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ABSTRACT

We explore transfer learning strategies for musical onset
detection in the Afro-Brazilian Maracatu tradition, which
features complex rhythmic patterns that challenge con-
ventional models. We adapt two Temporal Convolutional
Network architectures: one pre-trained for onset detection
(intra-task) and another for beat tracking (inter-task). Us-
ing only 5-second annotated snippets per instrument, we
fine-tune these models through layer-wise retraining strate-
gies for five traditional percussion instruments. Our results
demonstrate significant improvements over baseline per-
formance, with F1 scores reaching up to 0.998 in the intra-
task setting and improvements of over 50 percentage points
in best-case scenarios. The cross-task adaptation proves
particularly effective for time-keeping instruments, where
onsets naturally align with beat positions. The optimal
fine-tuning configuration varies by instrument, highlight-
ing the importance of instrument-specific adaptation strate-
gies. This approach addresses the challenges of underrep-
resented musical traditions, offering an efficient human-
in-the-loop methodology that minimizes annotation effort
while maximizing performance. Our findings contribute to
more inclusive music information retrieval tools applicable
beyond Western musical contexts.

1. INTRODUCTION

Accurately identifying the precise moment when a musi-
cal note begins remains one of the fundamental challenges
in audio signal processing. This task, known as musical
onset detection, serves as a cornerstone for numerous Mu-
sic Information Retrieval (MIR) applications. Onset detec-
tion has historically been essential for rhythmic analysis,
notably in beat tracking systems [1–3]. While end-to-end
learning models have recently bypassed this explicit step
in some contexts, onset detection continues to be critical
for diverse applications such as score following [4], music
segmentation [5], and polyphonic music transcription [6].

The methodological evolution of onset detection mir-
rors broader trends in MIR research. Early approaches re-
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lied on signal processing techniques to identify significant
changes in audio properties [7, 8], followed by the intro-
duction of feature-based machine learning methods [9,10].
The field then shifted toward neural network architectures,
beginning with Recurrent Neural Networks (RNNs) [11]
and advancing to Convolutional Neural Networks (CNNs)
[12], which extract relevant features directly from raw au-
dio or spectral representations. Despite impressive ad-
vances in performance metrics (with top models achiev-
ing F1 scores approaching 90% in recent evaluations 1 ),
significant challenges persist in onset detection. In partic-
ular, accurately detecting soft onsets remains difficult even
for advanced models [13]. Moreover, these data-driven ap-
proaches introduce additional challenges related to training
data requirements and generalizability.

The effectiveness of supervised learning models hinges
on the quality and diversity of training data [14]. Current
systems experience performance drops when analysing
non-Western musical traditions or rare instruments, pri-
marily due to insufficient representation in existing
datasets. Addressing these gaps requires costly annotation
efforts that demand both domain-specific and culturally-
informed expertise [15], further complicating dataset cu-
ration. Furthermore, the annotation process itself reveals
limitations: manual labelling of onsets is prone to human
error and inconsistencies [16], with even isolated percus-
sive signals proving difficult to label precisely [17]. These
constraints restrict the practical deployment of state-of-
the-art systems in diverse musical contexts, pointing to the
need for more adaptable strategies.

Moving beyond the specific challenges of onset de-
tection, MIR research has employed several adaptive
strategies within rhythm analysis tasks. Informed meth-
ods leverage a priori knowledge about rhythmic content
for tasks such as beat tracking [18] and metre determi-
nation [19], which, while effective in specific genres,
lack generalizability. Transfer learning leverages knowl-
edge across domains, with examples including adaptations
of mainstream beat-tracking models to Greek folk mu-
sic [20] and facilitating adaptive rhythm microtiming gen-
eration [21]. Additionally, user-centric approaches like
Active Learning and Few-Shot Learning optimize learning
through strategic sample selection, enhancing adaptability
in polyphonic drum transcription [22, 23] and enabling in-

1 MIREX 2018, at https://nema.lis.illinois.edu/nema_out/
mirex2018/results/aod/
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teractive refinement for onset detection [24] and beat track-
ing [25]. This shift toward user involvement exemplifies
the current human-centred landscape of MIR, recognizing
users’ essential role in data-driven systems [26]. The inte-
gration of human expertise into computational frameworks
provides a promising avenue when existing solutions prove
insufficient.

Recent research has explored incorporating user-
provided information to enhance beat tracking perfor-
mance. Techniques such as high-level model parameter-
ization [27] and integrating user-annotated data snippets in
a fine-tuning cycle [28] have shown promise for improving
state-of-the-art accuracy. These methods are particularly
effective in addressing challenges in underrepresented mu-
sical contexts, where conventional MIR techniques under-
perform. Such approaches have proven instrumental in the
creation of the Maracatu onset dataset [17], metre deter-
mination in Latin-American music [29], and beat tracking
in highly challenging music signals [30]. The implementa-
tion of transfer learning for these tasks varies considerably:
while some approaches retrain only final layers to leverage
basic rhythmic representations [20, 31], others target input
and output layers for instrument-specific adaptation [17],
and some retrain entire networks [28]. Despite these varied
strategies, no studies have empirically evaluated the im-
pact of layer-wise retraining on model performance, leav-
ing this critical question unexplored.

Building on this foundation, this paper explores a user-
driven transfer learning approach for onset detection, fo-
cusing on the Afro-Brazilian tradition of Maracatu. We
use the eponymous dataset [17], which features complex
rhythms and unique instrumental acoustic characteristics
that cause leading models to struggle with achieving satis-
factory performance.

Our methodology involves adapting a deep neural net-
work for each instrument in the “terno”, the percus-
sion ensemble central to Maracatu’s rhythm, based on a
short annotated snippet per instrument. Through these
instrument-specific adaptations, we demonstrate an effec-
tive and straightforward method to enhance state-of-the-art
performance. We investigate two distinct transfer learn-
ing scenarios: one with a model initially trained for on-
set detection, and another novel approach adapting a beat-
tracking model to onset detection. This extends previous
research [17, 32] by exploring cross-task feature transfer-
ability and leveraging more complex models trained on
larger datasets. Furthermore, we systematically evaluate
layer-wise retraining strategies, examining the effective-
ness of freezing different layer groups to identify optimal
configurations for Maracatu onset detection.

2. METHODOLOGY

Our approach addresses the limitations of existing mod-
els in non-mainstream signals by integrating user-provided
short annotated snippets. We adapt the human-in-the-
loop method proposed by Pinto et al. for beat track-
ing [27, 28, 30] to the task of onset detection, leveraging
state-of-the-art models through in-situ fine-tuning. This

user-centred methodology eliminates the need for exten-
sive training from scratch, enabling end-users to swiftly
obtain high-quality onset estimates that align with their
judgments.

For onset detection in monotimbral signals, we adapt
neural networks to each instrument’s unique acoustic char-
acteristics using just a single 5-second annotated snip-
pet per instrument as the fine-tuning target. This ap-
proach demonstrates both minimal annotation effort and
rapid adaptation cycles, yielding instrument-specific net-
works optimized for their corresponding acoustic proper-
ties while remaining computationally feasible for standard
resources. While our method is applicable to various DNN
architectures, this study employs Temporal Convolutional
Network (TCN)-based models for their efficient retraining
capabilities. The TCN’s performance in onset detection
tasks is comparable to state-of-the-art models, as demon-
strated in Section 3.1, making it suitable for our investiga-
tion.

We explore two transfer learning scenarios: an intra-
task setting using a TCN onset detection model [32]
and an inter-task setting that adapts a TCN beat tracking
model [33] to onset detection. This inter-task approach
can be framed as a domain adaptation problem, where a
model trained for beat tracking is repurposed for onset
detection. Given the inherent relationship between beats
and onsets, this adaptation may benefit from the typically
broader training data available for beat tracking models. To
the best of our knowledge, this is the first study to explore
domain adaptation from beat tracking to onset detection.

Furthermore, onset detection’s unambiguous objective,
when contrasted with the multifaceted nature of beat track-
ing, allows for clearer adaptation targets and, consequently,
more straightforward interpretation of results. This moti-
vated us to extend previous research by examining layer-
wise retraining strategies. We systematically freeze differ-
ent segments of the 15-layer TCN architectures, from the
initial convolutional layers with small receptive fields to
the deeper layers with larger dilation rates and wider re-
ceptive fields. In total, our experimental cycle comprises
150 fine-tuning cycles (15 layer configurations× 5 instru-
ments× 2 models). Through this comprehensive evalua-
tion, we aim to investigate feature transferability between
related rhythm analysis tasks and systematically assess the
impact of different layer freezing configurations.

In line with open science principles [34], we provide a
GitHub repository with our code and detailed results, in-
cluding per-file evaluation metrics for all configurations
and higher-resolution figures for detailed analysis 2 . The
remainder of this section outlines the Maracatu dataset
composition, experimental settings, base models’ descrip-
tion, and fine-tuning and evaluation details.

2 https://github.com/asapsmc/HIILOnsetDetection
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2.1 Dataset

Maracatu de baque solto 3 , also known as Maracatu
“rural”, is a vibrant carnival performance from Pernam-
buco, Northeast Brazil, combining music, poetry, and
dance [36]. The rhythmic nucleus of Maracatu, known as
the “terno” ensemble, consists of five percussionists play-
ing traditional handmade instruments: cuica, gonge-lo,
tarol, mineiro, and tambor-hi. The Maracatu dataset [17]
captures these instruments using contact microphones for
largely isolated per-instrument tracks, recorded during a
fixed location performance and comprising 34 individual
pieces totalling approximately 33 minutes 4 .

Maracatu features two main rhythmic patterns: “mar-
cha” and “samba”, characterized by fast tempi of approxi-
mately 165 and 180 beats-per-minute (bpm), respectively.
This rapid pace creates a complex timing profile across the
ensemble. Time-keeping instruments (cuica and gonge-
lo) maintain rhythmic stability despite their sporadic use,
with a mean onset count of around 4, 700 (2.5 annotations
per second). In contrast, the “voicing” instruments (tarol,
mineiro, and tambor-hi) play more expressive roles, result-
ing in a higher mean onset count of approximately 16, 600
(8.9 annotations per second).
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Figure 1. Onset-annotated waveforms for the Maracatu
instruments. Left: 5-seconds fine-tuning snippet; Right:
Zoomed in waveform, from the second onset to the sample
before third onset (in blue).

The intricacy of these rhythms and distinct waveform
shapes, as illustrated in Figure 1, complicates onset de-
tection and annotation. The mineiro exemplifies this chal-
lenge with its unusual waveform characteristics, which led

3 Hereafter referred to as Maracatu, this genre should be distinguished
from Maracatu de baque virado (or “Nação”). Both share African ori-
gins and certain musical similarities, but differ significantly in instrumen-
tation, practice, and narrative [35].

4 While the original dataset contains 34 files per instrument, we ex-
cluded Instrument_34 files across all sub-datasets due to a corrupted
Mineiro_34 file.

to its exclusion from microtiming analysis in the original
dataset creation study due to annotation difficulties [17].
Combined with the under-representation of these instru-
ments in available model training data, these factors cre-
ate substantial obstacles for both human annotators and
automated systems. The Maracatu dataset thus provides
an ideal test bed for our human-in-the-loop strategy, ex-
tending the approach previously employed in the dataset’s
creation.

2.2 Base Models

This study employs two pre-trained models, both de-
rived from the TCN architecture proposed by Davies and
Böck [37]. For the intra-task setting, we use a modified
version of the original TCN model with an additional 11th
dilation rate level [32], trained from scratch on the On-
setDB dataset [4] for onset detection. In the inter-task sce-
nario, we utilize an adaptation of the [33] multitask net-
work, modified by masking its tempo and downbeat loss to
function as a single-task (beat) network, trained on various
beat-tracking datasets. Hereafter, we refer to these models
as TCNv1 and TCNv2, respectively.
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Figure 2. High-level architecture shared by the TCNv1 and
TCNv2 models. Both follow the same layer sequence and
depth, but differ in convolutional filter configuration, re-
sulting in distinct receptive fields and overall model sizes.

As illustrated in Figure 2, both models share the same
high-level architecture and signal conditioning stages, but
their implementations differ significantly. TCNv1 con-
sists of three convolutional layers with 16 filters and filter
shapes of 3×3, 3×3, and 1×8, with max pooling over three
frequency bins after the first two layers. In contrast, TCNv2
employs three convolutional layers with 20 filters and fil-
ter shapes of 3×3, 1×10, and 3×3, each followed by max
pooling over three frequency bins. Both architectures use
dropout after each convolutional stage. The ensuing TCN
block operates non-casually and consists of 11 dilation lev-
els, 16 filters, and a kernel size of 5. The TCNv1 model
comprises 21,890 parameters, while the TCNv2 model has
116,302 parameters. The original training procedures also
differed slightly in optimization techniques: TCNv1 em-
ployed a standard Adam optimizer, whereas TCNv2 used a
Rectified Adam plus Lookahead approach.

2.3 Fine-tuning

For both intra-task and inter-task transfer learning settings,
we adopt the fine-tuning strategy described in [28], us-
ing a 5-second annotated sample per instrument to demon-
strate minimal annotation effort. Each base model is fine-
tuned for 50 epochs with the learning rate reduced to one-
quarter of the original value, maintaining the original opti-
mizers for seamless training continuation. Early stopping



and learning rate reduction mechanisms were not imple-
mented as these parameters proved sufficient for conver-
gence given the short training duration and small dataset
size. Given our systematic layer-wise analysis comprising
150 fine-tuning cycles, we omitted data augmentation and
additional hyperparameter optimization to maintain exper-
imental tractability and support isolated analysis of how
layer-wise freezing strategies relate to each instrument’s
acoustic characteristics.

We evaluate all possible fine-tuning configurations, de-
noted as ftA-B, where A and B indicate the starting and
ending layers of the frozen section, respectively. The out-
put layer is always updated and thus excluded from this
notation. We explore configurations from ftConv1. . .3 to
ftTcn1. . .1024, including the fully trainable configuration
ft. These are compared with the intra-task baseline bsl

and the inter-task baseline bsl*.

2.4 Evaluation

The network output is an onset activation function with
a 10-millisecond (ms) temporal resolution. We apply the
standard madmom peak-picking algorithm to obtain onset
estimates. Performance is evaluated using the F1 metric
with the default 25ms tolerance window [4]. We imple-
ment a holdout validation approach where, for each in-
strument, we extract a 5-second segment from the first
file (Instrument_01) for fine-tuning and then exclude this
entire file from the evaluation set to prevent data leak-
age. This ensures unbiased assessment of the instrument-
adapted models by evaluating performance on the remain-
ing 32 files per instrument.

3. EXPERIMENTS AND RESULTS

3.1 Preliminary Model Analysis

To contextualize our approach, we first compare the perfor-
mance of our base TCN models with previous state-of-the-
art methods on the OnsetDB dataset [4]. Our base models,
TCNv1 and TCNv2, achieve F1 scores of 0.907 and 0.340,
respectively. The lower performance of TCNv2 is expected,
as it was originally trained for beat tracking rather than
onset detection. The madmomRNN and madmomCNN mod-
els, pre-trained and provided as inference-ready models in
the madmom package [38], achieve F1 scores of 0.849 and
0.913, respectively. However, it is important to note that
these evaluations were conducted without knowledge of
the original training/test splits used for these pre-trained
models, creating potential data leakage that may lead to an
overestimation of their performance. The 2nd generation
onset CNN [39] remains the established benchmark, with
a reported F1 score of 0.903, verified through k-fold cross-
validation. Unlike the madmom models, our TCN models
were evaluated under the same validation conditions as the
2nd gen CNN, ensuring comparability. These results indi-
cate that TCNv1 is competitive with the current state of the
art in onset detection.

Table 1. Representative configurations demonstrating im-
provements across transfer learning settings.

Onset-to-Onset Beat-to-Onset

Adapted (best) bsl Adapted (best) bsl*

Cuica ftTcn16 0.985 0.477 ft 0.955 0.429
Gonge-Lo ftTcn2/4/16 0.998 0.508 ft 0.956 0.892
Mineiro ftTcn16 0.972 0.946 ftTcn8 0.790 0.193
Tambor-Hi ft /Tcn1024 0.978 0.965 ftTcn1 0.723 0.443
Tarol ftConv3 0.997 0.993 ft 0.884 0.139

3.2 Onset-to-Onset Transfer Learning Results

Figure 3 (top) presents the F1 scores obtained for each fine-
tuning configuration in comparison to the baseline. The
results can be grouped based on the rhythmic role of the
instruments: time-keeping (cuica and gonge-lo) vs. voic-
ing (tarol, mineiro, and tambor-hi).

For time-keeping instruments, the baseline performance
is moderate (F1 ≈ 0.5), but fine-tuning yields significant
improvements, with scores reaching the 0.8–1.0 range.
In contrast, expressive instruments exhibit higher initial
F1 scores (≈ 0.9–1.0), which limits the relative improve-
ment. This disparity can be attributed to the conventional
nature of tarol and tambor-hi, which are more aligned
with the training data, whereas cuica and gonge-lo diverge
more in terms of acoustic characteristics. An exception is
mineiro, which achieves a relatively high baseline score
despite its distinct waveform characteristics. However,
the reported lower precision of these ground-truth anno-
tations [17] complicates direct performance comparisons.

Table 1 presents high-performing configurations to
demonstrate the achievable improvements across instru-
ments. The ftTcn16 model achieves the highest accu-
racy for cuica and mineiro (0.985 and 0.972, respectively),
while ftTcn2, ftTcn4, and ftTcn16 all achieve the highest F1
score for gonge-lo (F1 = 0.998). For tambor-hi, the best
performance is obtained with both ftTcn1024 and ft (F1 =
0.978). For tarol, the highest F1 score (0.997) is achieved
with ftConv3, though many configurations show compara-
ble performance with marginal differences. These configu-
rations consistently outperform the baseline, with the most
notable gains observed in cuica and gonge-lo, where F1
improvements exceed 50 percentage points (p.p.).

In summary, all instruments benefit from adaptation, as
most fine-tuned configurations—and in particular, the best
for each instrument—consistently outperform the base-
line. The improvement is especially pronounced for time-
keeping instruments (cuica and gonge-lo), likely due to
their lower baseline accuracy, which allows more room for
improvement, and the relative ease of detecting sparser on-
sets compared to those that are closely clustered in time,
even though onset density remains well above the net-
work’s temporal resolution of 10 ms. The optimal freeze
configuration varies by instrument, with no clear global
trend. However, some patterns emerge: for voicing in-
struments, full-network fine-tuning (ft) ranks among the
top-performing configurations, whereas it degrades perfor-
mance for time-keeping instruments.
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Figure 3. Distribution of F1 scores per layer-wise configuration under two transfer learning settings: Onset-to-Onset (top),
where fine-tuned models are compared against their baseline, and Beat-to-Onset (bottom), where we assess cross-task
versus within-task transfer learning, with comparable performance observed for time-keeping instruments.

3.3 Beat-to-Onset Transfer Learning Results

In this section, we focus on a domain adaptation, where
a model pre-trained for beat tracking is adapted for on-
set detection. Unlike the previous setting, the goal here
is not to compare fine-tuned models to their baseline, as
this originates from a different task. We also refrain from
an in-depth analysis of mean F1 scores across datasets,
given their limited interpretative value. Instead, we assess
whether models fine-tuned in this setting achieve results
comparable to those in the onset-to-onset transfer learning
scenario. Figure 3 (bottom) provides an overview of the
results.

Time-keeping instruments, such as cuica and gonge-lo,
achieve relatively high baseline (bsl*) accuracies, likely
due to the alignment between their onsets and beat lo-
cations. Adaptation improves accuracy across all instru-
ments, confirming the feasibility of beat-to-onset transfer
learning. However, while the fine-tuned models consis-
tently outperform the beat-tracking baseline, direct com-
parisons to the onset-to-onset setting reveal performance
disparities that vary by instrument. Specifically, for time-
keeping instruments, performance remains nearly identical
across both transfer learning scenarios, with differences of
only 1.6 p.p. for cuica and 3.7 p.p. for gonge-lo. In con-
trast, voicing instruments exhibit progressively larger dis-
crepancies, with F1-score differences of 11.3 p.p. for tarol,
27.5 p.p. for mineiro, and the largest gap of 32.2 p.p. for
tambor-hi.

Closer inspection of the layer-wise results reveals addi-
tional patterns. The accuracy generally increases as more
layers are fine-tuned up to the 3rd or 4th dilation level, be-

yond which no further gains are observed. However, this
trend does not hold for tarol, where deeper fine-tuning
leads to additional performance improvements. These
observations highlight that, while fine-tuning is benefi-
cial across all cases, the optimal retraining depth remains
instrument-dependent.

Altogether, the results indicate that feature transferabil-
ity from beat tracking to onset detection is more effective
for time-keeping instruments than for voicing instruments.
Specifically, gonge-lo exhibits a clearly higher baseline
F1 accuracy in the beat-to-onset setting compared to its
onset-to-onset counterpart (0.892 vs. 0.508), while cuica
achieves a comparable performance (0.429 vs. 0.477), as
reported in Table 1. This enhanced cross-task adaptability
arises from the metrical function of time-keeping instru-
ments: their onsets inherently coincide with beat positions,
making them natural targets for the pre-trained model’s
rhythmic representations. Examining these results more
closely, we verify that Maracatu’s tempo range of 165–180
BPM corresponds to inter-beat intervals of 333–363 ms.
These durations approximately match the waveform spans
of cuica and gonge-lo, but not those of the other instru-
ments 5 .

This temporal alignment—where the instruments’
acoustic profile align with the genre’s inter-beat inter-
vals—explains the high baseline accuracies. Addition-
ally, the larger capacity of TCNv2 (116,302 parameters vs.
21,890 in TCNv1) and its exposure to a broader training set

5 According to an informal inspection of waveform spans—cuica:
384-428 ms, gonge-lo: 376-400 ms, tarol: 77-107 ms, mineiro: 90-180
ms, and tambor-hi: 120-230 ms.



may further contribute to this advantage. This suggests that
model expressivity and pre-training diversity can compen-
sate for task differences in certain transfer learning scenar-
ios.

3.4 Discussion

Our investigation of two contrasting transfer learning sce-
narios reveals that adaptation outperforms baseline ap-
proaches across all instruments, with varying degrees of
improvement.

In the within-domain setting, adaptation yielded high
accuracies with F1 scores from 0.972 (mineiro) to 0.998
(gonge-lo) and 0.997 (tarol). Improvement was most pro-
nounced for time-keeping instruments with lower baseline
accuracies (≈ 0.500), with cuica showing a 52 p.p. gain.
For the cross-domain adaptation, while improvements over
the beat-tracking baseline (bsl*) were evident, compar-
ison against the onset-tracking baseline (bsl) revealed
instrument-dependent patterns. Voicing instruments’ best
F1 scores remained below the onset-tracking baseline by
11-24 p.p. , indicating limited benefits from domain adap-
tation. However, for time-keeping instruments whose on-
sets align with the pre-trained model’s rhythmic priors,
cross-task adaptation yielded improvements of 45-48 per-
centage points.

These findings provide key insights: i) Fine-tuning
consistently enhances performance in both settings, mak-
ing it valuable for achieving high accuracy in underrepre-
sented music genres; ii) Models trained on beat-tracking
can be effectively adapted for onset detection, leveraging
model scale to compensate for task divergence and ad-
dressing limited data availability for non-mainstream in-
struments. However, effectiveness varies by instrument
type: beat-to-onset adaptation benefits time-keeping in-
struments, while onset-to-onset adaptation consistently im-
proves performance across all instruments. These im-
provements are naturally more substantial when baseline
accuracy is lower, as observed in voicing instruments.

Our results also demonstrate that optimal fine-tuning
configurations vary by instrument, necessitating tailored
strategies for selecting which layer weights to update dur-
ing fine-tuning. This challenges the assumption that only
layers closest to the musical surface and the output layer
would require recalibration to optimize a network for a
specific instrument [17].

Finally, several limitations warrant consideration. Our
results represent a single experimental cycle, and despite
prior research suggesting relative stability across runs [28,
30], the stochastic nature of the (re)training process–due
to convolutional dropout–implies that results may vary.
While unlikely to affect general trends, multiple cycles
would be needed to investigate specific aspects such as re-
ceptive field size impact and its relation to optimal layer
freeze selection or instrument waveform profiles. Note
that, as previously discussed, corresponding layers across
the two models differ in their temporal receptive fields de-
spite having the same labels. For instance, while Conv3

corresponds to approximately 50 ms in both models, the

layer Tcn2 spans 170 ms in TCNv1 vs. 410 ms in TCNv2.
This discrepancy must be considered when interpreting re-
sults, limiting direct comparison between specific freeze
configurations across scenarios. The lower annotation
precision of mineiro further limits some result interpre-
tation, potentially explaining its anomalous performance
(e.g. lowest fine-tuned and baseline accuracy on each set-
ting).

Notably, our current results were achieved with min-
imal adjustment to the experimental pipeline to main-
tain fair comparison with baselines. This conservative
approach suggests greater improvements might be pos-
sible through hyperparameter optimization—for example,
cross-task adaptation may require more epochs to converge
than within-task adaptation. While such optimization ex-
ceeded this study’s scope, it represents a promising di-
rection for extending the clear performance gains demon-
strated here.

4. CONCLUSION

This study investigated onset detection in Maracatu de
baque solto through two transfer learning strategies: onset-
to-onset adaptation and beat-to-onset adaptation. Both
approaches yielded notable improvements over baseline
models, underlining the advantages of fine-tuning for en-
hancing accuracy.

We demonstrated that cross-task adaptation of models
is viable for less-represented tasks such as onset detection
when structural alignment exists between source and target
domains. Transfer learning effectively addresses limited
data availability and circumvents extensive manual anno-
tation or costly training from scratch—a finding with im-
portant implications for music information retrieval, par-
ticularly when facing data scarcity challenges.

Future work should address this study’s limitations
while exploring in greater detail the factors influencing
transfer learning effectiveness. Multiple-run experiments
would confirm observed trends and investigate specific as-
pects, such as optimal freeze segment selection and its re-
lation with network receptive field and instrument wave-
form profiles, alongside potential improvements through
hyperparameter optimization. Additional research direc-
tions include extending the analysis to other datasets and
underrepresented instruments, and refining training proto-
cols. Evaluating our adaptive approach using stricter toler-
ance windows would provide deeper insights into temporal
precision, particularly for expressive instruments and mi-
crotiming analysis applications where fine-scale temporal
variations are significant.

In summary, this study demonstrates the effectiveness
of transfer learning in improving musical onset detection
for diverse traditions beyond the Western canon. By adapt-
ing existing models, we can improve accuracy and robust-
ness for underrepresented sounds. These methods and in-
sights contribute to developing more inclusive tools for
music analysis, with applications extending beyond the
specific genres and tasks studied here to benefit the broader
field of Music Information Retrieval.
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