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A recent lattice QCD study has shown that the N − J/ψ potential is attractive at all distances,
and its long-range tail is well described by two-pion exchange. Here, we study to what extent the
long-range part of the attraction can be reproduced from the perspective of the operator product
expansion (OPE). This is accomplished by extracting the leading-order four-quark operator that
couples to two pions and calculating its contribution to the J/ψ mass in nuclear matter, to linear
order in density, within the QCD sum rule framework. Using previous estimates of the four-quark
operators for the chiral symmetric and breaking parts, we obtain a mass decrease that is smaller in
magnitude but qualitatively consistent with the attraction obtained in the lattice QCD calculation.
By expressing the interaction in terms of four-quark operators, we can analyze the effects of chiral
symmetry restoration in dense matter on the masses of the J/ψ and other mesons composed of
heavy quarks.

I. INTRODUCTION

Understanding how the properties of the vector mesons
are modified in nuclear matter has long been a central
objective in nuclear and hadronic physics [1–4]. Such
studies provide access to nonperturbative quantum chro-
modynamics (QCD) at finite density, shedding light on
phenomena such as partial restoration of chiral symmetry
[5] and alterations in long-range gluonic correlations.

Charmonium-nucleus interaction has also been of great
interest for many years [6–8]. The J/ψ is a clean probe:
composed of a charm–anticharm pair, it interacts with a
nucleon mainly through multiple gluon exchange [6, 7, 9].
Consequently, any in-medium mass shift or width broad-
ening of J/ψ reflects modifications of the gluon configu-
rations in nuclear matter, in contrast to how light vector
mesons are sensitive probes of chiral symmetry restora-
tion in nuclei [2, 3, 10, 11].

Recent lattice QCD calculations have shown that the
nucleon–J/ψ interaction is attractive at all distances,
with the long distance part dominated by two-pion ex-
change (TPE) [12, 13]. This result shows that, while the
attraction arising from gluon exchange is important at
short distances, the overall attraction in matter receives
a nontrivial contribution from two-pion exchange. The
resulting S-wave scattering length is about 0.3—0.4 fm
[13], roughly an order of magnitude larger than values in-
ferred from earlier estimates based on J/ψ photoproduc-
tion within vector meson dominance models [14–16]. The
lattice result is consistent with the dispersive analysis of
Wu et al.[17], which finds an attractive scattering length
with magnitude |aNJ/ψ| & 0.16 fm from the soft-gluon
exchange; its long-range part is dominated by two-pion
exchange. The non-trivial contribution from the two-
pion exchange implies that the chiral symmetry breaking
effects can influence heavy quark systems or mesons com-
posed of quarks other than u and d.

To study the properties of the J/ψ in nuclear matter,
QCD sum rules (QSR) have previously been employed
[18, 19]. Since the matrix elements in the QCD sum rule

approach in nuclear matter are calculated to leading or-
der in density, the resulting mass shift can be related
to the scattering with a nucleon and thus to the scat-
tering length [20, 21]. In earlier works, the QCD con-
densates included were the scalar gluon condensate and
the twist-2 gluon matrix elements at dimension-4. Later
studies incorporated contributions from scalar and tensor
operators at dimension-6. All these QSR analyses con-
sistently predict a modest downward mass shift of about
5–10 MeV at normal nuclear density [18, 19, 21].

In this work, we use QSR to investigate the in-medium
mass shift of the J/ψ meson at normal nuclear matter
density arising from the long-range two-pion exchange
contribution. To isolate the pion-coupled component of
the four-quark condensate, we first identify the leading
order contributions from the four-quark operator. Then,
we apply the Fierz transformation to extract the two-
pion contribution. Finally, making use of previous re-
sults on the matrix elements of the four-quark operators
[22–24], we estimate the density-dependent part of the
pion-associated operators and study their effect on the
J/ψ mass in nuclear medium. As we identify the im-
portant four-quark operators, we can study its structure
to clarify the origin of the medium effects coming from
chiral properties of the medium.

II. QCD SUM RULES

To calculate the mass shift of the J/ψ, we start with
the two current correlator,

Πµν(q) = i

∫

d4xeiqx〈T {jµ(x)jν (0)}〉, (1)

where the current is jµ = c̄γµc. We then define the di-
mensionless correlator [25]

Π̃(q2) = −
Πµµ(q)

3q2
. (2)
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Gluon Operators Dimension Spin

〈αs

π
Ga

µνG
a
µν〉 4 0

〈αs

π
gfabcGa

µνG
b
νλG

c
µλ〉

6 0
〈αs

π
Ga

αµDµDνG
a
αν〉=〈−α2

s(q̄iγµλ
aqi)

2〉

〈αs

π
Ga

αµDµDνG
a
βν |ST 〉 = 〈−α2

s q̄iγµλ
aqiq̄jγνλ

aqj |ST 〉 6 2

TABLE I: Operators used in this OPE analysis.

We take ~q = 0 and study the mass shift at rest so that
there is no difference between the longitudinal and trans-
verse component [26]. Using the analytic structure of the
dispersion relation, the real and imaginary parts of the
correlator are related by

ReΠ(q) =
1

π

∫ ∞

0

ds
ImΠ(s)

s+Q2
, (3)

with Q2 = −q2. To suppress contributions from excited
resonances, continuum, and high dimension condensates,
we apply the Borel transform, defined as

MV
OPE(M

2) = lim
n,Q2→∞,
Q2/n=M2

(Q2)n+1 1

n!

(

−
d

dQ2

)n

Π(Q2),

(4)

where M2 is the Borel mass.
We evaluate the correlator using the operator product

expansion (OPE), retaining operators up to mass dimen-
sion 6 and working at leading order in αs. The contribu-
tion of scalar gluon operators up to dimension 6 was re-
ported in [27–29], where two independent gluon operators
were identified. The Wilson coefficients of operators with
spin indices, which contribute in the medium or in the
presence of external hadrons, have been calculated up to
dimension-6 [19]. Here, there are three independent op-
erators. In this study, we estimate the dominant contri-
bution that couples to two-pion states up to dimension-6
operators. Accordingly, we retain the vacuum contribu-
tions to dimension-6, which are the dimension-4 gluon

condensate and the two independent scalar operators at
dimension-6. For the density-dependent part, we include
only the operators that couple to two-pion states in or-
der to estimate the in-medium mass shift induced by two-
pion exchange. The relevant operators are listed in Table
I.
Now, consider calculating the quark operators that

couple to two-pion states. Since the lowest Fock com-
ponent of a pion consists of a quark and an antiquark,
the leading operators that couple to the two-pion states
are four-quark operators composed of light quarks. The
light quark pair comes through the gluon field. If the
gluon field carries soft momentum, one can convert it to
the quark-antiquark operator. This is accomplished by
applying the equation of motion to the gluon operator
DµG

a
αµ = g

∑

i q̄i
λa

2 qi. Therefore, one obtains a four-
quark operator from the relevant dimension-6 gluonic op-
erator, as shown in Table I. Four-quark operators that are
obtained this way will contribute to the leading term. On
the other hand, if the gluon field carries a hard momen-
tum, it will couple to the quark-antiquark pair with one
of the created quarks carrying the hard momentum, leav-
ing only one quark field to be soft. Therefore, one needs
another hard light quark, which will also come from a
hard gluon line. Therefore, quark operators coming from
hard gluons inevitably involve higher order coupling and
lead to four-quark operators of O(α3

s). We keep only the
leading α2

s quark operator coming from soft-gluons. The
gluon operators that convert into four-quark operators
and used in this work are listed in Table I. Here, ‘ST ’
denotes the operation that projects the Lorentz indices
onto their symmetric traceless part.

Expanding the current correlator via the OPE and
then performing the Borel transform yields [19, 25, 28,
29]:

M(ν) = e−νAV (ν)
[

1 + aV (ν)αs(ν) + bV (ν)φb

+sV (ν)φc +

(

sV (ν) +
2

3
tV (ν)

)

φd + ỹV (ν)φe

]

, (5)

where ν = 4m2
c/M

2 and mc = 1.262GeV [25]. The φ’s

are

φb ≡
4π2

9(4m2
c)

2
G0, (6)

φc ≡
1

3 · 540(4m2
c)

3
G3, (7)

φd ≡
4π2

3 · 1080(4m2
c)

3
〈−α2

s(q̄iγµλ
aqi)

2〉, (8)

φe ≡ Y00 with Yµν = 〈−α2
s q̄iγµλ

aqiq̄jγνλ
aqj |ST 〉. (9)

All parameters are given at the renormalization scale of
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µ = 1 GeV, unless otherwise stated. The gluon con-
densates are given by G0 ≡ 〈αs

π G
a
µνG

a
µν〉0 = 0.012GeV4

[30, 31], G3 ≡ 〈g3fabcG
a
µνG

b
νλG

c
λµ〉0 = 0.0467GeV6

[29]. The quark condensate is 〈ūu〉0 = (−0.246GeV)3

[32]. The πN sigma term σπN ≡ 2mq〈N |q̄q|N〉 =
39.7MeV [32]. The normal nuclear matter density is
ρ0 = 0.17 fm−3. In the perturbative part, we obtain the
strong coupling αs(ν) at scale ν by solving the running
coupling equation from αs(8m

2
c)=0.21 [25]. The cou-

pling constant in the vacuum part of the nonperturba-
tive term is given by αs(µ = 1 GeV) = 0.472 [33, 34]. In
the density-dependent part of the four-quark condensate,
because we are dealing with the long-range regime domi-
nated by two-pion exchange, we adopt the infrared value
of the strong coupling, αs,IR=0.7 [19, 29, 35]. The Wil-
son coefficients AV (ν), aV (ν), bV (ν), sV (ν), and tV (ν)
are listed in Refs. [19, 25, 29]. The newly computed
term ỹV (ν) is presented in Eq.(A.1).

For the vacuum sum rule for J/ψ, we use the vac-
uum saturation hypothesis for the entire four-quark con-
densate. After obtaining the vacuum mass, we evaluate
the in-medium mass shift due to long-range two-pion ex-
change arising solely from the density-dependent four-
quark operators, which couple to two-pion states.

Let us now consider those operators in detail. To
project out the pion-coupled component of the four-quark
condensates from φd and φe, we first perform a Fierz
transformation and keep only the pseudoscalar and axial
vector channels. The Fierz transformation of the spin-0
four-quark condensate 〈q̄iγµλ

aqiq̄jγµλ
aqj〉 is given by:

2〈q̄iγ5qj q̄iγ5qi〉+ 〈q̄iγ5γµqj q̄iγ5γµqi〉. (10)

The four-quark operator can be divided into chiral
symmetric and chiral breaking parts [22, 23]. Further-
more, using the OPE for the ρ and a1 mesons, which are
chiral partners, and employing their vacuum properties,
one can estimate the vacuum expectation values of both
the symmetric and breaking parts of the four-quark oper-
ators composed of axial and vector currents. It was found
that the matrix element of the chiral symmetry breaking
operator is similar to that obtained using the vacuum sat-
uration approximation. However, the matrix element of
the chiral symmetric operator has a magnitude compara-
ble to that of the breaking term—contrary to the vacuum
saturation hypothesis [22, 23], which predicts it to vanish.
This leads to the so-called κ parameter, which is intro-
duced to correct the results obtained from the vacuum
saturation hypothesis, and is typically taken to be larger
than 1 in order to reproduce the vacuum meson masses.
In nuclear matter, intermediate states couple to nucle-
ons, so the deviation from the exact vacuum saturation
is expected to grow larger. We will therefore introduce
κ and vary it from 2 to 5. Applying the vacuum sat-
uration approximation with the parameter κ, the pion-
coupled pseudoscalar and axial-vector four-quark matrix

elements reduce to the following expressions:

〈q̄iγ5qj q̄iγ5qi〉v.s. = −κ
1

3
〈ūu〉2, (qi = u, d), (11)

〈q̄iγ5γµqj q̄iγ5γµqi〉v.s. = +κ
4

3
〈ūu〉2, (12)

where the subscript v.s. indicates the vacuum saturated
matrix element. Hence, the Fierz-projected spin-0 four-
quark condensate becomes

2〈q̄iγ5qj q̄iγ5qi〉v.s. + 〈q̄iγ5γµqj q̄iγ5γµqi〉v.s. =
2

3
κ〈ūu〉2.

(13)

Here, the density-dependent part of the condensate 〈ūu〉2

is

〈ūu〉2∆ρ ≡〈ūu〉2ρ − 〈ūu〉20

≃〈ūu〉20

(

(

1− a
ρ

ρ0

)2

− 1

)

(14)

=− 1.38 · 10−4GeV6

at ρ = ρ0 with

a = −
ρ0σπN

2mq〈ūu〉20
= 0.385. (15)

In Eq.(14), we take the linear density approximation for
the quark condensate.

〈O〉ρ ≃ 〈O〉0 + ρ〈O〉N . (16)

The spin-2 four-quark condensate is transformed as
(see Eq.(B.3))

〈q̄iγµλ
aqiq̄jγνλ

aqj |ST 〉 (17)

→
1

4
gµν〈q̄iγ5γµqj q̄jγ5γµqi〉 − 〈q̄iγ5γµqj q̄jγ5γνqi〉. (18)

Applying vacuum saturation to Eq.(18) in nuclear mat-
ter yields only a contribution 9

8κρ
2
0, which is numerically

negligible at saturation density.
In the imaginary part of the dispersion relation given in

Eq.(3) we use the pole+continuum ansatz for the spectral
function and write

ρV (s) = f0δ(s−m2
J/ψ) +

1

π
ImΠ̃V,pert(s)θ(s − s0), (19)

where f0 is a pole residue and s0 is a continuum thresh-
old. For the explicit form of ImΠ̄V,pert(s), see Refs.
[25, 36].
After performing the Borel transform on Eq.(3) and

taking the ratio with its derivative, we obtain the follow-
ing expression for the mass:

mJ/ψ(M
2, s0) =

√

−

∂
∂(1/M2)M̄

V (M2, s0)

M̄V (M2, s0)
, (20)
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where M̄V (M2, s0) = MV
OPE(M

2)−
∫∞

s0
dse−s/M

2

ρV (s).

In order to identify a reliable Borel mass region, we
choose the following Borel window:

M2
min :

∣

∣aV (ν)αs(ν) + bV (ν)φb + sV (ν)φc
(

sV (ν) +
2

3
tV (ν)

)

φd + ỹV (ν)φe

∣

∣

∣

∣

≤ 0.3 (21)

M2
max :

∣

∣

∣

∣

∣

∫∞

s0
dse−s0/M

2

ρV (s)

MV
OPE(M

2)

∣

∣

∣

∣

∣

≤ 0.4 (22)

M2
min is determined to guarantee the convergence of the

OPE series and M2
max is set to maintain the pole domi-

nance. We refer to the χ2 adjustment [34] for the opti-
mization procedure.

III. RESULTS AND DISCUSSION

A. Two-pion Exchange Potential

We first estimate the magnitude of attraction coming
from two-pion exchange using the lattice result. Fol-
lowing the lattice QCD analysis [13], which fitted the
N − J/ψ interaction with a long-range TPE potential,
we adopt the potential,

V (r) = −α
e−2mπr

r2
, (23)

with potential strengths α
(S=3/2)
J/ψ = 22, α

(S=1/2)
J/ψ =

23 MeV · fm2 [13]. Then the energy shift of the J/ψ
immersed in a nuclear matter can be estimated to the
leading order in density as

∆EV =

∫ rmax

rmin

d3xV (r)ρ(r) (24)

where ρ(r) is the nucleon density.
We take rmin=1.0 fm because two-pion exchange no

longer dominates at shorter separations. A uniform nor-
mal nuclear density of ρ0=0.17 fm−3 is used. The HAL-
QCD lattice analysis shows that the N − J/ψ potential
vanishes within statistical uncertainties for r > 1.8 fm
[13], so we set rmax=1.8 fm. Under these conditions, the
spin-averaged energy shift is given below.

∆mTPE
J/ψ = −5MeV. (25)

B. QSR Results and Discussion

We evaluate the mass shifts of J/ψ as a function of κ
as shown in Figure 1. When αs,IR = 0.7, although the
values are smaller than that obtained from the TPE po-
tential Eq.(25), they still display an attractive effect, with
a mass decrease of 0.36–0.90 MeV. However, if the mass

shift is calculated without performing the Fierz trans-
formation, one finds a repulsive interaction. Thus, even
qualitatively, extracting the pion-coupled component re-
produces the attractive behavior seen in the lattice re-
sults [12, 13]. The analysis is carried out for κ values
between 2 and 5. This parameter is not precisely known
as noted previously [22, 23, 37–41]. In Fig.1, it can be
seen that the dependence on κ is almost linear. A pre-
cise determination of κ is essential for a quantitatively
reliable estimate of the mass shift.
For the four-quark operator, we use the vacuum part

coupling αs=0.472 at µ = 1 GeV [33, 34], while for
the density-dependent part we adopt the infrared value
αs,IR=0.7 [19, 29, 35]. However, the infrared value of the
strong coupling constant can become larger to accommo-
date the long distance two-pion exchange contribution.
Therefore, we evaluate the mass shifts for higher αs,IR
values, as illustrated in Fig. 1. We observe that as the
coupling value at long distances becomes larger, the at-
traction generated by two-pion exchange also increases.
As long distance physics is dominated by pions, higher

order corrections to the Wilson coefficient of the four-
quark operator should be important. These effects can
also be effectively parameterized into κ. Comparing our
result with the lattice data suggests a larger value of κ,
indicating that next-to-leading-order (NLO) corrections
are important.
We also evaluate the mass shift for smaller IR cou-

plings. We obtain that a smaller coupling yields a weaker
attraction. Thus, we find that, at shorter distances that
have a smaller coupling constant, the two-pion exchange
contribution becomes negligible, as expected.
To examine how the long distance N−J/ψ interaction

depends on the heavy quark mass, we repeat the analysis
with artificially larger charm quark masses. The resulting
mass shift decreases as mc grows, consistent with the ex-
pectation that heavier quarkonia are more compact and
therefore possess a smaller chromoelectric polarizability,
which weakens long-range hadronic interactions. The po-
tential strength in Eq.(23) is αJ/ψ = 22–23 MeV·fm2 [13],

while for the N − φ interaction it is αφ = 91 MeV · fm2

[12]. Following this trend, the potential strength param-
eter for the N−Υ interaction, αΥ, is expected to be even
smaller.

IV. SUMMARY

In this work, we present the first QCD sum rules (QSR)
analysis to isolate and evaluate the long-range two-pion
exchange contribution to the J/ψ mass shift in nuclear
matter.
We obtain an attractive mass shift under the Fierz-

projected treatment, which extracts the four-quark oper-
ators that couple to the two-pion exchange contribution.
The sum rule results find that, although smaller in mag-
nitude, is qualitatively in agreement with the long-range
two-pion exchange potential extracted from lattice stud-
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FIG. 1: The mass shifts of J/ψ as a function of κ. We
present results for larger infrared strong coupling

constants, αs,IR.

ies [12, 13]. In contrast, omitting the Fierz transforma-
tion reverses the sign of the shift, producing a repulsive
interaction. Thus, isolating the pion-coupled component
of the four-quark condensate is essential for capturing the
correct attractive behavior seen in the lattice calculations
and emphasizes the importance of properly accounting
for long distance hadronic effects in QSR applications.
Furthermore, once we express the two-pion exchange

contribution in terms of four-quark operators, we can
identify that there are contributions from chiral symme-
try breaking part, which are known to follow the change
as order parameters of chiral symmetry restoration in nu-
clear medium. This result shows that although small in
magnitude, there is a mass shift even for heavy quark
system occurring due to chiral symmetry restoration in
nuclear medium [8].

Since two-pion exchange dominates the long distance
regime, higher order corrections to the four-quark Wil-
son coefficient, absorbed into the parameter κ, become
significant. Despite the uncertainty in κ, our analysis
confirms that the N − J/ψ interaction is attractive at
long distances, which agrees with the lattice results.
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APPENDIX

A. Wilson coefficient ỹV (ν)

Here, we show the explicit form of the function presented in Eq.(5).

ỹV (ν) =
π2

(4m2)3
ν

G(1/2, 5/2, ν)

[

−
4

3
G(1/2, 7/2, ν)−

8

9
G(1/2, 5/2, ν) +

158

27
G(−1/2, 7/2, ν)

−
274

81
G(−3/2, 7/2, ν) +

136

405
G(−5/2, 7/2, ν) +

2

135
G(−7/2, 7/2, ν)

]

. (A.1)

G(a, b, ν) is a Whittaker function which is defined as below.

G(a, b, ν) =
1

Γ(b)

∫ ∞

0

dte−ttb−1(ν + t)−a. (A.2)

B. Numerical estimation of the spin-2 four-quark condensate

We estimate the numerical value of the spin-2 four-quark condensate. It is transformed as

〈q̄iγµλ
aqiq̄jγνλ

aqj |ST 〉 = 〈q̄iγµλ
aqiq̄jγνλ

aqj〉 −
1

4
gµν〈q̄iγαλ

aqiq̄jγαλ
aqj〉 (B.1)

= −
2

3
〈q̄iγµqiq̄jγνqj〉 −

1

8
Tr[γµΓrγνΓs]〈q̄iΓrqj q̄jΓsqi〉

−
1

4
gµν

(

−
2

3
〈q̄iγαqiq̄jγαqj〉 −

1

8
Tr[γαΓrγαΓs]〈q̄iΓrqj q̄jΓsqi〉

)

. (B.2)

Retaining only Γµ = γ5, γ5γµ, Eq.(B.2) becomes the following

→
1

4
gµν〈q̄iγ5γµqj q̄jγ5γµqi〉 − 〈q̄iγ5γµqj q̄jγ5γνqi〉. (B.3)
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Applying ground state dominance to Eq.(B.3) in nuclear matter gives a contribution 9
8κρ

2
0 at saturation density

ρ0 = 0.17 fm−3.
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