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Abstract

The development of diffusion-based generative models over the past decade has largely
proceeded independently of progress in representation learning. These diffusion models
typically rely on regression-based objectives and generally lack explicit regularization.
In this work, we propose Dispersive Loss, a simple plug-and-play regularizer that
effectively improves diffusion-based generative models. Our loss function encourages
internal representations to disperse in the hidden space, analogous to contrastive self-
supervised learning, with the key distinction that it requires no positive sample pairs and
therefore does not interfere with the sampling process used for regression. Compared to
the recent method of representation alignment (REPA), our approach is self-contained
and minimalist, requiring no pre-training, no additional parameters, and no external data.
We evaluate Dispersive Loss on the ImageNet dataset across a range of models and
report consistent improvements over widely used and strong baselines. We hope our
work will help bridge the gap between generative modeling and representation learning.
Our code is available at ht tps://github.com/raywang4d/DisplLoss.

1 Introduction

Diffusion generative models [35, 38, 18] have demonstrated remarkable performance in modeling complex
data distributions, but their success remains largely disconnected from advances in representation learning.
The training objectives of diffusion models typically consist of a regression term focused on reconstruction
(e.g., denoising), yet lack an explicit regularization term on the representations learned for generation.
This paradigm for image generation stands in contrast to its counterpart in image recognition, where
representation learning has been a core topic and a driving force over the past decade [3].

In the field of representation learning, self-supervised learning has made significant progress in learning
general-purpose representations applicable to a wide range of downstream tasks (e.g., [15, 5, 16, 30]).
Among these approaches, contrastive learning [7, 14, 29, 15, 5] offers a conceptually simple yet effective
framework for learning representations from sample pairs. Intuitively, these methods encourage attraction
between sample pairs considered similar (“positive pairs”) and repulsion between those considered
dissimilar (“negative pairs”). Representation learning via contrastive learning has been shown useful
across a variety of recognition tasks, including classification, detection, and segmentation. However, the
effectiveness of these learning paradigms for generative modeling remains an underexplored problem.

In light of the potential of representation learning for generative modeling, Representation Alignment
(REPA) [41] has been proposed to leverage the capabilities of pre-trained, off-the-shelf representation mod-
els. This method trains a generative model while encouraging alignment between its internal representations
and external pre-trained representations. As a pioneering effort, REPA has revealed the importance of rep-
resentation learning in the context of generative modeling; however, its instantiation depends on additional
pre-training, extra model parameters, and access to external data. Developing a self-contained and minimal-
ist approach to representation-based generative modeling is still an essential topic in this line of research.
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Figure 1: Dispersive Loss for Generative Modeling. Left: A standard diffusion-based model (e.g., SiT
[26] or DiT [31]) with a regression-driven diffusion loss, augmented by a Dispersive Loss applied to an
intermediate block. Right: A zoom-in on the first few blocks with Dispersive Loss. Our loss encourages
intermediate representations to disperse in the hidden space. It operates on the same input batch of
noised images, shares the existing network blocks and computations, introducing negligible overhead,
no additional parameters, and no reliance on external data.

In this paper, we propose Dispersive Loss, a flexible and general plug-and-play regularizer that integrates
self-supervised learning into diffusion-based generative models. Our core idea is simple: alongside the
standard regression loss on the model output, we introduce an objective that regularizes the model’s internal
representations (Fig. 1). Intuitively, Dispersive Loss encourages internal representations to spread out in the
hidden space, analogous to the repulsive effect in contrastive learning. Meanwhile, the original regression
loss (e.g., denoising) naturally serves as an alignment mechanism, eliminating the need to manually define
positive pairs as in contrastive learning.

In a nutshell, Dispersive Loss behaves like a “contrastive loss without positive pairs”—and as such,
unlike contrastive learning, it requires neither two-view sampling, specialized data augmentation, nor an
additional encoder. The training pipeline can follow standard practice used in diffusion-based models
(and their flow-based counterparts)', with the only distinction being an additional regularization loss that
has negligible overhead. In comparison to the REPA mechanism, our method requires no pre-training,
no additional model parameters, and no external data. With a self-contained and minimalist design, our
method clearly demonstrates that representation learning can benefit generative modeling without relying
on external sources of information.

We evaluate the effectiveness and generality of Dispersive Loss through extensive experiments. Our
results show that Dispersive Loss consistently improves upon strong and widely used baselines in diffusion
models, namely, DiT [31] and SiT [26] (Fig. 2), across a wide range of model scales. We also find that
various formulations of Dispersive Loss are consistently beneficial, demonstrating the robustness and
generality of our approach; by comparison, incorporating a contrastive loss can degrade performance.
Beyond multi-step diffusion models, we further apply Dispersive Loss to the recent MeanFlow framework
[12], achieving state-of-the-art performance in one-step diffusion-based generation. We hope that the
simplicity, effectiveness, and generality of Dispersive Loss will help bridge the gap between generative
modeling and representation learning.

2 Related Work

Diffusion Models. Diffusion probabilistic models [35] formulate generative modeling as a progressive
noising/denoising process, trained via a variational lower bound. This process is substantially simplified
and improved by reformulating it as a denoising-based reconstruction objective [18]. Subsequent work
[36, 28, 10, 19] further advances this direction by improving noise schedules and sampling strategies. Flow
matching models [23, 25, 1] extend the diffusion paradigm by focusing on velocity-based formulations and

'In the context of this work, we do not distinguish between diffusion methods and flow matching methods
[23, 25, 1], and refer to both under the umbrella term of “diffusion models”.
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Figure 2: Effectiveness of Dispersive Loss. We show FID-50k on ImageNet 256 x256 at different training
epochs, comparing the standard SiT-XL/2 baseline [26] with its counterpart trained with Dispersive Loss.
Classifier-free guidance is not used in this plot. More results and details are in Section 4.

modeling deterministic trajectories. Despite these advancements, the regression-based training objective
remains central to diffusion-based models and their variants.

Self-Supervised Learning. In parallel with advances in generative modeling, self-supervised representation
learning has made steady progress in visual recognition. Contrastive learning [7] has become a dominant
self-supervised paradigm which encourages similarity between positive pairs and dissimilarity between
negative pairs. Modern contrastive learning methods [15, 5], driven by advances such as information-based
contrastive losses [29] and large-scale negative sampling, have demonstrated encouraging results that
can rival those of supervised representation learning. Interestingly, there is a specific line of research
on “negative-free" contrastive learning [13, 6], which lead to representation learning results that are
competitively strong. Within this context, our method can be interpreted as “positive-free" contrastive
learning, which is an underexplored direction in standard self-supervised learning.

Beyond contrastive learning, masked modeling [9] has been established as another effective self-supervised
learning paradigm in vision [16, 2, 43]. Compared to contrastive learning, masked modeling methods
apply more destructive corruption to the input data than typical data augmentations. In contrast, our
method aims to introduce no interference to the input samples for diffusion training.

Representation Learning as Auxiliary Tasks. Beyond the common pre-training/fine-tuning paradigm,
representation learning can be performed as an auxiliary task jointly with the main objective. Supervised
contrastive learning [20] extends classical supervised models (e.g., classification) with extra contrastive
objectives. Self-supervised language-image pre-training (SLIP) [27] augments its contrastive counterpart
(CLIP [32]) with a self-supervised objective trained in parallel.

In the context of image generation, REPA [41] explores a line of research on enhancing generative modeling
with auxiliary representation learning. REPA aims to align the intermediate representations of a generative
model to those from a frozen, high-capacity, pre-trained encoder, which may itself be trained using external
data and diverse objectives. SARA [4] further advances this approach by introducing structural and
adversarial representation alignment. In the multimodal setting, SoftREPA [22] extends REPA by aligning
noisy image representations with soft text embeddings. While REPA and its extensions yield substantial
gains in practice, they rely on additional pre-training overhead and, more notably, on external sources
of information. 1t is difficult to disentangle whether the improvements from representation alignment arise
from a self-supervised objective or primarily from increased compute and access to external data.

3 Methodology

3.1 Dispersive Loss

At the core of our method is the idea of regularizing a generative model’s internal representations by
encouraging their dispersion in the hidden space. We refer to the original regression loss in diffusion-based



Table 1: Variants of Dispersive Loss functions, compared against their contrastive counterparts. Each
variant of Dispersive Loss can be viewed as the contrastive loss without positive pairs.

variant contrastive dispersive
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models as the diffusion loss, and to our introduced regularization term as “Dispersive Loss”. Formally,
denoting X ={x;} as a batch of noisy images x;, the objective function of this batch is given by:

L(X)=Eq,ex[Loir(2:)] + Mpisp (X)- (1

Here, Lpifr(;) is the standard diffusion loss of one sample, and Lpigp(X) is the dispersive loss term that
depends on the entire batch, with a weighting scale A. In our practice, we do not apply any additional layer
(e.g., a projection head [5]), and Dispersive Loss is applied directly on the intermediate representations,
requiring no extra learnable parameters.

Our method is self-contained and minimalist. In particular, it does not alter the implementation of the
original Lp;g term: it introduces no additional sampling views, no extra data augmentation, and when
A is zero it reduces exactly to the baseline diffusion model. This design is possible because the introduced
Dispersive Loss Lpjs, (X)) only depends on the already-computed intermediate representations of the same
input batch. This is unlike standard contrastive learning (e.g., [5]), where the additional augmentation
and view may interfere with the per-sample regression objective.

Intuitively, Dispersive Loss behaves like a “contrastive loss without positive pairs”. In the context of
generative modeling, this formulation is plausible because the regression terms provide predefined targets
for training, making the use of “positive pairs” unnecessary. This is consistent with prior research on
self-supervised learning [39], where positive terms are interpreted as alignment objectives, and negative
terms as forms of regularization. By eliminating the need for positive pairs, the loss terms can be defined
on any standard batch of (independent) images.

Conceptually, Dispersive Loss can be derived from any existing contrastive loss by appropriately removing
the positive terms. In this regard, the term “Dispersive Loss” does not refer to a specific implementation,
but rather to a general class of objectives that encourage dispersion. We introduce several variants of
Dispersive Loss functions in the following.

3.2 InfoNCE-Based Variant of Dispersive Loss

InfoNCE [29] is a widely used and effective variant of contrastive loss in self-supervised learning (e.g.,
[15, 5]). As a case study, we introduce the dispersive counterpart of the InfoNCE loss. Formally, let
z;= f(x;) denote the intermediate representations of the generative model for an input sample z;, where
f represents the subset of layers used to compute the intermediate representations. The original InfoNCE
loss [29] can be interpreted as a categorical cross-entropy objective that encourages high similarity between
positive pairs and low similarity between negative pairs:

exp(—D(2,2) /7)
ontras! =-1 - .
Feomis OngeXP(—D(Zivzj)/T)

Here, (zl,z:r ) denotes a pair of positive samples (e.g., obtained by data augmentation of the same image),
and (z;,z;) denotes any pair of samples which include the positive pair and all negative pairs (i.e., 5 5).
D denotes a dissimilarity function (e.g., distance), and T is a hyper-parameter known as the temperature.
A commonly used form of D is the negative cosine similarity [40]: D(z;,z;) =—2z;' z;/(||z:]||12;]])-

@

Inside the logarithm in Eq. (2), the numerator involves only the positive pair (2;,z; ), whereas the
denominator includes all pairs in the batch. Following [13, 39], we can rewrite Eq. (2) equivalently as:

ACContrast:D(zzﬁzi)/T + logZeXp(—D(Zi,Zj)/T)- (3)
J

Here, the first term is similar to a regression objective, which minimizes the distance between z; and its
target zj' . On the other hand, the second term encourages any pair of (z;,2;) to be as distant as possible.



To construct the Dispersive Loss counterpart, we keep only the second term:
Lpisp = logZeXp(—D(zi,zj) /7). @

J
This formulation can also be viewed as a contrastive loss (Eq. (3)), where each positive pair consists of
two identical views z;” = z;, making D(zi,z;r ) a constant. Eq. (4) is equivalent to:

Lpigp = logE; [exp(—D(zi,zj) /T)] , ®)
up to a constant log(batch size) that does not impact optimization. Conceptually, this loss definition is
based on a reference sample z;. To have a form defined on a batch of samples Z ={z;}, we follow [39]
and redefine it as:

Lpisp =10gE; ; [exp(—D(zi,zj)/T)]. 6)
This loss function has the same value for all samples within a batch and is computed only once per
batch. In our experiments, in addition to the cosine dissimilarity, we also study the squared ¢» distance:
D(2i,2j) = |2 — 2;||3. When using this ¢, form, the Dispersive Loss can be easily computed by a few
lines of code, as shown in Algorithm 1.

The InfoNCE-based Dispersive Loss as defined in Eq. (6) is similar to the uniformity loss in [39] (though
we do not ¢>-normalize the representations). In the context of contrastive representation learning considered
in [39], the uniformity loss is applied to the output representation and must be paired with an alignment
loss (i.e., the positive terms). Our formulation goes a step further by removing the alignment term on
the intermediate representations, and thereby focusing solely on the regularization perspective.

We note that we do not need to explicitly exclude the term D(z;,z;) when j =1. Since we do not use
multiple views of the same image in one batch, this term always corresponds to a constant and minimal
dissimilarity, e.g., 0 in the ¢, case and —1 in the cosine case. As such, this term acts as a constant bias inside
the logarithm, and its contribution becomes small when the batch size is sufficiently large. In practice,
it is not necessary to exclude this term, which also simplifies the implementation.

3.3 Other Variants of Dispersive Loss

The concept of Dispersive Loss naturally extends to a broad class of contrastive loss functions beyond
InfoNCE. Any objective that encourages the repulsion of negative samples may be considered a dispersive
objective and instantiated as a variant of Dispersive Loss. We introduce two additional variants based
on other types of contrastive loss functions. Table | summarizes all three variants and compares the
contrastive and dispersive counterparts, as described below.

Hinge Loss. In the classical formulation of contrastive learning [7], the loss function is defined as a
sum of independent loss terms, each corresponding to a positive or negative pair. The loss term for a
positive pair is D(zi,zf ); the loss term for a negative pair is formulated as a squared hinge loss, i.e.,
max(0,e—D(z;,2;))?, where € >0 is the margin. To construct the Dispersive Loss counterpart, we simply
discard the loss terms for positive pairs and compute only the terms for negative pairs. See Table 1 (row 2).

Covariance Loss. Another class of (generalized) contrastive loss functions operates on the cross-covariance
matrix of the representations. This class of loss functions encourages the cross-covariance matrix to be
close to the identity matrix. As an example, we consider the loss defined in “Barlow Twins” [42], which
calculates a cross-covariance matrix between the normalized representations of two augmented views of a
batch. Denote the D x D cross-covariance as “Cov" with elements indexed by (m,n). The loss encourages
the diagonal elements Cov,,,,, to be one, using a loss term (1 — Covmm)z, and off-diagonal elements

Covyp, (YMm#n) to be zero, using a loss term w) . 7&nCovf,m for a weight w.

In our dispersive counterpart, we consider only the off-diagonal elements Cov,,,,,. Since we do not use
augmented views, the cross-covariance reduces to the covariance matrix computed over a single-view
batch. In this case, the diagonal elements Cov,,,, automatically equal one when the representations
are ¢5-normalized, and thus do not need to be explicitly addressed in the loss function. The resulting
Dispersive Loss is simply > Cov? . See Table | (row 3).

m,n

3.4 Diffusion Models with Dispersive Loss

As summarized in Table 1, all variants of Dispersive Loss exhibit simpler formulations than their contrastive
counterparts. More importantly, all Dispersive Loss functions are applicable to a single-view batch,



Algorithm 1 Dispersive Loss (InfoNCE, ¢5 dist.) Algorithm 2 Diffusion with Dispersive Loss

It takes as input the flattened intermediate representations Z of shape It takes as input the model’s output prediction, flattened intermediate
N x D (with D=H xW xC). activation Z, denoising target, and the weight scale A.
def disp_loss (Z, tau): def loss(pred, Z, tgt, lamb):
D = pdist (Z, p=2)**2 L_diff = mean((pred - tgt)*x2)
return log (mean (exp (-D/tau))) L_disp = disp_loss(Z)

return L_diff + lamb * L_disp

eliminating the need for multi-view augmentations. As a result, they can serve as plug-and-play regularizers
within existing generative models, without modifying the implementation of the regression loss.

In practice, incorporating Dispersive Loss requires only minimal adjustments: (i) specifying the
intermediate layer on which to apply the regularizer, and (ii) computing the Dispersive Loss at this layer
and adding it to the original diffusion loss. Algorithm 2 presents the training pseudo-code, with a specific
form of Dispersive Loss as defined in Algorithm 1. We believe that such simplicity greatly facilitates
the practical adoption of our methodology, enabling its application across various generative models.

4 Experiments

4.1 Experiment Setup

The majority of our experiments are conducted on standard models: DiT [31] and SiT [26], which
respectively serve as the de facto diffusion-based and flow-based baselines. We faithfully follow the
original implementations in [31, 26] and conduct experiments on the ImageNet dataset [8] at 256x256
resolution. The generative models are trained on a 32x32x4 latent space produced by a VAE tokenizer
[33]. Sampling is performed using the ODE-based Heun sampler with 250 steps, following [31, 26]. In our
ablation experiments, unless specified, we train the models for 80 epochs [26] and without classifier-free
guidance (CFG) [17]. By default, the weight scale A in Eq. (1) is 0.5, and the temperature 7 in Eq. (6)
is 0.5. The full implementation details are in Appendix A.

4.2 Main Observations on Diffusion Models

Dispersive vs. Contrastive. In Table 2, we compare different variants of Dispersive Loss with their
contrastive counterparts. To apply a contrastive loss, two views are sampled for each training example
to form a positive pair. We study two strategies for adding noise to both views: (i) sampling noise
independently for each view, following the generative model’s noising policy; or (ii) sampling noise for
the first view according to the same policy, and then restricting the second view’s noise level to differ
by at most 0.005. Moreover, to avoid doubling training epochs due to two-view sampling, we only apply
the denoising loss to the first view, for fair comparisons with both the baseline and our method.

Table 2 shows that when using independent noise, the contrastive loss fails to improve generation quality in
all cases studied. We hypothesize that aligning two views with substantially different noise levels impairs
learning. As evidence, Table 2 shows that contrastive loss with restricted noise leads to improvements over
the baseline in three of the four evaluated variants. These experiments suggest that contrastive learning
is sensitive to the choice of data augmentation (consistent with observations in self-supervised learning
[5]). Noising, which serves as a built-in form of augmentation in diffusion models, further complicates
the problem.. While contrastive learning can be mildly beneficial (as shown in Table 2), the design of
the additional view and the coupling of two views may limit its application.

By comparison, Table 2 shows that Dispersive Loss yields consistent improvements over the baseline,
while avoiding the complications introduced by two-view sampling. Despite its simplicity, Dispersive
Loss achieves better results than its contrastive counterpart, even when the latter uses carefully tuned noise.
We note that Dispersive Loss is applied to a single-view batch, and its influence on training arises solely
from its regularizing effect on the intermediate representations.

Variants of Dispersive Loss. The experiments in Table 2 involve four variants of Dispersive Loss (see
Table 1): InfoNCE (/5 or cosine dissimilarity), Hinge, and Covariance. As discussed, a/l variants of
Dispersive Loss outperform the baseline, highlighting the generality and robustness of the approach.



contrastive contrastive

variant baseline (independent noise) (restricted noise) dlsperswe
none 36.49 - - -
InfoNCE, £» - 43.66 (+19.65%) 36.57 (+0.22%)  32.35(-11.35%)
InfoNCE, cosine - 41.62 (+14.06%) 34.83 (-4.55%) 34.33 ( —5.92%)
Hinge - 43.02 (+17.89%) 35.14 (-3.70%) 33.93 ( -7.02%)
Covariance - 37.85 ( +3.73%) 35.87 (-1.70%) 35.82 ( —1.84%)

Table 2: Variants of Dispersive Loss, compared against their contrastive counterparts. We report FID-50k
of SiT-B/2 on ImageNet, trained for 80 epochs, without CFG. The “baseline” entry refers to original
SiT-B/2 without any contrastive or dispersive loss. The contrastive loss involves two views per training
sample, with “independent” or “restricted” noise (the latter case restricts the noise level to differ by up
to 0.005). Values in brackets denote the relative improvement or degradation with respect to the baseline.

baseline  36.49
block 1 33.64 ( —7.81%)

block2  32.98 ( -9.62%) A=025 A=05 A=10
block3  32.35(-11.35%)
block 4 32.65 (—10.52%) 7=20 33.25 32.85 32.72
block 8 3275 (~10.24%) T=10 | 3314 3210 3288
block 12 33.06 ( -9.93%) T=05 | 3372 3235 3310
all blocks ~ 32.05 (—12.17%) 7=025 | 3390 3356 3316

Table 3: Block Choice for Regularization. We  Table 4: Loss weight \ and temperature 7. We
apply Dispersive Loss at different blocks of the investigate the two hyper-parameters of Dispersive
SiT-B/2 model (12-block). FID is evaluated on  Loss with SiT-B/2 on ImageNet. All cases are
ImageNet. The regularizer is beneficial in all cases.  substantially better than the baseline (36.49).
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Figure 3: Evolvement of Representation Norm. Dispersive Loss is applied only at Block 3. Dispersive
Loss significantly increases the representation norm compared to the baseline—even in layers where it
is not directly applied. The model is SiT-B/2 on ImageNet.

Among these variants, InfoNCE with the /5 distance performs best: it improves the FID by a substantial
margin of 4.14, or relative 11.35%. This is in contrast to common practice in self-supervised learning,
where cosine dissimilarity is typically preferred. We note that we do not apply normalization to the
representations before computing this InfoNCE loss, and as a result, the distance between two samples can
be arbitrarily large. We hypothesize that this design can encourage the representations to be more dispersed,
leading to stronger regularization. We use the ¢5-based InfoNCE in other experiments by default.

Block Choice for Regularization. In Table 3, we investigate the effect of Dispersive Loss at different
layers (i.e., Transformer blocks). Overall, the regularizer improves over the baseline by a substantial
margin in all cases studied, showing the generality of our approach. Applying Dispersive Loss to all
blocks yields the best result, while applying it to any single block performs nearly as well.

To take a closer look, Fig. 3 shows the ¢5 norm of the representations in a model where Dispersive Loss
is applied only at Block 3. Notably, our regularizer yields a larger representation norm at Block 3 and
propagates this effect to all other blocks, even though it is not directly applied to them. This helps explain
the consistent gains observed in Table 3 wherever Dispersive Loss is applied. In our other experiments,
Dispersive Loss is applied to the single block at the first quarter of the total blocks.
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Figure 4: Dispersive Loss for Different Models. We evaluate DiT and SiT baselines across four model
sizes, both with and without Dispersive Loss. Each subplot corresponds to a specific model size (XL is
only for SiT due to limited computation). All models are trained on ImageNet for 80 epochs.

wio CFG w/ CFG
epochs baseline  dispersive A baseline  dispersive A

80 18.46 15.95 —2.51(-13.6%) 6.02 5.09 —0.93 (-15.4%)

140 14.06 12.08 —1.98 (-14.0%) 3.95 342 —0.53(-13.4%)

200 12.18 10.64 —1.54 (-12.6%) 3.30 2.90 -0.40(-12.1%)

400 10.11 8.81 -1.30(-12.8%) 2.69 2.39 -0.30(-11.1%)

800 8.99 8.08 —0.91 (-10.1%) 2.46 2.12 —0.34(-13.8%)

800 (w/ SDE) 8.58 7.71 —0.87 (-10.1%) 227 2.09 —0.18 (-7.93%)
>1200 (w/ SDE) 8.26 743 —0.83 (-10.0%) 2.06 1.97 —0.09 (4.36%)

Table 5: More Experiments on SiT-XL/2. We train the largest SiT model (XL) for more epochs, with
and without using CFG, to match the setup in the SiT paper [26]. Results are reported as FID-50k on
ImageNet 256x256. The sampler used is the ODE-based Heun method, except for the last two rows,
which use the SDE-based Euler method (following [26]). In the last row, the baseline SiT results are taken
from the original paper [26], which reports 1400-epoch training; our results with Dispersive Loss in the
last row are based on 1200-epoch training. In all cases, Dispersive Loss yields substantial improvements.

method pre-training additional params external data FID (SiT-XL/2)
REPA [41] v/ (1500 ImgNet epochs) v (1.1B params) v (142M images) 1.80
Dispersive Loss X X X 1.97

Table 6: System-level comparison with REPA. While Dispersive Loss yields a smaller gain compared to
its REPA counterpart, our method is self-contained and does not rely on any external models. In contrast,
REPA uses a pre-trained DINOv2 model [30], whose overhead is summarized in this table.

Loss weight A\ and temperature 7. Our method only involves two hyper-parameters that need to be
specified: \, which controls the regularization strength, and 7, the temperature in InfoNCE. In Table 4, we
study their effect on the results. Overall, all configurations studied improve upon the baseline (FID 36.49),
further suggesting that the regularizer is broadly effective. Notably, we compare a wide range of temperature
values 7 and find that the results are surprisingly robust: this is in contrary to contrastive self-supervised
learning, where performance degrades significantly when deviating from the optimal temperature [5].

Dispersive Loss for Different Models. Thus far, our ablations have focused on the SiT-B/2 model. In Fig. 4,
we extend our evaluation to both DiT [31] and SiT [26] across four commonly used model sizes (S, B,
L, XL). Once again, Dispersive Loss consistently improves performance over the baseline in all scenarios.

Interestingly, we observe that both the relative and even absolute improvements tend to be larger when
the baseline is stronger. For each specific model size, both the relative and absolute improvements upon
the SiT baseline are larger than those upon the DiT baseline—even though the SiT baselines are stronger
than their DiT counterparts. Similarly, L-size models exhibit greater relative improvements compared
to B- or S-size models (this trend plateaus at the XL size, likely because there is less room for further
improvement). Overall, this trend provides strong evidence that the primary effect of Dispersive Loss
lies in regularization. As larger and more capable models are more prone to overfitting, they tend to benefit
more from effective regularization.



Figure 5: Qualitative results. We present curated samples generated from SiT-XL/2 with Dispersive Loss.

method params step NFE  FID

model epochs baseline dispersive A iCTXL/2 37] 675M 1 | 3404
MF-B/4 80 18.78 17.61  -6.23% Shortcut-XL/2 [11] 675M 1 1 10.60
MF-B/2 80 9.77 897 -8.18% IMM-XL/2 [44] 675M 1 2 777
MF-B/2 240 6.17 569  -7.77% MeanFlow-XL/2 [12] 676M 1 1 343
MF-XL/2 240 343 321 —641% MeanFlow-XL/2 + Disp  676M 1 1 321

Table 7: Dispersive Loss for One-Step Generation. All results are FID-50k on ImageNet 256 x256. Left:
Dispersive Loss consistently improves the MeanFlow [12] baseline. Right: Comparison of state-of-the-art
one-step diffusion/flow-based models.

More Experiments on SiT-XL/2. In Table 5, we train SiT-XL/2 while faithfully following all practices
described in the original SiT paper [26]. Specifically, we train the model for more epochs, both with and
without classifier-free guidance (CFG) [17]. Both ODE-based and SDE-based samplers are investigated.
Overall, our method proves beneficial across all settings, even as the baselines become stronger. Some
example images generated by this model are in Fig. 5.

System-level Comparison with REPA. Our method is related to REPA [41]. While our regularizer
operates directly on the model’s internal representations, REPA aligns them with those from an external
model. As such, for a fair comparison, both the additional computational overhead and the external sources
of information should be taken into account, summarized in Table 6. REPA relies on a pre-trained DINOv2
model [30], which itself is distilled from a 1.1B-parameter backbone trained on 142 million curated
images for the equivalent of 1500 ImageNet epochs. In comparison, our method is entirely self-contained,
requiring no pre-training, no external data, and no additional model parameters. Our method is readily
applicable when scaling up training to larger models and datasets, and we expect that the regularization
effect will be desirable in such regimes.

4.3 One-step Generation Models

Our method can be directly generalized to one-step diffusion-based generative models. In Table 7 (left), we
apply Dispersive Loss to the recent MeanFlow model [12] (implementation details in Appendix A), and ob-
serve consistent improvements. Table 7 (right) compares these results with the latest one-step diffusion/flow-
based models, showing that our method enhances MeanFlow and achieves a new state of the art.

5 Conclusion

In this work, we have proposed Dispersive Loss, an objective that regularizes the internal representations
of diffusion models. Without relying on additional pre-training, extra parameters, or external data, our
approach demonstrates that representation regularization can effectively enhance generative modeling.

A key principle guiding our design is to introduce minimal or no interference with the sampling process
of the original training objective. This allows us to fully preserve the original diffusion training strategy,
which can be critical for maintaining generative performance. Nevertheless, a standalone, plug-and-play
regularizer is not only desirable for generative modeling; its favorable properties may also benefit other
applications, including image recognition. We hope our regularizer will generalize to broader scenarios,
a direction we leave for future exploration.
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model S2 B2 L2 XL/2

model configurations

params (M) 33 130 458 675
depth 12 12 24 28
hidden dim 384 768 1024 1152
patch size 2 2 2 2
heads 6 12 16 16
training configurations

epochs 80 80 80  80-1200
batch size 256

optimizer AdamW
optimizer 3; 0.9

optimizer (B 0.95

weight decay 0.0

learning rate (Ir) 1x10~*

Ir schedule constant

Ir warmup none

ODE sampling

steps 250

sampler Heun

t schedule linear

last step size N/A

SDE sampling

steps 250

sampler Euler

t schedule linear

last step size 0.04
Dispersive Loss

regularization loss weight A 0.5
temperature 7 0.5

Table 8: SiT and DiT Configurations on ImageNet.

A Implementation

SiT and DiT Experiments. We faithfully follow the SiT/DiT codebase for ImageNet experiments. We
employ the AdamW optimizer with a constant learning rate of 1 x 107, (31,582) = (0.9,0.95), and no
weight decay. For ODE sampling, we use the Heun solver with 250 steps, following the SiT paper [26];
for SDE sampling, we apply an Euler—-Maruyama solver with the default drift and diffusion schedule from
SiT [26]. We re-implement both SiT and DiT in JAX. All experiments are run on 32 TPU-v3/v4 cores.
The configuration details are in Table 8.

MeanFlow Experiments. Our MeanFlow experiments use the exact same codebase shared by the authors
of [12]. In Table 7, we evaluate three models: B/4, B/2, and XL/2, with and without Dispersive Loss.
The B/4 and B/2 models are all trained from scratch. For the XL/2 model, due to limited computation
resources, we take the MeanFlow-XL/2 checkpoint at 180 epochs and then apply Dispersive Loss in the
remaining 60 epochs; we expect training this model from scratch will lead to better results.

For the MeanFlow baselines, all configurations of MF-B/2 and MF-XL/2 follow those in [12]. For MF-B/4,
we adopt the setting of w’ =2.0 and x=0.5 using the notation of [12]. Dispersive Loss is applied on the
same single block as in our SiT experiments. We set the regularization weight A as 0.25 for B/4, 1.0 for
B/2, and 1.5 for XL/2.
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B Additional Experiments

B.1 Inception Scores

wlo CFG w/ CFG
model epochs baseline dispersive A baseline  dispersive A
B/2 80 42.79 48.79 +14.02% 93.26 108.23 +16.05%

XL/2 800 141.28 147.35 +4.11% 27044 281.26 +4.00%

Table 9: Inception Scores on ImageNet.

In Table 9 we report the Inception Scores of SiT models on ImageNet. Similar to observations on FID
(Table 5), Dispersive Loss improves Inception Scores (higher being better) over the baseline SiT models.

B.2 CIFAR-10 Experiments

2.

—— Baseline
25 Baseline + Dispersive Loss
2.4

FID

250 500 750 1000 1250 1500 1750 2000
Epoch

Figure 6: CIFAR-10 Resulit.

We also evaluate our approach on non-transformer architectures in the CIFAR-10 dataset [21], where the
commonly used network architecture is Unet [34]. The experiments are based on the publicly available
code of Flow Matching [24].> We use the same hyper-parameters as the original codebase, and our
rerunning of the Flow Matching baseline has 2.13 FID. As a reference, the original repo reported 2.07 FID.

Figure 6 represents the evolvement of the FID during training, comparing the baseline against the one
with Dispersive Loss, using the same random seed. The Dispersive Loss is applied at Residual Block
15 of the Unet. It can be observed that our regularizer yields consistent gains over the baseline throughout
training. Our final result is 2.07 FID, which is better than the 2.13 FID of our reproduced baseline. While
the absolute numbers may depend on subtle variations in the runtime environment, Figure 6 shows that
the gains are persistent when evaluated under a controlled environment.

htt ps://github.com/facebookresearch/flow_matching
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