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Abstract 

A prominent achievement of natural language processing (NLP) is its ability to 

understand and generate meaningful human language. This capability relies on 

complex feedforward transformer block architectures pre-trained on large 

language models (LLMs). However, LLM pre-training is currently feasible only 

for a few dominant companies due to the immense computational resources 

required, limiting broader research participation. This creates a critical need for 

more accessible alternatives. In this study, we explore whether tiny language 

models (TLMs) exhibit the same key qualitative features of LLMs. We 

demonstrate that TLMs exhibit a clear performance gap between pre-trained 

and non-pre-trained models across classification tasks, indicating the 

effectiveness of pre-training, even at a tiny scale. The performance gap 

increases with the size of the pre-training dataset and with greater overlap 

between tokens in the pre-training and classification datasets. Furthermore, the 

classification accuracy achieved by a pre-trained deep TLM architecture can be 

replicated through a soft committee of multiple, independently pre-trained 

shallow architectures, enabling low-latency TLMs without affecting 

classification accuracy. Our results are based on pre-training BERT-6 and 

variants of BERT-1 on subsets of the Wikipedia dataset and evaluating their 

performance on FewRel, AGNews, and DBPedia classification tasks. Future 

research on TLM is expected to further illuminate the mechanisms underlying 

NLP, especially given that its biologically inspired models suggest that TLMs 



may be sufficient for children or adolescents to develop language. The data and 

code that support the findings of this study are openly available on 

https://github.com/Rg32601/Tiny-Language-Models . 

1. Introduction 

Two and a half centuries after the industrial revolution, which implemented 

routine human functionalities by machines, the artificial intelligence (AI) 

revolution emerged, in which machine learning can replicate many higher 

human functionalities[1, 2]. Beyond its practical applications, AI raises several 

philosophical questions, including fundamental distinctions between humans 

and machines.  

   One of the most prominent achievements of AI is its ability to understand 

natural language and interact efficiently with humans—a field known as natural 

language processing (NLP)[3, 4]. To accomplish this, NLP applies complex 

feedforward transformer block architectures consisting of many adaptive 

weights, pre-trained on massive language datasets often exceeding a terabyte, 

known as large language models (LLMs). This study has two primary goals. 

   First, it aims to determine whether pre-trained tiny language models (TLMs) 

exhibit features qualitatively similar to those of LLMs. TLMs are pre-trained on 

datasets that are 10−3 − 10−4 times smaller than those used for LLMs[5]; 

however, they cover a substantial fraction of the total token space[6, 7], which 

reflects their linguistic richness[8]. This question holds particular importance, as 

biologically inspired NLP models suggest that TLM may be sufficient for a child 

or adolescent to develop language.  

   Current LLM research requires immense computational resources accessible 

only to a few leading companies, far beyond the reach of most individual 

researchers. This study offers a positive answer to the first goal; thus, it opens 

new avenues for researchers to deepen their understanding of the mechanism 

underlying NLP and develop more efficient learning strategies with reduced 

computational complexity and latency. 

  The presented results are derived from experiments using BERT-6[9] and 

variants of BERT-1, optionally enhanced with additional convolutional layers 

(CLs) preceding the first transformer block. These models were pre-trained on 

a tiny subset of the Wikipedia dataset[10] comprising approximately six million 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgithub.com%2FRg32601%2FTiny-Language-Models&data=05%7C02%7CIdo.Kanter%40biu.ac.il%7C47055e3290804551cc9608ddc9250fbd%7C61234e145b874b67ac198feaa8ba8f12%7C0%7C0%7C638887883193309033%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=MHcE2cdDPnQsBnnGGOqu0NV2Hu5rqfUN3gfU6cbn6VU%3D&reserved=0


paragraphs, and were subsequently fine-tuned for FewRel[11], AGNews[12] 

and DBPedia[13, 14] classification tasks[15].   

   The main results demonstrate that pre-trained TLMs can be as qualitatively 

efficient as LLMs, with a noticeable accuracy gap within fine-tuned classification 

tasks between pre-trained and non-pre-trained models. This gap increases with 

larger pre-training dataset sizes or greater overlap between tokens in the pre-

training and classification datasets. Furthermore, the classification accuracy 

achieved by a deep, pre-trained TLM can be replicated by a soft committee of 

several shallow architectures independently pre-trained on the same TLM. This 

enables low-latency TLM implementations without affecting classification 

accuracy.   

 

2. FewRel classification using pre-trained TLM on BERT-6 

The FewRel dataset contains 64 output labels, each with 630 training and 70 

test instances. Two strategies for pre-training BERT-6 on a subset of the 

Wikipedia dataset (~6 ⋅ 106 paragraphs) are presented.  

2.1. Custom-made pre-training dataset  

In the first approach, a small subset of FewRel output labels—e.g., 10 out of 

64—is selected in advance. Next, a list of tokens, 𝑇𝐹𝑅, comprising all tokens 

from their train and test instances (700 per label), is extracted. A custom subset 

of the Wikipedia dataset is created using only paragraphs composed solely of 

𝑇𝐹𝑅 tokens. This process typically reduces 𝑊𝑆 𝑡𝑜 ~20,000 − 40,000 paragraphs 

and limits the token set 𝑇𝑊 to ~13,000 compared to 30,522 tokens in the full 

Wikipedia dataset (Table 1). A small number of missing tokens, 𝑇𝑀, may be 

present in 𝑊𝑠, since these 𝑇𝑀 tokens appear in paragraphs with tokens out of 

𝑇𝐹𝑅 in the entire Wikipedia dataset. This pre-training custom made dataset 

offers a straightforward way to reduce the embedding dimension, lowering 

memory and computational requirements. 

   BERT-6 is then pre-trained on the custom-made 𝑊𝑆 and fine-tuned (via 

transfer learning[16, 17]) on the FewRel training dataset (10 × 630),  with 

performance evaluated on the corresponding test dataset (10 × 70). Variability 

in 𝑇𝑊, 𝑊𝑠, and final accuracy is dependant on the selected 10 output labels 



among the 64 (Table 1). Additional fluctuations arise from variations in the 

accuracy per label after fine-tuning BERT-6, which is pre-trained on the entire 

Wikipedia dataset (Fig. 1)[9]. Nevertheless, the results reveal a consistent 

accuracy gap of ~0.06 between FewRel test performance with and without pre-

training BERT-6 on 𝑊𝑆 (Table 1). This gap is smaller than the ~0.11 gap 

observed when pre-training BERT-6 on the full Wikipedia dataset;  however, it 

still demonstrates the efficiency of the TLM-based pre-training approach.   

 

Fig. 1. Accuracy per label. Pre-trained BERT-6 on the full Wikipedia dataset, 

followed by fine-tuning on the complete FewRel training dataset (64 × 630). 

Accuracy is evaluated using the test dataset (70 instances per label), revealing 

high variance around the average accuracy of 0.676 (indicated by the dashed 

red horizontal line).  

FewRel with 10 output labels  

𝑊𝑠 𝑇𝑊 𝑇𝑀 𝐴𝑐𝑐. 𝐺𝑎𝑝 

37,936 12,829 1,053 0.864 0.066 

20,589 13,959 6,492 0.795 0.069 

46,898 13,342 1,084 0.871 0.058 

 

Table 1. Accuracy results for BERT-6 pre-trained on the custom-made 𝑊𝑆 

dataset and fine-tuned on 10 selected FewRel output labels (10 × 630 training, 



10 × 70 testing). Reported metrics include the total number of tokens in the 

FewRel training and test datasets, 𝑇𝐹𝑅, the number of missing tokens 𝑇𝑀 among 

𝑇𝐹𝑅 in 𝑊𝑠, final test accuracy, 𝐴𝑐𝑐., and the observed accuracy gap in the 𝐴𝑐𝑐. 

with and without pre-training, 𝐺𝑎𝑝.  The selected label sets for each rows are 

[5, 10, 11,16, 17, 25, 27, 33, 36, 39], [8, 13, 18, 23, 26, 30, 42, 49, 50, 56], and 

[0,  2, 5, 10, 11,16,17, 36, 45, 63], respectively. 

 

   The improved achieved accuracy, as indicated by the gap, is not limited to a 

small subset of labels (Table 1); similar improvements were observed across 

all 64 FewRel output labels. This was achieved by constructing a compact pre-

training dataset 𝑊𝑆, using a limited number of training and test examples per 

label, thereby constraining the overall token set (Table 2). For example, 

selecting only 20 train/test instances per each of the 64 labels resulted in a 

smaller token set 𝑇𝐹𝑅~11,000, while the size of 𝑊𝑠  increased to ~60,000 and 

the observed accuracy gap 𝐺𝑎𝑝 increased to ~0.15, significantly higher than 

that reported in Table 1.    

FewRel with 64 output labels 

𝑇𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒 𝑇𝑒𝑠𝑡𝑠𝑖𝑧𝑒 𝑊𝑠 𝑇𝐹𝑅 𝑇𝑀 Acc. Gap 

20 20 60,655 11,135 764 0.456 0.149 

30 20 105,101 12,306 562 0.476 0.123 

 

Table 2. Accuracy results for BERT-6 pre-trained on the 𝑊𝑆 custom-made 

dataset using all 64 FewRel output labels (similar to Table 1 with 10 labels). 

𝑇𝑟𝑎𝑖𝑛𝑠𝑖𝑧𝑒/𝑇𝑒𝑠𝑡𝑠𝑖𝑧𝑒 denotes train/test dataset sizes, respectively. Other 

notations are as defined in Table 1.    

 

2.2. Randomly selected pre-training dataset  

In the custom-made TLM scenario, 𝑊𝑆 was constructed using 𝑇𝐹𝑅 . Here, similar 

results were obtained by pre-training BERT-6 on randomly selected small 

subsets of 𝑊𝑆, which cover nearly the entire token set of Wikipedia (𝑇𝑤 =

30,522), followed by fine-tuning on the FewRel training dataset. Results indicate 



that the accuracy gap decreases as 𝑊𝑆 decreases, from 0.07 for 𝑊𝑆 = 90,000 

to ~0.01 for 𝑊𝑆 = 2,000 (Table 3). The reduction in 𝑇𝑊 from 𝑊𝑆 = 90,000 to 

2,000 is modest; however, the frequency of appearance of each token drops 

significantly,  contributing to the observed decrease in both accuracy and the 

gap. Remarkably, even 𝑊𝑆 = 90,000, which is only about 1.5% of the entire 

Wikipedia dataset, achieves a gap equivalent to ~75% of the maximum 

observed gap (Table 3). Additionally, for 𝑊𝑆 𝜖 [20,000, 40,000], the observed 

gap [0.043, 0.05] (Table 3a) is slightly smaller than the 0.06 which reported for 

similar 𝑊𝑆 sizes in Table 1. This difference may stem from pre-training on 

smaller tokens 𝑇𝐹𝑅 set (Table 1), compared to the full Wikipedia token set 

(30,552) (Table 3).   

   The decrease in accuracy and the corresponding gap is associated with two 

simultaneous trends (Table 3): a decrease in 𝑊𝑆 size and an increase in the 

number of missing tokens 𝑇𝑀, which measures the dissimilarity between the 

tokens in 𝑊𝑆 and those in the FewRel dataset. These factors must be decoupled 

to determine whether each of them independently contributes to a decrease in 

accuracy. 𝑇𝑀 remains nearly constant across the first two rows of Table 3; 

therefore, the observed decrease in accuracy is attributed to the substantial 

reduction in 𝑊𝑆 size. Accuracy must be compared under the same 𝑊𝑆 and 𝑇𝐹𝑅, 

but with different values of 𝑇𝑀 to verify whether 𝑇𝑀 solely affects accuracy. This 

is achieved by using a fixed 𝑊𝑆 from Tables 1 or 3 but artificially increasing 𝑇𝑀 

by excluding a substantial portion of 𝑇𝐹𝑅 (Table 4 and Appendix). This deliberate 

mismatch between 𝑇𝑊 and 𝑇𝐹𝑅 sets resulted in a considerable decrease in 

accuracy—comparable to the accuracy achieved at 𝑊𝑆 = 5,000 (Table 4)—and 

produced a similarly small gap (Table 3). The results underscore the 

importance of token overlap and alignment between the pre-training and 

classification datasets. Increasing the size of the randomly selected  𝑊𝑆 

improves this similarity and raises the token frequency of each token, further 

enhancing classification accuracy.  

 

 



 

Table 3. (a) Pre-training BERT-6 on randomly selected Wikipedia subsets of 

varying size 𝑊𝑠, each consisting of 𝑇𝑊 tokens. Fine-tuning is performed on 

FewRel with 10 output labels using 630/70 train/test instances and 12,829 

unique tokens. 𝑇𝑀 denotes the number of tokens in the FewRel datasets not 

present in 𝑊𝑠. Accuracy, 𝐴𝑐𝑐., and the accuracy 𝐺𝑎𝑝 with and without pre-

training are reported. (b) 𝐺𝑎𝑝 values from panel (a) as a function of 𝑊𝑆. (c-d) 

Similar to panels (a) and (b), but for 64 output labels, each with 630/70 train/test 

FewRel instances.  

  

(a) 

FewRel with 10 output labels, 

𝑇𝐹𝑅 = 12,829 

𝑊𝑠 𝑇𝑊 𝑇𝑀 Acc. 

40,000 27,782 15 0.860 

40,000 14,799 8,661 0.823 

5,000 22,137 11,059 0.827 

 



(b) 

FewRel with 64 output labels, 

𝑇𝐹𝑅 = 24,724 

𝑊𝑠 𝑇𝑊 𝑇𝑀 Acc. 

40,000 27,782 177 0.625 

40,000 9,658 16,301 0.578 

5,000 22,137 4,082 0.579 

 

Table 4. (a) FewRel with 10 labels and 𝑇𝐹𝑅 = 12,829, pre-trained on 𝑊𝑆 =

40,000, where 𝑇𝑀 is artificially increased (middle row, highlighted in light blue). 

The first and third rows are included from Table 3(a) for comparison. Accuracy 

in the high 𝑇𝑀 case (second row) is similar to that for 𝑊𝑆 = 5,000 (third row). (b) 

Similar to panel (a), but for FewRel with 64 labels. The first and third rows are 

taken from Table 3(b).   

 

3. AGNews classification using pre-trained TLM on BERT-6  

Similar results to those obtained for FewRel fine-tuning (Section 2.2) were 

obtained for the AGNews dataset, which consists of four output labels (Table 

5). The full AGNews train and test datasets yield near-perfect accuracy (~0.99), 

with an observed gap below 0.03 even for small 𝑊𝑆; therefore, results are 

reported for a reduced dataset of 1,000 train and 1,000 test instances per label, 

comprising 𝑇𝐴𝐺𝑁 = 17,072 tokens (Table 5). The results reveal that the accuracy 

gap decreases with smaller 𝑊𝑆 whereas 𝑇𝑀 increases, similar to the trends 

observed in FewRel (Table 3). Notably, even at  𝑊𝑆 = 2,000, the gap remained 

evident at 0.014, demonstrating the effectiveness of TLM pre-training for 

AGNews (Table 5).  

 

 

 



AGNews 

𝑇𝐴𝐺𝑁 = 17,072, 1,000 train/test instances per 

label 

𝑊𝑠 𝑇𝑊 𝑇𝑀 𝐴𝑐𝑐. 𝐺𝑎𝑝 

6 ⋅ 106 30,522 0 0.935 0.095 

90,000 28,302 90 0.891 0.051 

40,000 27,798 249 0.878 0.038 

5,000 22,137 2,736 0.861 0.021 

2,000 16,871 5,473 0.854 0.014 

0 0 17,072 0.840 0 

 

Table 5. BERT-6 pre-trained on a randomly selected Wikipedia subset of size 

𝑊𝑠, consisting of 𝑇𝑊 tokens, followed by fine-tuning on a limited AGNews 

dataset (1,000 train/test instances per label). Notations follow those in Table 3. 

 

4. DBPedia classification using pre-trained TLM on BERT-6 

The DBPedia dataset consists of 14 output labels, with  40,000/5,000 train/test 

instances per label, comprising 𝑇𝐷𝐵𝑃 = 28,621 unique tokens. When using the 

full dataset, the accuracy with and without pre-training is ~0.99, with a minimal 

gap of <0.01 [18]. To observe a more meaningful gap, the dataset size was 

significantly reduced to 100 train/test instances per label, yielding  𝑇𝐷𝐵𝑃  =

15,084 (Table 6). The accuracy remained high; however, the gap between pre-

trained and non-pre-trained models increased with 𝑊𝑆, reaching up to 0.053, 

while 𝑇𝑀 decreased (Table 6), highlighting the effectiveness of TLM pre-training 

for DBPedia classification. 

   Increasing  𝑇𝑀 while keeping 𝑊𝑆 and 𝑇𝐷𝐵𝑃 constant led to decreased accuracy 

(Table 7), consistent with the pattern observed in FewRel (Table 4). 

Specifically, for 𝑊𝑆 = 20,000, artificially increasing 𝑇𝑀 reduced accuracy to 

below that of the randomly selected 𝑊𝑆 = 5,000, and close to the accuracy 

achieved without pre-training (Table 7).   

     



DBPedia 

𝑇𝐷𝐵𝑃 = 15,084, 100 train/test instances per 

label 

𝑊𝑠 𝑇𝑊 𝑇𝑀 Acc. Gap 

6 ⋅ 106 30,522 0 0.991 0.053 

90,000 28,302 37 0.984 0.047 

20,000 26,835 249 0.979 0.041 

10,000 25,089 620 0.972 0.034 

5,000 22,137 1,470 0.957 0.019 

0 0 15,084 0.938 0 

 

Table 6. BERT-6 pre-trained on randomly selected Wikipedia subsets 𝑊𝑠 with 

corresponding 𝑇𝑊 tokens, followed by fine-tuning on a limited DBPedia dataset 

(100 train/test instances per label). Notations are consistent with those in Table 

3. 

DBPedia, 𝑇𝐷𝐵𝑃 = 15,084 

𝑊𝑠 𝑇𝑊 𝑇𝑀 Acc. 

20,000 26,835 249 0.979 

20,000 12,006 10,250 0.948 

5,000 22,137 1,470 0.957 

0 0 15,084 0.938 

 

Table 7. DBPedia classification with a reduced train/test dataset (𝑇𝐷𝐵𝑃 =

15,084, as in Table 6). Pre-training was performed on 𝑊𝑆 = 20,000. The second 

row (highlighted in light blue) reflects an enhanced 𝑇𝑀 = 10,250,  compared to  

𝑇𝑀 = 249 in the first row for a randomly selected  𝑊𝑆.  For comparison, the first, 

third, and fourth rows are replicated from Table 6 for randomly selected 𝑊𝑠. The 

achieved accuracy for the high 𝑇𝑀 case (second row) falls between the results 

for 𝑊𝑆 = 5,000 and 𝑊𝑆 = 0 (no pre-training).  

  



5. TLMs with low latency 

Pre-training BERT-6 on FewRel (10 output labels) with 𝑊𝑆~40,000 and 

𝑇𝐹𝑅~13,000 tokens yields an accuracy of ~0.865 and a gap of ~0.06 (Tables 1 

and 8). In comparison, BERT-1—containing only one transformer block—

achieves 0.841, 0.024 below BERT-6. 

    Previous results on the compact convolutional transformer (CCT-7) indicated 

that different vision transformer (ViT) architectures[19] with comparable 

accuracies differ in the properties of their single-head performance[20, 21]. 

Thus, combining several shallow variants with a soft-committee vote improved 

accuracy[22] to equal that of a much deeper CCT-7 model[23]. This gain in 

accuracy (Appendix) surpassed the improvement obtained by ensembling 

identical architectures trained from different random initial conditions. These 

shallow ViT architectures differ in the number of multi-head attention (MHA) 

heads[4, 21], MHA dimensions, and the inclusion of a CL before the first 

transformer block.  

   Similar effects were obtained for NLP, using five pre-trained BERT-1 variants 

that varied in number of heads, MHA dimension, the number of preceding CLs 

and their filters, then independently fine-tuned on FewRel [24, 25] (Table 8). 

Their soft-committee output reached 0.866 accuracy—identical to that achieved 

by a single BERT-6 model (Table 8)[9]. The total number of layers of an 

architecture correlates directly with network latency; therefore, the latency of 

BERT-6 is 25 (6 × 4 + 1), whereas that of BERT-1 with two CLs (Table 6) is 

only 7 (4 + 3). The pattern holds as well for the full 64‑ label FewRel task: the 

ensemble of five BERT‑1 variants attains 0.634 accuracy, exceeding the 0.625 

accuracy of a single BERT-6 (Table 8). These findings demonstrate that a soft 

committee of several shallow, low-latency architectures can match or surpass 

the accuracy of a single, substantially deeper model, while delivering 

significantly lower inference latency.   

   The use of 2-dimensional kernels before the BERT-1 transformer block (Table 

8) further enhanced accuracy compared to 1-dimensional kernels applied only 

along the 768 embedding dimension of each token[3, 26, 27]. These types of 

CLs function like sliding windows along the embedding dimension and the token 



sequence, but are not designed to cover the entire receptive field (128 × 768)  

as in a standard Convolutional Neural Networks (CNNs) [28-31]. 

   For the AGNews dataset, the effect of a soft committee is further enhanced. 

A soft committee composed of only three independently trained BERT-1 

models—each initialized with random weights and without any pre-training—

achieved an accuracy of 0.868(Table 9), surpassing the 0.861 accuracy of 

BERT-6 pre-trained on 𝑊𝑆 = 5,000 (Table 4). This indicates that pre-training 

may not be necessary for achieving high performance on simpler tasks, and 

that ensembling a shallow, non-pre-trained BERT-1 architecture is sufficient to 

reach or exceed the performance accuracy of deeper pre-trained models. This 

result may stem from the relative simplicity of the AGNews classification task, 

which achieves very high accuracy on the full training and test sets and 

maintains relatively high accuracy even on substantially reduced datasets 

(Table 5).  

(a) 

FewRel with 10 labels 

𝑊𝑠 = 37,936, 𝑇𝐹𝑅 = 12,829, Acc. = 0.866 

Bert 
blocks 

Convolution 
layers 

𝑑 kernel 
No. 

heads 
Acc. 

1 2 64 3 × 3 8 0.846 

1 2 64 3 × 3 12 0.841 

1 0 - - 24 0.841 

1 2 64 16 × 3 12 0.836 

1 3 32 3 × 3 12 0.836 

 

(b) 

FewRel with 64 labels. 

𝑊𝑠 = 40,000,  𝑇𝐹𝑅 = 24,724, Acc. = 0.634 

Bert 
blocks 

Convolution 
layers 

𝑑 kernel 
No. 

heads 
Acc. 

1 2 64 3 × 3 8 0.592 

1 2 64 3 × 3 12 0.607 

1 0 - - 24 0.592 

1 2 64 16 × 3 12 0.614 

1 3 32 3 × 3 12 0.610 

 



Table 8. (a) Five BERT-1 models pre-trained on 𝑊𝑆 (with token set 𝑇𝐹𝑅 

described in section 2.1), incorporating optional CLs before the single 

transformer block. The transformer dimension is defined as 64 × 𝑁𝑜. ℎ𝑒𝑎𝑑𝑠. 

Upper table: Fine-tuning on FewRel with 10 output labels (as in Table 1) yields 

an average accuracy of 0.84 across the five models. Their soft committee 

achieves 0.866 accuracy, matching that of BERT-6 pre-trained on the same 

dataset (Table 1). Lower table: For FewRel with 64 output labels, the five BERT-

1 models achieve 0.603 average accuracy for the five architectures, and their 

soft committee reaches 0.634, exceeding the 0.625 accuracy of BERT-6 (Table 

3).  

AGNews  

  𝑇𝐴𝐺𝑁 = 17,072, 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑒 𝐴𝑐𝑐. =  0.868  

BERT 

blocks 
CLs 𝑑 kernel 

No. 

heads 
Acc. 

1 0 - - 12 0.839 

1 0 - - 12 0.834 

1 1 64 3 × 3 12 0.820 

 

Table 9. Two variants of BERT-1, each initialized with random weights and 

trained without pre-training, were fine-tuned on the AGNews dataset using 

1,000 train and test instances per label (as in Table 5). The soft committee of 

the three trained architectures achieved an accuracy of 0.868, exceeding the 

0.861 accuracy of BERT-6 pre-trained on 𝑊𝑆 = 5,000 (Table 5). 

 

6. Discussion 

Pre-training TLMs[32, 33] demonstrates qualitative efficiency comparable to 

that of LLMs, as evidenced by the fine-tuning results across several 

classification tasks. These tasks consistently reveal a gap in accuracy between 

models with and without pre-training. This gap increases rapidly with the initial 

growth in pre-training dataset sizes, and at 𝑊𝑆 = 90,000—which represents 



only 1.5% of the full Wikipedia dataset—models achieve 50% to 90%  of  the 

maximal possible gap (Tables 1-7). This suggests that the near maximal gap is 

achieved for much smaller datasets, offering a substantial reduction in 𝑡𝑖𝑚𝑒 ×

𝑠𝑝𝑎𝑐𝑒 complexity of the pre-training process without compromising 

classification accuracy. A comparison across different classification tasks 

reveals considerable variation in the dataset size 𝑊𝑆 required to achieve a given 

fraction of the maximum gap—an observation that opens avenues for further 

investigation. 

   A key factor influencing TLM performance is the overlap between tokens in 

the pre-training and classification datasets. As this overlap decreases, pre-

training becomes less efficient, and classification accuracy decreases, as 

intuitively expected. Artificially increasing the number of missing tokens 𝑇𝑀  in 

𝑊𝑆  relative to those required by the classification dataset reduces accuracy 

towards levels observed without pre-training. Given the substantial variability in 

token frequency within datasets like Wikipedia, it would be interesting to 

generalize the concept of overlap into a weighted overlap, which accounts for 

the token appearance frequency. For example, a small subset of high-

frequency tokens (e.g., 1000) appears frequently, while most tokens occur 

infrequently; similar trends emerge in the classification dataset. However, the 

impact of this frequency-weighted overlap on pre-training efficiency remains 

unclear. 

   The results highlight the feasibility of achieving low-latency TLMs through soft 

committee ensembles of shallow architectures, achieving comparable accuracy 

to much deeper models[34]. This low latency is an important feature for real-life 

implementations. Notably, the space complexity of five BERT-1 shallow 

variants is similar to—or not significantly greater than—that of a single BERT-6 

model (Table 7) [35]. Nevertheless, the results are based on a limited number 

of examples, and further research is needed to determine the maximum 

achievable accuracy with larger ensembles and to identify optimal shallow 

architecture configurations. 

   The presented results on TLMs open an opportunity to examine the interplay 

among four fundamental quantities: the pre-training dataset size, 𝑊𝑆, 

composed of 𝑇𝑊 tokens, and the classification dataset size, 𝑊𝐶, composed of 



𝑇𝐶 tokens. A large 𝑊𝑆 increases 𝑇𝑊, both of which increase the pre-training 

𝑡𝑖𝑚𝑒 × 𝑠𝑝𝑎𝑐𝑒 complexity. Moreover, a significant mismatch between 𝑇𝑊 and 𝑇𝑐 

may introduce noise into the classification task due to token irrelevance. The 

findings highlight the importance of minimizing 𝑇𝑀, the number of missing 

tokens in 𝑇𝐶. However, the effect of the reverse case (tokens in 𝑊𝑆 absent from 

𝑇𝐶) has not been fully explored. High frequency tokens in 𝑇𝑀 may contribute 

disproportionately to the pre-training and reduce its efficiency. Hence, merely 

enlarging the dataset space (𝑊𝑆, 𝑇𝑊, 𝑊𝐶 , 𝑇𝐶) does not necessarily improve 

accuracy. Instead, the correlation between pre-training and classification 

datasets plays a crucial role. A rational conclusion is that using smaller, task-

specific pre-training datasets can improve performance and reduce 

computational cost. However, this approach requires prior knowledge of the 

domain or query space.   

   Life experiences suggest that TLM-level exposure may be sufficient for a child 

or adolescent to develop a language, and in many circumstances, for adults to 

quickly become familiar with a new language or a research area. The presented 

NLP architectures, along with their pre-training and fine-tuning processes, differ 

significantly from the biological realities of brain activity[36]; however, the 

successful implementation of NLP is a shared goal across both disciplines. 

Some of the learning principles of effective TLMs will likely be relevant for 

understanding the underlying mechanisms of brain-inspired NLP.   

   TLMs also offer individual research groups the opportunity to explore and 

deepen their understanding of NLP implementation, which is currently not 

feasible for LLMs  due to their massive computational requirements. The direct 

applicability of the presented results to LLMs remains uncertain; however, they 

provide a valuable foundation for further investigation and extension by 

organizations with the necessary resources. The mechanism underlying 

successful deep learning, such as matrix-based performance metrics for CNN 

filters[37, 38] and single-head performance [23] metrics for ViT 

architectures[19-21], could be generalized to TLMs. A better understanding of 

the pre-training process, the role of embedding dimension, and the specific 

functions of individual heads within the MHA and across transformer blocks 



may inform more efficient pruning strategies and the development of optimized 

learning architectures.  

   The presented perspective on NLP, particularly the quantitative analysis of 

TLMs, already raises several open questions and promising research directions 

that are expected to drive further advancement in the field.  
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Appendix   

1. Dataset and preprocessing 

The datasets used in this study are DBpedia[13], AGNews[12], FewRel[11] and 

Wikipedia[10]. Each dataset was tokenized using the BERT tokenizer from the 

HuggingFace Transformers library[8], specifically the bert-base-uncased 

variant[9], which converts raw text into 30,522 token IDs. Tokenization was 

performed using the following configuration: truncation to a maximum length of 

128 tokens and padding to the same length. 

2. Optimization 

The CrossEntropyLoss[39] function was selected for the classification task and 

minimized using the stochastic gradient descent algorithm[40, 41] and the 

AdamW optimizer[42] was used. The maximal accuracy was determined by 

searching through the hyper-parameters (see below). The L2 regularization 

method[43] was applied.  

To pre-train our models, we employed a Masked Language Modeling (MLM) 

objective similar to that used in the original BERT architecture[9]. Pre-training 

was performed on a filtered Wikipedia-derived dataset. The MLM procedure 



followed the standard masking strategy[8]: 15% of tokens were selected for 

masking, of which 80% were replaced with [MASK], 10% with random tokens, 

and 10% remained unchanged. Special tokens (e.g., [PAD], [CLS], [SEP]) were 

excluded from masking.  

3. Hyper-parameters 

The hyper-parameters 𝜂 (learning rate) and 𝛼 (L2 regularization) were 

optimized for offline learning, using a mini-batch size of 32 inputs. The learning-

rate decay schedule was also optimized. For all the simulations, a linear 

scheduler was applied using the HuggingFaceutility[8], without warm-up steps 

and the schedular was updated only for the first 50 epochs. This schedule 

gradually decays the learning rate from its initial value to zero in a linear fashion 

throughout training, which helps stabilize convergence[44]. The pre-training 

models in all the simulations were trained for 50 epochs with 𝜂 = 5.5𝑒 − 5, 𝛼 =

1𝑒 − 2 and a linear scheduler was applied. The fine-tuning process was trained 

for at least 50 epochs.  

Statistics for each data point were computed based on at least five trials, with 

fluctuations being around 1%. 

For Fig.1, we utilized the pre-trained DistilBERT model using the HuggingFace 

Transformers library[45, 46] and fine-tuned it for the 64 FewRel label 

classification task using 𝜂 = 1𝑒 − 4, 𝛼 = 1𝑒 − 2.  

For Table 1, we pre-trained a BERT-6 model on a custom Wikipedia-based 

dataset, consisting of all paragraphs that contained only tokens appearing in 

the 10-label subset of the FewRel dataset. Following pre-training, the model 

was fine-tuned specifically to classify those 10 output labels with 𝜂 = 8𝑒 −

5, 𝛼 = 1𝑒 − 2. Without pre-training, the model was randomly initialized and 

directly fine-tuned to classify the 10 target labels using 𝜂 = 8𝑒 − 5, 𝛼 = 1𝑒 − 2. 

For the first row in Table 2, we pre-trained a BERT-6 model on a custom 

Wikipedia-based dataset, all paragraphs composed solely of tokens found in 

selected examples from the FewRel dataset. Following pre-training, the model 

was fine-tuned specifically to classify the FewRel 64 output labels with 𝜂 = 5𝑒 −

5, 𝛼 = 1.1𝑒 − 2. The model without pre-training was randomly initialized and 



directly fine-tuned on the same classification task using identical 

hyperparameters. In the second row of Table 2, the procedure remained the 

same, but with the following hyperparameters: the pre-trained model was fine-

tuned with 𝜂 = 5𝑒 − 5, 𝛼 = 1.1𝑒 − 2 while the non-pre-trained model was fine-

tuned with 𝜂 = 1𝑒 − 5, 𝛼 = 1.1𝑒 − 2. 

For Table 3, for 𝑊𝑠 = 6 ⋅ 106 we utilized the pre-trained DistilBERT model and 

fine-tuned it for the 10 FewRel label classification task. For other values of 𝑊𝑠 

we pre-trained a BERT6 model from scratch on a Wikipedia-derived dataset 

composed of 𝑊𝑠 randomly selected paragraphs, using a fixed random seed of 

42 to ensure reproducibility. The hyper parameters used for panels (A) and (B) 

are presented in Table 10:  

𝑊𝑠 𝜂 𝛼 

6 ⋅ 106 5e-5 1.2e-2 

90,000 5e-5 1e-3 

40,000 5e-5 2e-2 

20,000 7e-5 1.5e-2 

5,000 5e-5 1.5e-2 

2,000 5e-5 5e-3 

0 5e-5 1.2e-2 

 

Table 10. Hyper-parameters for Table 3(a) and 3(b). 

The hyper parameters used for panels (c) and (d) in Table 3 are presented in 

Table 11:  

𝑊𝑠 𝜂 𝛼 

6 ⋅ 106 5e-5 1.2e-2 

200,000 5e-5 1.2e-2 

90,000 5e-5 1.2e-2 

40,000 5e-5 1.5e-2 

20,000 5e-5 1e-3 

5,000 5e-5 1e-2 

2,000 5e-5 1e-2 



0 5e-5 5e-3 

 

Table 11. Hyper-parameters for Table 3(c)  and (d). 

For Table 4, the pre-training Wikipedia dataset was constructed by first 

identifying tokens not present in the FewRel dataset and then extending this list 

with additional likely tokens from the Wikipedia corpus. The Wikipedia dataset 

was subsequently filtered to include only paragraphs that contained only these 

selected tokens, resulting in a pre-training corpus tailored to emphasize 

complementary information. The hyper-parameters used are 𝜂 = 5.5𝑒 − 5, 𝛼 =

2𝑒 − 2. 

For Table 5, similar to Table 3 for 𝑊𝑠 = 6 ⋅ 106 we utilized the pre-trained 

DistilBERT model and fine-tuned it for the 4 AGNews label classification task. 

For other values of 𝑊𝑠 we pre-trained we pre-trained a BERT6 model from 

scratch on a Wikipedia-derived dataset composed of 𝑊𝑠 randomly selected 

paragraphs, using a fixed random seed of 42 to ensure reproducibility. The 

hyper parameters are presented in Table 12:  

𝑊𝑠 𝜂 𝛼 

6 ⋅ 106 5e-5 1.2e-2 

90,000 5e-5 1.2e-2 

40,000 5e-5 1.5e-2 

20,000 5e-5 1e-3 

5,000 5e-5 1e-2 

2,000 2e-4 8e-2 

0 5e-5 5e-3 

 

Table 12. Hyper-parameters for Table 5. 

For Table 6, similar to Table 3 for 𝑊𝑠 = 6 ⋅ 106 we utilized the pre-trained 

DistilBERT model and fine-tuned it for the 14 DBPedia label classification task. 

For other values of 𝑊𝑠 we pre-trained we pre-trained a BERT6 model from 

scratch on a Wikipedia-derived dataset composed of 𝑊𝑠 randomly selected 



paragraphs, using a fixed random seed of 42 to ensure reproducibility. The 

hyper parameters are presented in Table 12:  

For Table 7, Similar to Table 4, the pre-training Wikipedia dataset was 

constructed by first identifying tokens not present in the DBPedia dataset and 

then extending this list with additional most common likely tokens from the 

Wikipedia corpus. The Wikipedia dataset was subsequently filtered to include 

only paragraphs that contained only these selected tokens, resulting in a pre-

training corpus tailored to emphasize complementary information. The hyper-

parameters used are 𝜂 = 5𝑒 − 5, 𝛼 = 1.2𝑒 − 2. 

For Table 8, the hyperparameters used for the fine-tuning in both panels (a) 

and (b) are 𝜂 = 1𝑒 − 4, 𝛼 = 1𝑒 − 2. The pre-training datasets used in Tables 8 

panels (a) and (b) correspond to those used in the colored rows of Table 3 

panels (a) and (b), respectively. 

For Table 9, The hyper-parameters are 𝜂 = 1𝑒 − 4, 𝛼 = 1.1𝑒 − 2. 

2.4. Statistics 

   Statistics for all results were obtained using at least five samples and the 

standard division was around 1% for all the results. 

2.5. Soft Committee 

   The soft committee decision was performed by the summation of all output 

fields without any alterations such as Softmax, activation or normalization. The 

decision was then made on the summed field. 

2.6. Hardware and software 

    We used Google Colab Pro and its available GPUs. We used Pytorch for all 

the programming processes. 
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