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Abstract

While subjective evaluations in recent years indicate rapid
progress in TTS, can current TTS systems truly pass a human
deception test in a Turing-like evaluation? We introduce Human
Fooling Rate (HFR), a metric that directly measures how often
machine-generated speech is mistaken for human. Our large-
scale evaluation of open-source and commercial TTS models
reveals critical insights: (i) CMOS-based claims of human par-
ity often fail under deception testing, (ii) TTS progress should
be benchmarked on datasets where human speech achieves
high HFRs, as evaluating against monotonous or less expres-
sive reference samples sets a low bar, (iii)) Commercial models
approach human deception in zero-shot settings, while open-
source systems still struggle with natural conversational speech;
(iv) Fine-tuning on high-quality data improves realism but does
not fully bridge the gap. Our findings underscore the need
for more realistic, human-centric evaluations alongside existing
subjective tests.

Index Terms: speech synthesis, human-centric evaluation

1. Introduction

The gold standard for artificial intelligence has always been in-
distinguishability from humans, as exemplified by the Turing
Test. In speech synthesis [1], this means a TTS system must
produce speech that is not just preferred in subjective evalua-
tions but is truly indistinguishable from a natural speaker. If
a system fools human listeners into believing they are hear-
ing real speech, it has met the highest standard of evaluation.
As Al-driven dialogue systems become more integrated into
daily interactions, the demand for genuinely human-like syn-
thetic speech has never been greater. With chatbots and virtual
assistants becoming more lifelike, it is time to set a higher bar
for evaluating speech synthesis—not just incremental MOS or
CMOS improvements, but actual perceptual indistinguishabil-
ity.

Subjective evaluation tests such as CMOS [2], MUSHRA
[3], and MOS [4, 5] have long been effective in guiding TTS
model development and should continue to do so. These met-
rics provide valuable insights into preference and quality, help-
ing researchers iterate on models. However, as TTS systems
are increasingly deployed in real-world applications, there is a
need for an additional evaluation that directly measures whether
synthetic speech is truly indistinguishable from human speech.
Such a deployment-centric evaluation should be more direct
and interpretable to overcome the limitations of existing tests
[5, 6, 7], which often lack clear real-world implications. For
example, consider a MUSHRA test where a system scores 86
and the reference 90, both labeled “Excellent.” Does this mean
the system is ready for deployment? If a CMOS score surpasses
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that of a human reference, does that definitively indicate the sys-
tem passes a human deception test? Our findings suggest this is
not necessary.

To complement existing evaluation methods, we introduce
Human Fooling Rate (HFR), a deployment-centric metric that
directly measures how often machine-generated speech is mis-
taken for human. Unlike traditional subjective evaluation meth-
ods, HFR is not about preference or relative quality but de-
ception: Can the listener confidently distinguish real from syn-
thetic speech? We conduct a large-scale HFR evaluation of ten
state-of-the-art TTS systems — 5 top-performing open-source
models and 5 commercial offerings — engaging 135 partici-
pants across different experimental setups and voice conditions.
This evaluation is crowdsourced via Prolific, ensuring a diverse
and representative listener pool for assessing perceptual indis-
tinguishability at scale.

Our findings reveal several critical gaps in current TTS
evaluation methods. (Finding 1) State-of-the-art TTS systems
can achieve high CMOS/MUSHRA scores by closely match-
ing the reference, yet still perform poorly on HFR tests. This
suggests a reference-matching bias, where raters prioritize sim-
ilarity over genuine naturalness. Additionally, subtle synthetic
cues, such as, digital voice quality and artifacts, may be over-
looked in preference-based evaluations but become evident in
deception-based assessments. (Finding 2) A major concern is
that many TTS evaluations use benchmarks where even refer-
ence human recordings have low HFR scores, as they sound
monotonic and lack expressive variation. This allows TTS
models to appear successful by matching suboptimal references
rather than achieving true human-like speech, creating a false
sense of progress. Meaningful evaluation requires benchmarks
where human speech itself achieves high fooling rates, ensur-
ing synthetic speech is judged against realistic perceptual stan-
dards. (Finding 3) Our results further show that while commer-
cial models approach human deception in zero-shot settings,
(Finding 4) open-source TTS systems continue to struggle with
natural conversational speech, and fine-tuning on high-quality
conversational data leads to only partial improvements. These
insights underscore the need for more comprehensive evaluation
frameworks, and we propose HFR as a crucial complement to
existing metrics, offering a more robust and interpretable stan-
dard for TTS benchmarking.

2. The Human Fooling Rate Test

In this section, we introduce a complementary metric that eval-
uates perceptual indistinguishability rather than subjective pref-
erence, addressing limitations in existing evaluation methods.

Definition. The Human Fooling Rate (HFR) is defined as the
percentage of times machine-generated speech is mistaken for
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human speech in a binary forced-choice listening test. Mathe-
matically, it is computed as:

HFR — o~y [y = human) 100 |
=X > Nar % Q)
i=1 j=1

where NN is the total number of listeners, 7" is the total num-
ber of trials, y; ; is the response of listener ¢ for trial 7, and
I(y;,; = human) is an indicator function that returns 1 if the
listener labels the TTS speech as human and 0 otherwise.
Procedure. Inthe HFR test, listeners are presented with indi-
vidual speech recordings and must determine whether the audio
is produced by a human speaker or a TTS system. To ensure
fair evaluation, all participants are instructed to use headphones
in a quiet environment and listen to each recording completely,
without interruption, before making a decision. While mak-
ing their judgment, listeners are instructed to focus on key per-
ceptual cues such as voice quality (e.g., robotic or compressed
sound), unnatural modulation, monotonic delivery, inappropri-
ate emotion or intonation, mispronunciations, skipped or re-
peated words, unnatural pauses or speed, and digital artifacts.
By guiding listeners to consider these factors before making
their decision, the evaluation process aims to ensure a more in-
formed and reliable measure of a system’s ability to deceive
human perception.

3. Evaluation of State-of-the-Art TTS

To assess whether state-of-the-art TTS systems can truly de-
ceive human listeners, we systematically select models that rep-
resent the current landscape of speech synthesis. We describe
our model selection criteria, benchmarks, evaluation design,
and the evaluation platform used for conducting large-scale per-
ceptual tests via crowd-sourcing.

Model Selection. In real-world applications, such as voice as-
sistants, dubbing or accessibility tools, personalized and dy-
namic voice synthesis is increasingly essential, where users ex-
pect high-quality, speaker-adaptive TTS without requiring ex-
tensive training data. To meet this demand, we focus on speech
prompt-based TTS models capable of zero-shot voice cloning,
as they best align with real-world needs by enabling natural
speech synthesis from minimal speaker input. Additionally,
these systems can function as traditional TTS models by us-
ing training voices as prompts, ensuring strong performance on
familiar speakers while retaining the flexibility for new voice
adaptation. We evaluate both open-source and commercial TTS
systems, selecting models that claim human-level synthesis (via
CMOS or MUSHRA scores), release pretrained checkpoints,
support fine-tuning, and perform well in existing TTS leader-
boards. Based on these criteria, we select the following open-
source models: StyleTTS2 [8], XTTS [9], GPT-SoVITS [10],
F5-TTS [11], and VoiceCraft [12]. For commercial TTS, we
evaluate ElevenLabs [13] and PlayHT [14]. These models rep-
resent a strong baseline for assessing the deception capability
of modern prompt-based TTS systems.

Evaluation Design & Benchmarks. Our goal is to benchmark
prompt-based TTS systems capable of voice cloning, where
prompt quality plays a crucial role in output realism. [Eval-
uation 1] We begin by evaluating systems on three widely
used benchmarks, viz., LISpeech [15], LibriTTS [16], and Lib-
riSpeech [17], to establish baseline deception rates. We synthe-
size outputs by randomly sampling speaker prompts from the
respective test sets, ensuring that the prompt and target utter-
ance are always distinct. Our findings prompt us to question the

deception quality of these popular benchmarks.

Building on the insights gained and hypothesizing that
higher-quality voices could enhance deception rates, we ex-
plore whether high-quality open-source voices can serve as ef-
fective prompts. Given Expresso’s [18] challenging nature with
its natural and expressive conversational speech, we use it to
determine (i) [Evaluation 2] if open-source voices can im-
prove deception rates and (ii) [Evaluation 3] whether adap-
tation through fine-tuning can further enhance HFR scores.
This systematic process enables a comprehensive assessment
of model performance across diverse datasets, recording condi-
tions, and evaluation settings, covering both zero-shot and fine-
tuned scenarios.

Evaluation Platform. We conduct evaluations on SAFFRON'
(Speech Assessment Framework For Robust Objective and Nor-
mative Evaluation), a platform we designed for scalable per-
ceptual evaluation of TTS systems. SAFFRON supports both
HFR and MUSHRA tests, ensuring a standardized and repro-
ducible framework for benchmarking speech realism. SAF-
FRON enforces strict listening conditions by requiring partici-
pants to hear full samples before responding, tracking response
times to prevent rushed judgments, and integrating seamlessly
with Prolific for large-scale crowd-sourced evaluations. With
its scalable design and robust experimental controls, SAFFRON
provides a reliable platform for speech synthesis research. We
publicly release it to facilitate more rigorous and interpretable
evaluations of TTS systems.

Crowd-sourcing Participants. We recruit 135 native US-
English speakers from Prolific [19], ensuring balanced age and
gender demographics. Participants must be born and residing in
the US, have English as their primary language, and be 18-60
years old and have a task acceptance rate of at least 99% on
Prolific. These constraints help ensure that evaluations reflect
real-world native speaker perception. Across all tests, partici-
pants provide over 30,300 ratings, and for each experiment we
ensure that every system receives ratings from at least 30 par-
ticipants across 30 utterances. All procedures were approved
by the institute’s ethics review board and the total cost of con-
ducting these experiments, including participant compensation,
amounts to approximately £3,400.

4. Key Findings

We present our findings on the ability of state-of-the-art TTS
systems to produce human-like speech based on large-scale
HFR evaluations. The following sections explore whether open-
source models achieve human deception in zero-shot settings,
the reliability of existing TTS benchmarks, and how factors like
the realism of the reference voices and fine-tuning impact per-
formance.

4.1. Has open-source TTS reached human-level quality?

We first evaluate open source TTS systems in a zero-shot setup
by prompting them with voices from 3 popular benchmarks as
shown in Table 1. The human HFR scores in the first row of
the table represent the deception rate of real human recordings.
While one might expect it to be 100%, in reality, even natu-
ral speech is occasionally misclassified as synthetic. This can
be attributed to factors such as recording artifacts and varia-
tions in speaking style. We see in Table 1 that no open-source
TTS system comes close to matching human recordings in fool-
ing rates. Even the best-performing system, StyleTTS2 that
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Table 1: Human Fooling Rates (HFR) of Open-Source TTS Sys-
tems on popular test sets. ™ indicates model has seen the bench-
mark during training. (95% CI: min.=2.87; max.=3.27)

System LJSpeech LibriTTS LibriSpeech p

Human 78.33 73.33 70.67 74.11
StyleTTS2 61.33" 45.67" 45.67 50.89
F5-TTS 49.67 43.67 47.00 46.78
XTTS 59.33 41.33 38.00 46.22
GPT-SoVITS 41.00 31.33 41.67 38.00
VoiceCraft 37.33 28.33 31.00 32.22

claims a CMOS of +0.28 on LISpeech only attains 61% HFR
on the same benchmark. Overall, it achieves only 50.89% HFR
against the human baseline (74.11%). Likewise, F5-TTS re-
ports a CMOS of +0.31 on Seed-TTS test-en, yet scores a HFR
of 46.78% overall across benchmarks. This indicates that while
synthesis quality has improved over time, truly indistinguish-
able speech remains an open challenge.

Finding #1: Claims of near human parity based on CMOS
can crumble under a Turing-like deception test, exposing the
gap between perception and reality. This calls for using
stronger complementary evaluation methods (like HFR) that
directly test “natural speech” claims, ensuring assessments
align with real-world human indistinguishability.

Open-source TTS models claim strong generalization, yet
their HFR scores vary significantly across datasets, indicating
a lack of robustness. For example, XTTS achieves an HFR
of 59.33% on LJSpeech but drops to 38.00% on LibriSpeech,
suggesting poor zero-shot speaker generalization to more di-
verse test sets. LJSpeech consistently results in higher HFR
scores, possibly because it presents an easier benchmark with
less speaker variation or because it aligns more closely with the
training data. In contrast, LibriSpeech yields the lowest HFR
scores for human recordings, likely due to its diverse range
of speakers and challenging recording conditions. However,
is it not futile to expect that using prompts derived from such
benchmarks can enable prompt-based TTS (whose goal is to
mimic the input prompt accurately) to deceive humans better?
In contrast, using prompts from such benchmarks for CMOS or
MUSHRA tests sets an artificially low standard for TTS sys-
tems, as their simplistic style and limited variation make them
easy to mimic. This can create a misleading impression of
progress.

Finding #2:  Benchmarks with challenging recording en-
vironments and more diverse speakers yield weaker decep-
tion in TTS, reinforcing the idea that systems trained or eval-
uated on such datasets may inherit their limitations rather
than overcome them.

4.2. How well do TTS systems fair on the high-quality Ex-
presso Voices?

Motivated by our earlier findings that low-quality prompts can
lead to poor deception, we now examine another key aspect of
prompt-based TTS: its ability to replicate high-quality voices in
conversational settings rather than narration-style speech preva-
lent in the popular benchmarks covered in section 4.1. We use
Expresso which features professional voice actors delivering

natural and expressive conversational speech, making it an ideal
testbed. We prompt systems with two distinct voices (ex02 and
ex03) and test their zero-shot ability to mimic humans. Addi-
tionally, we include two commercial systems, viz., ElevenLabs
[13] and PlayHT [14] with instant voice cloning capabilities to
determine whether closed-domain models can achieve high de-
ception rates.

Table 2 presents HFR scores on the Expresso benchmark,
highlighting the clear distinction between closed-domain com-
mercial systems and open-domain models. PlayHT (HFR:
71.49) and ElevenLabs (HFR: 69.85) achieve same deception
rates as reference human audio samples (Human HFR: 70.68),
whereas open-source models lag significantly behind. This
suggests that state-of-the-art commercial models excel in zero-
shot speaker adaptation to high-quality conversational speech,
likely due to specialized training and access to proprietary high-
fidelity datasets. Similar progress in both modeling and dataset
quality may be required for open-source TTS to reach natural-
sounding synthesis.

We also report MUSHRA scores in Table 2, which reaf-
firms that relative subjective metrics can inflate perceived re-
alism (Finding #1). For example, XTTS scores a MUSHRA
of 76.58 (higher than Human) yet only fools listeners 41.8%
of the time. This indicates that while listeners may rate au-
dio quality highly in MUSHRA, they can still detect subtle cues
(such as digital artifacts) that expose its synthetic origin in HFR.
Therefore, relying solely on CMOS-like or MUSHRA evalu-
ations may overestimate naturalness, reinforcing the need for
complementary deception-based metrics like HFR that measure
a system’s ability to truly mimic human speech.

Table 2: HFR on Expresso (95% CI: min.=4.04; max.=4.45)

System Domain HFR MUSHRA
PlayHT Closed 71.49 85.37
Human Ref. 70.68 74.78
ElevenLabs Closed 69.85 80.39
F5-TTS Open 50.26 70.75
GPT-SoVITS  Open 44.61 68.21
XTTS Open 41.80 76.58

StyleTTS2 Open 38.60 71.21
VoiceCraft Open 30.52 49.02

Finding #3: In the zero-shot setting, commercial models are
able to achieve parity with human speech, whereas open-
source TTS systems far lack in generating natural conver-
sational speech.

4.3. Does fine-tuning on high-quality voices improve decep-
tion?

Given that open-source systems struggle to achieve high decep-
tion rates on unseen voices, it is interesting to assess their per-
formance when trained on high-quality seen voices. To validate
this, we fine-tune the best (F5-TTS) and worst (VoiceCraft) per-
forming open-source models (in the zero-shot setting) and mea-
sure their HFR scores before and after training. Table 3 shows
that while fine-tuning boosts fooling rates, it does not fully close
the gap. F5-TTS improves marginally while VoiceCraft sees a
larger jump upto 43.45%. This suggests that exposure to higher-
quality data helps, but fine-tuning on this 40 hour dataset alone
seems insufficient to reach human deception levels. Perhaps,



more data or better training recipes and architecture are required
in the open-source.

Table 3: Human Fooling Rates of systems after fine-tuning on
the Expresso Benchmark. (95% CI: min.=4.67; max.=4.51)

System Zero-Shot Many-Shot
F5-TTS 50.26 52.22
VoiceCraft 30.52 43.45

Finding #4: Fine-tuning on high-quality conversational
voices provides modest gains in fooling rates, and open-
source TTS systems still fall short of the standard for human
deception. Achieving truly natural speech in the open-source
may require larger datasets, improved training strategies, or
Sfundamental model enhancements.

4.4. Why do open-source TTS Systems score high on
MUSHRA but low on HFR?

Table 4: % of times each marker was identified by raters as
indicative of machine-generated speech, comparing Human,
Commercial, and Open-source systems on Expresso (ex02).

Marker Human Commercial Open-source
Voice Quality is Digital. 6.9 9.3 36.1
Unnatural pauses. 4.0 6.7 22.8
Unnatural pitch. 5.8 5.6 17.2
Flat or monotonic. 2.2 5.1 20.6
Inappropriate emotion. 3.1 33 11.4
No human quirks. 2.7 2.2 114
Mispronunciations. 0.2 0.2 9.8
Word skips/repeats. 0.7 0.4 7.6
Digital artifacts. 0.4 0.7 52

To better understand why open-source TTS systems achieve
high MUSHRA scores yet low HFR values, we conducted a
granular HFR test on the Expresso benchmark (ex02) with 15
raters. In this test, participants were not only asked to determine
whether speech was machine-generated but also to specify the
particular flaws that led them to that conclusion. These flaws
were labelled by selecting one or more specific error markers
from a predefined list of nine, as enlisted in Table 4. The re-
sults in Table 4 reveal that the most common giveaway for open-
source models being identified as machine is their digital voice
quality (36.1%), followed by unnatural pauses (22.8%) and flat
or monotonic delivery (20.6%). In contrast, commercial mod-
els exhibit error rates similar to or better than human recordings
in key areas like pitch variation, human-like quirks (e.g., nat-
ural breaths), and reduced word skips or repeats. These find-
ings explain the stark gap in deception performance between
open-source and commercial systems in Table 2, despite their
comparable MUSHRA scores. More importantly, this granu-
lar HFR analysis provides targeted insights for improving TTS
models beyond overall quality metrics, highlighting key areas
for advancing open-source synthesis toward true perceptual in-
distinguishability. Although HFR is designed as a deployment-
centric metric, its granular version offers detailed diagnostic
feedback, making it a valuable development-centric tool too for
model refinement.

4.5. Are HFR tests more efficient?

In Table 5, we see that the average time taken per audio sam-
ple is significantly lower for HFR tests compared to traditional
MUSHRA evaluations. Notably, the granular HFR test, which
provides targeted insights into specific artifacts, is completed
less than half the time of MUSHRA. This remarkable efficiency,
combined with rich diagnostic feedback, makes HFR tests a
powerful complement to conventional perceptual evaluations.

Table 5: Average duration (s) taken per listener to rate one au-
dio sample per system.

HFR HFR-Granular MUSHRA
Time Taken 24.30 22.53 42.45

5. Related Work

Subjective relative assessments such as MOS, CMOS, and
MUSHRA have been widely used in TTS evaluation but have
faced substantial criticism [5, 4, 7, 20]. MOS tests are known
to be highly variable [21], context-sensitive [22], and prone to
biases like range-equalization [23]. MUSHRA assessments too
are susceptible to reference-matching bias and judgment ambi-
guity [7]. Several works, slightly modify tests [24, 25] or pro-
pose new ones [26] to potentially overcome limitations. Given
these limitations, deception-based evaluations inspired by the
Turing Test [27] offer a compelling alternative. While such
evaluations have shown promise in NLP [28, 29], they remain
under-explored in TTS. Our work bridges this gap by intro-
ducing HFR, a direct deception-based measure for evaluating
machine-generated speech.

6. Limitations

Like all subjective evaluations, HFR is not immune to vari-
ability in ratings, test design biases, or perceptual differences
among raters. While it shifts the focus from preference-based
comparisons to a deception-based evaluation, it still inherently
relies on human perception. Owing to budget constraints, we
limit our experiments to a subset of top open-source and com-
mercial models, leaving room for broader validation across
other TTS systems. We emphasize that HFR is not a replace-
ment for CMOS/MUSHRA but a complementary metric that
provides a deployment-centric perspective on TTS evaluation.

7. Conclusion

As TTS systems continue to advance, the ultimate test of
progress should not be limited to preference-based evaluations
but must also address perceptual indistinguishability from hu-
man speech. Our large-scale HFR evaluation reveals that even
top-performing systems struggle to fully deceive human listen-
ers. Existing TTS benchmarks often overestimate system per-
formance by failing to reflect real-world human deception rates.
While commercial models show promise in zero-shot settings,
open-source TTS lags behind, with fine-tuning on high-quality
data offering only limited gains. These findings emphasize the
need for stronger evaluation frameworks that go beyond tradi-
tional MOS and CMOS scores. By introducing HFR, we aim
to provide a deployment-centric metric that directly measures
human-likeness, paving the way for more rigorous benchmark-
ing and future advancements in speech synthesis.
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