arXiv:2501.08970v1 [cs.CR] 15 Jan 2025

Google DeepMind

Trusted Machine Learning Models Unlock
Private Inference for Problems Currently
Infeasible with Cryptography

Ilia Shumailov!, Daniel Ramagez, Sarah Meiklejohn3, Peter Kairouz?,

Florian Hartmann!, Borja Balle! and Eugene Bagdasarian?
“Inverse alphabetic order, ! Google DeepMind, 2Google Research, 3Google

We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these
interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this
challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols
that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs.
While significant advances have been made in scaling cryptographic approaches, they remain limited
in terms of the size and complexity of applications they can be used for. In this paper, we argue that
capable machine learning models can fulfill the role of a trusted third party, thus enabling secure
computations for applications that were previously infeasible. In particular, we describe Trusted Capable
Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable
machine learning model(s) interact under input/output constraints, with explicit information flow control
and explicit statelessness. This approach aims to achieve a balance between privacy and computational
efficiency, enabling private inference where classical cryptographic solutions are currently infeasible.
We describe a number of use cases that are enabled by TCME, and show that even some simple classic
cryptographic problems can already be solved with TCME. Finally, we outline current limitations and
discuss the path forward in implementing them.

1. What are TCMEs?

In this paper we contend that recent advancements in machine learning enable a new paradigm for
private inference. Fundamentally, the need for many cryptographic primitives stems from the fact that
we don’t have trusted third parties, thus requiring mutually untrusted participants to interact in a way
that avoids revealing their data to each other but where they can nevertheless agree on a result. In this
paper we argue that a capable machine learning model, in some settings, can play the role of a trusted
third party (Abadi, 2004; Anderson, 2010). We propose Trusted Capable Model Environments, a
setting where an individual machine learning model or a number of models initiate an interaction
with additional constraints in the input and output to ensure that private data cannot leave the TCME.
Consider for example the classical millionaires problem, where a pair of individuals are trying to
figure out who has more money without disclosing how much money they have. Cryptographically,
this can be solved using a secure two-party computation by Yao, or subsequent protocols that are
more efficient (Ioannidis and Grama, 2003; Lin and Tzeng, 2005; Yao, 1982). With TCME, both
individuals agree on

* A model, e.g., Gemma (Gemma-Team, 2024);

* A prompt, e.g., “Say "first" if A is bigger than B and "second" otherwise? A={} and B={}.”;
* Input constraints, e.g., A and B are 32-bit integers;

* Output constraints, e.g., the only approved outputs are ‘first’ or ‘second’.

If the environment can be trusted to both avoid leaking the private information provided by each

Corresponding author(s): iliashumailov@google.com
© 2025 Google DeepMind. All rights reserved

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

party and to reliably output the correct answer, this presents an alternate approach to enabling this
computation. While a viable cryptographic solution exists for this simple example, for the applications
we discuss below it is currently computationally infeasible to rely on cryptographic solutions due to
the unstructured nature of the computation. In contrast, we argue that securely performing these
computations is entirely feasible with a new inference paradigm utilising machine learning models.

This paradigm for private computations enables analysis and collaboration for tasks that were
previously infeasible. For example, programming the task is no longer limited to a highly technical
specification, where all possible states have to be modeled; instead, it is possible to use human
language directly by non-specialists.

There are three fundamental properties that we need to satisfy in order for models to be trusted:

1. Statelessness — the model should be incapable of memorising, learning, or retaining any state
based on the data with which it interacts. That way, it is clear with each interaction what
(private) data influences the output, ensuring confidence in that post-invocation no private data
can leak from the model and the model can’t discriminate the user based on prior interactions.

2. Explicit Information Flow Control

* Information Flow — the model and the underlying system should have an explicit and
frozen information flow that can be defined in a coordinated (and verifiable) way.

* Verifiability — users of the TCME need an explicit mechanism for verifying that the correct
model, correct prompt, and input/output constraints are respected.

3. Trustworthy and Capable Model(s) — we assume the use of trustworthy model(s) that are
capable of solving a given user task, and that the model(s) are aligned in their performance
with the expectations of the involved parties.

All of the properties above are currently only partially achievable, as we expand on further in
Section 3.1. Below, we first formally specify the setting and describe our expectations of TCME. Next,
we compare and contrast TCMEs with cryptographic solutions, namely multi-party computation (MPC)
and zero-knowledge proofs (ZKPs). Finally, we provide a number of TCME-enabled applications.

As a hypothetical scenario to understand what TCME can be, imagine that you could have a
model with explicit integrity guarantees and a precise information flow control mechanism.

For example, it could be a hardware implementation of a given open model. You ensure that
the model integrity is preserved by imaging it with radiography and comparing to blueprints;
you also ensure that it is incapable of maintaining state, e.g., utilize volatile memory with
explicit (hardware-based) erasure protocol; and leaking state by placing in a Faraday cage;
you also can power up and down the system at will to explicitly reset its state; finally you
program the output and input constraints; e.g., the model can’t respond with anything but a
number 1-10. That way, even if private data is supplied to the model, it will be incapable
of memorising it or further leaking private information. The model also has no alternative
data access beyond what the user supplied in the input, making it impossible to identify and
discriminate a given user. The model is verified either empirically or theoretically as being
sufficiently capable of solving a task specified by the user.

With explicit mechanisms for statelessness, information flow control, and trustworthiness
described above, the model becomes a trusted third party.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

2. Trusted Capable Model Environments

Formulation and threat model

We can start formulating a TCME in the same way as a secure multi-party computation (MPC): a
set of n parties Py, ..., P, hold respective private data xi, ..., x,, and want to compute an output
y =F(x1,...,x,) of some pre-agreed function F(-). The parties want to compute this function in a
way that is (1) correct, meaning y really is the output of F on the private data of each party, and (2)
private, meaning no party learns any information about the private data of any other (honest) party.

In a TCME, we additionally consider a machine learning model M that is capable of computing the
function F; i.e., that given inputs xi, . . ., x, can output F(x1,...,X,) in an accurate and efficient way,
to a degree that is acceptable to the users. The model must furthermore be run in an environment
that is trustworthy, meaning that the environment (1) prevents unauthorized access to the model
i.e. provides model integrity and protects intermediate state; (2) ensures the model operates in a
stateless manner; and (3) ensures the model respects a pre-defined information flow control policy.

In addition to the function F, we thus consider that the parties interacting with a TCME also need to
agree on the information flow control policy, the model being used, and the model’s input and output
constraints.!

The goals of TCMEs are the same as the goals of multi-party computation, in terms of achieving
correctness and privacy. The main difference is in how the computation is carried out: rather than
parties interacting among themselves, in the proposed operation of a TCME each party provides their
private input to the environment, which computes the function F itself and outputs the response.
Correctness is achieved following the capability of the model, and in particular its ability to compute
the function accurately, and privacy is achieved following the strict information flow controls in place
and the statelessness of the model. In particular, the ability of a TCME to prevent unauthorized
access to the model implies that privacy can be achieved even with respect to the party running the
environment.

The following components and properties are assumed to be trusted and secure:

* TCME: The TCME itself is assumed to be secure and isolated, preventing unauthorized access and
ensuring that the model operates in a stateless manner according to the predefined information
flow control. This includes ensuring proper input sanitization, output filtering, and secure
communication channels.

* Information Flow Control Mechanism: The mechanism enforcing the information flow within
the TCME is assumed to be correctly implemented and tamper-proof.

* Initial Model Vetting and Continuous Monitoring: While we consider the possibility of a
compromised model, we assume that an initial vetting process has been performed to ensure the
model is free of known vulnerabilities and backdoors, and can perform the task at hand to an
acceptable degree of performance at the time of deployment within the TCME. We also assume
that the model can be further deployed with continuous monitoring tools that can terminate
executing in case integrity is violated or an adversary is detected.

Why is this different from classical cryptographic approaches?

1deally, parties should agree on all core TCME components: the model, prompt, and input/output constraints. This
consensus ensures that all parties have the same expectations about the computation’s behavior and the level of privacy
provided. However, there might be scenarios where some flexibility is needed. For instance, the trusted party could be
given limited authority to decide what queries to run or not run. This flexibility should be carefully balanced with the need
for transparency and control to maintain trust among the parties involved.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

TCME MPC ZKP

Solving imprecisely defined Joint computation of a A single prover convinces
Purpose or unstructured tasks function over individually = multiple verifiers

over private data held private data without revealing input

Mathematical assumptions
and/or non-collusion
between parties

Soundness and
zero knowledge

Trust assumptions Capability and
and requirements trustworthiness

Linear costs in the input size;

.. A Costs can be sublinear; Costs can be constant;
Communication cost one round to provide inputs . .
. can be constant rounds can be non-interactive
and retrieve output
Computational cost Model inference Circuit size / depth Circuit size / depth

Table 1 | Comparison of TCMEs with multi-party computation (MPC) and zero-knowledge proofs
(ZKP), highlighting their differences in terms of purpose, underlying assumptions, and scalability
considerations.

As compared with classical cryptographic approaches, this means correctness and privacy rely on
heuristic assumptions about the model and its environment rather than the mathematical assumptions
that are used to prove the security of cryptographic constructions. On the other hand, TCMEs can
be used for significantly more complex computations; i.e., they can be used to solve open-ended
problems or problems where the data is highly unstructured — a capability that is infeasible for
traditional crypto-based systems. We highlight the differences between TCMEs and cryptographic
approaches in Table 1. In addition, we compare against zero-knowledge proofs (ZKPs), a specific type
of two-party computation for which many optimized constructions have been presented in recent
years (Chen et al., 2022; Groth, 2016; Nguyen et al., 2024; Thaler, 2022).

As the table highlights, for smaller structured computations the costs associated with transmitting
data and performing inference may make TCMEs a worse option than classical cryptographic ap-
proaches. As computations become larger and more unstructured, however, we can expect their
circuit representation to become sufficiently large that TCMEs become the more attractive—or the
only feasible—option.

In addition to treating each option separately, we can also imagine TCMEs being used in conjunction
with these or other cryptographic primitives; e.g., where the TCME performs private model inference
for computations that are too unwieldy for cryptographic approaches and outputs the required circuit
for computations that can be handled cryptographically.

Why is this different from Trusted Execution Environments?

Table 2 summarizes the differences between TCMEs and trusted execution environments (TEEs). As
it highlights, TCMEs scale with model inference and amount of data, whereas TEEs are limited by
TEE size, code verification, and performance.

We envision that TCME can be used in conjunction with TEEs or even may run inside of a TEE (provided
such capable TEEs exist), perhaps with additional features to provide the required statelessness and
information flow control. If a TCME generates code, it can itself run that code in a separate enclave.

Although while running inside of a TEE TCME inherits the same trust assumptions, we argue that
it is not strictly necessary to have the same level trust as TEEs (e.g., arbitrary code execution), and
only a subset of trust is needed (e.g., running a specific model with a fixed prompt and input/output
constraints), as is described in the introduction.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

TCME

TEE

Purpose

Trust Assumption

Solving imprecisely defined
or under-specified tasks
with (private) model
reasoning over private data

Trusted model,
Information Flow Control,
Statelessness

Scales with

Secure execution
of arbitrary code

Trusted code,
Secure Isolated
environment

Limited by TEE size

Scalability model inference and code verification
amount of data and performance
Unstructured data, complex Sensitive computations
s computations where requiring code
Applications P 4 g

defining a language
is infeasible

execution in a
secure enclave

Table 2 | Comparison of TCME with trusted execution environments across various features, highlight-
ing their differences in computation models, trust assumptions, scalability, and typical applications.

It is important to note, however, that instantiating TCMEs using TEEs implicitly restricts the user to
open models (i.e., models whose weights are known) and open source infrastructure, as otherwise
it is impractical or even impossible to perform full attestation. Having said that, we do describe in
Section 4.4 an example where a public model could be used to perform “attestation” of a private
model using TCME.

3. Instantiating TCMEs

We argue that TCME can provide privacy guarantees under specific scenarios where the model has no
explicit way to leak knowledge.

However, these are currently not available and a number of additional features will be required to
enable TCME. We envision that such guarantees will be provided by the hardware providing TCME.
We envision the following capabilities:

* (Information Flow Control) AirGap: the model needs to provide the ability to explicitly restrict
how the information can flow in and out of the TCME.

* (Statelessness) Immutability of models: the model has an explicit restriction on modification
of its own state. That is implemented to ensure that models cannot learn from the private data
that is passed into the model. This could be either implemented as a restriction to available
operations in the TCME, or could also be implemented as separate hardware models. For
example, the model can itself be a separate stateless chip.

* (Trustworthiness) Alignment: the model has be to aligned with the expectations of the users
of the system (Ghalebikesabi et al., 2024).

* (Information Flow Control) Fine-grained memory access: the model has explicit restrictions
on how some data types can be processed.

* (Verifiability)Verification for hardware: explicit mechanisms to verify the state of the hardware
are required, as well as, the information flow in and out of the system.

Note that all of the restrictions above can currently be simulated in modern TEEs, but could also be
implemented as explicit hardware primitives.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

3.1. Practical implementation

We envision that today it is possible to construct practical TCMEs that rely on TEEs to deliver private
computations:

* Model Hosting and Operation: Currently, there is no established standard for who runs the
TCME. One approach is to treat the model as a "trusted third party."? This could involve having
a neutral party host and run the model, ensuring that it operates according to the agreed-upon
rules and does not favor any particular participant. The key is to select a model host that all
participants trust to act fairly and impartially. Clear agreements between participants and the
model host are crucial, explicitly covering data handling, access controls, and conflict resolution.
Furthermore, TEE-style guarantees can enhance trust in the model hosting environment. These
guarantees may include attestation to ensure the model’s software integrity, secure enclaves to
protect the model and its data from unauthorized access, and remote attestation capabilities
for participants to verify the model’s environment. Finding a trustworthy host and ensuring
ongoing compliance require robust monitoring and auditing mechanisms.

* Input and Output Constraints: Input constraints can be enforced through input validation
and sanitization procedures. Similarly, output constraints can be implemented by filtering
and transforming the model’s output before it is released to the participants. Formal regular
languages can be employed to define these constraints precisely, as explicit procedures deployed
within separate TEEs.

* Secure Communication: Secure communication channels with cryptography should be used to
protect the confidentiality and integrity of data transmitted between the parties and the TCME.

» Statelessness: The statelessness of the model can be enforced by resetting the model’s state
after each computation or by using specialized hardware that prevents state persistence. Formal
verification techniques can be used to ensure that the statelessness property is maintained.

* Error Handling and Fault Tolerance: Robust error handling and fault tolerance mechanisms
are crucial for ensuring the reliability and availability of the TCME. This includes handling
unexpected inputs, model failures, and hardware errors.

TCMEs can be instantiated today with existing technologies like TEEs, but they have limitations.
First, modern TEEs come with limitations in sizes of enclaves, deployment strategies and TEE
management, making deployment inefficient and often impractical. Second, current GPU TEEs, such
as these in H100 and H200, provide no mechanisms to ensure in-memory confidentiality (unlike
in CPUs) and statelessness, requiring external isolation and expensive operational practices such as
powercycling (Apsey et al., 2023). Third, to perform attestation with full transparency (Kocaogullar
et al., 2024) one needs to share all of the deployment code, as well as, often proprietary libraries and
models. This implicitly restricts possible applications.

3.2. Limitations

While TCMEs promise to enable a number of previously impossible applications, several limitations
and areas for future research warrant consideration. These limitations are discussed in the context of
privacy and correctness, model trustworthiness and capability, and scalability and complexity.

2While it’s true that TCME effectively replaces one trusted (e.g., TEE-based) third party with another (TCME) trusted
third party, we argue the key difference lies in the nature of the trust we'’re placing. In traditional scenarios, we trust the
third party to be honest and not reveal our private data. With TCME, we’re are weakening the trust to the model’s inherent
capabilities and constraints to prevent unintended information leakage. This trust is based on the model’s design, its explicit
information flow control mechanisms, and its stateless nature, which limit its ability to store or reveal private data.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

Privacy and Correctness: Cryptographic primitives come with formal definitions of correctness and
privacy and rigorous proofs that are based on the hardness of established mathematical problems (or
even statistical or information-theoretic guarantees). The guarantees provided by TCMEs, in contrast,
are more heuristic and thus weaker. Future work can improve these guarantees, but to some extent it
is inherent that we cannot fully prove completeness or soundness for TCMEs: this is because human
language can be highly unstructured and imprecise, meaning it is not necessarily possible to, for
example, precisely map the desired computation to a mathematical function F.

Model Trustworthiness and Capability: The ability of TCMEs to satisfy their guarantees hinges
on the trustworthiness and capability of the underlying models. Ensuring that these models operate
as intended, without biases or unintended consequences, remains a challenge (Gemini-Team, 2024;
Glukhov et al., 2024). Further research is needed to develop robust mechanisms for verifying and
validating the behavior of models to perform within TCMEs. It may seem intuitive to use open models
for that task, but this would enable efficient offline construction of adversarial examples by various
adversaries and may not be preferred (Carlini et al., 2024).

Scalability and Complexity: The scalability of TCMEs to more complex scenarios involving multiple
parties and diverse data types requires further investigation to cover communication, computation,
and privacy overheads.

Side-channels: Side-channel attacks have proven to be a significant concern for TEEs, as they can
allow information to leak from the secure environment even if the code itself is secure. These channels
are also hard to counteract, as they can be exploited through various methods, such as timing attacks,
power analysis, or electromagnetic monitoring. For example, by measuring the time it takes for a TEE
to perform a cryptographic operation, an attacker might be able to deduce the secret key being used.
Similarly, TCME is likely to be exploitable through side-channels and explicit care should be taken.

4. Examples

We now turn to providing a number of practical examples that are enabled by TCMEs, but were
infeasible with prior primitives.

4.1. Practical Example 1: Multi-agent non-competition

Setting: It often happens in academic research that multiple groups pursue the same research question.
This can lead to challenges in publication and potential interpersonal conflicts, especially when
students are involved and they require publications for graduation. Traditionally, senior researchers
within these groups, often acquainted with each other, would convene to ensure non-competition and
potentially instead foster collaboration. However, in rapidly expanding fields like machine learning,
such coordination becomes increasingly difficult.

This scenario serves as an excellent illustration of a problem well-suited for TCME. That is because:

* Unstructured Input: The problem domain is inherently open-ended and unstructured. This
makes multi-party computation problematic since inputs are not well defined.

* Abstraction: The protocol must function effectively at varying levels of abstraction.

* Information Leakage: Defining and controlling information leakage is inherently challenging
for unstructured inputs.

Solution: We envision a solution where machine learning models are executed within a shared
Trusted Execution Environment between a number of groups. Constraints on prompts, inputs, and

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

outputs are defined in advance. For example, all input ideas might be represented as a list of text,
with a single Boolean output. Encrypted private knowledge bases are loaded and decrypted within
the TCME. The models then communicate to determine a shared answer to the query or terminate
communication if agreement cannot be reached. Third-party trusted models, launched locally within
the TEE (e.g., on H100/200), are employed to execute the solution. A separate TEE is used to ensure
that output constraints are satisfied. That way, group members can submit their list of ongoing
projects and learn if they are in competition with each other.

4.2. Practical Example 2: Audit for confidentiality violations

Setting: Consider a regulator who wants to ensure that the protection promises described by a
business are honest and correct; e.g., that it does not store any passwords in an unencrypted state. At
the same time, the business owner wants to make sure that none of the business secrets get leaked.

Solution: We describe TCME that can work for this setting. The business owner and regulator agree
on a machine learning model and a specific prompt. These are then hardcoded into the system, along
with a predefined output template. For instance, the system might be designed to output only "YES"
if insecure handling of PII is detected. The model is granted access to code describing the system
and the database access. The only allowed outputs are "YES" and "NO," indicating whether PII is
mishandled. The input itself is restricted such that no state changing transition can be made. The
model prompt is predefined, such as: "Output YES only if private user data is stored in a way that
would endanger the customer in case of compromise", with the approval of both business owner and
the regulator. Both the regulator and the business owner are notified if the output is "YES."

This approach balances the confidentiality of the business and enables the regulator to perform an
automated check. TCME alerts only in case violations are detected, avoiding unnecessary intrusion.

4.3. Practical Example 3: Business Landiord
Damage to business property i i

N
Setting: Consider a landlord who wants to en- Output YES e Al IOTRE e
sure that their business property is not damaged
while preserving the privacy of their renters. The Agree on the input
landlord requires a mechanism to monitor the l Access to Recording only

condition of the property without infringing on
the business renters’s privacy by continuously
observing their activities within the space.

Business
Space

Solution: We describe TCME that can work for

: : : : 3 Agree on the output
this setting in Figure 1. The busm?ss owner and l The only allowed output Is “YES® and "NO"
landlord agree on a machine learning model and A
. . otify the landlord and the
a specific prompt. These are hardcoded into renter only if YES is

produced

the system, along with an output template. For
instance, the system might be designed to output

"YES" if significant damage is detected. Figure 1 | Practical Example of TCME in Damage

The model is granted access to camera record- Monitoring: TCME can be used to monitor po-
ings at the end of the day. The only allowed tential damage to business space while preserving
outputs are "YES" and "NO," indicating whether ~Pprivacy. The system, utilizing a pre-agreed model

damage has occurred. The input is restricted to and prompt, analyzes camera recordings. It is re-
stricted to output only "YES" if significant damage

is detected, ensuring minimal intrusion.

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

the recordings only. The model prompt is prede-
fined, such as: "Output YES only if the space is
severely damaged.", with the approval of both
landlord and the tenant. Both the landlord and
the tenant are notified only if the output is "YES."

This approach balances the landlord’s need to
protect their property with the business renter’s right to privacy. The model only alerts the landlord if
significant damage is detected, avoiding unnecessary intrusion.

4.4. Practical Example 4: Private Code Auditor in TEE Attestation

Audit private code
and the model

)

Platform User of the Use TCME to
provider platform audit private code
(1)
i\ /i / " 4!
TEE
Agree on a model attestation auditing prompts; . - - - - — -~
"Output YES if code contains no networking capability" Attest using the Ty I
"Output YES if code contains no conditional branches to discriminate users” _ Outputof TCME || _ Pri
"Output YES if code contains no backdoors" -~ @) > |d Plnvate rivate |
eployment
| code Model |,
——— _ _ _ /,

Figure 2 | TCME can be used to perform auditing of private code and models that are deployed in the
TEE and participate in the ‘attestation’ that includes private components.

Setting: Consider a setting in which a user wants to perform TEE attestation where some of the code
involved is proprietary and cannot be shared, yet we still want to provide some guarantee that code
does not violate user expectations.

Solution: We argue TCME can be used in this setting. We present the overall flow in Figure 2. Here, a
public model can be used during the attestation process to perform checking of the private parts of the
code against concerns of the user. Here concerns get codified by the user together with the attestation
provider, which are then applied and used as part of the attestation. This way a soft guarantee can be
provided to the user that private parts of the code are not violating some constraints.

5. Understanding the Trade-Off with Cryptography

5.1. Comparing with MPC

Yao’s millionaire problem described in the introduction is an unlikely application for TCME, due to
the relatively ease with which it can be solved using a two-party computation. Here we provide a
more complex problem that better illustrates the boundary between problems that can be efficiently
solved using cryptography and problems for which we might require TCMEs.

Two companies want to determine if their clientele overlap significantly in terms of age ranges. Each

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

company has a list of age ranges they target (e.g., 18-24, 25-34, etc.). We want to compute the
number of overlapping age ranges (or, thinking more broadly, potentially compare other attributes)
without revealing the specific ranges each company targets. Each company represents its targeted
age ranges as a binary vector. For example, if there are five possible age ranges, a company targeting
the first two ranges (18-24 and 25-34) would have the vector [1, 1,0, 0, 0]. The circuit takes two
binary vectors as input and computes the number of overlapping age ranges. The circuit consists of
AND gates for each corresponding age range and a summation gate to count the number of overlaps.

Garbling and Evaluation: The typical technique used in two-party computations is garbled circuits.
One company garbles the circuit, encrypting the truth table of each gate and encrypting its input. The
other company obtains the garbled circuit and encrypted input. It uses oblivious transfer to obtain
the keys corresponding to its input vector without revealing the vector itself, thus obtaining its own
garbled input. This company then evaluates the garbled circuit, obtaining the encrypted output (the
number of overlapping ranges).

Output Decryption: The first company provides the decryption key for the output to the second
company, who decrypts the result.

The same task can be performed with TCME. Both parties agree on:

* A model, e.g., Gemma (Gemma-Team, 2024);

* A prompt, e.g., “Output the overlap across the ages of the clients according to the annotation
scheme: {}. Only output the overlap as a number”;

* Input constraints, e.g., list of ages represented as integer;

* Output constraints, e.g., the only approved output is a float representing the overlap.

The communication and computational costs of using garbled circuits are linear in the size of the
circuit and the size of the input(s). For small circuits, the costs associated with garbled circuits are
likely lower than the costs of running a machine learning model in a TCME. However, as circuit
complexity increases, because of, for example, finer discretization of age ranges or the addition of
other sensitive attributes, the costs will increase. This scaling challenge is less pronounced in TCMEs,
which operate on a different level of abstraction with a relatively constant associated cost.

5.2. Comparing with ZKPs

To illustrate again the boundary between problems where cryptography is the most suitable solution
and ones where we might want or need TCMEs, we consider another classical problem: that of
proving knowledge of a valid 3-coloring of a graph. In this problem, a graph is available to a prover
and a verifier, and the prover is in possession of a valid 3-coloring. Their goal is to prove knowledge
of this to the verifier without revealing any information about the 3-coloring itself.

To determine the capability of modern LLMs in verifying solutions to this problem, we sampled a thou-
sand random graphs of sizes 5-25 with edge probability of 0.1. We then asked the Gemini-1.5-Flash
model to verify that the solution is correct with the following prompt:

You are an agent that receives a graph that is represented by the adjacency matrix.
You job is to verify the coloring of the graph with 3 colors

such that no two adjacent nodes have the same color.

Only produce YES if coloring is correct, otherwise output NO.

Color scheme is a dict where each node is mapped to its color 1 to 3.

For example, {{0: 1, 1: 2, 2: 2, 3: 0, 4: 1, 5: 1, 6: 2, 7: 0, 8: 2, 9: 2}}

means node 0 is color 1, node 1 is color 2, and so on.

10

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

Verification Outcome

600
(@)
= 500
§] 246 20
b 400
©
>
g -300
0
i -200
© 99
2
< -100
Predicted No Predict'ed Yes

Predicted

Figure 3 | Graph coloring verification performed by Gemini-1.5-Flash. The model generally has a
high precision (83%) and low recall (14%).

You are given the following adjacency matrix: {A.toarray ()}

and the following scheme: {coloring}.

Do not produce or show code, your only job is verify the color scheme.
Ouput only YES if coloring is correct.

Figure 3 shows the performance of the model for both correct and incorrect colorings. We find
that, today, models clearly struggle with identifying correct coloring, with an accuracy of only 35%.
However, it appears that the model is relatively precise when it identifies correct solutions.

While these results suggest that today’s models are not sufficiently capable for TCMEs, we did
observe that they would more often produce correct code for verifying a 3-coloring, suggesting
that perhaps a more promising approach involves combining TCMEs with classical computing and
cryptographic mechanisms. Equally, these results highlight how much better suited LLMs are at
handling unstructured computations as opposed to ones with tightly defined constraints on the inputs
(and outputs).

References

M. Abadi. Trusted computing, trusted third parties, and verified communications. In Y. Deswarte,
F. Cuppens, S. Jajodia, and L. Wang, editors, Security and Protection in Information Processing
Systems, pages 291-308, Boston, MA, 2004. Springer US. ISBN 978-1-4020-8143-9.

R. J. Anderson. Security engineering: a guide to building dependable distributed systems. John Wiley &
Sons, 2010.

E. Apsey, P. Rogers, M. O’Connor, and R. Nertney. Confidential computing on nvidia h100
gpus for secure and trustworthy ai, 2023. URL https://developer.nvidia.com/blog/
confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/.

11

https://developer.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/
https://developer.nvidia.com/blog/confidential-computing-on-h100-gpus-for-secure-and-trustworthy-ai/

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

N. Carlini, M. Nasr, C. A. Choquette-Choo, M. Jagielski, I. Gao, A. Awadalla, P. W. Koh, D. Ippolito,
K. Lee, F. Tramer, and L. Schmidt. Are aligned neural networks adversarially aligned?, 2024. URL
https://arxiv.org/abs/2306.15447.

B. Chen, B. Biinz, D. Boneh, and Z. Zhang. HyperPlonk: Plonk with linear-time prover and high-degree
custom gates. Cryptology ePrint Archive, Paper 2022/1355, 2022. URL https://eprint.iacr.
org/2022/1355.

Gemini-Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context,
2024. URL https://arxiv.org/abs/2403.05530.

Gemma-Team. Gemma: Open models based on gemini research and technology, 2024. URL https:
//arxiv.org/abs/2403.08295.

S. Ghalebikesabi, E. Bagdasaryan, R. Yi, I. Yona, I. Shumailov, A. Pappu, C. Shi, L. Weidinger, R. Stan-
forth, L. Berrada, P. Kohli, P.-S. Huang, and B. Balle. Operationalizing contextual integrity in
privacy-conscious assistants, 2024. URL https://arxiv.org/abs/2408.02373.

D. Glukhov, I. Shumailov, Y. Gal, N. Papernot, and V. Papyan. Position: Fundamental limitations of
LLM censorship necessitate new approaches. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=j5csKrtyAle.

J. Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive, Paper
2016/260, 2016. URL https://eprint.iacr.org/2016/260.

I. Ioannidis and A. Grama. An efficient protocol for yao’s millionaires’ problem. In 36th Annual
Hawaii International Conference on System Sciences, 2003. Proceedings of the, pages 6 pp.—, 2003.
doi: 10.1109/HICSS.2003.1174464.

C. Kocaogullar, T. Marjanov, 1. Petrov, B. Laurie, A. Cutter, C. Kern, A. Hutchings, and A. R. Beresford.
A confidential computing transparency framework for a comprehensive trust chain, 2024. URL
https://arxiv.org/abs/2409.03720.

H.-Y. Lin and W.-G. Tzeng. An efficient solution to the millionaires’ problem based on homomorphic
encryption. In Applied Cryptography and Network Security: Third International Conference, ACNS
2005, New York, NY, USA, June 7-10, 2005. Proceedings 3, pages 456-466. Springer, 2005.

W. Nguyen, T. Datta, B. Chen, N. Tyagi, and D. Boneh. Mangrove: A scalable framework for folding-
based SNARKs. Cryptology ePrint Archive, Paper 2024/416, 2024. URL https://eprint.iacr.
org/2024/416.

J. Thaler. Proofs, arguments, and zero-knowledge. Foundations and Trends in Privacy and Security, 4
(2-4):117-660, 2022. ISSN 2474-1558. doi: 10.1561/3300000030.

A. C. Yao. Protocols for secure computations . In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 160-164, Los Alamitos, CA, USA, Nov. 1982. IEEE Computer Soci-
ety. doi: 10.1109/SFCS.1982.88. URL https://doi.ieeecomputersociety.org/10.1109/
SFCS.1982.88.

12

https://arxiv.org/abs/2306.15447
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2408.02373
https://openreview.net/forum?id=j5csKrtyAe
https://eprint.iacr.org/2016/260
https://arxiv.org/abs/2409.03720
https://eprint.iacr.org/2024/416
https://eprint.iacr.org/2024/416
https://doi.ieeecomputersociety.org/10.1109/SFCS.1982.88
https://doi.ieeecomputersociety.org/10.1109/SFCS.1982.88

	What are TCMEs?
	Trusted Capable Model Environments
	Instantiating TCMEs
	Practical implementation
	Limitations

	Examples
	Practical Example 1: Multi-agent non-competition
	Practical Example 2: Audit for confidentiality violations
	Practical Example 3:Damage to business property
	Practical Example 4: Private Code Auditor in TEE Attestation

	Understanding the Trade-Off with Cryptography
	Comparing with MPC
	Comparing with ZKPs

