractors in combination with an
auxiliary objective. Although the contrastive approach can yield
powerful representations, it requires heuristics to define positive
and negative samples, implicitly enforcing which aspects of the
audio signal are retained—potentially building in incorrect as-
sumptions. Moreover, contrastive objectives often rely on di-
rectly contrasting embeddings across hundreds or thousands of
samples simultaneously, which arguably is not a biologically
plausible operation.

Although these three speech representation learning strate-
gies are distinct, their objectives can be combined and aug-
mented with additional heuristics. For instance, a state-of-the-
art model, WavLM [17], combines the HuBERT prediction ob-
jective [15] with a noisy input transformation. However, as with
most ensemble models, these performance gains come at the
cost of additional hand-crafted complexity.

1.2. Our Approach: A Two-Stage Framework for Autore-
gressive Prediction on Biologically-Inspired Inputs

Unlike past approaches, our proposed framework does not rely
on signal-reconstruction objectives (used by neural codec mod-
els), non-causal prediction objectives (used in bi-directional
prediction models), or intra-batch contrasting of samples (used
in many contrastive models). Instead, our framework takes in-
spiration from the human auditory processing hierarchy and op-
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Figure 1: Schematic of speech representation framework. De-
scription of the steps of the framework can be found in the In-
troduction (1.2) and Methods (2).

erates in two stages:
The first stage is WavCoch, a model that transforms the

raw audio into a time-frequency representation based on the
human cochlea (Figure 1A). This approach bears some resem-
blance to neural audio codecs; however, instead of reconstruct-
ing the same signal, we predict a different audio representation–
the time-frequency cochleagram–one known to be computed
within the human auditory processing hierarchy [31, 32, 33, 34].
We read out the representations from an intermediate bottleneck
stage of WavCoch which effectively discretizes the audio rep-
resentations. We refer to these intermediate representations as
cochlear tokens (Figure 1A).

The cochlear tokens serve as input to the second stage, Au-
riStream, which is an autoregressive sequence model, trained
to predict the upcoming cochlear tokens (Figure 1B). Be-
cause the cochlear tokens were derived from a waveform-to-
cochleagram transformation, these predicted tokens can natu-
rally be decoded into the cochleagram, and then into audio, en-
abling inspection and interpretability.

In sum, we formulate speech representation learning as
a simple yet powerful autoregressive prediction task over
biologically-realistic inputs—cochlear tokens. Our framework
yields representations from which phonemes, word forms, and
word meanings (lexical semantics) can be decoded at competi-
tive levels (Section 3.1), achieving state-of-the-art performance
on lexical semantics. The learned representations also serve as
a powerful backbone for various downstream SUPERB speech
tasks [1] (Section 3.2). Finally, unlike comparison models, Au-
riStream generates continuations of audio that can be visualized
in a cochleagram space, offering insights into the model’s pre-
dictions (Section 3.3).

2. Methods
2.1. Input Tokens: WavCoch

We propose WavCoch, a model that efficiently tokenizes audio
by transforming waveforms into cochleagrams, loosely mim-
icking the function of the human cochlea [31, 34]. The purpose
of WavCoch is to extract discrete tokens from continuous au-
dio signals to serve as the input to AuriStream. WavCoch is
a causal encoder-decoder network with 8 encoder layers (1D
convolution with kernel 3) and 8 decoder layers (1D convolu-

tion with kernel 9) with a total of 11.1M parameters (see Figure
7.1A). It takes as input 5s clips of mono audio waveforms sam-
pled at 16kHz and is trained to predict the cochleagram repre-
sentation of this audio clip. The target cochleagram [35, 36, 34]
consists of 211 frequency bins and 988 temporal steps [34] (for
comparison to mel-spectrograms, see Appendix 7.3). To obtain
discrete representations, we place a 13-bit LFQ [37] bottleneck
layer in the middle of the model, discretizing the embeddings
into one of 8,192 units (corresponding to a 13-bit code, 213)
denoted as cochlear tokens. We train WavCoch on the 960-
hour LibriSpeech [38] dataset for 200k steps using the AdamW
optimizer with a peak learning rate of 1e-4 with a 2,000-step
warmup, and a cosine decay schedule. For further details and
vocabulary size ablations, see Appendix 7.1 and 7.2.

2.2. Sequence Modeling: AuriStream

AuriStream is a GPT-style autoregressive Transformer [39]
trained to predict the next cochlear token in a sequence (see Fig-
ure 7.1B). We train two versions: AuriStream-100M (100.7M
parameters), with 12 layers, 12 attention heads and an embed-
ding size of 784; and AuriStream-1B (970.1M parameters) with
48 layers, 16 attention heads, and an embedding size of 1,280.
Both use SiLU activations [40], RMSNorms [41], and a vocab-
ulary of 8,192 cochlear tokens. The AuriStream model takes as
input the cochlear token sequence produced by WavCoch and
predicts the next token in the sequence using a context window
of 4,096 tokens (approximately 20s of speech). We utilize a
learned positional embedding and compute the cross-entropy
loss between the predicted logits and the true next token in
the sequence. We train both AuriStream models on the 60k
hour LibriLight [42] dataset for 500k steps using the AdamW
optimizer with a peak learning rate of 3e-4 with a 2,000-step
warmup, and a cosine decay schedule.

2.3. Evaluation Metrics

2.3.1. Phoneme/Word Linear Probing

To probe for phoneme and word identity representation, we use
the TIMIT dataset [43] consisting of approximately five hours
of audio recordings with ground truth phoneme- and word-
boundaries. We use the train and complete test sets with exclu-
sion of the “SA” sentences for train and test sets that are non-
overlapping in sentences and speakers. For phoneme classifica-
tion, we followed the standard protocol of collapsing the TIMIT
phoneme labels from 60 to 39 classes [44]. We embed the audio
clip up to and including the target phoneme/word jointly, then
extract just the embeddings of the time bins corresponding to
that phoneme/word for probing. We use the scikit-learn Logis-
ticRegression multiclass classifier [45]. The reported values are
weighted accuracy scores as the classes are imbalanced.

2.3.2. Lexical Semantic Similarity (sSIMI)

We use the “sSIMI” lexical semantics benchmark developed for
the ZeroSpeech 2021 challenge [46]. The benchmark consists
of pairs of words with ground truth human similarity judgments
(on a 0 and 10 scale) collected from behavioral experiments.
For instance, a pair of words such as “water” and “river” have
a human similarity score of 9.8, while a pair like “festival” and
“whiskers” have a score of 0.2. The benchmark contains two
audio subsets: i) a natural subset with word pairs present in
LibriSpeech [38], and ii) a synthetic subset with all pairs. The
sSIMI score is computed as the Spearman correlation between
the cosine distance of model embeddings for word pairs and the



true human similarity scores, multiplied by 100.

2.3.3. Obtaining Model Embeddings

We obtain model embeddings for phoneme/word probing (Sec-
tion 2.3.1) and lexical similarity (Section 2.3.2) by pooling the
embeddings of all the tokens associated with the corresponding
temporal section of the audio via ground-truth phoneme or word
boundaries. For the pooling operation, we tested mean/max/min
pooling across the temporal dimension. To select the best layer
for decoding, we evaluate the phoneme/word probing perfor-
mance on a subset of the TIMIT set (the top 10 phonemes/words
in the TIMIT test set). For the sSIMI benchmark, we select the
best layer on the independent “dev” set.

2.3.4. Speech processing Universal PERformance Benchmark
(SUPERB)

We evaluate AuriStream on the SUPERB benchmark which
contains 15 tasks, categorized into five aspects of speech: con-
tent, speaker, semantics, paralinguistics, and generation. We
report values on a subset of six tasks spanning all five cate-
gories. We refer to the original paper for additional details on
the benchmark [1]. Scores for the comparison models were ob-
tained from the SUPERB leaderboard.

3. Results
3.1. AuriStream Embeddings Contain Information about
Phoneme Identity, Word Identity, and Lexical Semantics

To first assess whether AuriStream representations contain in-
formation about phoneme and word identity, we trained linear
classifiers on the phonemes and words from the TIMIT train
set [43] and evaluated the classifiers on the test set with non-
overlapping sentences and speakers. We compared AuriStream
to five state-of-the-art speech representation models (see details
in Appendix 7.4). As shown in Table 1, for phoneme decoding,
AuriStream-1B’s performance was very close to state-of-the-
art models HuBERT-xl and WavLM-large. The error patterns
of AuriStream were sensible. For instance, the phoneme clus-
ter “er” was often confused with “r”, or “ah” with “ih” (see
Appendix 7.5). For word decoding, AuriStream-1B surpassed
wav2vec-large, however, AuriStream fell short of HuBERT and
WavLM. We hypothesize that the subpar word decoding perfor-
mance of AuriStream relative to these models is due to the fact
that HuBERT and its derivative models (WavLM) were exposed
to global clustering operations aimed at discovering word-like
units. In contrast, AuriStream did not undergo any such global
operations. Finally, we emphasize that decoding performance
for both phonemes and words scales well with AuriStream size.

Second, we evaluate whether AuriStream learns represen-
tations of word meanings (lexical semantics). This benchmark
(sSIMI) measures the correlation between embeddings of au-
dio corresponding to pairs of words (e.g., “water” and “river”)
and human similarity judgments. Prior studies have described
speech models’ performance on this task as “modest” [46]. As
shown in Table 2, both AuriStream-100M and AuriStream-1B
outperform the other models on the natural and synthetic data
subsets, and AuriStream-1B outperformed all other models on
the synthetic set. Performance also improves with model scale.
These findings demonstrate that a simple autoregressive predic-
tion objective can lead to state-of-the-art representations for lex-
ical semantics.

Table 1: Linear probing performance for phonemes or words
on the TIMIT dataset. Reported values are weighted accuracy
scores of the best layer (see Section 2.3.3) on the TIMIT test
set with non-overlapping sentences uttered by non-overlapping
speakers relative to the train set.

Dataset Params Hours Phoneme Word

HuBERT-base 97M 1K 0.83 0.75
HuBERT-xl 1000M 60K 0.91 0.85
wav2vec2-large 317M 60K 0.76 0.43
WavLM-base 97M 1K 0.85 0.76
WavLM-large 317M 94K 0.90 0.84
AuriStream-100M 101M 60K 0.82 0.45
AuriStream-1B 970M 60K 0.88 0.65

Table 2: Semantic similarity scores on the ZeroSpeech 2021
Lexical Semantic Benchmark. Reported values are Spearman
correlations (multiplied by 100 per [46]) of the best layer (see
Section 2.3.3) between the embeddings for pairs of words and
human similarity judgments. Scores are obtained on the test
sets of two subsets: LibriSpeech Audio and Synthetic Audio.

Dataset Params Hours LibriSpeech ↑ Synthetic ↑

HuBERT-base 97M 1K 6.10 7.48
HuBERT-xl 1000M 60K 7.81 10.37
wav2vec2-large 317M 60K 6.41 7.19
WavLM-base 97M 1K 8.29 9.41
WavLM-large 317M 94K 10.50 10.37
AuriStream-100M 101M 60K 10.63 10.12
AuriStream-1B 970M 60K 12.52 10.64

3.2. AuriStream Serves as a Strong Backbone for Down-
stream Audio Tasks

Having established that AuriStream representations encode
meaningful phoneme, word, and lexical semantics informa-
tion, we investigated whether the frozen representations of Au-
riStream would serve as powerful features for training decoders
across various audio tasks. To do so, we leveraged six tasks
from the SUPERB benchmark, spanning all five major task
categories defined in the benchmark [1]. As shown in Table
3, AuriStream-1B outperformed APC and vq-wav2vec—two
models most similar to AuriStream—while performing compet-
itively against state-of-the-art models on most tasks. In partic-
ular, AuriStream-1B showed strong performance on automatic
speech recognition (ASR), intent classification (IC), and speech
separation (SS). In contrast, AuriStream-1B had subpar per-
formance on keyword spotting (KS) compared to other simi-
larly sized models. Although WavLM-large—a model which
contains many hand-designed heuristics such as noise addition
during training and k-means clustering—dominates in all cat-
egories, AuriStream comes close to matching its performance
on several tasks, demonstrating that it learns versatile represen-
tations for diverse downstream audio tasks. Importantly, Au-
riStream’s favorable scaling behavior indicates strong potential
for further improvements with more parameters and training
data.



Table 3: Model performance on SUPERB tasks. Reported val-
ues are obtained by training a downstream task decoder on top
of a frozen model backbone [1]. ASR = automatic speech recog-
nition, IC = intent classification, KS = keyword spotting, SID =
speaker identification, ER = emotion recognition, SS = speaker
separation.

Setting ASR ↓ IC ↑ KS ↑ SID↑ ER ↑ SS ↑

HuBERT-base 6.42 98.34 96.30 81.42 64.92 9.36
HuBERT-large 3.62 98.76 95.29 90.33 67.62 10.45
wav2vec2-large 3.75 95.28 96.66 86.14 65.64 10.02
WavLM-base 6.21 98.42 96.79 84.51 65.94 10.37
WavLM-large 3.44 99.31 97.86 95.49 70.62 11.19
vq-wav2vec 17.71 85.68 93.38 38.80 58.24 8.16
APC 21.28 74.69 91.01 60.42 59.33 8.92
AuriStream-100M 7.80 92.00 93.96 79.10 59.32 9.05
AuriStream-1B 4.20 98.01 95.25 81.14 67.47 10.07

3.3. AuriStream Learns Short- and Long-Range Speech
Statistics

In this final section, we leverage the fact that AuriStream was
trained to perform predictions in a space that can be visual-
ized and interpreted (the time-frequency cochleagram image)
to ask whether it learns speech statistics without ground-truth
phoneme, word, or task labels. We hypothesize that learned
speech statistics should manifest in two distinct modes: At short
timescales, when provided with sufficient context (such as the
first part of a common word), the model should complete the
cochleagram in a way that aligns with the remainder of the
word. In contrast, at longer timescales, the model’s predictions
should diverge, reflecting the variability of plausible words that
could follow any given phoneme or word. To test this hypoth-
esis, we provided AuriStream with variable-length sequences
of ground-truth audio clips from the TIMIT test set (out-of-
distribution for AuriStream) and qualitatively analyzed the re-
sulting model completions (Figure 2).

To first test whether AuriStream learns speech structure at
short timescales, we prompted the model with the first phoneme
of a common word (e.g., “she”, starting with the phoneme “sh”),
and evaluate predictions from this first phoneme across differ-
ent speakers in the TIMIT test set. As shown in Figure 2A,
the model learns to consistently complete the phoneme with an
“iy” phoneme, resulting in the word “she”. Conversely, when
a phoneme has several likely continuations, the model learns to
complete the phoneme with different words. For instance, when
prompted with the initial phoneme cluster (“wa”) of the words
“water” and “wash” from two different speakers (Figure 2B),
AuriStream sometimes predicts the remainder of the true word
and other times generates a different completion consistent with
the initial phoneme cluster. In one example, AuriStream’s pre-
diction for Speaker 2’s utterance “wash” appears more similar
to Speaker 1’s ground-truth utterance of the word “water” than
to its own ground-truth word (“wash”) (Figure 2B), indicating
that AuriStream learns to complete phoneme prompts with dif-
ferent plausible word continuations. These visualizations sug-
gest that AuriStream learns the statistical regularities of how
phonemes combine to form words, demonstrating knowledge
of speech structure at short timescales.

Second, to evaluate the diversity of longer-range predic-
tions, we prompted AuriStream with the first 2.5 seconds of
TIMIT audio clips (Figure 2C). AuriStream predicts several
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Figure 2: Cochleagram predictions by AuriStream-1B. A.
AuriStream-1B is prompted with the first phoneme of the word
“she” (left of red vertical line) and predicts the word comple-
tion (right of red line) across three seeds. The ground-truth
(GT) cochleagram is shown in the first column. B. AuriStream
is prompted with the first phoneme of the words “wash” and
“water”. C. AuriStream is prompted with the first 2.5 seconds
of an audio clip (red line) from the TIMIT test set and predicts
the remaining part of the clip across two different seeds.

seconds of plausible continuations as inspected visually, and
audibly, since cochleagram representations can be inverted into
audio. These continuations often sound very plausible given
the topic of the prompt. We observe that the continuations de-
grade over time, however, we emphasize that the purpose of Au-
riStream is not to be a language model, but a speech representa-
tion model—the fact that it can perform rudimentary language
modeling is a serendipitous side effect of the training objective,
which points to the fact that learning patterns in speech, and pro-
ducing language may be operationalized under a unified objec-
tive, albeit perhaps requiring additional mechanisms for enforc-
ing longer-range coherence. Additional audio samples avail-
able at: https://tukoresearch.github.io/auristream-speech/ (also
see details in Appendix 7.6).

4. Conclusion
We introduced AuriStream, a self-supervised speech represen-
tation model that achieves competitive phoneme and word de-
coding, state-of-the-art lexical semantic representations, and
serves as a strong representational backbone for various audio



tasks. A key strength of our framework is the use of cochlear
tokens: a biologically inspired and highly efficient token rep-
resentation (around 200 tokens per second of audio) that fits
within the context window of a standard Transformer, effec-
tively leveraging the power of autoregressive modeling. While
WavCoch is conceptually similar to neural codec approaches
[4, 6, 8, 9, 10], its novelty lies in learning to transform one
representation into another representation through a discrete
quantization bottleneck (instead of auto-encoding, as done in re-
lated approaches)—an approach we denote as “Transformation
Imitation”. Finally, unlike prior speech representation models
such as HuBERT and wav2vec2 [15, 28], AuriStream can also
generate audio, enabling both embedding extraction and audio
generation. In addition, AuriStream enables the visualization
and interpretation of audio predictions through the cochleagram
space, a capability that many audio models lack, making Au-
riStream less of a “black box”.

Limitations of our work exist. One limitation is that Au-
riStream is trained on English speech, restricting analyses to
tasks and materials in English [47, 48]. Another limitation is
that AuriStream is trained exclusively on read speech from Lib-
riLight, limiting ecological validity. Extending training to more
naturalistic and developmentally plausible data [49, 50] is a key
future direction. More broadly, although AuriStream is not a
fully biologically realistic model, it constitutes a critical step in
the right direction—and we hope that it will serve as a valu-
able model for the emerging field of “NeuroAI” which aims to
understand biological and artificial intelligence by linking the
representations and computations in artificial models to neural
activity in the brain [51, 52, 53, 54, 55, 56, 57].
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7. Appendix
7.1. WavCoch Architecture Details

As shown in Figure 1A, the raw waveform (shape: 1 × 80,000
for 5s of mono audio sampled at 16kHz) is first transformed into
the time–frequency domain via a fixed-kernel discrete Fourier
transform implemented as a bank of 1D convolutional filters
(window size 1,001 samples, hop length 80 samples). The fil-
ter weights—the complex sinusoidal basis functions (or Twid-
dle Factors [58]) of the discrete Fourier transform—slide over
the signal to produce a spectral representation with one fea-
ture vector every 5ms. Second, each 5ms temporal step of this
frequency representation is passed through an 8-layer encoder
stack (each layer is a 1D convolution with 512 channels, ker-
nel size 3, stride 1, ReLU nonlinearities), yielding a sequence
of 512-dimensional embeddings. Third, these embeddings are
then passed through a 13-dimensional LFQ bottleneck [37],
which effectively binarizes the representation. We read out the
activations of this bottleneck as a 13-bit binary code which can
be interpreted as one of 213 = 8, 192 discrete tokens. We de-
termined that 13-bits is the optimal vocabulary size by ablating
vocabulary sizes and evaluating out-of-distribution performance
on cochleagram reconstruction error and phoneme cluster pu-
rity; 12-bit and 14-bit codes yielded inferior performance (see
full ablation details in Appendix 7.2). Fourth, the output of the
LFQ bottleneck is passed through a decoder stack (each layer
is a 1D convolution with 211 channels, kernel size 9, stride 1,
ReLU nonlinearities). This decoder output corresponds to the
frequencies in the cochleagram representation [34], which the
model is supervised to match via L2 error. An auxiliary entropy
penalty with a weight of 0.001 is applied at the LFQ bottleneck
to encourage diversity, in line with [37]. Thus, for every 5 sec-
onds of audio, WavCoch extracts a sequence of 988 integers
in the range [0, 8192) through the LFQ bottleneck, denoted as
cochlear tokens, to feed into AuriStream (illustrated in Figure
1B).

7.2. WavCoch Vocabulary Size Ablations

We performed ablations to identify the optimal vocabulary size
of the WavCoch model. We trained variants of WavCoch us-
ing a vocabulary size of 4,096, 8,192, and 16,384 (12-, 13-
and 14-bit codes, respectively) on the LibriSpeech960 dataset
[59]. For each of these models, we evaluated the cochleagram
reconstruction L2 error and phoneme cluster purity on an out-
of-distribution test set (TIMIT test set [43]). Phoneme clus-
ter purity was defined as purity = (count of most associated
phoneme for token i) / (total counts for token i) providing an
intuitive metric for how consistently a given token aligns with
a specific phoneme. Figure I shows that a vocabulary size of
8,192 (13-bit code) yields both the lowest reconstruction error
and the highest phoneme cluster purity.

7.3. WavCoch Target Representations: Cochleagram vs.
Mel Spectrogram

To evaluate the impact of using the biologically-inspired
cochleagram representation [31, 34] as the WavCoch predic-
tion target as opposed to the more standard deep learning prac-
tice of using a mel-spectrogram, we trained a version of Wav-
Coch using mel-spectrograms (80 mel bins and 5ms temporal
bins) as prediction targets. Both cochleagram- and mel-based
WavCoch models were trained on the publicly available Lib-
riSpeech960 dataset [59], consisting of 960 hours of speech
recordings. Since the L2 reconstruction error is not directly

Figure I: Evaluation of WavCoch trained with different vocab-
ulary sizes. We plot the L2 cochleagram reconstruction error
(blue) and the phoneme cluster purity (green) on the out-of-
distribution TIMIT test set.

Table I: Evaluation of WavCoch trained with different predic-
tion targets. Codebook usage and phoneme cluster purity eval-
uated on the out-of-distribution TIMIT test set.

Target Codebook Usage ↑ Cluster Purity ↑

Cochleagram 8,172 0.3517
Mel-Spectrogram 8,151 0.3473

comparable between a cochleagram and a mel-spectrogram, we
investigated two proxy measures of representational quality: i)
The number of unique codes utilized in the quantized represen-
tation (“codebook usage”), and ii) Phoneme cluster purity (de-
fined as purity = (count of most associated phoneme for token i)
/ (total counts for token i)) Both metrics were computed on the
out-of-distribution TIMIT test set [43] and are reported in Table
I.

First, in terms of codebook usage, we found that the
WavCoch model trained with the cochleagram target utilized
slightly more codes than the model trained with the mel-
spectrogram target to represent out-of-distribution speech data
(TIMIT test [43]). Second, the cochleagram-based WavCoch
model achieved a slightly higher average phoneme cluster pu-
rity on the TIMIT test set than the mel-spectrogram model.
While these differences are relatively small, they suggest that
the cochleagram representation performs at least as well as, if
not slightly better than the mel-spectrogram in this setting.

Beyond the quantitative analyses reported in Table I, we
prefer the cochleagram over the mel-spectrogram representation
for conceptual reasons: The ultimate goal of our framework is to
move towards more biologically plausible speech models, and
the cochleagram is more aligned with this goal.

7.4. Comparison Models

AuriStream is compared to five state-of-the-art speech
representation models using the HuggingFace Transform-
ers package: HuBERT-base (identifier: facebook/hubert-
base-ls960), HuBERT-xl (identifier: facebook/hubert-xlarge-
ll60k), wav2vec2-large (identifier: facebook/wav2vec2-large),
WavLM-base (identifier: microsoft/wavlm-base), and WavLM-
large (identifier: microsoft/wavlm-large). For the SUPERB
benchmark, we additionally compare against two smaller mod-
els which share some similarity to AuriStream, specifically,



APC and vq-wav2vec.

7.5. Confusion Matrix for Phoneme Decoding

Figure II shows the phoneme confusion matrix for AuriStream-
1B in the linear decoding task (see Section 3.1). The error pat-
terns were sensible: for instance, “er” was often confused with
“r’, or “ah” with “ih”.
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Figure II: Confusion matrix for phoneme decoding. The plot
shows which phonemes were confused with each other from the
AuriStream-1B model on the TIMIT test set. The plot is shown
on a log colorscale to better highlight the mismatches between
true and predicted labels.

7.6. Sonifying AuriStream Predictions through Cochlea-
gram Inversion

We investigate AuriStream’s predictions by inverting the
cochleagrams into audible waveforms. To this end, we de-
veloped a simple per-sample optimization procedure that con-
structs a waveform that matches the cochleagram prediction.
Specifically, we optimize a tensor of shape (1 × 80,000)—
initialized with random numbers from a normal distribution
with mean 0 and variance 1—representing the waveform in-
put to make its cochleagram representation match the cochlea-
gram predicted by WavCoch (via L2 error). We backpropagate
through the cochleagram transformation and use the Adam op-
timizer with a learning rate of 1e-2. Note that this optimization
procedure is not a learned vocoder model, but a simple proce-
dure which converts the output of WavCoch, the cochleagrams,
into audible sound (conceptually similar to Griffin-Lim algo-
rithm).

Several audible samples of speech generations from
AuriStream-1B are available at the following link:
https://tukoresearch.github.io/auristream-speech/. Please
access the page using Google Chrome as we have seen some
cases in which Safari and Firefox are not properly loading these
videos.

We observed that on short timescales, the model produces
reasonable completions, but the longer the completion, the more
the predictions drift away from being plausible. We want to
emphasize that the purpose of AuriStream is not to be a lan-
guage model, but a speech representation model—the fact that

it can perform rudimentary language modeling is a serendipi-
tous side effect of the training objective, which points to the
fact that learning patterns in speech, and producing language
may be operationalized under a unified objective. These find-
ings serve as great motivating factors for follow-up work, which
will attempt to stabilize speech generations with longer-term co-
herence, building on the foundation laid out in this paper.
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