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Abstract

In this thesis, we introduce Bayesian filtering as a principled framework for tackling di-
verse sequential machine learning problems, including online (continual) learning, pre-
quential (one-step-ahead) forecasting, and contextual bandits. To this end, this thesis
addresses key challenges in applying Bayesian filtering to these problems: adaptivity to
non-stationary environments, robustness to model misspecification and outliers, and scala-
bility to the high-dimensional parameter space of deep neural networks. We develop novel
tools within the Bayesian filtering framework to address each of these challenges, includ-
ing: (i) a modular framework that enables the development adaptive approaches for online
learning; (ii) a novel, provably robust filter with similar computational cost to standard
filters, that employs Generalised Bayes; and (iii) a set of tools for sequentially updat-
ing model parameters using approximate second-order optimisation methods that exploit
the overparametrisation of high-dimensional parametric models such as neural networks.
Theoretical analysis and empirical results demonstrate the improved performance of our
methods in dynamic, high-dimensional, and misspecified models.
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“You know, allowing awareness for something that’s unlikely is not a dis-
ease,” she said. “If you’re talking about a filter, you should understand how
they work. Optimal filters will still block a few things that you actually wanted
to go through—and will still allow for some things that you wanted to block
to instead go through. That’s for an optimal filter.” [...] A species like ours,
with survival so clearly based on intelligence and information, should not block
the risk of blocking and throwing away potentially valuable ideas.

–Professor Karl Deisseroth, “Connections”
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Chapter 1

Introduction

Sequential problems are central to machine learning and arise in a variety of settings,
including test-time adaptation (Schirmer et al., 2024), prequential forecasting (Gama
et al., 2008), neural bandits (Riquelme et al., 2018), online continual learning (Dohare
et al., 2024), and deep reinforcement learning (Asadi et al., 2024). These problems can
be formulated as online learning tasks, where an agent observes a time-indexed sequence
of data and predicts the next unobserved value in the sequence (Zhang, 2023, Chapter
1). Typically, predictions are informed by past observations and may depend on additional
exogenous variables, referred to as features.

Filtering methods provide a principled framework for tackling such challenges in se-
quential decision-making. These methods focus on inferring the unknown state of a
dynamic system from noisy observations, making them well-suited for parametric online
learning tasks where the unknown state are taken to be the model parameters. Among
filtering methods, the Kalman filter (KF) has been particularly influential, serving as a
foundational algorithm that has inspired numerous extensions and applications (Leondes,
1970; Grewal and Andrews, 2010). Figure 1.1 presents an example of a two-dimensional
dynamical system (top panel), which seeks to recover from a one-dimensional projection
(bottom panel).

Arguably, the widespread appeal of filtering methods stems from three key properties:
extensibility, a Bayesian foundation, and broad applicability. First, the extensibility of
filtering algorithms has enabled researchers to develop numerous variants of the KF. For
instance, extensions have made the KF (i) robust to outlier measurements (West, 1981),
(ii) adaptive to non-stationary environments (Mehra, 1972), and (iii) scalable to high-
dimensional state and observation spaces (Evensen, 1994). Variants of the KF remain
an active area of research, with efforts to further improve robustness, adaptability, and
scalability (see e.g., Tao and Yau, 2023; Zhu et al., 2022; Vilmarest and Wintenberger,
2024; Chen et al., 2022; Schmidt et al., 2023; Greenberg et al., 2023).

Second, the Bayesian interpretation of filtering methods, commonly referred to as
Bayesian filters (Särkkä and Svensson, 2023, Chapter 1), provides a probabilistic frame-

16



Figure 1.1: One-dimensional projection of a noisy-two dimensional dynamical system. In the top panel,
the gray arrows represent the underlying evolution of the system and the black dots show the sampled (but
unknown) locations of the system. In the bottom panel, the red dots show the observed measurements
projected onto a one-dimensional plane. The red vertical lines denote the projection from latent space to
observation space.

work for sequential decision-making. This perspective has inspired algorithms such as par-
ticle filters (Doucet et al., 2009) and variational-Bayes filters (Sarkka and Nummenmaa,
2009), which extend the applicability of Bayesian filters to non-linear and non-Gaussian
systems.

Third, filtering methods are widely applicable beyond their traditional use in phys-
ical systems. Applications include financial modelling (Wells, 2013), signal processing
(Basseville et al., 1993, Chapter 3), and other domains where dynamic systems must be
monitored and predicted.

Motivated by these three properties, in this thesis, we advocate for a more prominent
role of filtering methods in machine learning. Specifically, we leverage filtering tech-
niques to design novel online learning algorithms that are (i) robust, (ii) adaptive, and
(iii) scalable. Our approach treats the Bayesian framework as an algorithmic tool for
“rationalising and formalising experience accumulation” (Peterka, 1981; Breiman, 2001).
In contrast to the classical filtering perspective, we do not assume expert knowledge of
the data-generating process. Instead, the resulting methods aim to maximise predictive
performance by dynamically learning parametric (and potentially non-linear) models based
solely on available observations and features.

The methods and frameworks developed in this thesis build upon the foundational prin-
ciples discussed above, extending them to address challenges in robustness, adaptability,
and scalability within online learning. The rest of this thesis is organised as follows:

Chapter 2 introduces basic concepts used throughout the thesis, including prequential
forecasting and Bayes’ rule as a mechanism for sequentially updating model parameters.
This chapter revisits classical results in recursive statistical learning, extends these results
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to non-linear observation models such as neural networks, and examines recent advances
in recursive estimation.

Chapter 3 develops a framework for adaptive online learning, building on hierarchical
Bayesian models and filtering methods, as outlined in Duran-Martin et al. (2025).

Chapter 4 focuses on the robustness of the methods introduced in Chapters 2 and
3 against outliers and misspecified observation models. After reviewing prior work in
this area, we present a lightweight approach proposed in Duran-Martin et al. (2024),
which leverages the generalised-Bayes principle by replacing the traditional log-likelihood
in posterior computation with a more flexible loss function.

Chapter 5 addresses the scalability challenges of Bayesian filtering methods for online
learning. Drawing from the work in Duran-Martin et al. (2022); Cartea et al. (2023b);
Chang et al. (2023), we propose three novel strategies: training a linear subspace of
model parameters, using low-rank posterior covariance matrices, and employing last-layer
methods to separate feature transformation from observation approximation.

Finally, Chapter 6 summarises the key findings of this thesis and outlines directions
for future research.
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Chapter 2

Recursive Bayesian online
learning

In this chapter, we approach the problem of parametric online learning from a Bayesian
filtering perspective. Here, the focus is the recursive estimation of the posterior density
over model parameters. We review how the Kalman filter can be viewed as a form of
Bayesian online learning for linear models, and explore methods to incorporate non-linear
measurement models, such as those used in neural networks.

The remainder of this chapter establishes the foundations for both sequential closed-
form and fixed-point methods to compute or approximate the posterior density.

Section 2.1 introduces the problem of prequential inference and the recursive estima-
tion of model parameters. Section 2.2 reviews the multivariate Gaussian and its properties,
which we use throughout the thesis. Section 2.3 presents a recursive approach for up-
dating model parameters assuming that both, the parameter dynamics model and the
measurement model, are Gaussian and linear. This includes a recursive variant of the
Ridge regression algorithm. Section 2.4 relaxes the assumptions of linear and Gaussian
measurement models and presents various methods to obtain closed-form approximations
of the posterior density under non-linear measurement models. Section 2.5 introduces
state-space models in the context of sequential learning and demonstrates how filtering
generalises probabilistic sequential learning of model parameters. Finally, Section 2.8
concludes the chapter with an outlook for the remainder of this thesis.

2.1 Recursive Bayesian inference

Consider a sequence of measurements y1:t = (y1, . . . ,yt) with yi ∈ Y ⊆ Ro and features
x1:t = (x1, . . . ,xt) with xi ∈ RM , where o,M ∈ N. Let Dt = (xt,yt) be a datapoint
and D1:t = (D1, . . . ,Dt) be the dataset at time t. We are interested in the one-step-ahead
(prequential) forecast (Gama et al., 2008) for yt+1 conditioned on the feature xt+1 and
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the data up to time t, i.e., D1:t. In our setting, one observes xt+1 just before observing
yt+1; thus, to make a prediction about yt+1, we have both D1:t and xt+1 at our disposal.1

To establish a link between the features xt+1 and the measurement yt+1, we consider
a probability density of the measurement p(yt+1 |θ,xt+1) such that∫

yt p(yt |θt,xt)dyt = h(θ,xt). (2.1)

Here h : RD × RM → Ro is called the measurement function. Following a probabilistic
approach, an estimate for yt+1, having data D1:t, features xt+1, and the measurement
function h is given by the posterior predictive mean

ŷt+1 := Ep[h(θ,xt+1) | D1:t] =
∫
h(θ,xt+1) p(θ | D1:t)dθ, (2.2)

where p(θ | D1:t) is the posterior density over model parameters.
Throughout this work, the notation p(yt |θ,xt) represents the probability density

of the measurement yt, given the latent (unknown) model parameters θ ∈ RD and
the features xt. Similarly, p(θ | D1:t) represents the probability density of the model
parameters θ given the data up to time t—it reflects the belief over the model parameters
after having seen t datapoints.

A natural approach to construct the posterior density p(θ | D1:t), wheneverD1:T arrives
in a stream, i.e., one datapoint Dt at a time, is through Bayes’ rule—suppose we have
access to p(θ | D1:t−1), with t < T , and we are presented with Dt = (xt,yt), which we
model through the likelihood p(yt |θ,xt) Then,

p(θ | D1:t) ∝ p(θ | D1:t−1) p(Dt |θ)

= p(θ | D1:t−1)︸ ︷︷ ︸
prior density

p(yt |θ,xt)︸ ︷︷ ︸
likelihood

, (2.3)

where the second line in (2.3) follows from the assumption of an exogenous xt.
Given the initial condition p(θ) = p(θ | D1:0), with D1:0 = {}, recursive and closed-

form estimation of (2.3) is obtained whenever p(θ | D1:t−1) and p(yt |θ,xt) are conjugate,
i.e., the functional form of p(θ | D1:t) is that of p(θ | D1:t−1) (Robert et al., 2007, Section
3.3). As a consequence, the parameterisation over model parameters is characterised in
such a way that it only depends on a set of parameters, which are recursively updated.

2.1.1 Example tasks

Here, we give some examples of machine learning tasks which can be tackled using recur-
sive inference. We group these examples into unsupervised tasks and supervised tasks.

1The features xt+1 and measurements yt+1 can span different time-frames. For example, xt+1 can
be the state of the stock market at a fixed date and yt+1 is the return on a stock some days into the
future.

20



Unsupervised tasks

Unsupervised tasks involve estimating unobservable quantities of interest from the data
D1:t. Below, we present three common tasks in this category.

Segmentation Segmentation involves partitioning the data stream into contiguous sub-
sequences or “blocks” {D1:t1 ,Dt1+1:t2 , . . .}, where the DGP for each block is governed by
a sequence of unknown functions (Barry and Hartigan, 1992). The goal is to determine
the points in time when a new block begins, known as changepoints. This is useful in
many applications, such as finance, where detecting changes in market trends is critical
(see e.g., Arroyo et al. (2022)). In this setting, non-stationarity is assumed to be abrupt
and occurring at unknown points in time. We study an example in Section 3.5.3. For a
survey of segmentation methods, see e.g, Aminikhanghahi and Cook (2017); Gupta et al.
(2024).

Filtering using state-space models (SSM) Filtering estimates an underlying la-
tent state θt that evolves over time (often representing a meaningful concept). The
posterior estimate of θt is computed by applying Bayesian inference to the corresponding
state space model (SSM), which determines the choice of (M.1: likelihood), and how the
state changes over time, through the choice of (M.3: prior). Examples include estimating
the state of the atmosphere (Evensen, 1994), tracking the position of a moving object
(Battin, 1982), or recovering a signal from a noisy system (Basseville et al., 1993). In this
setting, non-stationarity is usually assumed to be continuous and occurring at possible
time-varying rates. For a survey of filtering methods, see e.g., Chen et al. (2003).

Segmentation using Switching state-space models (SSSM) In this task, the mod-
eller extends the standard SSM with a set of discrete latent variables ψt ∈ {1, . . . ,K},
which may change value at each time step according to a state transition matrix. The
parameters of the rest of the DGP depend on the discrete state ψt. The objective is to
infer the sequence of underlying discrete states that best “explains” the observed data
(Ostendorf et al., 1996; Ghahramani and Hinton, 2000; Beal et al., 2001; Fox et al., 2007;
Van Gael et al., 2008; Linderman et al., 2017). In this context, non-stationarity arises
from the switching behaviour of the underlying discrete process.

Supervised tasks

Supervised tasks involve predicting a measurable outcome yt. Unlike unsupervised tasks,
this allows the performance of the model to be assessed objectively, since we can compare
the prediction to the actual observation. We present three common tasks in this category
below.
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Prequential forecasting Prequential (or one-step-ahead) forecasting (Gama et al.,
2008) seeks to predict the value yt+1 given D1:t and xt+1. This is distinct from time-
series forecasting, which typically does not consider exogenous variables xt, and thus can
forecast (or “roll out”) many steps into the future. We study an example in Section 3.5.1.
For a survey on prequential forecasting under non-stationarity, see e.g., Lu et al. (2018).

Online continual learning (OCL) OCL is a broad term used for learning regression
or classification models online, typically with neural networks. These methods usually
assume that the underlying data generating mechanism could shift. The objective of
OCL methods is to train a model that performs consistently across both past and future
data, rather than just focusing on future forecasting (Cai et al., 2021). The changepoints
(corresponding to different “tasks”) may or may not be known. This setting addresses
the stability-plasticity dilemma, focusing on retaining previously learned knowledge while
adapting to new tasks. We study an example of OCL for classification, when the task
boundaries are not known, in Section 3.5.1. For a survey on recent methods for OCL, see
e.g., Gunasekara et al. (2023).

Contextual bandits In contextual bandit problems, the agent is presented with fea-
tures xt+1, and must choose an action (arm) that yields the highest expected reward (Li
et al., 2010). We let yt+1 ∈ RA where A > 2 is the number of possible actions; this
is a vector where the a-th entry contains the reward one would have obtained had one
chosen arm a. Let y(a)

t be the observed reward at time t after choosing arm a, i.e., the
a-th entry of yt. A popular approach for choosing the optimal action (while tackling
the exploration-exploitation tradeoff) at each step is Thomson sampling (TS) (Thomp-
son, 1933), which in our setting works as follows: first, sample a parameter vector from
the posterior, θ̃t from p(θt | D1:t); then, greedily choose the best arm (the one with the
highest expected payoff), at+1 = arg maxa ŷ

(a)
t+1, where ŷt+1 = h(θ̃t;xt+1); and ŷ(a)

t+1 is
the a-th entry of ŷt+1; finally, receive a reward y(at+1)

t+1 . The goal is to select a sequence
of arms {a1, . . . , aT } that maximises the cumulative reward

∑T
t=1 y

(at)
t . TS for contex-

tual bandits has been used in a number of papers, see e.g., Mellor and Shapiro (2013);
Duran-Martin et al. (2022); Cartea et al. (2023a); Alami (2023); Liu et al. (2023).

2.2 The multivariate Gaussian

An important concept that we use throughout this thesis is that of the multivariate
Gaussian density.

Definition 2.1. Let x ∈ Ro, µ ∈ Ro, and Σ an (o × o) positive-definite matrix. The
density function of a multivariate Gaussian with mean µ and covariance matrix Σ is

N (x |µ,Σ) = (2π)−o/2 |Σ|−1/2 exp
(
−1

2(x− µ)⊺Σ−1(x− µ)
)
. (2.4)
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Gaussian densities are, in many cases, used for computational reasons. This is because
it has mathematical properties that allows us to work with equations of the form (2.2) and
retain a Gaussian structure. In particular, the following two propositions will be extensively
used through this chapter to derive recursive updates.

Proposition 2.2. Let x ∈ RM and y ∈ Ro be two random vectors such that p(x) =
N (x |m,P) and p(y |x) = N (y |Hx + b,S). The joint density for (x,y) is also
multivariate Gaussian p(x,y) = N

(
(x,y) |µx,y,Σx,y

)
with

µx,y =
[
m Hm+ b

]
, (2.5)

Σx,y =
[

P P H⊺

H P H PH⊺ + S

]
. (2.6)

Proof. See Appendix A in Särkkä and Svensson (2023).

Proposition 2.3. Let x ∈ RM and y ∈ Ro be two random vectors with joint density
function

p(x,y) = N
([
x

y

] ∣∣∣ [a
b

]
,

[
A C⊺

C B

])
. (2.7)

Then

p(x) = N (x |a,A), (2.8)

p(y) = N (y | b,B), (2.9)

p(x |y) = N (x |a+ CB−1(y − b),A−CB−1C⊺), (2.10)

p(y |x) = N (y | b+ C⊺A−1(x− a),B−C⊺AC). (2.11)

Proof. See Appendix A in Särkkä and Svensson (2023).

2.3 Linear and Gaussian measurement models

In this section, we present an algorithm to compute recursive updates whenever the prior
density at time t is Gaussian, i.e., p(θ | D1:t−1) = N (θ |µt−1,Σt−1), and the measure-
ment model is linear and univariate Gaussian, i.e., p(yt |θ,xt) = N (yt |x⊺

t θ, β
2) with

known variance β2. Here h(θ,xt) = x⊺
t θ and, as we will show, Ep[h(θ,xt) | D1:t] =

h(µt,xt) = x⊺
t µt. The assumption of Gaussianity is convenient because it (i) provides

a prior over each model parameter that spans the real line, (ii) preserves closed-form up-
dates to the posterior p(θ | D1:t), and (iii) its first and second moments fully characterise
the density.

A classical statistical model that can be interpreted having a Gaussian prior for the
model parameters p(θ) and Gaussian measurement model p(yt |θ,xt) is Ridge regression.
We recall the Ridge regression in the proposition below.
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Proposition 2.4 (Ridge regression). Consider the dataset D1:T such that Dt = (xt ∈
RM , yt ∈ R), with measurement model p(yt |θ,xt) = N (yt |x⊺

t θ, β
2), with β > 0, and

and prior p(θ) = N
(
θ |0, α2 I

)
, for α > 0. Suppose Cov (yi, yj |θ,xi,xj) = 0 for all

i ̸= j. Then,
µ̂T := E[θ | D1:T ] = (X⊺ X + λ I)−1X⊺ Y (2.12)

with X = [x⊺
1 , . . . ,x

⊺
T ]⊺, Y = [y1, . . . , yT ]⊺, and λ = β2/α2.

Proof. See Section 3.4.1 in Hastie et al. (2009).

If the data D1:T arrives in a stream, we can estimate the posterior density p(θ | D1:t)
for t = 1, . . . , T using Bayes’ rule (2.3).

Proposition 2.5 (Multivariate recursive Bayesian linear regression). Consider the dataset
D1:T with Dt = (xt ∈ RM ,yt ∈ Ro), and the measurement model p(yt |θ,xt) =
N (yt |x⊺

t θ,Rt) with known covariance matrix Rt. Suppose Cov (yi,yj |θ) = 0 for
i ̸= q. Let p(θ) = N (θ |µ0,Σ0) be the initial prior density over the model parameters.
Then, the posterior density at time t takes the form p(θ | D1:t) = N (θ |µt,Σt) with

St = x⊺
tΣt−1xt + Rt,

Kt = Σt−1xtS−1
t ,

µt = µt−1 + Kt (yt − x⊺
t µt−1),

Σt = (I−Ktxt) Σt−1.

(2.13)

Proof. Following an induction argument, suppose p(θ | D1:t−1) = N (θ |µt−1,Σt−1).
From proposition 2.2, the joint density for (θ,yt), conditioned on D1:t−1 and xt takes
the form of a Gaussian density with mean[

µ⊺
t−1 x⊺

t µt−1

]⊺
(2.14)

and covariance matrix [
Σt−1 Σt−1 xt

x⊺
t Σt−1 x⊺

t Σt−1xt + Rt

]
. (2.15)

Then, by Proposition 2.3, the density for θ conditioned on D1:t−1, xt and yt is Gaussian
with mean and covariance matrix given by

St = x⊺
t Σt−1xt + Rt,

µt = µt−1 + Σt−1xtS−1
t (yt − µ⊺

t−1xt),

Σt−1 = Σt−1 −Σt−1x
⊺Σ−1

t x
⊺Σt−1.

(2.16)

Proposition 2.6. The estimate of the mean µT in (2.13) is the exact posterior mean,
i.e., µT = E[θ | D1:T ], and matches the Ridge regression estimate (2.12) whenever o = 1,
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µ0 = 0, Σ0 = α2 I, and Rt = β2 for all t ∈ {1, . . . , T}.

Proof. See Kelly (1990); Ismail and Principe (1996).

Proposition 2.6 shows that, in the linear and Gaussian case, the final estimate of
the recursive update of model parameters matches the offline batch estimate of model
parameters. We summarise the recursive Bayesian linear regression method in Algorithm
1.

Algorithm 1 Pseudocode for the recursive Bayesian linear regression.
Require: D1:T , p(θ) = N (θ |µ0,Σ0)

1: for t = 1, . . . , T do
2: St = x⊺

t Σt−1xt + Rt

3: µt ← µt−1 + Σt−1xtS−1
t (yt − µ⊺

t−1xt)
4: Σt ← Σt−1 −Σt−1x

⊺
tΣ−1

t x
⊺
tΣt−1

5: p(θ | D1:t) = N (θ |µt, Σt)
6: end for

The following example shows a numerical analysis of the results in Proposition 2.4
and Proposition 2.5

2.3.1 Example: recursive and batch Ridge regression

Consider the dataset D1:T with Dt = (xt ∈ R2, yt ∈ R) such that yt = x⊺
t θ + et, with

θ ∈ R2 the true model parameters and p(et) = N (et | 0, 1). The left panel in Figure
2.1 shows the estimate for µt ∈ R2 along with the Ridge estimate µ̂t. The right panel
in Figure 2.1 shows the root mean squared error (RMSE) evaluated over a held-out test
set D̂1:t for the Ridge estimate and the recursive-Bayes estimate µt as a function of the
number of datapoints processed. We observe that the parameters of the recursive-Bayes

Figure 2.1: (Left panel) Mean estimate of the parameters. The solid lines correspond to the recursive-
Bayes estimate of the mean. The dashed lines correspond to the offline estimate of the mean using Ridge
regression. (Right panel) RMSE on a held-out test set.

estimate µt tend to, and eventually match, the Ridge estimate of model parameters. As a
consequence, the RMSE on the held-out set for the recursive-Bayes estimate match that
of the Ridge estimate at T .
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2.4 Non-Gaussian and non-linear measurement models

In some scenarios, the assumption of a linear Gaussian measurement model can be overly
restrictive. For instance, when the measurement model ht is parametrised by a neural
network, ht is a non-linear function of θ. Alternatively, in linear classification problems,
the measurement model is best represented by a Bernoulli mass function, with mean
σ(θ⊺ xt), where σ : R→ [0, 1] is the sigmoid function.

In these scenarios— when the measurement model is either non-Gaussian or non-
linear—the likelihood is no longer conjugate to a Gaussian prior over the model parameters.
As a result, the posterior density, such as those that use (2.13), are no longer available.
To address this challenge, we rely on approximations to the posterior density or Monte
Carlo (MC) methods.

MC methods are commonly used to sample from (2.3) when an analytical form is either
unknown or intractable. In these cases, (2.2) is approximated by the samples from the
posterior. A wealth of literature exists on sample-based approaches for posterior inference.
For detailed discussions, see Barbu et al. (2020) for Markov Chain Monte Carlo methods,
Doucet et al. (2009) for online particle filtering, and Naesseth et al. (2019) for batch
sequential Monte Carlo (SMC) techniques.

Functional approximations to the posterior, which is the primary focus in this thesis,
include techniques such as variational Bayes or linearisation schemes. These computations
are more tractable in many practical scenarios. We will nonetheless provide examples
where sample-based methods are employed.

2.4.1 Variational Bayes

A popular approach to approximate the posterior density is through the use of variational
Bayes (VB). In VB, the posterior density is typically written as an optimisation problem
over a set of candidate densities living in a set Q that most closely resembles the posterior
density p(θ | D1:t) up to a normalisation constant. In this text, our notion of closeness
between the density q ∈ Q and the posterior density is based on the Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) which we recall below.

Definition 2.7. (Kullback-Leibler divergence) Let p and q be probability densities
defined over the same domain. Then, the KL divergence of q from p is defined as

DKL (q(θ) || p(θ)) := Eq
[
log
(
q(θ)
p(θ)

)]
=
∫
q(θ)

[
log
(
q(θ)
p(θ)

)]
dθ. (2.17)

See Soch et al. (2020).
A useful result that we will use throughout the thesis is that of the form of the KL

divergence between two multivariate Gaussians.

Proposition 2.8. Let p1(x) = N (x |m1, S1) and p2(x) = N (x |m2, S2) be two M -
dimensional multivariate Gaussian densities. Then, the KL divergence between p1 and p2
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takes the form

DKL (p1(x) || p2(x))

= DKL (N (x |m1, S1) || N (x |m2, S2))

= 1
2
[
Tr
(
S−1

2 S1
)

+ (m2 −m1)⊺S−1
2 (m2 −m1)−M + log (|S2|/|S1|)

]
.

(2.18)

Proof. See Section 6.2.3 in Murphy (2022).

Armed with a notion of closeness, we now define the objective of a VB method.

Definition 2.9. (variational approximation) Let p be a density with support dom(p)
and Q a collection of candidate densities with dom(q) = dom(p) for all q ∈ Q. The
variational approximation of p, under a KL divergence, selects q∗ ∈ Q according to the
criterion

q∗(θ) = arg min
q∈Q

DKL (q(θ) || p(θ)) . (2.19)

Criterion 2.19 recovers exact Bayesian updating (2.3) if Q includes the Bayesian pos-
terior within its family, i.e., q∗(θ) = p(θ) if p ∈ Q (Knoblauch et al., 2022).

Examples of VB for estimation of model parameters include the Bayes-by-backpropagation
method (BBB) of Blundell et al. (2015), which assumes a diagonal posterior covariance
(more expressive forms are also possible). Nguyen et al. (2017) extended BBB to non-
stationary settings. More recent approaches involve recursive estimation, such as the
recursive variational Gaussian approximation (R-VGA) method of Lambert et al. (2022)
which uses a full rank Gaussian variational approximation (see Section 2.4.2); the limited-
memory RVGA (L-RVGA) method of Lambert et al. (2023), which uses a diagonal plus
low-rank (DLR) Gaussian variational approximation; the Bayesian online natural gradi-
ent (BONG) method of Jones et al. (2024), which combines the DLR approximation
with EKF-style linearisation for additional speedups; and the natural gradient Gaussian
approximation (NANO) method of Cao et al. (2024), which uses a diagonal Gaussian
approximation similar to VD-EKF in Chang et al. (2022).

The following section outlines an important VB method for recursive estimation of a
Gaussian density under non-linear measurement functions and non-Gaussian measurement
models.

2.4.2 The recursive variational Gaussian approximation

The recursive variational Gaussian approximation (R-VGA), introduced in Lambert et al.
(2022), constructs a sequence of variational Gaussian approximations. We outline this
method below

Definition 2.10 (R-VGA). Consider the dataset D1:T with Dt = (xt ∈ RM ,yt ∈ B ⊆
Ro). Let q0(θ) = N (θ |µ0,Σ0) with prior mean µ0 ∈ RD and (D×D) covariance matrix
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Σ0. The R-VGA method estimates a VB density for the yt measurement according to

qt(θ) = arg min
q∈Q

DKL (q(θ) || p(yt |θ) qt−1(θ) /Zt) , (2.20)

where Q is the family of multivariate Gaussian densities and Zt =
∫
p(yt |θ) qt−1(θ)dθ.

Because the Gaussian density is characterised by its mean and covariance matrix, the VB
criteria (2.20) can be written as

µt,Σt = arg min
µ,Σ

DKL
(
N (θ |µ,Σ) || p(yt |θ)N (θ |µt−1,Σt−1) /Zt

)
. (2.21)

If the measurement model is absolutely continuous with respect to the model param-
eters θ and the observations y1:T are independent conditionally on θ, then the R-VGA is
show to have updates for qt (and hence µt and Σt) as

µt = µt−1 + Σt−1 Eqt
[∇θ log p(yt |θ,xt)],

Σ−1
t = Σ−1

t − Eqt

[
∇2

θ log p(yt |θ,xt)
]
.

(2.22)

See Theorem 1 in Lambert et al. (2022) for a proof.

The right hand side of (2.22) requires the computation of the expected gradient and
hessian of the log-likelihood according to the variational approximation at time t. In this
sense, (2.22) correspond to an implicit update, i.e., the estimate of qt is obtained after
multiple inner iterations of (2.22). We summarise the R-VGA method in Algorithm 2.
In Algorithm 2, the terms Eqt

[∇θ log p(yt |θ,xt)] and Eqt
[∇2

θ log p(yt |θ,xt)] can be

Algorithm 2 Pseudocode for the R-VGA.
Require: dataset D1:T with Dt = (xt,yt)
Require: initial state of model parameters q0(θ) = N (θ |µ0,Σ0)
Require: number of iterations I ≥ 1

1: for t = 1, . . . , T do
2: // Initialise µt and Σt

3: µt ← µt−1
4: Σt ← Σt−1
5: qt(θ) = N (θ |µt,Σt)
6: for i = 1, . . . , I do
7: µt ← µt−1 + Σt−1 Eqt [∇θ log p(yt |θ,xt)]
8: Σ−1

t ← Σ−1
t − Eqt

[∇2
θ log p(yt |θ,xt)]

9: qt(θ) = N (θ |µt,Σt)
10: end for
11: end for

estimated through sampling—because qt(θ) = N (θ |µt, Σt), then

Eqt
[g(θ)] ≈ 1

S

S∑
s=1

g
(
θ(s)

)
, (2.23)
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where g : RD → RK , K ≥ 1, S ≥ 1 is the number of samples, and θ(s) is a sample from
a multivariate Gaussian with mean µt and covariance matrix Σt.

The terms in (2.22) resemble those in (2.16). In fact, the next proposition shows that
R-VGA has the Bayesian recursive linear regression as a special case.

Proposition 2.11. Consider a linear Gaussian model for yt ∈ Ro, so that p(yt |θ,xt) =
N (yt |x⊺

t θ,Rt). Then the R-VGA update (2.22) matches that of (2.13). As a conse-
quence, it also matches the true posterior density p(θt | D1:t).

Proof. See Theorem 2 in Lambert et al. (2022).

As we have seen, the R-VGA method provides a recursive approach to approximate the
posterior density whenever the first- and second-order derivates of the log-measurement
density are defined. In the following two experiments, we evaluate the R-VGA methods.
Example 2.4.3 sequentially estimates the parameters of a logistic regression model and
Example 2.4.4 sequentially estimates the parameters of a neural network to tackle a non-
linear classification problem.

2.4.3 Experiment: R-VGA for logistic regression

In this experiment, we consider the problem of sequential estimation of model parameters
for a binary classification problem. Assume that we observe a sequence of datapoints
D1:T with Dt = (xt ∈ RM ,yt ∈ {0, 1}). We model the measurements yt as Bernoulli
with mean σ(h(θ,xt)), i.e.,

p(y |θ,x) = Bern (y |σ(h(θ,x)) . (2.24)

Here, σ(z) = (1 + exp(−z))−1 is the sigmoid function and Bern(y | p) = py (1 − p)1−y

is the Bernoulli probability mass function. For the logistic regression, we have h(θ,x) =
θ⊺ x. As a consequence, the log-likelihood is given by

log p(yt |θ,xt) = yt log σ(θ⊺xt) + (1− yt) log(1− σ(θ⊺ xt)). (2.25)

To apply the R-VGA to the logistic regression model (2.24), we require to compute the
first and second-order derivatives of (2.25), which can be readily done either explicitly
or implicitly with the use of autodifferentiation computer libraries such as Jax (Bradbury
et al., 2018), as well as sampling from the posterior density, as shown in (2.23). For this
experiment, we take p(θ0) = N (θ |0, I).

Figure 2.2 shows the decision boundaries for the logistic regression model as a function
of the number of processed measurements. Next, Figure 2.3 shows the evolution of
the mean estimate of the model parameters for the logistic regression and two standard
deviations. We observe that the model parameters gradually convergence to the batch
(offline) version of logistic regression. For details on the offline version, see Section 10.2.7
in Murphy (2022).
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Figure 2.2: Decision boundaries for the logistic regression model as a function of the number of processed
measurements.

Figure 2.3: The solid lines show the posterior mean estimate of model parameters and two standard
deviations. The dashed lines show the batch estimate of the logistic regression parameters.

2.4.4 Experiment: recursive learning of neural networks

Because the R-VGA update equations (2.22) require only the computation of the Jaco-
bian and the hessian of the log-likelihood, we can apply the R-VGA methodology to any
probabilistic model whose Jacobian and hessian of the log-likelihood are defined.

In this example, we consider the problem of non-linear binary classification problem.
We consider a Bernoulli measurement model, whose log-likelihood is given by

log p(yt |θ,x) = yt log σ(h(θ;x)) + (1− yt) log (1− σ(h(θ;x))) , (2.26)

with h : RD ×RM → R a neural network. In particular, we consider a three-hidden-layer
multi-layered perceptron with 5 units per layer and leakyReLU activation function. We
run the R-VGA algorithm with I = 4 inner iterations and S = 1, 000 samples following
(2.23). To make a prediction at time t, we take the previous mean, i.e., µt−1 and use
this value to make a forecast with the features xt, i.e., ŷt = h(µt−1,xt).

Figure 2.4 shows the predictions made by the decision boundary σ(h(µt,x)) for x ∈
[−2, 2]2 as a function of t. The orange and blue dots represent the past datapoints and
the cyan-coloured datapoints represents the datapoint observed at t.
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Figure 2.4: Decision boundaries for the classification problem using a neural network trained using the
R-VGA. The crimson line shows the decision boundary at 0.5. The dot coloured in cyan shows the
observation seen at time t.

Next, Figure 2.5 shows the expanding prequential accuracy as a function of the number
of processed observations. We define the prequential accuracy as 1.0 if ŷt = yt and 0.0
otherwise. For this experiment, we observe that accuracy of the R-VGA rapidly increases,

Figure 2.5: Cumulative prequential accuracy for the non-linear classification problem trained using the
R-VGA.

and then plateaus for 100 steps before its predictive power starts to increase.

2.5 State-space-models for sequential supervised learn-
ing

The methods introduced in Sections 2.3 and 2.4 assume that the measurement model
accurately represents the true data-generating process. This assumption allows us, given
access to x and p(θ | D1:t), to sample random variables ŷ whose density is p(y |θ,x). As
a consequence, and under certain conditions, the Bayesian posterior density can be shown
to converge to a point estimate (Van der Vaart, 2000, Sec. 10.2).

However, the assumption of a well-specified likelihood may not always hold in prac-
tice. For instance, in neural network training (as discussed in Example 2.4.4), the choice
of measurement model h is often driven by practical considerations rather than precise
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knowledge of the true data-generating process. In these scenarios, we must adapt to the
changing environment or adjust our misspecified model to make accurate predictions.

One such adaptation scheme involves the assumption of time-varying parameters.
Instead of assuming a random vector θ, whose posterior density we wish to estimate, we
now assume that the model parameters follow a stochastic process that evolve over time
according to a state-transition function f : RD → RD, perturbed by zero-mean dynamic
noise ut ∈ RD with Var(ut) = Qt. This is commonly referred to as the state-space
model assumption. We define a state-space model below.

Definition 2.12 (state-space model). A state-space model (SSM) is a signal plus noise
model of the form

θt = f(θt−1) + ut,

yt = h(θt,xt) + et,
(2.27)

with f : RD → RD the state-transition function, h : RD × RM → Ro the measurement
function, Var(ut) = Qt a D × D positive semidefinite matrix, Var(et) = Rt a o × o
positive definite matrix, and xt ∈ RM exogenous features.

If one assumes zero-mean Gaussian priors with known covariance matrices for ut and
et, the terms (2.27) can be represented as

p(θt |θt−1) = N (θt | f(θt−1),Qt),

p(yt |θt) = N (yt |h(θt,xt),Rt).
(2.28)

2.5.1 Linear SSMs and the Kalman filter

A well-known choice of SSM is that of linear SSMs with known dynamics covariance Qt,
measurement covariance Rt. In this scenario, the SSM takes the form

θt = Ft θt−1 + ut,

yt = Ht θt + et,
(2.29)

where Ft is the (D ×D) transition matrix and Ht is the (o×D) projection matrix.
The next proposition shows that estimation of the posterior density p(θt | D1:t) assum-

ing (2.29) can be done recursively following the so-called Kalman filter (KF) equations.

Proposition 2.13. Assume an initial Gaussian prior density for model parameters p(θ0) =
N (θ0 |µ0, Σ0) and known Qt, Rt for all t. Then, the posterior predictive density for
model parameters conditioned on D1:t−1 is Gaussian of the form

p(θt | D1:t−1) = N
(
θt |µt|t−1, Σt|t−1

)
, (2.30)

with predictive mean and predictive covariance

µt|t−1 = Ft µt−1,

Σt|t−1 = Ft Σt−1 F⊺
t + Qt.

(2.31)
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Furthermore, the density for model parameters, conditioned on D1:t is Gaussian of the
form

p(θt | D1:t) = N (θt |µt, Σt) , (2.32)

with
St = Ht Σt|t−1 H⊺

t + Rt,

Kt = Σt|t−1H⊺
t S−1

t ,

µt = µt|t−1 + Kt (yt −Ht µt|t−1),

Σt = (I−KtH⊺
t ) Σt|t−1.

(2.33)

Here, µt and Σt are the posterior mean and covariance matrix respectively and Kt is the
gain matrix.

Proof. The result follows as a direct consequence of Proposition 2.2 and Proposition 2.3.
For details, see Theorem 6.6 in Särkkä and Svensson (2023).

Remark 2.14. Proposition 2.13 with Ht = x⊺
t and Qt = 0 I recovers the recursive

Bayesian linear regression shown in Algorithm 1.

Algorithm 3 Predict and update steps for the Kalman filter for t ≥ 1 and given prior
mean µt−1 and covariance Σt−1.
Require: Dt = (xt,yt) // datapoint
Require: (µt−1,Σt−1) // previous mean and covariance
Require: Ht // projection matrix
Require: Qt,Rt // dynamics covariance and measurement-noise covariance

1: // predict step
2: µt|t−1 ← Ftµt−1
3: Σt|t−1 ← FtΣt−1F⊺

t + Qt

4: //update step
5: St = Ht Σt−1H⊺

t + Rt

6: Kt = Σt|t−1H⊺
t S−1

t

7: µt ← µt−1 + Kt(yt −Htµt|t−1)
8: Σt ← Σt|t−1 −KtH⊺

tΣt|t−1
9: return (µt,Σt)

An alternative formulation of the KF update equations is expressed through a rule
that updates the posterior prediction matrix Σ−1

t . We formalise this result below.

Proposition 2.15 (Kalman filter with precision matrix updates). Assume an initial Gaus-
sian prior density for model parameters p(θ0) = N (θ0 |µ0, Σ0) and known Qt, Rt for
all t. Then, the density for model parameters, conditioned on D1:t is Gaussian of the form

p(θt | D1:t) = N (θt |µt, Σt) , (2.34)
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with
Σ−1
t = Σ−1

t|t−1 + H⊺
t R−1

t Ht,

Kt = Σt H⊺
t R−1

t ,

µt = µt|t−1 + Kt (yt −Ht µt|t−1),

(2.35)

Proof. Let Σ−1
t|t−1 be a precision matrix, Ht ∈ Ro×D, and Rt the covariance of the

measurement process. First, we show that Σ−1
t = Σ−1

t|t−1 + H⊺
t R−1

t Ht.

By algebraic manipulation of the of the posterior covariance (2.33), the Woodbury
identity, and the definition of St, it follows that

Σ−1
t =

(
(ID −Kt H⊺

t ) Σt|t−1
)−1

= Σ−1
t|t−1

(
ID −Σt|t−1 H⊺

t S−1
t Ht

)−1

= Σ−1
t|t−1

[
ID + Σt|t−1 H⊺

t (St −Ht Σt|t−1 H⊺
t )−1Ht

]
= Σ−1

t|t−1

[
ID + Σt|t−1 H⊺

t (Ht Σ−1
t|t−1 H⊺

t + Rt −Ht Σt|t−1 H⊺
t )−1Ht

]
= Σ−1

t|t−1
[
ID + Σt|t−1 H⊺

tR−1
t Ht

]
= Σ−1

t|t−1 + H⊺
tR−1

t Ht.

Next, let Σ−1
t be the posterior precision matrix and R−1

t be the precision matrix of
the observation at time t. The precision matrix of the innovations take the form

S−1
t = R−1

t −R−1
t Ht Σ−1

t H⊺
t R−1

t . (2.36)

To see this, observe that Σ−1
t|t−1 = Σ−1

t −H⊺
t R−1

t Ht, and thus

S−1
t =

(
Ht Σt|t−1 H⊺

t + Rt

)−1

= R−1
t −R−1

t Ht

(
Σ−1
t|t−1 + H⊺

t R−1
t Ht

)−1
H⊺
t R−1

t

= R−1
t −R−1

t Ht

(
Σ−1
t −H⊺

t R−1
t Ht + H⊺

t R−1
t Ht

)−1 H⊺
t R−1

t

= R−1
t −R−1

t HtΣ−1
t H⊺

t R−1
t .

Finally, the Kalman gain matrix takes the form

Kt = Σt H⊺
t R−1

t . (2.37)

This is because

Σt|t−1 =
(
Σ−1
t −H⊺

t R−1
t Ht

)−1

= Σt + Σt H⊺
t (Rt −Ht Σt H⊺

t )−1 HtΣt,
(2.38)
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and, following Proposition 2.13, the Kalman gain matrix takes the form

Kt

= Σt|t−1 H⊺
t S−1

t

=
(

Σt + Σt H⊺
t (Rt −Ht Σt H⊺

t )−1 HtΣt

)
H⊺
t S−1

t

= Σt H⊺
t R−1

t + Σt H−1
t R−1

t

[
−Ht Σt H⊺

t R−1
t + (Io −HtΣt H⊺

t R−1
t )−1 HtΣt H⊺

t S−1
t

]
.

(2.39)
We need to show that the second term is a zero-valued matrix. This amounts to showing
that −Ht Σt H⊺

t R−1
t + (Io −HtΣt H⊺

t R−1
t )−1 HtΣtH⊺

t S−1
t = 0. To show this, note

that

−Ht Σt H⊺
t R−1

t + (Io −HtΣt H⊺
t R−1

t )−1 HtΣt H⊺
t S−1

t

= −Ht Σt H⊺
t R−1

t + (Io −HtΣt H⊺
t R−1

t )−1 HtΣt H⊺
t R−1

t

(
Io −HtΣ−1

t H⊺
t R−1

t

)
= −Io + (Io −Ht Σt H⊺

t R−1
t ) + (Io −HtΣt H⊺

t R−1
t )−1 HtΣt H⊺

t R−1
t

(
Io −HtΣ−1

t H⊺
t R−1

t

)
= −Io +

[
Io + (Io −HtΣt H⊺

t R−1
t )−1 HtΣtH⊺

t R−1
t

]
(Io −Ht Σt H⊺

t R−1
t )

= −Io + (Io −HtΣt H⊺
t R−1

t )−1 [Io −HtΣt H⊺
t R−1

t + HtΣtH⊺
t R−1

t

]
(Io −Ht Σt H⊺

t R−1
t )

= −Io + (Io −HtΣt H⊺
t R−1

t )−1 (Io −Ht Σt H⊺
t R−1

t )

= 0,
(2.40)

which concludes the proof.

Algorithm 4 predict and update steps at time t for the Kalman filter under precision
updates.
Require: Dt = (xt,yt) // datapoint
Require: (µt−1,Σ−1

t−1) // previous mean and precision matrix
Require: Ht // projection matrix
Require: Qt,Rt // dynamics covariance and measurement-noise covariance

1: // predict step
2: µt|t−1 ← Ftµt−1
3: Σt|t−1 ← FtΣt−1F⊺

t + Qt

4: //update step
5: Σ−1

t ← Σ−1
t|t−1 + H⊺

t R−1
t Ht

6: Kt = ΣtH⊺
t R−1

t

7: µt ← µt−1 + Kt(yt −Htµt|t−1)
8: return (µt,Σ−1

t )

2.5.2 Experiment: the Kalman filter for non-stationary linear re-
gression

In the classical filtering literature, the term Qt is typically used to model system dynamics.
However, it has long been known that inflating Qt can compensate for unmodelled errors
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(Kelly, 1990; Kuhl, 1990). We study this result in the context of online learning in the
following experiment.

We evaluate the performance of the Kalman Filter (KF) in a linear regression problem
with varying levels of Qt = q I, where q ≥ 0 is the dynamics covariance inflation factor.
This allows us to explore how inflating Qt can handle unmodelled errors in non-stationary
data streams. Recall that Qt = 0 I corresponds to the static online regression problem
discussed in Section 2.3, while increasing Qt introduces dynamics in the model parameters.

We consider a piece-wise linear regression model with standard-Gaussian errors, i.e.,
p(et) = N (et | 0, 1). The features are sampled according to xt ∼ U [−2, 2], and the
measurements are sampled according to yt ∼ N

(
ϕ(xt)⊺θt, 1

)
with ϕ(x) = (1, x, x2).

At every timestep, the parameters take the value

θt =

θt−1 w.p. 1− pϵ,

U [−3, 3]3 w.p. pϵ,
(2.41)

with pϵ = 0.001, and θ0 ∼ U [−3, 3]3. Figure 2.6 shows a sample run of this process.

Figure 2.6: Sample run of the piecewise regression process. Each box titled Si represents the samples
that belong to the i-th regime.

Given a sample run of the process D1:T , with T = 300, we make use of Algorithm 3
with varying levels of a fixed Qt = q I with q ≥ 0. Figure 2.7 shows the rolling prequential
RMSE and the total prequential RMSE. We observe that different values of Qt lead to

Figure 2.7: (Left panel) Rolling prequential RMSE of the linear model trained using various levels of Qt.
(Right panel) Total prequential RMSE of the linear model

varying levels of prediction error. When Qt is close to zero, the model exhibits limited
adaptability, retaining more of the previous parameter estimates. Conversely, when Qt is
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significantly larger, the model quickly forgets past information, leading to high adaptability
but potentially overreacting to noise. An ideal adaptive method would be able to adjust
Qt dynamically in an online fashion. We revisit this idea in Chapter 3.

2.6 Extensions to the Kalman filter

In this section, we introduce two variants of the KF that we use throughout the text;
namely, the extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF).

2.6.1 The extended Kalman filter

The extended Kalman filter (EKF) is a modification of the KF whenever the measure-
ment and state functions are non-linear but differentiable w.r.t. the model parameters θ.
Broadly speaking, the EKF linearises the measurement function h and the state-transition
function f via a first-order Taylor approximation, which yields KF-like update equations.

The EKF has its origins in the Apollo guidance computer program to estimate the
space trajectories of a spacecraft based on a “sequence of measurements of angles between
selected pairs of celestial bodies, together with the measurement of the angular diameter
of a nearby plane” (Battin, 1982; Grewal and Andrews, 2010). For details; see Chapter 3
in Leondes (1970). Because of the mild requirements of the EKF, it has been succesfully
applied in multiple settings. Of particular interest to this thesis is the use of the EKF to
train neural networks, which dates back to Singhal and Wu (1988), where it was proposed
as an alternative to the backpropagation algorithm of Rumelhart et al. (1986) used to
train multilayered perceptrons (MLPs).

The next proposition introduces the EKF algorithm.

Proposition 2.16. Consider the SSM in definition 2.12 with transition function ft and
measurement function ht, both differentiable w.r.t. θ. Define the linearised SSM

θt = f̄t(θt−1) + ut,

yt = h̄t(θt) + et,
(2.42)

with f̄(θ) = Ft (θ − µt−1) + ft(µt−1), h̄t(θt) = Ht (θt − µt|t−1) + h(µt|t−1,xt),
Ft = ∇θf(µt−1), and Ht = ∇θh(µt|t−1,xt). Consider the priors p(ut) = N (ut |0,Qt),
p(et) = N (et |0,Rt).

Then, the predict and update steps are Gaussian with form

p(θt | D1:t−1) = N
(
θt |µt|t−1, Σt|t−1

)
,

p(θt | D1:t) = N (θt |µt, Σt) .
(2.43)

With predictive mean and variance given by (2.31) and posterior mean and variance given
by (2.33).
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Proof. See Section 7.2 in Särkkä and Svensson (2023).

Algorithm 5 predict and update steps for the extended Kalman filter for t ≥ 1 and given
prior mean and covariance (µ0,Σ0).
Require: Dt = (xt,yt) // datapoint
Require: (µt−1,Σt−1) // previous mean and covariance

1: // predict step
2: Ft ← ∇θf(µt−1)
3: µt|t−1 ← Ftµt−1
4: Σt|t−1 ← FtΣt−1F⊺

t + Qt

5: //update step
6: Ht ← ∇θh(µt|t−1,xt)
7: St = Ht Σt−1H⊺

t + Rt

8: Kt = Σt|t−1H⊺
t S−1

t

9: µt ← µt−1 + Kt(yt −Htµt|t−1)
10: Σt ← Σt|t−1 −KtH⊺

tΣt|t−1
11: return (µt,Σt)

2.6.2 The ensemble Kalman filter

The ensemble Kalman filter (EnKF) is a popular alternative to the EKF, whenever the
state-space is high-dimensional. The EnKF was originally introduced as a sample-based
approximation to the equations that define the Kalman filter (Evensen, 1994).

Recall that the Kalman filter update estimates the posterior mean µt according to

µt = µt|t−1 + Kt (y − ŷt), (2.44)

with Kt the Kalman gain matrix. It can be shown that under the linear SSM assumptions
(2.29), the Kalman gain matrix Kt takes the form

Kt = Cov(θt,yt − ŷt) Var(yt − ŷt)−1

= Cov(θt,yt) Var(yt)−1.
(2.45)

See Ch.4 in Eubank (2005).
The EnKF propagates a bank of candidate parameters

{
θ

(s)
t

}S
s=1

following (2.27) and
then updates each value in the ensemble according to a sample-based gain matrix. The
predict terms are obtained by propagating

θ
(s)
t|t−1 = f

(
θ

(s)
t−1

)
+ u(s)

t ,

y
(s)
t|t−1 = h

(
θ

(s)
t|t−1

)
+ e(s)

t .
(2.46)

The EnKF then updates each member in the ensemble according to

θ
(s)
t = θ

(s)
t|t−1 + K̂t

(
yt − ŷ(s)

t|t−1

)
, (2.47)
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with K̂t a sample-based estimate of the Kalman gain matrix that takes the form

K̂t = Ct|t−1 V−1
t|t−1, (2.48)

with

Cov(θt,yt) ≈ Ct|t−1 = 1
S

S∑
s=1

(
θ

(s)
t|t−1 − θ̄t|t−1

)(
y

(s)
t|t−1 − ȳt|t−1

)⊺
, (2.49)

and

Var(yt) ≈ Vt|t−1 = 1
S

S∑
s=1

(
y

(s)
t|t−1 − ȳt|t−1

) (
y

(s)
t|t−1 − ȳt|t−1

)⊺
(2.50)

Here, ȳt|t−1 = 1
S

∑S
s=1 y

(s)
t|t−1 and θ̄t|t−1 = 1

S

∑S
s=1 θ

(s)
t|t−1. Algorithm 6 shows the

predict and update steps for the EnKF.

Algorithm 6 Predict and update steps for the ensemble Kalman filter
Require: D1:T with Dt = (xt,yt)
Require: {θ(s)

0 }Ss=1 with θ(s)
0 ∼ N (· |µ0,Σ0)

1: for t = 1, . . . , T do
2: // predict step
3: for s = 1, . . . , S do
4: θ

(s)
t|t−1 ← f

(
θ

(s)
t−1

)
+ u(s)

t

5: y
(s)
t|t−1 ← h

(
θ

(s)
t|t−1,xt

)
+ e(s)

t

6: end for
7: // build sample gain matrix
8: Ct|t−1 = 1

S

∑S
s=1

(
θ

(s)
t|t−1 − θ̄t|t−1

)(
y

(s)
t|t−1 − ȳt|t−1

)⊺
9: Vt|t−1 = 1

S

∑S
s=1

(
y

(s)
t|t−1 − ȳt|t−1

)(
y

(s)
t|t−1 − ȳt|t−1

)⊺
10: K̄t = Ct|t−1V−1

t|t−1
11: // update step
12: for t = 1, . . . , T do
13: θ

(s)
t ← θ

(s)
t|t−1 + K̄t(yt − y(s)

t|t−1)
14: end for
15: end for

It can be shown that under a linear SSM, the EnKF matches the KF whenever S →∞
(Evensen, 2003).

2.6.3 Exponential-family EKF

Here, we consider the modified EKF method introduced in Ollivier (2019). This method
modifies the update equations in Algorithm 5 to make use of any member of the expo-
nential family. This generalisation is helpful in scenarios where the target variables yt
cannot be reasonably modelled as Gaussians. For example when dealing with binary clas-
sification problems, in which the observations are modelled as Bernoulli, or in multi-class
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classification problems, where the observations are modelled as Multinomial.
Given the measurement model p(yt |θ,xt) parametrised as an exponential family with

mean h(θ,xt), the exponential-family extended Kalman filter (ExpfamEKF) replaces the
likelihood model at time t with a Gaussian whose mean and covariance are found by
matching the first two moments of the linearised log-likelihood with respect to the previous
mean µt−1.

More precisely, the mean at time t is approximated by a first-order approximation
around the predicted mean µt|t−1. This takes the form

h̄t(θ) := h(µt|t−1,xt) + Ht (θt − µt|t−1). (2.51)

Next, the measurement variance is taken as the covariance of the linearised model.
For example, if yt is modelled as a Bernoulli with mean σ(h(µt|t−1,x)), then R̄t =
σ(h(µt|t−1,x)(1− σ(h(µt|t−1,x)). Conversely, if yt is modelled as a multivariate Gaus-
sian with known observation variance, then R̄t = Rt.

2.6.4 Example: Recursive Learning of Neural Networks II

In this experiment we compare the performance of the ExpfamEKF method on the moons
dataset presented in Section 2.4.4. We evaluate two configurations of the ExpfamEKF
over 100 initialisations. The first configuration assumes static dynamics (Qt = 0 I),
which corresponds to the R-VGA under a linearised measurement model. The second
configuration uses Qt = 10−5 I, accounting for unmodelled errors.

Figure 2.8 illustrates the median rolling prequential accuracy and interquartile range
using a window of 50 steps and 100 different initial states. comparing the predicted and
actual class labels over time.

Figure 2.8: Rolling prequential accuracy for the non-linear classification problem, trained using R-VGA
and ExpfamEKF.
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We observe that the dynamic ExpfamEKF commences with high noise and then sta-
bilises at a median accuracy of approximately 100%. Similarly, the static configuration
exhibits high variability initially and stabilises its accuracy around 100% for 200 steps
before its predictive performance begins to decline and its variability increases. This be-
haviour is attributed to numerical instability. This experiment highlights the importance
of small random-walk noise in parameter space for maintaining numerical stability when
deploying these methods online.

2.7 Alternative update methods

Alternative approaches for handling nonlinear or nonconjugate measurements have been
proposed.

For instance sequential Monte Carlo (SMC) methods have been used to train neural
networks (de Freitas et al., 2000). These sample-based methods are particularly advan-
tageous when the state-transition function f is highly non-linear or when a more exact
posterior approximation is required. Next, Generalised Bayesian methods, such as Mishkin
et al. (2018); Knoblauch et al. (2022), generalise the VB target (2.20) to allow the likeli-
hood to be a loss function; see Chapter 4 for further details. Alternatively, online gradient
descent methods like Bencomo et al. (2023) emulate state-space modelling via gradient-
based optimisation, and gradient-free methods like Goulet et al. (2021) estimate the
weights of the neural network assuming a diagonal posterior covariance matrix.

2.8 Conclusion

In this chapter, we introduced the problem of Bayesian sequential estimation of model
parameters from a stream of data. We laid the groundwork for the remainder of this
thesis by establishing the necessary foundational concepts, and presented an array of
methods that address this problem by computing or approximating the posterior density
over model parameters recursively. For computational efficiency, we focused on methods
that maintain a multivariate Gaussian posterior density.

We demonstrated that the problem of sequential Bayesian online linear regression can
be viewed as an online version of the Ridge regression, as a special case of the R-VGA
algorithm, and as a specific instance of the Kalman filter, where there is an absence of
noise in the system dynamics.

Furthermore, we discussed how the linear assumption underlying both the Kalman filter
and online linear regression can be extended to accommodate nonlinear measurement
functions. Specifically, we presented three different approaches: the Extended Kalman
Filter (EKF), the Ensemble Kalman Filter (EnKF), and the Recursive Variational Gaussian
Approximation (R-VGA).
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Chapter 3

Adaptivity

In this chapter, we propose a unifying framework for methods that perform probabilistic
online learning in non-stationary environments. We call the framework BONE, which
stands for generalised (B)ayesian (O)nline learning in (N)on-stationary (E)nvironments.
BONE provides a common structure to tackle a variety of problems, including online
continual learning, prequential forecasting, and contextual bandits.

The motivation for BONE arises from a key challenge in sequential online learning:
non-stationarity in the data-generating process. While a number of methods have been
proposed to address this issue, the literature remains relatively sparse. Different commu-
nities often tackle similar problems using overlapping ideas, but without a shared method-
ological foundation. As a result insights from one area are not easily transferable across
domains.

In this chapter, we show that many of these methods, despite their apparent differ-
ences, can all be understood within a common framework that can be seen as a form
of generalised Bayes posterior predictive. This insight enables a fair and principled com-
parison across method and lays the groundwork for developing new approaches. The
framework requires specifying three modelling choices: (i) a model for measurements
(e.g., a neural network), (ii) an auxiliary process to model non-stationarity (e.g., the time
since the last changepoint), and (iii) a conditional prior over model parameters (e.g., a
multivariate Gaussian). The framework also requires two algorithmic choices, which we
use to carry out approximate inference under this framework: (i) an algorithm to estimate
beliefs (posterior distribution) about the model parameters given the auxiliary variable,
and (ii) an algorithm to estimate beliefs about the auxiliary variable.

A key insight provided by this framework is that most existing methods assume either
abrupt changes or gradual drift in the underlying process. However, real-world scenarios
often involve a combination of both. To address this, we introduce a novel method that
accounts for both types of non-stationarity. Abrupt changes are modelled via the time
since the last parameter reset, while slow drift is captured through an Ornstein–Uhlenbeck
process over the model parameters. We evaluate this method in a range of experiments
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and demonstrate its performance across diverse settings

3.1 The framework

In Chapter 2 we introduced the notion of the Bayesian posterior density to estimate, or
approximate, the model parameters of the measurement function h recursively. The meth-
ods presented work well when the data-generating process is well-specified, the variational
approximation family is big enough to accommodate the Bayesian posterior density, or in
the case of the Kalman filter, a good choice of dynamics covariance Qt is determined.

In practice, however, this is not often the case. Thus, to adapt to regime changes
and other forms of non-stationarity, we introduce an auxiliary random variable ψt ∈ Ψt,
that evolves following the dynamics p(ψt |ψt−1) and encodes information about the non-
stationarity of the sequence at time t. Here, Ψt is the set of possible values of the
auxiliary variable ψt. The purpose of this variable is, for instance, to determine which
past datapoints y1:t−1 most closely align with the most recent measurement yt. We
describe the auxiliary variable in detail in Section 3.1.3. Finally, the model parameters
θt evolve following the dynamics p(θt |θt−1, ψt). This represents how much parameters
change, given the state of the auxiliary variable.

Figure 3.1 shows the probabilistic graphical model that motivates our formulation; this
resembles the one in Doucet et al. (2000) with an additional optional dependence between
the auxiliary variable and the measurements; in what follows we omit this dependence for
brevity.

θt−1 θt θt+1

ψt−1 ψt ψt+1

yt−1 yt yt+1

xt−1 xt xt+1

Figure 3.1: Two-levelled hierarchical state-space model (SSM) with known dynamics, motivating our
BONE framework Solid arrows indicate required dependencies, while dashed arrows represent optional
dependencies. Rectangles denote exogenous variables, and circles represent random variables. Observed
elements are shaded in gray. The left shift in xt represents that features are observed before observing
yt.

For an experiment of length T ∈ N, the joint conditional density over the model
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parameters, induced by the graphical model shown in Figure 3.1, is given by

p(y1:T ,θ0:T , ψ0:T |x1:T ) = p(θ0) p(ψ0)
T∏
t=1

p(yt |θt,xt) p(θt |θt−1, ψt) p(ψt |ψt−1).

(3.1)

In this chapter, we are interested in methods that efficiently compute the so-called
expected posterior predictive ŷt+1 := Ep(θt,ψt | D1:t)[h(θt,xt+1)] in an online and recursive
manner. In our setting, one observes xt+1 just before observing yt+1; thus, to make a
prediction about yt+1, we have xt+1 and D1:t at our disposal.1 For the case of a discrete
auxiliary variable ψt ∈ Ψt, the form of the expected posterior predictive for yt+1, induced
by (3.1), is

ŷt+1 = Ep(θt,ψt | D1:t)[h(θt,xt+1)]

=
∑
ψt∈Ψt

∫
h(θt,xt+1) p(θt, ψt | D1:t)dθt

=
∑
ψt∈Ψt

p(ψt | D1:t)
∫
h(θt,xt+1)p(θt |ψt,D1:t)dθt,

(3.2)

where

p(θt |ψt,D1:t) ∝ p(yt |θt,xt) p(θt |ψt,D1:t−1), (3.3)

p(θt |ψt,D1:t−1) =
∫
p(θt |θt−1, ψt) p(θt−1 | D1:t−1) dθt−1, (3.4)

p(ψt | D1:t) = p(yt |xt, ψt,D1:t−1)
∑

ψt−1∈Ψt−1

p(ψt−1 | D1:t−1) p(ψt |ψt−1,D1:t−1).

(3.5)

From (3.2), (3.3), (3.4), and (3.5) we argue that there are three key modelling choices
and two algorithmic choices. Specifically, the three key modelling choices are: (M.1) the
conditional mean h(θ,x) together with the likelihood p(y |θ,x); (M.2) the auxiliary
variable ψt; and (M.3) the conditional prior p(θt |ψt,D1:t−1). Additionally, the two
algorithmic choices are: (A.1) the algorithm to compute (or approximate) the conditional
posterior over model parameters p(θt |ψt,D1:t), and (A.2) the algorithm that computes
(or approximates) the posterior over weights p(ψt, | D1:t).

The BONE framework generalises these choices, allowing for greater flexibility while
maintaining the motivating probabilistic structure. Instead of the likelihood model p(yt |θt,xt)
with conditional mean h(θt,xt), we consider a general function exp(−ℓ(yt; θt,xt)),
where ℓ(yt; θt,xt) could be either a loss function or a log-likelihood. Next, instead of
the conditional prior p(θt |ψt,D1:t−1), we introduce a more general modelling function,

1The input features xt+1 and output measurements yt+1 can correspond to different time steps. For
example, xt+1 can be the state of the stock market at a fixed date and yt+1 is the return on a stock
some days into the future.
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π(θt;ψt,D1:t−1) that governs the prior over model parameters.2 Similarly, instead of the
posterior density p(θt |ψt,D1:t), we employ the function q(θt; ψt,D1:t); e.g., an approx-
imation of the posterior, or a generalised posterior (Bissiri et al., 2016). Finally, instead
of the posterior over weights p(ψt | D1:t), we consider a weighting function ν(ψt; D1:t),
which can be the Bayesian posterior or an ad-hoc time-dependent weighting function.

This generalisation is important because it unifies a wide range of existing methods
under a common framework. Many well-known approaches in the literature can be written
as elements of BONE by appropriately selecting the model for measurements, the con-
ditional prior, and the posterior approximations. BONE highlights connections between
different methods, it also enables systematic comparisons under a common umbrella, and
it allows us to develop novel algorithms. Table 3.1 explicitly contrasts the choices in
BONE with those in the classical Bayesian formalism.

component BONE Bayes
(M.1: likelihood) h(θt,xt) & exp(−ℓ(yt;θt,xt)) h(θt,xt) & p(yt |θt,xt)
(M.2: auxvar) ψt ψt
(M.3: prior) πt(θt; ψt) := π(θt; ψt,D1:t−1) p(θt |ψt,D1:t−1)
(A.1: posterior) qt(θt;ψt) := q(θt; ψt,D1:t) p(θt |ψt,D1:t)
(A.2: weighting) νt(ψt) := ν(ψt; D1:t) p(ψt | D1:t)

Table 3.1: Components of the BONE framework.

With these modifications, the expected posterior predictive under BONE is

ŷt :=
∑
ψt∈Ψt

ν(ψt | D1:t)︸ ︷︷ ︸
(A.2: weighting)

∫
h(θt,xt+1)︸ ︷︷ ︸

(M.1: likelihood)

q(θt; ψt,D1:t)︸ ︷︷ ︸
(A.1: posterior)

dθt, (3.6)

where
q(θt; ψt,D1:t) ∝ π(θt; ψt,D1:t−1)︸ ︷︷ ︸

(M.3: prior)

exp(−ℓ(yt;θt,xt))︸ ︷︷ ︸
(M.1: likelihood)

(3.7)

takes the form of a generalised posterior (Bissiri et al., 2016). In classical Bayesian setting,
the loss function takes the form of the negative log-likelihood, i.e.,

ℓ(yt;θt,xt) = − log p(yt |θt,xt). (3.8)

Unless stated otherwise, we work with the negative log-likelihood in (3.8) found in the
classical Bayesian setting.

A prediction for yt+1 given D1:t, xt+1, and ψt is

ŷ
(ψt)
t+1 = Eqt [h(θt; xt+1) |ψt] :=

∫
h(θt; xt+1) q(θt; ψt,D1:t)dθt . (3.9)

Here we use the shorthand notation qt = q(θt; ψt,D1:t) and Eqt
[· |ψt] to highlight de-

2This function adopts an ad hoc approach to parameter evolution instead of explicitly solving the
integration step (3.4).
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pendence on ψt.
Algorithm 7 provides pseudocode for the prediction and update steps in the BONE

framework. Notably, these components can be broadly divided into two categories: mod-
elling and algorithmic. The modelling components determine the inductive biases in the
model, and correspond to h, ℓ, ψt, and π. The algorithmic components dictate how
operations are carried out to produce a final prediction — this corresponds to qt and νt.

Algorithm 7 Generic predict and update step of BONE with discrete ψt at time t.
Require: D1:t // past data
Require: xt+1 // optional inputs
Require: h(θ,xt) // Choice of (M.1: likelihood)
Require: Ψt // Choice of (M.2: auxvar)

1: for ψt ∈ Ψt do
2: πt(θt; ψt)← π(θt; ψt,D1:t−1) // choice of (M.3: prior)
3: qt(θt; ψt)← q(θt; ψt,D1:t) ∝ πt(θt ψt) exp(−ℓ(yt; θt,xt))// choice of (A.1: posterior)

4: νt(ψt)← ν(ψt; D1:t) // choice of (A.2: weighting)
5: ŷ

(ψt)
t+1 ← Eqt [h(θt,xt+1); ψt] // conditional prequential prediction

6: end for
7: ŷt+1 ←

∑
ψt
νt(ψt) ŷ(ψt)

t+1 // weighted prequential prediction

3.1.1 Details of BONE

In the following subsections, we describe each component of the BONE framework in
detail, provide illustrative examples, and reference relevant literature for further reading.

3.1.2 The measurement model (M.1)

Recall that h(θ,x) is a parametric model that encodes the conditional mean for y, given
θ and x. For linear measurement models, h(θ,x) is given by:

h(θ,x) =


θ⊺x (regression), y ∈ R

σ(θ⊺x) (binary classification), y ∈ {0, 1}

Softmax(θ⊺x) (multi-class classification),y ∈ {0, 1}C
(3.10)

where σ(z) = (1 + exp(−z))−1 is the sigmoid function, C ∈ N is the number of classes,
Softmax(z)k = exp(zk)/

∑
i exp(zi) represents the softmax function with z ∈ Ro and zi

the i-th element of z. In the machine learning literature, the vector z is called the logits
of the classifier. For non-linear measurement models, such as neural networks, h(θ,x)
represents the output of the network parameterised by θ. The best choice of h will depend
on the nature of the data, as well as the nature of the task, in particular, whether it is
supervised or unsupervised. We give some examples in Section 3.5.
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3.1.3 The auxiliary variable (M.2)

The choice of auxiliary variable ψt is crucial to identify changes in the data-generating
process, allowing our framework to track non-stationarity. Below, we give a list of the
common auxiliary variables used in the literature.
RL (runlength): ψt = rt ∈ {0, . . . , t} is a scalar representing a lookback window, defined
as the number of steps since the last regime change. The value rt = 0 indicates the
start of a new regime at time t, while rt ≥ 1 denotes the continuation of a regime
with a lookback window of length rt. This choice of auxiliary variable is common in the
changepoint detection literature. See e.g., Adams and MacKay (2007); Knoblauch et al.
(2018); Alami et al. (2020); Agudelo-España et al. (2020); Altamirano et al. (2023c);
Alami (2023). This auxiliary variable is useful for non-stationary data with non-repeating
temporal segments, provided we know the intensity with which new segments appear.
RLCC (runlength and changepoint count): ψt = (rt, ct) ∈ {0, . . . , t}×{0, . . . , t} is a vector
that represents both the runlength and the total number of changepoints, as proposed
in Wilson et al. (2010). When rt = t, this implies ct = 0, meaning no changepoints
have occurred. Conversely, rt = 0 indicates the start of a new regime and implies ct ∈
{1, . . . , t}, accounting for at least one changepoint. For a given rt ≥ 0, the changepoint
count ct belongs to the range {1, . . . , t− rt}. As with RL, this auxiliary variable assumes
consecutive time blocks, but additionally allows us to estimate the likelihood of entering a
new regime by tracking the number of changepoints seen so far. This auxiliary variable is
useful for non-stationary data with non-repeating temporal segments when the intensity
with which new segments appear is unknown.
CPT (changepoint timestep): ψt = ζt, with ζt = {ζ1,t, . . . , ζℓ,t}, is a set of size ℓ ∈
{0, . . . t} containing the ℓ times at which there was a changepoint, with the convention
that 0 ≤ ζ1,t < ζ2,t < . . . < ζℓ,t ≤ t. This choice of auxiliary variable was introduced in
Fearnhead and Liu (2007) and has been studied in Fearnhead and Liu (2011); Fearnhead
and Rigaill (2019). Under mild assumptions, it can be shown that CPT is equivalent
to RL, see e.g., Knoblauch and Damoulas (2018). This auxiliary variable is useful for
non-stationary data with non-repeating temporal segments when the probability of a new
segment appearing is unknown and knowledge of the changepoint location is required.
CPL (changepoint location): ψt = s1:t ∈ {0, 1}t is a binary vector. In one interpretation,
si = 1 indicates the occurrence of a changepoint at time i, as in Li et al. (2021), while in
another, it means that Dt belongs to the current regime, as in Nassar et al. (2022). This
auxiliary variable is useful for non-stationary data with repeating temporal segments. It
is useful when the segments are formed of non-consecutive datapoints.
CPV (changepoint probability vector): ψt = v1:t ∈ (0, 1)t is a t-dimensional random vector
representing the probability of each element in the history belonging to the current regime.
This generalises CPL and was introduced in Nassar et al. (2022) for online continual
learning, allowing for a more fine-grained representation of changepoints over time. This
auxiliary variable is useful for non-stationary data with repeating temporal segments.
Unlike CPL, it takes a vector of weights in (0, 1) which allows for higher flexibilty when
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compared to CPL.
CPP (changepoint probability): ψt = υt ∈ (0, 1) represents the probability of a change-
point. This is a special case of CPV that tracks only the most recent changepoint proba-
bility; this choice was used in Titsias et al. (2024) for online continual learning.
ME (mixture of experts): ψt = αt ∈ {1, . . . ,K} represents one of K experts. Each expert
corresponds to either a choice of model or one of K possible hyperparameters. This
approach has been applied to filtering (Chaer et al., 1997) and prequential forecasting (Liu,
2023; Abélès et al., 2024). This auxiliary variable facilitates the weighting of predictions
made by models when one has a fixed number of competing models.
C: ψt = c represents a constant auxiliary variable, where c is just a placeholder or dummy
value. This is equivalent to not having an auxiliary variable, or alternatively, to having a
single expert that encodes all available information.

Space-time complexity There is a tradeoff between the complexity that ψ is able to
encode and the computation power needed to perform updates. Loosely speaking, this
can be seen in the cardinality of the set of possible values of ψ through time. Let Ψt

be the space of possible values for ψt. Depending on the choice of ψt, the cardinality of
Ψt either stay constant or increase over time, i.e., Ψt−1 ⊆ Ψt for all t = 1, . . . , T . For
instance, the possible values for RL increase by one at each timestep; the possible values
of CPL double at each timestep; finally, the possible values for ME do not increase. Table
3.2 shows the space of values and cardinality that Ψt takes as a function of the choice of
auxiliary variable.

name C CPT CPP CPL CPV ME RL RLCC
values {c} 2{0,1,...,t} [0, 1] {0, 1}t (0, 1)t {1, . . . , K} {0, 1, . . . , t} {{0, t}, . . . , {t, 0}}

cardinality 1 2t ∞ 2t inf K t 2 + t(t + 1)/2

Table 3.2: Design space for the auxiliary random variables ψt. Here, T denotes the total number of
timesteps and K denotes a fixed number of candidates.

3.1.4 Conditional prior (M.3)

This component defines the prior predictive distribution over model parameters condi-
tioned on the choice of (M.2: auxvar) ψt and the dataset D1:t−1. In some cases, explicit
access to past data is not needed.

For example, a common assumption is to have a Gaussian conditional prior over model
parameters. In this case, we assume that, given data D1:t−1 and the auxiliary variable ψt,
the conditional prior takes the form

π(θt; ψt, D1:t−1) = N
(
θt | gt(ψt,D1:t−1), Gt(ψt,D1:t−1)

)
, (3.11)

with gt : Ψt × R(D+o)(t−1) → RD a function that returns the mean vector of model
parameters, E[θt |ψt,D1:t−1], and Gt : Ψt × R(D+o)(t−1) → RD×D a function that
returns a D-dimensional covariance matrix, Cov[θt |ψt,D1:t−1]. In what follows, we let
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(µ0,Σ0) be the pre-defined initial prior mean and covariance. Furthermore, we denote
(µt−1,Σt−1) be the posterior mean and covariance found at time t− 1, which is used as
a prior at time t.

Below, we provide a non-exhaustive list of possible combinations of choices for (M.2:
auxvar) and (M.3: prior) of the form (3.11) that can be found in the literature, and we
also introduce a new combination.
C-LSSM (constant linear with affine state-space model). We assume the parameter dynam-
ics can be modeled by a linear-Gaussian state space model (LSSM), i.e., E[θt |θt−1] =
Ft θt−1 + bt and Cov[θt |θt−1] = Qt, for given (D ×D) dynamics matrix Ft, (D × 1)
bias vector bt, and (D ×D) positive semi-definite matrix Qt. We also assume ψt = c is
a fixed (dummy) constant, which is equivalent to not having an auxiliary variable. The
characterisation of the conditional prior takes the form

gt(c,D1:t−1) = Ft µt−1 + bt,

Gt(c,D1:t−1) = Ft Σt−1F⊺
t + Qt ,

(3.12)

This is a common baseline model that we will specialise below.
C-OU (constant with Ornstein-Uhlenbeck process). This is a special case of the C-LSSM

model where Ft = γI, bt = (1−γ)µ0, Qt = (1−γ2)Σ0, Σ0 = σ2
0I, γ ∈ [0, 1] is the fixed

rate, and σ0 ≥ 0. The conditional prior mean and covariance are a convex combination
of the form

g(c,D1:t−1) = γµt−1 + (1− γ)µ0,

G(c,D1:t−1) = γ2Σt−1 + (1− γ2)Σ0.
(3.13)

This combination is used in Kurle et al. (2019). Smaller values of the rate parameter γ
correspond to a faster resetting, i.e., the distribution of model parameters revert more
quickly to the prior belief (µ0,Σ0), which means the past data will be forgotten.
CPP-OU (changepoint probability with Ornstein-Uhlenbeck process). Here ψt = υt ∈ [0, 1]
is the changepoint probability that we use as the rate of an Ornstein-Uhlenbeck (OU)
process, as proposed in Titsias et al. (2024); Galashov et al. (2024). The characterisation
of the conditional prior takes the form

g(υt,D1:t−1) = υtµt−1 + (1− υt)µ0 ,

G(υt,D1:t−1) = υ2
tΣt−1 + (1− υ2

t )Σ0 .
(3.14)

An example on how to compute υt using an empirical Bayes procedure is given in (3.45).
C-ACI (constant with additive covariance inflation). This corresponds to a special case of
C-LSSM in which F = I, b = 0, and Q = αI for α > 0 is the amount of noise added at
each step. This combination is used in Kuhl (1990); Duran-Martin et al. (2022); Chang
et al. (2022, 2023) . The characterisation of the conditional prior takes the form

g(c,D1:t−1) = µt−1,

G(c,D1:t−1) = Σt−1 + Qt.
(3.15)
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This is similar to C-OU with γ = 1, however, here we inject new noise at each step.
Another variant of this scheme, known as shrink-and-perturb (Ash and Adams, 2020),
takes g(c,D1:t−1) = qµt−1 and G(c,D1:t−1) = Σt−1 + Qt, where 0 < q < 1 is the
shrinkage parameters, and Qt = σ2

0 I.

C-Static (constant with static parameters). Here ψt = c (with c a dummy variable).
This is a special case of the C-ACI configuration in which α = 0. The conditional prior is
characterised by

gt(c,D1:t−1) = µt−1,

Gt(c,D1:t−1) = Σt−1.
(3.16)

ME-LSSM (mixture of experts with LSSM). Here ψt = αt ∈ {1, . . . ,K}, and we have a
bank of K independent LSSM models; the auxiliary variable specifies which model to use
at each step. The characterisation of the conditional prior takes the form

gt(αt,D1:t−1) = F(αt)
t µ

(αt)
t−1 + b(αt)

t ,

Gt(αt,D1:t−1) = F(αt)
t Σ(αt)

t−1 F⊺
t + Q(αt)

t .
(3.17)

The superscript (αt) denotes the conditional prior for the k-th expert. More precisely,
µ

(αt)
t−1 ,Σ

(αt)
t−1 are the posterior at time t− 1 using F(αt)

t−1 and Q(αt)
t−1 from the k-th expert.

This combination was introduced in Chaer et al. (1997).

RL-PR (runlength with prior reset): for ψt = rt, this choice of auxiliary variable constructs
a new mean and covariance considering the past t− rt observations. We have

gt(rt,D1:t−1) = µ0 1(rt = 0) + µ(rt−1)1(rt > 0),

Gt(rt,D1:t−1) = Σ0 1(rt = 0) + Σ(rt−1)1(rt > 0),
(3.18)

where µ(rt−1),Σ(rt−1) denotes the posterior belief computed using observations from
indices t − rt to t − 1. The case rt = 0 corresponds to choosing the initial pre-defined
prior mean and covariance µ0 and Σ0. This combination assumes that data from a single
regime arrives in sequential blocks of time of length rt. This choice of (M.3: prior) was
first studied in Adams and MacKay (2007).

RL[1]-OUPR* (greedy runlength with OU and prior reset): This is a new combination
we consider in this paper, which is designed to accommodate both gradual changes and
sudden changes. More precisely, we assume ψt = rt, and we choose the conditional prior
as either a hard reset to the prior, if νt(rt) > ε, or a convex combination of the prior
and the previous belief state (using an OU process), if νt(rt) ≤ ε. That is, we define the
conditional prior as

gt(rt,D1:t−1) =

µ0 (1− νt(rt)) + µ(rt) νt(rt) νt(rt) > ε,

µ0 νt(rt) ≤ ε,
(3.19)
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Gt(rt,D1:t−1) =

Σ0 (1− νt(rt)2) + Σ(rt) νt(rt)2 νt(rt) > ε,

Σ0 νt(rt) ≤ ε.
(3.20)

Here νt(rt) = p(rt | D1:t), with rt = rt−1 + 1, is the probability we are continuing a
segment, and νt(rt) with rt = 0 is the probability of a changepoint. For details on how
to compute νt(rt), see (3.40). The value of the threshold parameter ε controls whether
an abrupt change or a gradual change should take place. In the limit when ε = 1, this
new combination does not learn, since it is always doing a hard reset to the initial beliefs
at time t = 0. Conversely, when ε = 0, we obtain an OU-type update weighted by νt.
When ε = 0.5, we revert back to prior beliefs when the most likely hypothesis is that a
changepoint has just occurred. Finally, we remark that the above combination allows us
to make use of non-Markovian choices for (M.1: likelihood), as we see in Section 3.5.3.
This is, to the best of our knowledge, a new combination that has not been proposed in
the previous literature; for further details see Appendix 3.3.3.

CPL-Sub (changepoint location with subset of data): for ψt = s1:t, this conditional prior
constructs the mean and covariance as

gt(s1:t,D1:t−1) = µ(s1:t−1),

Gt(s1:t,D1:t−1) = Σ(s1:t−1),
(3.21)

where µ(s1:t−1),Σ(s1:t−1) denotes the posterior belief computed using the observations
for entries where s1:t−1 have value of 1. This combination assumes that data from the
current regime is scattered from the past history. That is, it assumes that data from
a past regime could become relevant again at a later date. This combination has been
studied in Nguyen et al. (2017).

CPL-MCI (changepoint location with multiplicative covariance matrix): for ψt = s1:t, this
choice of conditional prior maintains the prior mean, but increases the norm of the prior
covariance by a constant term β ∈ (0, 1). More precisely, we have that

gt(s1:t,D1:t−1) = µ(s1:t−1)
,

Gt(s1:t,D1:t−1) =

β−1Σ(s1:t−1) st = 1 ,

Σ(s1:t−1) st = 0 .

(3.22)

This combination was first proposed in Li et al. (2021).

CPT-MMPR (changepoint timestep using moment-matched prior reset): for ψt = ζt, with
ζt = {ζ1,t, . . . , ζℓ,t}, and ζℓ,t the position of the last changepoint, the work of Fearnhead
and Liu (2011) assumes a dependence structure between changepoints. That is, to build
the conditional prior mean and covariance, they consider the past Dζℓ,t:t−1 datapoints
whenever ζℓ,t ≤ t− 1 and a moment-matched approximation to the mixture density over
all possible subset densities since the last changepoint whenever ζℓ,t = t. Mathematically,
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if ζℓ,t ≤ t− 1, the prior mean and the prior covariance take the form

g(ζt,D1:t−1) = µ(ζℓ,t:t−1),

G(ζt,D1:t−1) = Σ(ζℓ,t:t−1).
(3.23)

If ζℓ,t = t, the conditional prior mean and conditional prior covariance are built using a
moment-matching approach. For the Gaussian case, moment-matching is equivalent to
minimising a KL divergence (Minka, 2013). This takes the form

g(ζt,D1:t−1) = µt ,

G(ζt,D1:t−1) = Σt,
(3.24)

where

µt,Σt = arg min
µ,Σ

DKL

 t−1∑
ζℓ,t−1=1

q̃(θt | ζℓ,t−1, ζℓ,t,D1:t−1) || N (θt |µ,Σ)

 . (3.25)

Here, DKL denotes the KL divergence and q̃(θt | ζℓ,t−1, ζℓ,t,D1:t−1) is the unnormalised
density

q̃(θt | ζℓ,t−1, ζℓ,t,D1:t−1)

= p(ζℓ,t−1 | D1:t−1) p(ζℓ,t | ζℓ,t−1,D1:t−1)N (θt |µ(ζℓ,t−1:t−1),Σ(ζℓ,t−1:t−1)).

Choosing MMPR couples the choice of (M.3: prior) with the algorithmic choice (A.2:
weighting) through p(ζℓ,t−1 | D1:t−1) and the choice p(ζℓ,t | ζℓ,t−1,D1:t−1). For an exam-
ple of MMPR with RL choice of (M.2: auxvar), see Appendix 3.3.2.

3.1.5 Algorithm to compute the posterior over model parameters
(A.1)

This section presents algorithms for estimating the density q(θt; ψt,D1:t); we focus on
methods that yield Gaussian posterior densities. Specifically, we are interested in practical
approaches for approximating the conditional Bayesian posterior, as given in (3.7).

There is a vast body of literature on methods for estimating the posterior over model
parameters, many of which were introduced in Chapter 2. Here, we focus on three common
approaches for computing the Gaussian posterior: conjugate updates (Cj), linear-Gaussian
approximations (LG), and variational Bayes (VB). For an overview of choices of (A.1:
posterior) and a comparison in terms of their computational complexity, see Table 3 in
Jones et al. (2024).
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Conjugate updates (Cj)

Conjugate updates (Cj) provide a classical approach for computing the posterior by
leveraging conjugate prior distributions. Conjugate updates occur when the functional
form of the conditional prior π(θt;ψt,D1:t−1) matches that of the measurement model
p(yt |θ,xt) (Robert et al., 2007, Section 3.3). This property allows the posterior to re-
main within the same family as the prior, which leads to analytically tractable updates
and facilitates efficient recursive estimation.

A common example is the conjugate Gaussian model, where the measurement model
is Gaussian with known variance and the prior is a multivariate Gaussian. This results
in closed-form updates for both the mean and covariance. Another example is the Beta-
Bernoulli pair, where the measurement model follows a Bernoulli distribution with an
unknown probability, and the prior is a Beta distribution. See e.g., Bernardo and Smith
(1994); West and Harrison (1997) for details.

The recursive nature of conjugate updates makes them particularly useful for real-time
or sequential learning scenarios, where fast and efficient updates are crucial.

Linear-Gaussian approximation (LG)

The linear-Gaussian (LG) method builds on the conjugate updates (Cj) above. More
precisely, the prior is Gaussian and the measurement model is approximated by a linear
Gaussian model, which simplifies computations.

The prior over model parameters is taken as:

π(θt; ψt,D1:t−1) = N
(
θt |µ(ψt)

t−1 ,Σ
(ψt)
t−1

)
, (3.26)

where µ(ψt)
t−1 and Σ(ψt)

t−1 are the mean and covariance, respectively. We use the measure-
ment function h to define a first-order approximation h̄t around the prior mean which is
given by

h̄t(θt,xt) = h
(
µ

(ψt)
t−1 ,xt

)
+ Ht

(
θt − µ(ψt)

t−1

)
. (3.27)

Here, Ht is the Jacobian of h(θ,xt) with respect to θ, evaluated at µ(ψt)
t−1 . The approxi-

mate posterior measure is given by

q(θt;ψt,D1:t) ∝ N (yt | h̄t(θt,xt),Rt)π(θt; ψt,D1:t−1)

= N (yt | h̄t(θt,xt),Rt)N
(
θt |µ(ψt)

t−1 ,Σ
(ψt)
t−1

)
∝ N (θt |µ(ψt)

t ,Σ(ψt)
t ),

(3.28)

where Rt is a known noise covariance matrix of the measurement yt. Under the LG
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algorithmic choice, the updated equations are

ŷ
(ψt)
t = h

(
µ

(ψt)
t−1 ,xt

)
,

S(ψt)
t = Ht Σ(ψt)

t−1 H⊺
t + Rt,

K(ψt)
t = Σ(ψt)

t−1 H⊺
t

(
S(ψt)
t

)−1
,

µ
(ψt)
t = µ

(ψt)
t−1 + K(ψt)

t

(
yt − ŷ(ψt)

t

)
,

Σ(ψt)
t = Σ(ψt)

t−1 −
(

K(ψt)
t

) (
S(ψt)
t

) (
K(ψt)
t

)⊺
.

(3.29)

Variational Bayes (VB)

Here, we consider an extension of the variational Bayes method introduced in Section
2.4.1, where we condition on the auxiliary variable ψt. We have the following optimisation
problem for the posterior variational parameters:

(µt,Σt) = arg min
µ,Σ

DKL (N (θt |µ,Σ) ∥ p(yt |θt,xt)π(θt; ψt,D1:t−1)) , (3.30)

where πt(θt; ψt) is the chosen prior distribution (M.3: prior).

Alternative methods

Alternative approaches for handling nonlinear or nonconjugate measurements have been
proposed, such as sequential Monte Carlo (SMC) methods (de Freitas et al., 2000), and
ensemble Kalman filters (EnKF) (Roth et al., 2017). These sample-based methods are
particularly advantageous when the dimensionality of θ is large, or when a more exact
posterior approximation is required, providing greater flexibility in non-linear and non-
Gaussian environments.

Generalised Bayesian methods, such as Mishkin et al. (2018); Knoblauch et al. (2022),
generalise the VB update of (3.30) by allowing the right-hand side to be a loss function.
Alternatively, online gradient descent methods like Bencomo et al. (2023) emulate state-
space modelling via gradient-based optimisation.

3.1.6 Weighting function for auxiliary variable (A.2)

The term νt(ψt) defines the weights over possible values of the auxiliary variable (M.2:
auxvar). We compute it as the marginal posterior distribution νt(ψt) = p(ψt | D1:t) (see
e.g., Adams and MacKay (2007); Fearnhead and Liu (2007, 2011); Li et al. (2021)) or with
ad-hoc rules (see e.g., Nassar et al. (2022); Abélès et al. (2024); Titsias et al. (2024)).
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In the former case, the weighting function takes the form

νt(ψt) = p(ψt | D1:t)

= p(yt |xt, ψt,D1:t−1)
∫
ψt−1∈Ψt−1

p(ψt−1 | D1:t−1) p(ψt |ψt−1,D1:t−1)dψt−1,

(3.31)
where one assumes that yt is conditionally independent of ψt−1, given ψt, and xt is
an exogenous vector. The first term on the right hand side of (3.31) is known as the
conditional posterior predictive, and is given by

p(yt |xt, ψt,D1:t−1) =
∫
p(yt |θt,xt)π(θt; ψt,D1:t−1)dθt. (3.32)

This integral over θt may require approximations, as we discussed in Section 3.1.5.
Furthermore, the integral over ψt−1 in (3.31) may also require approximations, de-
pending on the nature of the auxiliary variable ψt, and the modelling assumptions for
p(ψt |ψt−1,D1:t−1). We provide some examples below.

Discrete auxiliary variable (DA)

Here we assume the auxiliary variable takes values in a discrete space ψt ∈ Ψt. The
weights for the discrete auxiliary variable (DA) can be computed with a fixed number
of hypotheses K ≥ 1 or with a growing number of hypotheses if the cardinality of Ψt

increases through time; we denote these cases by DA[K] and DA[inf] respectively. Below,
we provide three examples that estimate the weights under DA[inf] recursively.
RL (runlength with Markovian assumption): for ψt = rt, the work of Adams and MacKay
(2007) takes

p(rt | rt−1,D1:t−1) =


1−H(rt−1) if rt = rt−1 + 1,

H(rt−1) if rt = 0,

0 otherwise,

(3.33)

where H : N0 → (0, 1) is the hazard function. A popular choice is to take H(r) =
κ ∈ (0, 1) to be a fixed constant hyperparameter known as the hazard rate. The choice
RL[inf]-PR is known as the Bayesian online changepoint detection model (BOCD).
CPL (changepoint location): for ψt = s1:t, the work of Li et al. (2021) takes

p(s̃1:t | s1:t−1,D1:t−1) =


κ if ([s̃1:t \ s̃t] = s1:t−1) and s̃t = 1,

1− κ if ([s̃1:t \ s̃t] = s1:t−1) and s̃t = 0,

0 otherwise,

(3.34)

i.e., the sequence of changepoints at time t correspond to the sequence of changepoints
up to time t− 1, plus a newly sampled value for t. See Appendix 3.3.4 for details on how
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to compute νt(s1:t).
CPT (changepoint timestep with Markovian assumption): for ψt = ζt, the work of Fearn-
head and Liu (2007) takes

p(ζt | ζt−1,D1:t−1) = p(ζℓ,t | ζℓ,t−1) = J(ζℓ,t − ζℓ,t−1), (3.35)

with J : N0 → (0, 1) a probability mass function. Note that ζℓ,t − ζℓ,t−1 is the distance
between two changepoints, i.e., a runlength. In this sense, ζℓ,t−ζℓ,t−1 = rt, which relates
CPT to RL. See their paper for details on how to compute νt(ζt).

Low-memory variants — from DA[inf] to DA[K] In the examples above, the number
of computations to obtain

∑
ψt
νt(ψt) grows in time. To fix the computational cost,

one can restrict the sum to be over a subset At of the space of ψt with cardinality
|At| = K ≥ 1. Each element in the set At is called a hypothesis and given K ≥ 1,
we keep the K most likely elements —according to νt(ψt)— in At. We then define the
normalised weighting function

ν̂t(ψt) = νt(ψt)∑
ψ′

t∈At
νt(ψ′

t)
, (3.36)

which we use instead of νt(ψt). For example, in RL above, At−1 = {r(k)
t−1 : k = 1, . . . ,K}

are the unique K most likely runlengths where the superscript represents the ranking
according to νt−1(·). Then, at time t, the augmented set Āt becomes (At−1 + 1)∪ {0},
where the sum is element-wise, and we then compute the K most likely elements of Āt
to define At. In CPL, At−1 contains the K most likely sequences of changepoints, Āt
is defined as the collection of the 2K sequences where each sequence of At−1 has a
zero or one concatenated at the end. Finally, the K most likely elements in Āt define
At. This style of pruning is common in segmentation methods; see, e.g., Saatçi et al.
(2010), but other pruning are also possible, such as those proposed by Li et al. (2021), or
sampling-based approaches; see e.g. Doucet et al. (2000).

Other choices for DA[K] Finally, some choices of weighting functions are derived using
ad-hoc rules, meaning that explicit or approximate solutions to the Bayesian posterior are
not needed. One of the most popular choices of ad-hoc weighting functions are mixture
of experts, which weight different models according to a given criterion.
ME (mixture of experts with algorithmic weighting): Consider ψt = αt. Let αt,k = k

denote the k-th configuration over (M.3: prior). Next, denote by wt = {wt,1, . . . ,wt,K}
a set of weights, where wt,k corresponds to the weight for the k-th expert at time t. The
work of Chaer et al. (1997) considers the weighting function

νt(wt)k =
exp(w⊺

t,k yt)∑K
j=1 exp(w⊺

t,j yt)
, (3.37)
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for k = 1, . . . ,K. The set of weights wt are determined by maximising the surrogate
gain function

Gt(wt) = p(yt |xt,D1:t−1) =
K∑
k=1

p(yt |xt,αt,k,D1:t−1) νt(wt)k, (3.38)

with respect to wt,k for all k = 1, . . . ,K at every timestep t.
We write DA[K], where K is the number hypothesis, for methods that use K hypotheses

at most. On the other hand, we write DA[inf] when we do not impose a bound on the
number of hypotheses used. Note that even when the choice of (A.2: weighting) is built
using DA[inf], one can modify it to make it DA[K].

Discrete auxiliary variable with greedy hypothesis selection (DA[1]) A special case
of the above is DA[1], where we employ a single hypothesis. In these scenarios, we set
ν(ψt) = 1 where ψt is the most likely hypothesis.
RL (Greedy runlength): For ψt = rt and DA[1], we take

p(rt | rt−1,D1:t−1) =


1− κ if rt = rt−1 + 1,

κ if rt = 0,

0 otherwise.

(3.39)

Our choice of (A.2: weighting) is based on the marginal predictive likelihood ratio, which is
derived from the computation of p(rt | D1:t) under either either an increase in the runlength
(r(1)
t = rt−1 + 1) or a reset of the runlength (r(0)

t = 0). Under these assumptions, the
form of νt(r(1)

t ) is

νt(r(1)
t ) = p(yt | r(1)

t ,xt,D1:t−1) (1− κ)
p(yt | r(0)

t ,xt,D1:t−1)κ+ p(yt | r(1)
t ,xt,D1:t−1) (1− κ)

. (3.40)

For details on the computation of (A.2: weighting), see Appendix 3.3.3. For a detailed
implementation of (M.2: auxvar) RL, (M.3: prior) OUPR, (A.2: weighting) DA[1], and
(A.1: posterior) LG, see Algorithm 10 in the Appendix.

For example, RL[1] is a runlength rt with a single hypothesis. We provide another
example next.
CPL (changepoint location with retrospective membership): for ψt = s1:t, the work of
Nassar et al. (2022) evaluates the probability of past datapoints belonging in the current
regime. In this scenario,

p(s1:t | s1:t−1,D1:t−1) = p(s1:t | D1:t−1), (3.41)

so that
p(s1:t | D1:t) ∝ p(s1:t | D1:t−1) p(yt |xt, s1:t,D1:t−1). (3.42)
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This method allows for exact computation by summing over all possible 2t elements.
However, to reduce the computational cost, they propose a discrete optimisation over
possible values {νt(s1:t) : s1:t ∈ {0, 1}t}, where νt(s1:t) = p(s1:t | D1:t). Then, the
hypothesis with highest probability is stored and gets assigned a weight of one.

Continuous auxiliary variable (CA)

Here, we briefly discuss continuous auxiliary variables (CA). For some choices of ψt and
transition densities p(ψt |ψt−1,D1:t−1), computation of (3.31) becomes infeasible. In
these scenarios, we use simpler approximations. We give an example below.
CPP (Changepoint probability with empirical Bayes estimate): for ψt = υt, consider

p(υt | υt−1,D1:t−1) = p(υt), (3.43)

so that
p(υt | D1:t) ∝ p(υt) p(yt |xt, υt). (3.44)

The work of Titsias et al. (2024) takes νt(υt) = δ(υt − υ∗
t ), where δ is the Dirac delta

function and υ∗
t is a point estimate centred at the maximum of the marginal posterior

predictive likelihood:
υ∗
t = arg max

υ∈[0,1]
p(yt |xt, υ,D1:t−1). (3.45)

In practice, (3.45) is approximated by taking gradient steps towards the minimum. This
is a form of empirical Bayes approximation, since we compute the most likely value of the
prior after marginalizing out θt. The work of Galashov et al. (2024) considers a modified
configuration with choice of (M.2: auxvar) υt ∈ (0, 1)D.

3.2 Unified view of examples in the literature

Table 3.3 shows that many existing methods can be written as instances of BONE. Rather
than specifying the choice of (M.1), we instead write the task for which it was designed,
as discussed in Section 2.1.1. We will experimentally compare a subset of these methods
in Section 3.5.

The methods presented in Table 3.3 can be directly applied to tackle any of the
problems mentioned in Section 2.1.1. However, as choice of (M.1: likelihood), we specify
the task under which the configuration was introduced.3

3.3 Worked examples

In this section, we provide a detailed calculation of νt(ψt) for some choices of ψt. We
consider a choice of (M.1: likelihood) to be linear Gaussian with known observation

3In general, the components of BONE can be thought as the building blocks for new methods. Some
of these combinations would not be useful, but they can be employed nonetheless.
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Reference Task M.2: auxvar M.3: prior A.1: posterior A.2: weight
Kalman (1960) filtering C LSSM LG DA[1]
Magill (1965) filtering ME LSSM LG DA[K]
Chang and Athans (1978) filtering ME LSSM LG CA
Chaer et al. (1997) filtering ME LSSM LG DA[K]
Ghahramani and Hinton (2000) SSSM ME Static VB CA
Adams and MacKay (2007) seg. RL PR Cj DA[inf]
Fearnhead and Liu (2007) seg. & preq. CPT/ME PR Any DA[inf]
Wilson et al. (2010) seg. RLCC PR Cj DA[inf]
Fearnhead and Liu (2011) seg. CPT/ME MMPR Any DA[inf]
Mellor and Shapiro (2013) bandits RL PR Cj DA[inf]
Nguyen et al. (2017) OCL CPL Sub VB DA[1]
Knoblauch and Damoulas (2018) seg. RL/ME PR Cj DA[inf]
Kurle et al. (2019) OCL CPV Sub VB DA[1]
Li et al. (2021) OCL CPL MCI VB DA[inf]
Nassar et al. (2022) bandits & OCL CPV Sub LG DA[1]
Liu (2023) preq. ME C,LSSM Any DA[K]
Chang et al. (2023) OCL C ACI LG DA[1]
Titsias et al. (2024) OCL CPP OU LG CA
Galashov et al. (2024) CL CPP OU VB CA
Abélès et al. (2024) preq. ME LSSM LG DA[K]
RL[1]-OUPR* (ours) any RL SPR Any DA[1]

Table 3.3: List of methods ordered by publication date. The tasks are discussed in Section 2.1.1. We use
the following abbreviations: SSSM means switching state space model; (O)CL means (online) continual
learning; seg. means segmentation; preq. means prequential. Methods that consider two choices of (M.2:
auxvar) are denoted by ‘X/Y’. This corresponds to a double expectation in (3.6)—one for each choice of
auxiliary variable.

variance Rt, i.e.,
p(yt |θ,xt) = N (yt |x⊺

t θt,Rt). (3.46)

3.3.1 Runlength with prior reset (RL-PR)

Unbounded number of hypotheses RL[inf]-PR

The work in Adams and MacKay (2007) takes ψt = rt to be the runlength, with rt ∈
{0, 1, . . . , t}, that that counts the number of steps since the last changepoint. Assume
the runlength follows the dynamics (3.33). We consider νt(rt) = p(rt|D1:t) such that

p(rt | D1:t) = p(rt,D1:t)∑t
r̂t=0 p(r̂t,D1:t)

, (3.47)

for rt ∈ {0, . . . , t}. The RL-PR method estimates p(rt,D1:t) for all rt ∈ {0, . . . , t} at
every timestep. To estimate this value recursively, we sum over all possible previous
runlengths as follows

p(rt,D1:t)

=
t−1∑

rt−1=0
p(rt, rt−1,D1:t−1,Dt)

=
t−1∑

rt−1=0
p(rt−1,D1:t−1) p(rt | rt−1,D1:t−1) p(yt | rt, rt−1,xt,D1:t−1)

= p(yt | rt,xt,D1:t−1)
t−1∑

rt−1=0
p(rt−1,D1:t−1)p(rt | rt−1).

(3.48)
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In the last equality, there are two implicit assumptions, (i) the runlength at time t is
conditionally independent of the data D1:t−1 given the runlength at time t−1, and (ii) the
model is Markovian in the runlength, that is, conditioned on rt, the value of rt−1 bears
no information. Mathematically, this means that (i) p(rt | rt−1,D1:t−1) = p(rt | rt−1)
and (ii) p(yt | rt, rt−1,D1:t−1) = p(yt | rt,D1:t−1). From (3.48), we observe there are
only two possible scenarios for the value of rt. Either rt = 0 or rt = rt−1 + 1 with
rt−1 ∈ {0, . . . , t− 1}. Thus, p(rt,D1:t) becomes

p(rt,D1:t) = p(yt | rt,xt,D1:t−1) p(rt−1,D1:t−1) p(rt | rt−1) if rt ≥ 1

p(rt,D1:t) = p(yt | rt,xt,D1:t−1)
t−1∑

rt−1=0
p(rt−1,D1:t−1) p(rt | rt−1) if rt = 0 .

(3.49)

The joint density (3.49) considers two possible scenarios: either we stay in a regime
considering the past rt ≥ 1 observations, or we are in a new regime, in which rt = 0.
Finally, note that (3.49) depends on three terms: (i) the transition probability p(rt | rt−1),
which it is assumed to be known, (ii) the previous log-joint p(rt−1,D1:t−1), with rt−1 ∈
{0, 1, . . . , t−1}, which is estimated at the previous timestep, and (iii) the prior predictive
density

p(yt | rt,xt,D1:t−1) =
∫
p(yt |θt,xt) p(θt | rt,D1:t−1)dθt. (3.50)

For a choice of (M.1: likelihood) given by (3.46) and a choice of (M.3: prior) given by
(3.18), the posterior predictive (3.50) takes the form.

p(yt | rt,xt,D1:t−1) =
∫
N (yt |x⊺

t θt,Rt) N
(
θt |µ(rt)

t−1,Σ
(rt)
t−1

)
dθt

= N
(
yt |x⊺

tµ
(rt)
t−1, x

⊺
t Σ(rt)

t−1 xt + Rt

)
,

(3.51)

with rt ∈ {0, . . . , t − 1}. Here,
(
µ

(rt)
t−1,Σ

(rt)
t−1

)
are the posterior mean and covariance

at time t − 1 built using the last rt ≥ 1 observations. If rt = 0, then (µ(rt)
t−1,Σ

(rt)
t−1) =

(µ0,Σ0).

Bounded number of hypotheses RL[K]-PR

If we maintain a set of K possible hypotheses, then Ψt = {r(1)
t−1, . . . , r

(K)
t−1} ∈ {0, . . . , t−

1}K is a collection of K unique runlengths obtained at time t− 1. Next, (3.48) takes the
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form

p(rt,D1:t) = p(yt | rt,xt,D1:t−1) p(rt−1,D1:t−1) p(rt | rt−1) if rt ≥ 1,

(3.52)

p(rt,D1:t) = p(yt | rt,xt,D1:t−1)
∑

rt−1∈Ψt−1

p(rt−1,D1:t−1) p(rt | rt−1) if rt = 0 .

(3.53)

Here, we have that either rt = rt−1 + 1 when rt−1 ∈ Ψt−1 or rt = 0. After computing
p(rt,D1:t) for all K + 1 possibles values of rt, a choice is made to keep K hypotheses.
For timesteps t ≤ K, we evaluate all possible hypotheses until t > K.

Algorithm 8 shows an update step under this process when we maintain a set of K
possible hypotheses.

3.3.2 Runlength with moment-matched prior reset (RL-MMPR)

Here, we consider a modified version of the method introduced in Fearnhead and Liu
(2011). We consider the choice of RL and adjust the choice of (M.3: prior) for RL-PR

introduced in Appendix 3.3.1 whenever rt = 0. In this combination, for rt = 0, we take
τ(θt | rt,D1:t−1) = p(θt | rt,D1:t−1). Next

p(θt | rt,D1:t−1) =
t−1∑

rt−1=0
p(θt, rt−1 | rt,D1:t−1)

=
t−1∑

rt−1=0
p(rt−1 | D1:t−1) p(rt | rt−1) p(θt | rt, rt−1,y1:t−1)

=
t−1∑

rt−1=0
p(rt−1 | D1:t−1) p(rt | rt−1)N (θt |µ(rt−1)

t−1 ,Σ(rt−1)
t−1 ).

(3.54)

Because (3.54) is a mixture model, we choose a conditional prior to be Gaussian that
approximates the first two moments. We obtain

E[θt | rt,y1:t−1] =
t−1∑

rt−1=0
p(rt−1 | D1:t−1) p(rt | rt−1)µ(rt−1)

t−1 (3.55)

for the first moment, and

E[θt θ⊺t | rt,y1:t−1]
t−1∑

rt−1=0
p(rt−1 | D1:t−1) p(rt | rt−1)

(
Σ(rt−1)
t−1 + µ(rt−1)

t−1 µ
(rt−1)⊺
t−1

)
(3.56)
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for the second moment. The conditional prior mean and prior covariance under rt = 0
take the form

µ
(0)
t = E[θt | rt,y1:t−1],

Σ(0)
t = E[θt θ⊺t | rt,y1:t−1]− (E[θt | rt,y1:t−1]) (E[θt | rt,y1:t−1])⊺ .

(3.57)

Algorithm 9 shows an update step under this process when we maintain a set of K possible
hypotheses.

3.3.3 Runlength with OU dynamics and prior reset (RL[1]-OUPR*)

In this section, we provide pseudocode for the new hybrid method we propose. Specifically,
our choices in BONE are: RL[1]-OUPR* for (M.2: auxvar) and (M.3: prior), LG for (A.1:
posterior), and DA[1] for (A.2: weighting). Because of our choice of (A.2: weighting),
RL[1]-OUPR* considers a single hypothesis (or runlength) which, at every timestep, is
either increased by one or set back to zero, according to the probability of a changepoint
and a threshold ϵ ∈ (0, 1).

In essence, RL[1]-OUPR* follows the logic behind RL[1]-PR introduced in Section
3.3.1 with K = 1 hypothesis and different choice of (M.3: prior). To derive the algorithm
for RL[1]-OUPR* at time t > 1, suppose rt−1 is available (the only hypothesis we track).
Denote by r(1)

t the hypothesis of a runlength increase, i.e., rt = rt−1 + 1 and denote
by r(0)

t the hypothesis of a runlenght reset, i.e., rt = 0. The probability of a runlength
increase under a single hypothesis takes the form:

νt(r(1)
t ) = p(r(1)

t | D1:t)

= p(r(1)
t ,D1:t)

p(r(1)
t ,D1:t) + p(r(0)

t ,D1:t)

= p(yt | r(1)
t ,xt,D1:t−1) p(rt−1,D1:t−1) (1− κ)

p(yt | r(0)
t ,xt,D1:t−1) p(rt−1,D1:t−1)κ+ p(yt | r(1)

t ,xt,D1:t−1) p(rt−1,D1:t−1) (1− κ)

= p(yt | r(1)
t ,xt,D1:t−1) (1− κ)

p(yt | r(0)
t ,xt,D1:t−1)κ+ p(yt | r(1)

t ,xt,D1:t−1) (1− κ)
.

(3.58)
where κ = p(rt | rt−1) with rt = 0 is the prior probability of a changepoint and and
1 − κ = p(rt | rt−1 with rt = rt−1 + 1 is the probability of continuation of the current
segment.

Next, we use νt(rt) to decide whether to update our parameters or reset them ac-
cording to a prior belief according to some threshold ϵ. This implements our choice of
(M.3: prior) given in (3.19) and (3.20). Because we maintain a single hypothesis, the
weight at the end of the update step is set to 1. Algorithm 10 shows an update step for
RL[1]-OUPR* under the choice of (M.1: likelihood) given by (3.46).
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3.3.4 Changepoint location with multiplicative covariance inflation
CPL-MCI

The work in Li et al. (2021) takes ψt = s1:t to be a t-dimensional vector where the i-th
element is a binary vector that determines a changepoint at time t. Then, the sum of the
entries of s1:t represents the total number of changepoints up to, and including, time t.

We take νt(s1:t) = p(s1:t|D1:t), which is recursively expressed as

p(s1:t | D1:t) = p(st, s1:t−1 |yt,xt,D1:t−1)

= p(s1:t−1 | D1:t−1)p(st | s1:t−1,xt,yt,D1:t−1).
(3.59)

Here, p(s1:t−1 | D1:t−1) is inferred at the previous timestep t − 1. The estimate of a
changepoint conditioned on the past changes and the measurements is

p(st = 1 | s1:t−1,D1:t)

= p(st = 1)p(yt |xt, s1:t−1, st = 1,D1:t−1)
p(st = 1)p(yt | st = 1,xt, s1:t−1,y1:t−1) + p(st = 0)p(yt | st = 0,xt, s1:t−1,D1:t−1)

=
(

1 + exp
(
− log

(
p(st = 1)p(yt | st = 1,xt, s1:t−1,y1:t−1)
p(st = 0)p(yt | st = 0,xt, s1:t−1,D1:t−1)

)))−1
= σ(mt),

(3.60)
where σ(x) = 1/(1 + exp(−x)) and

mt = log
(
p(yt | st = 1,xt, s1:t−1,D1:t−1)
p(yt | st = 0,xt, s1:t−1,D1:t−1)

)
+ log

(
p(st = 1)
p(st = 0)

)
, (3.61)

and similarly,
p(st = 0 | s1:t−1,D1:t) = 1− σ(mt). (3.62)

Finally, the transition between states is given by p(s1:t | s1:t−1) = p(st).
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3.4 Algorithms

Algorithm 8 Implementation of RL[K]-PR. We consider an update at time t and one-step
ahead forecasting at time t + 1 under a Gaussian linear model with known observation
variance.
Require: (µ0,Σ0) // default prior beliefs
Require: Dt = (xt,yt) // current observation
Require: {r(k)

t−1}
K
k=1 ∈ {0, . . . , t− 1}K // bank of runlengths at time t− 1

Require: {p(r(k)
t−1,D1:t)}Kk=1 // joint from past hypotheses

Require:
{

(µ(k)
t−1,Σ

(k)
t−1)

}K
k=1

// beliefs from past hypotheses
Require: xt+1 // next-step observation
Require: p(y | θ,x) = N (y | θ⊺x,Rt) // Choice of (M.1: likelihood)

1: // Evaluate hypotheses if there is no changepoint
2: for k = 1, . . . ,K do
3: r

(k)
t ← r

(k)
t−1 + 1

4: p(yt | r(k)
t ,xt,D1:t−1) ← N (yt |x⊺

t µ
(k)
t−1, x

⊺
t Σ(k)

t−1 xt + Rt) // posterior predictive for
k-th hypothesis

5: p(r(k)
t , D1:t) ← p(yt | r(k)

t ,xt,D1:t−1) p(r(k)
t−1,D1:t−1) p(r(k)

t | r
(k)
t−1) // update joint den-

sity
6: (µ̄(k)

t , Σ̄(k)
t )← (µ(k)

t−1,Σ
(k)
t−1)

7: τt(θt; r(k)
t )← N (θt | µ̄t, Σ̄t) // choice of (M.3: prior)

8: qt(θt; r(k)
t ) ∝ τt(θt; r(k)

t ) p(yt | θ⊺xt,Rt) ∝ N (θt |µ(k)
t ,Σ(k)

t ) // following (3.29)
9: end for

10: // Evaluate hypothesis under a changepoint
11: r(k+1)

t ← 0
12: p(yt | r(k+1)

t ,xt,D1:t−1) ← N (yt |x⊺
t µ0, x

⊺
t Σ0 xt + Rt) // posterior predictive for k-th

hypothesis
13: p(r(k+1)

t ,D1:t)← p(yt | r(k+1)
t , xt, D1:t−1)

∑K

k=1 p(r
(k)
t ,D1:t) p(r(t+1)

t | r(k)
t − 1)

14: // Extend number of hypotheses to K + 1 and keep top K hypotheses
15: I1:k = top.k({p(r(1)

t , D1:t), . . . , p(r(k+1)
t ,D1:t)}, K)

16: {p(r(k)
t ,D1:t)}Kk=1 ← slice.at({p(r(k)

t , D1:t)}K+1
k=1 , I1:K)

17: {(µ(k)
t ,Σ(k)

t )}Kk=1 ← slice.at({(µ(k)
t , Σ(k)

t )}K+1
k=1 , I1:K)

18: // build weight and make prequential prediction

19: νt(r(k)
t )← p(r(k)

t
,D1:t)∑K

j=1
p(r(j)

t
,D1:t)

for k = 1, . . . ,K

20: ŷt+1 ← x⊺
t+1

(∑K

k=1 νt(r
(k)
t )µ(k)

t

)
// prequential prediction under a linear-Gaussian model

21: return {(µ(k)
t ,Σ(k)

t , r
(k)
t )}Kk=1, ŷt+1

In Algorithm 8, the function top.k(A,K) returns the indices of the topK ≥ 1 elements
of A with highest value. The function slice.at(A,B) returns the elements in A according
to the list of indices B. If |A| ≤ |B|, we return all elements in A.
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Algorithm 9 Implementation of RL[K]-MMPR. We consider an update at time t and one-
step ahead forecasting at time t+1 under a Gaussian linear model with known observation
variance.
Require: Dt = (xt,yt) // current observation
Require: {r(k)

t−1}
K
k=1 ∈ {0, . . . , t− 1}K // bank of runlengths at time t− 1

Require: {p(r(k)
t−1,D1:t)}Kk=1 // joint from past hypotheses

Require:
{

(µ(k)
t−1,Σ

(k)
t−1)

}K
k=1

// beliefs from past hypotheses
Require: xt+1 // next-step observation
Require: p(y | θ,x) = N (y | θ⊺x,Rt) // Choice of (M.1: likelihood)

1: // Evaluate hypotheses if there is no changepoint
2: for k = 1, . . . ,K do
3: r

(k)
t ← r

(k)
t−1 + 1

4: p(yt | r(k)
t ,xt,D1:t−1) ← N (yt |x⊺

t µ
(k)
t−1, x

⊺
t Σ(k)

t−1 xt + Rt) // posterior predictive for
k-th hypothesis

5: p(r(k)
t , D1:t) ← p(yt | r(k)

t ,xt,D1:t−1) p(r(k)
t−1,D1:t−1) p(r(k)

t | r
(k)
t−1) // update joint den-

sity
6: (µ̄(k)

t , Σ̄(k)
t )← (µ(k)

t−1,Σ
(k)
t−1)

7: τt(θt; r(k)
t )← N (θt | µ̄t, Σ̄t) // choice of (M.3: prior)

8: qt(θt; r(k)
t ) ∝ τt(θt; r(k)

t ) p(yt | θ⊺xt,Rt) ∝ N (θt |µ(k)
t ,Σ(k)

t ) // following (3.29)
9: end for

10: // Evaluate hypothesis under a changepoint
11: r(k+1)

t ← 0
12: µ0 ← E[θt | rt,y1:t−1] // following (3.55)
13: Σ0 ← E[θt θ⊺t | rt,y1:t−1] − (E[θt | rt,y1:t−1]) (E[θt | rt,y1:t−1])⊺ // following (3.55) and

(3.56)
14: p(yt | r(k+1)

t ,xt,D1:t−1) ← N (yt |x⊺
t µ0, x

⊺
t Σ0 xt + Rt) // posterior predictive for k-th

hypothesis
15: p(r(k+1)

t ,D1:t)← p(yt | r(k+1)
t , xt, D1:t−1)

∑K

k=1 p(r
(k)
t ,D1:t) p(r(t+1)

t | r(k)
t − 1)

16: // Extend number of hypotheses to K + 1 and keep top K hypotheses
17: I1:k = top.k({p(r(1)

t , D1:t), . . . , p(r(k+1)
t ,D1:t)}, K)

18: {p(r(k)
t ,D1:t)}Kk=1 ← slice.at({p(r(k)

t , D1:t)}K+1
k=1 , I1:K)

19: {(µ(k)
t ,Σ(k)

t )}Kk=1 ← slice.at({(µ(k)
t , Σ(k)

t )}K+1
k=1 , I1:K)

20: // build weight and make prequential prediction

21: νt(r(k)
t )← p(r(k)

t
,D1:t)∑K

j=1
p(r(j)

t
,D1:t)

for k = 1, . . . ,K

22: ŷt+1 ← x⊺
t+1

(∑K

k=1 νt(r
(k)
t )µ(k)

t

)
// prequential prediction under a linear-Gaussian model

23: return {(µ(k)
t ,Σ(k)

t , r
(k)
t )}Kk=1, ŷt+1
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Algorithm 10 Implementation of RL[1]-OUPR*, with update at time t and for one-step
ahead forecasting at time t + 1, under a Gaussian linear model with known observation
variance.
Require: Dt = (xt,yt) // current observation
Require: xt+1 // next-step observation
Require: ϵ ∈ (0, 1) // restart threshold
Require: rt−1 ∈ {0, . . . , t− 1} // runlength at time t− 1
Require: (µ0,Σ0) // default prior beliefs
Require: (µt−1,Σt−1) // beliefs from prior step
Require: p(y | θ,x) = N (y | θ⊺x,Rt) // Choice of (M.1: likelihood)

1: (r(0)
t , r

(1)
t )← (0, rt−1 + 1) // choice of (M.2: auxvar)

2: p(yt | r(0)
t ,xt,D1:t−1) ← N (yt |x⊺

t µ0, x
⊺
t Σ0 xt + Rt) // posterior predictive at change-

point
3: p(yt | r(1)

t ,xt,D1:t−1) ← N (yt |x⊺
t µt−1, x

⊺
t Σt−1 xt + Rt) // posterior predictive if no

changepoint
4: νt(r(1)) ← p(yt | r(1)

t
,xt,D1:t−1)(1−π)

p(yt | r(1)
t
,xt,D1:t−1) (1−π)+p(yt | r(0)

t
,xt,D1:t−1)π

// probability of no-changepoint
at timestep t

5:
6: if ν(r(1)

t ) > ϵ then
7: rt ← r

(1)
t

8: µ̄
(rt)
t ← µ

(rt−1)
t−1 ν(r(1)

t ) + µ0

(
1− ν(r(1)

t )
)

9: Σ̄(rt)
t ← Σ(rt−1)

t−1 ν(r(1)
t )2 + Σ0

(
1− ν(r(1)

t )2
)

10: else if ν(r(1)
t ) ≤ ϵ then

11: rt ← r
(0)
t

12: µ̄
(rt)
t ← µ0

13: Σ̄(rt)
t ← Σ0

14: end if
15: τt(θt; rt)← N (θt | µ̄t, Σ̄t) // choice of (M.3: prior)
16: qt(θt; rt) ∝ N (θt | µ̄t, Σ̄t) p(yt | θ⊺xt,Rt) ∝ N (θt |µt,Σt) // choice of (A.1: posterior)—

via (3.29)
17: ŷt+1 ← x⊺

t+1 µt // prequential prediction (given linear-Gaussian model)
18: return (µt,Σt, rt), ŷt+1

3.5 Experiments

In this section we experimentally evaluate different algorithms within the BONE framework
on a number of tasks.

Each experiment consists of a warmup period where the hyperparameters are chosen,
and a deploy period where sequential predictions and updates are performed. In each
experiment, we fix the choice of measurement model h (M.1: likelihood) and posterior
inference method (A.1: posterior), and then compare different methods with respect to
their choice of (M.2: auxvar), (M.3: prior), and (A.2: weighting). For DA methods, we
append the number of hypotheses in brackets to determine how many hypotheses are
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being considered. For example, RL[1]-PR denotes one hypothesis, RL[K]-PR denotes K
hypotheses, and RL[inf]-PR denotes all possible hypotheses. In all experiments, unless
otherwise stated, we consider a single hypothesis for choices of DA. See Table 3.4 for the
methods we compare.

M.2-M.3 Eq. A.2 Description Sections
static

C-Static (3.16) - This corresponds to the static case with a classical Bayesian update. This
method does not assume changes in the environment.

3.5.3, 4.7.4

abrupt changes
RL-PR (3.18) DA[inf] This approach, commonly referred to as Bayesian online changepoint de-

tection (BOCD), assumes that non-stationarity arises from independent
blocks of time, each with stationary data. Estimates are made using data
from the current block. See Appendix 3.3.1 for more details.

3.5.1, 3.5.1,
3.5.2, 3.5.3,
4.7.4,

WoLF+RL-PR* (3.18) DA[inf] Special case of RL-PR with explicit choice of (M.1: likelihood) which makes
it robust to outliers.

4.7.4

gradual changes
CPP-OU (3.14) CA Updates are done using a discounted mean and covariance according to

the probability estimate that a change has occurred.
3.5.1, 3.5.1,
3.5.2

C-ACI (3.15) - At each timestep, this method assumes that the parameters evolve accord-
ing to a linear map Ft, at a rate given by a known positive semidefinite
covariance matrix Qt.

3.5.1, 3.5.1,
3.5.2,

abrupt & gradual changes
RL-MMPR (3.57) DA[inf] Modification of CPT-MMPR that assumes dependence between any two con-

secutive blocks of time and with choice of RL. This combination employs
a moment-matching approach when evaluating the prior mean and covari-
ance under a changepoint. See Appendix 3.3.2 for more details.

3.5.3

RL-OUPR (3.19) DA[1] Depending on the threshold parameter, updates involve either (i) a convex
combination of the prior belief with the previous mean and covariance
based on the estimated probability of a change (given the run length),
or (ii) a hard reset of the mean and covariance, reverting them to prior
beliefs. See Appendix 3.3.3 for more details.

3.5.1, 3.5.1,
3.5.2, 3.5.3

Table 3.4: List of methods we compare in our experiments. The first column, M.2–M.3, is defined
by the choices of (M.2: auxvar) and (M.3: prior). The second column, Eq., references the equation
that define M.2–M.3. The third column, A.2, determines the choice of (A.2: weighting). The fourth
column, Description, provides a brief summary of the method. The fifth column, Sections, shows the
sections where the method is evaluated. The choice of (M.1: likelihood) and (A.1: posterior) are defined
on a per-experiment basis. (The only exception being WolF+RL-PR). For (M.2: auxvar) the acronyms
are as follows: RL means runlength, CPP means changepoint probability, C means constant, and CPT
means changepoint timestep. For (M.3: prior) the acronyms are as follows: PR means prior reset, OU
means Ornstein–Uhlenbeck, LSSM means linear state-space model, Static means full Bayesian update,
MMR means moment-matched prior reset, and OUPR means Ornstein–Uhlenbeck and prior reset. We use
the convention in Hušková (1999) for the terminology abrupt/gradual changes.

3.5.1 Prequential prediction

In this section, we give several examples of non-stationary prequential prediction problems.

Online regression for hour-ahead electricity forecasting

In this experiment, we consider the task of predicting the hour-ahead electricity load before
and after the Covid pandemic. We use the dataset presented in Farrokhabadi et al. (2022),
which has 31,912 observations; each observation contains 7 features xt and a single target
variable yt. The 7 features correspond to pressure (kPa), cloud cover (%), humidity (%),
temperature (C) , wind direction (deg), and wind speed (KmH). The target variable is
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the hour-ahead electricity load (kW). To preprocess the data, we normalise the target
variable yt by subtracting an exponentially weighted moving average (EWMA) mean with
a half-life of 20 hours, then dividing the resulting series by an EWMA standard deviation
with the same half-life. To normalise the features xt, we divide each by a 20-hour half-life
EWMA. The features are lagged by one hour.

Our choice of measurement model h is a two-hidden layer multilayered perceptron
(MLP) with four units per layer and a ReLU activation function.

For this experiment, we consider RL[1]-OUPR* (our proposed method), RL[1]-PR (a
classical method), C-ACI (a simple benchmark), and CPP-OU (a modern method). For
computational convenience, we plug in a point-estimate (MAP estimate) of the neural
network parameters when making predictions using h. More precisely, given ψt, we use
h(θ∗

t ,xt+1) to make a (conditional) prediction, where θ∗
t = arg maxθ q(θ; ψt,D1:t). For

a fully Bayesian treatment of neural network predictions, see Immer et al. (2021); we leave
the implementation of these approaches for future work.

The hyperparameters of each method are found using the first 300 observations
(around 13 days) and deployed on the remainder of the dataset. Specifically, during the
warmup period we tune the value of the probability of a changepoint for RL[1]-OUPR*

and RL[1]-PR. For C-ACI we tune Qt, and for CPP-OU we tune the learning rate. See
the open-source notebooks for more details.

In the top panel of Figure 3.2 we show the evolution of the target variable yt between
March 3 2020 and March 10 2020. The bottom panel of Figure 3.2 shows the 12-hour
rolling mean absolute error (MAE) of predictions made by the methods. We see that there
is a changepoint around March 7 2020 as pointed out in Farrokhabadi et al. (2022). This
is likely due to the introduction of Covid lockdown rules. Among the methods considered,
C-ACI and RL[1]-OUPR* adapt the quickest after the changepoint and maintain a low
rolling MAE compared to RL[1]-PR and CPP-OU.

Figure 3.2: The top panel shows the target variable (electricity consumption) from March 1 2020 to
March 12 2020. The bottom panel shows the twelve-hour rolling relative absolute error of predictions
for the same time window. The dotted black line corresponds to March 7 2020, when Covid lockdown
began.

Next, Figure 3.3, shows the forecasts made by each method between March 4 2020
and March March 8 2020. We observe a clear cyclical pattern before March 7 2020 but

68



less so afterwards, indicating a change in daily electricity usage from diurnal to constant.

Figure 3.3: One day ahead electricity forecasting results for Figure 3.2. The dotted black line corresponds
to March 7 2020.

We also observe that RL[1]-PR and CPP-OU slow-down their rate of adaptation. One
possible explanation of this behaviour is that the changes are not abrupt enough to be
captured by the algorithms. To provide evidence for this hypothesis, Figure 3.4 shows,
on the left y-axis, the predictions for RL[1]-PR and the target variable yt. On the right
y-axis, we show the estimated runlength.

Figure 3.4: One day ahead electricity forecasting results for RL[1]-PR together with the target variable
on the left y-axis, and the value for runlength (RL) on the right y-axis. We see that after the 7 March
changepoint, the runlength monotonically increases, indicating a stationary regime.

We see that RL[1]-PR resets approximately twice every day until the time of the
changepoint. After that, there is no evidence of a changepoint (as provided by the
hyperparameters and the modelling choices), so RL[1]-PR does not reset which translates
to less adaptation for the period to the right of the changepoint.

Finally, we compare the error of predictions made by the competing methods. This
is quantified in Figure 3.5, which shows a box-plot of the five-day MAE for each of the
competing methods over the whole dataset, from March 2017 to November 2020. Our
new RL[1]-OUPR* method has the lowest MAE.

Online classification with periodic drift

In this section we study the performance of C-ACI, CPP-OU, RL[1]-PR, and RL[1]-OUPR*

for the classification experiment of Section 6.2 in Kurle et al. (2019). More precisely,
in this experiment xt,i ∼ Unif[−3, 3] for i ∈ {1, 2}, xt = (xt,1, xt,2) ∈ R2, yt ∼
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Figure 3.5: Distribution of the 5-day mean absolute error (MAE) for each of the competing methods on
electricity forecasting over the entire period. For this calculation we split the dataset into consecutive
buckets containing five days of data each, and for a given bucket we compute the average absolute error
of the predictions and observations that fall within the bucket.

Bernoulli(σ(θ⊺t xt)) with θ(1)
t = 10 sin(5◦ t) and θ(2)

t = 10 cos(5◦ t). Thus the unknown
values of model parameters are slowly drifting deterministically according to sine and
cosine functions. The timesteps go from 0 to 720.

Figure 3.6: Misclassification rate of various methods on the online classification with periodic drift task.

Figure 3.6 summarises the results of the experiment where we show the misclassifica-
tion rate (which is one minus the accuracy) for the competing methods. Our RL[1]-OUPR*

method works the best, and signifcantly outperforms RL[1]-PR, since we use an OU drift
process with a soft prior reset rather than assuming constant parameter with a hard prior
rset.

We can improve the performance of RL[K]-PR if the number of hypotheses K in-
creases, and if we vary the changepoint probability threshold κ, as shown in Figure 3.7.
However, even then the performance of this method still does not match our method.
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Figure 3.7: Accuracy of predictions for RL[1]-PR as a function of the number of hypothesis and the prior
probability of a changepoint κ. The black dotted line is the performance of RL[1]-OUPR* reported in
Figure 3.6.

Online classification with drift and jumps

In this section we study the performance of C-ACI, CPP-OU, RL[1]-PR, and RL[1]-OUPR*

for an experiment with drift and sudden changes. More precisely, we assume that the
parameters of a logistic regression problem evolve according to

θt =

θt−1 + ϵt w.p. 1− pϵ,

U [−2, 2]2 w.p. pϵ,
(3.63)

with pϵ = 0.01, θ0 ∼ U [−2, 2]2, and ϵt is a zero-mean distributed random vector with
isotropic covariance matrix (0.01)2 I2 (where I2 is a 2 × 2 identity matrix). Intuitively,
this experiment has model parameters that drift slowly with occasional abrupt changes
(at a rate of 0.01).

Figure 3.8: Misclassification rate of various methods on the online classification with drift and jumps
task.

Figure 3.8 shows the misclassification rate among the competing methods. We observe
that C-ACI, CPP-OU, and RL[1]-OUPR* have comparable performance, whereas RL[1]-PR

is the method with highest misclassification rate.
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Figure 3.9: Accuracy of predictions for RL[K]-PR as a function of the number of hypotheses (K) and the
probability of a changepoint κ. The black dotted line is the performance of RL[1]-OUPR* reported in
Figure 3.8.

To explain this behaviour, Figure 3.9 shows the performance of RL[K]-PR as a function
of number of hypotheses and prior probability of a changepoint κ. We observe that up
to three hypotheses, the lowest misclassification error of RL[K]-PR is higher than that of
RL[1]-OUPR*, which only considers one hypothesis. However, as we increase the number
of hypotheses, the best performance for RL[K]-PR obtains a lower misclassification rate
than RL[1]-OUPR*. This is in contrast to the results in Figure 5. Here, we see that with
more hypotheses RL[K]-PR outperforms our new method at the expense of being more
memory intensive.

3.5.2 Contextual bandits

In this section, we study the performance of C-ACI, CPP-OU, RL[1]-PR, and RL[1]-OUPR*

for the simple Bernoulli bandit from Section 7.3 of Mellor and Shapiro (2013). More
precisely, we consider a multi-armed bandit problem with 10 arms, 10,000 steps per simu-
lation, and 100 simulations. The payoff of a given arm is the outcome of a Bernoulli
random variable with unknown probability θt = min{max{θt−1 + 0.03Zt, 0}, 1} for
{Zt}t∈{1,2,...,10,000} independent and identically distributed standard normal random vari-
ables. We take θ0 ∼ Unif[0, 1] and use the same formulation for all ten arms with in-
dependence across arms. The observations are the rewards and there are no features
(non-contextual).

The idea of using RL[1]-PR in multi-armed bandits problems was introduced in Mellor
and Shapiro (2013). With this experiment, we extend the concept to other members of
the BONE framework. We use Thompson sampling for each of the competing methods.
Figure 3.10 shows the regret of using C-ACI, CPP-OU, RL[1]-PR, and RL[1]-OUPR* for
the above multi-armed bandits problem. The results we obtain are similar to those of
Section 3.5.1. This is because both problems have a similar drift structure.
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Figure 3.10: Regret of competing methods on the contextual bandits task. Confidence bands are com-
puted with one hundred simulations.

3.5.3 Segmentation and prediction

In this section, we evaluate methods both in terms of their ability to “correctly” segment
the observed output signal, and to do one-step-ahead predictions. Note that by “correct
segmentation”, we mean one that matches the ground truth data generating process.
This metric can only be applied to synthetic data.

Autoregression with dependence across the segments

In this experiment, we consider the synthetic autoregressive dataset introduced in Section
2 of Fearnhead and Liu (2011), consisting of a set of one dimensional polynomial curves
that are constrained to match up at segmentation boundaries, as shown in the top left of
Figure 3.11.

We compare the performance of the three methods in the previous subsection. For
this experiment, we employ a probability of a changepoint κ = 0.01. Since this dataset
has dependence of the parameters across segments, we allow for the choice of (M.1:
likelihood) to be influenced by the choice of (M.2: auxvar), i.e., our choice of model is
given by h(θt;ψt,xt). For this experiment, we take (M.2: auxvar) to be RL and our
choice of (M.1: likelihood) becomes

h(θt; rt,x1:t) = θ⊺t h(x1:t, rt), (3.64)

with h(x1:t, rt) = [1,∆,∆2], ∆ = (xt − xrt
), and xrt

≥ xt. Intuitively this represents
a quadratic curve fit to the beginning xrt

and end points xt of the current segment.
Given the form of (M.1: likelihood) in (3.64), here we do not consider C-ACI nor CPP-OU.
Instead, we use runlength with moment-matching prior reset, i.e., RL-MMPR (see Table
3.4) which was designed for segmentation with dependence.

Figure 3.11 shows the results. On the right, we observe that RL[1]-OUPR* has the
lowest RMSE. On the left, we plot the predictions of each method, so we can visualise
the nature of their errors. For RL[1]-PR, the spikes occur because the method has many
false positive beliefs in a changepoint occurring, and this causes breaks in the predictions
due the explicit dependence of h on rt and the hard parameter reset upon changepoints.
For RL-MMPR, the slow adaptation (especially when xt ∈ [1, 5]) is because the method
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Figure 3.11: The left panel shows a sample run of the piecewise polynomial regression with dependence
across segments. The x-axis is for the features, the (left) y-axis is for measurements together with the
estimations made by RL[1]-PR, RL-MMPR, and RL[1]-OUPR*, the (right) y-axis is for the value of rt under
each model. The orange line denotes the true data-generating process and the red line denotes the value
of the hypothesis RL. The right panel shows the RMSE of predictions over 100 trials.

does not adjust beliefs as quickly as it should. Our RL[1]-OUPR* method strikes a good
compromise.

Figure 3.12: Count of changepoints over an experiment for 100 trials. The orange line shows the true
number of changepoints for all trials.

Figure 3.12 shows the distribution (over 100 simulations) of the number of detected
changepoints, i.e., instances where νt(rt) with rt = 0 is the highest. We observe that
superior predictive performance in Figure 3.11 does not necessarily translate to a better
segmentation capability. For example, the distribution produced by RL-MMPR sits around
the actual number of changepoints (better at segmenting) whereas RL[1]-OUPR*, which
is detecting far fewer changepoints, is the best performing prediction method. This re-
flects the discrepancy between the objectives of segmentation and prediction. For a more
thorough analysis and evaluation of changepoint detection methods on time-series data,
see Van den Burg and Williams (2020).

3.6 Conclusion

We introduced a unified Bayesian framework to perform online predictions in non-stationary
environments, and showed how it covers many prior works. We also used our framework
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to design a new method, RL[1]-OUPR*, which is suited to tackle prediction problems
when the observations exhibit both abrupt and gradual changes. We hope to explore
other novel variants and applications in future work.
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Chapter 4

Robustness

In this chapter, we derive a novel, provably robust, and closed-form Bayesian update rule
for online learning under a state-space model in the presence of outliers and misspecified
measurement models. Our method combines generalised Bayesian (GB) inference with
filtering methods such as the extended and ensemble Kalman filter. We use the former to
show robustness and the latter to ensure computational efficiency in the case of nonlinear
models.

Robustness to outliers is a critical requirement in sequential online learning, where
noisy or corrupted observations can easily degrade performance. Recent (closed-form)
methods addressing this challenge often rely on variational Bayes (VB), which, while
effective, tend to be more computationally expensive than standard Kalman filter (KF)
approaches due to the overhead of inner-loop computations. (see e.g., Wang et al. (2018);
Tao and Yau (2023)). Although more classical (low-cost) alternatives exist, they are
typically restricted to linear systems and the results may not extend to nonlinear or high-
dimensional cases.

The method we propose is simple to implement, computationally efficient, and robust
to both outliers and model misspecification. It offers performance comparable to, or better
than, existing robust filtering approaches, including VB-based methods, but at a much
lower computational cost. We demonstrate the effectiveness of our approach across a
range of online learning tasks with outlier-contaminated observations.

4.1 The method

Our method is based on the GB approach where one modifies the update equation in
(2.3) to use a loss function ℓt : RD → R in place of the likelihood of the measurement
process. This gives the choice of (A.1: posterior) of the form

q(θt | D1:t) ∝ exp(−ℓt(θt)) q(θt | D1:t−1), (4.1)
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where ψt = {}. We propose to gain robustness to outliers in observation space by taking
the loss function to be the model’s negative log-likelihood scaled by a data-dependent
weighting term

ℓt(θt) = −W 2(yt, ŷt) log p(yt|θt), (4.2)

with W : Ro × Ro → R++ the weighting function—see Section 3.1.6 for examples—
and p(yt|θt) the choice of likelihood. We call our method the weighted observation
likelihood filter (WoLF). To specify an instance of our method, ones needs to define the
likelihood p(yt |θt) and the weighting function W . In the next subsections, we show the
flexibility of WoLF and derive weighted-likelihood-based KF and EKF algorithms. Setting
W (yt, ȳt) = 1 trivially recovers existing methods, but we will instead use non-constant
weighting functions inspired by the work of Barp et al. (2019); Matsubara et al. (2022);
Altamirano et al. (2023a,b).

4.2 Linear weighted observation likelihood filter

In this section, we present the WoLF method under a linear SSM (2.29). In particular, the
following proposition provides a closed-form solution for the update step of WoLF under
a linear measurement function and a Gaussian likelihood.

Proposition 4.1. Consider the linear-Gaussian SSM (2.29) with weighting function W :
Ro × Ro → R. Then, the update step of WoLF with loss function (4.2) is given by
Proposition 2.15 with R−1

t replaced by R̄−1
t = W 2(yt, ŷt) R−1

t .

Proof. Let w2
t := W 2(yt, ŷt). The loss function takes the form

ℓt(θt) = −w2
t logN (yt |Htθt, Rt)

= 1
2 (yt −Htθt)⊺ (Rt/w

2
t )−1 (yt −Htθt)−

w2
t o

2 log π − w2
t

2 log |Rt|

= 1
2 (yt −Htθt)⊺ R̄−1

t (yt −Htθt) + C,

(4.3)

with R̄t = Rt/w
2
t , and where C = −w

2
t o
2 log π − w2

t

2 log |Rt| is a term that does not
depend on θt. The remaining follows from the standard KF derivation. Note that the loss
function does not correspond to the log-likelihood for a homoskedastic Gaussian model
since R̄t may depend on all data, including yt.

Figure 4.1 shows the weighted log-likelihood (4.3) for a univariate N (0, 1) Gaussian
density as a function of the weighting term w2

t ∈ (0, 1]. We observe that a weighted
log-likelihood resembles a heavy-tailed likelihood for wt < 1.

The resulting predict and update steps for WoLF under linear dynamics and zero-mean
Gaussians for the state and measurement process are shown in Algorithm 11.

The computational complexity of WoLF under linear dynamics matches that of the
KF, i.e., O(D3). Alternative robust filtering algorithms require multiple iterations per
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Figure 4.1: Weighted likelihood (unnormalised) for a standard Gaussian.

Algorithm 11 WoLF predict and update step
Require: Ft, Qt // predict step
µt|t−1 ← Ft µt−1
Σt|t−1 ← Ft Σt−1 F⊺

t + Qt

Require: yt, Ht, Rt // update step
ŷt ← Ht µt|t−1
wt ←W (yt, ŷt)
Σ−1
t ← Σ−1

t|t−1 + w2
t H⊺

t R−1
t Ht

Kt ← w2
t Σt H⊺

t R−1
t

µt ← µt|t−1 + Kt (yt − ŷt)

measurement to achieve robustness and stability, making them significantly slower; see
Table 4.1 for the computational complexity for the methods we consider, and Figure 4.5
for empirical comparisons.

4.3 Nonlinear weighted observation likelihood filter

The WoLF method readily extends to other learning algorithms. For example, a WoLF
version of the EKF, which is obtained by introducing a weighting function to (2.42)
yielding the approximate choice of (M.1: likelihood):

log p(yt|θt) = W 2(yt, ȳt) logN (yt | ȳt, Rt) . (4.4)

We can also derive a novel outlier-robust exponentially-weighted moving average algorithm
(see Section 4.7.5).

4.4 The choice of weighting function

Weighted likelihoods have a well-established history in Bayesian inference and have demon-
strated their efficacy in improving robustness (Grünwald, 2012; Holmes and Walker, 2017;
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Grünwald and van Ommen, 2017; Miller and Dunson, 2018; Bhattacharya et al., 2019;
Alquier and Ridgway, 2020; Dewaskar et al., 2023). In this context, the corresponding
posteriors are often referred to as fractional, tempered, or power posteriors. In most
existing work, the determination of weights relies on heuristics and the assigned weights
remain constant across all data points so that W (yt, ŷt) = w ∈ R for all t. In con-
trast, we dynamically incorporate information from the most recent observations without
incurring additional computational costs by defining the weight as a function of the cur-
rent observation yt and its prediction ŷt = ht(µt|t−1), which is based on all of the past
observations.

To define the weighting function, we take inspiration from previous work for deal-
ing with outliers. In particular, Wang et al. (2018) proposed classifying robust filtering
algorithms into two main types: compensation-based algorithms, which incorporate in-
formation from tail events into the model in a robust way (see, e.g., Huang et al., 2016;
Agamennoni et al., 2012), and detect-and-reject algorithms, which assume that outlier
observations bear no useful information and thus are ignored (see, e.g., Wang et al., 2018;
Mu and Yuen, 2015). Below we show how both of these strategies can be implemented
using our WoLF method by merely changing the weighting function.

Inverse multi-quadratic weighting function: As an example of a compensation-based
method, we follow Altamirano et al. (2023b) and use the Inverse Multi-Quadratic (IMQ)
weighting, which in our SSM setting is

W (yt, ŷt) =
(

1 + ||yt − ŷt||
2
2

c2

)−1/2

, (4.5)

where c > 0 is the soft threshold and ∥ · ∥2 denotes the l2 norm. We call WoLF with IMQ
weighting “WoLF-IMQ”.

Mahalanobis-based weighting function: The l2 norm in the IMQ can be modified to
account for the covariance structure of the measurement process by replacing it with the
Mahalanobis distance between yt and ŷt:

W (yt, ŷt) =
(

1 + ∥R
−1/2
t (yt − ŷt)∥2

2
c2

)−1/2

. (4.6)

We call WoLF with this weighting function the WoLF-MD method. This type of weighted
IMQ function has been used extensively in the kernel literature (see e.g. Chen et al., 2019;
Detommaso et al., 2018; Riabiz et al., 2022).
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Figure 4.2: First state component of the SSM (4.42). The grey dots are measurements sampled from
(4.42) and the red crosses are measurements sampled from an outlier measurement process. The dotted
blue line shows the KF posterior mean estimate and the solid orange line shows our proposed WoLF
posterior mean estimate. The regions around the posterior mean cover two standard deviations. For
comparison, the dashed black line shows the true sampled state process.

Threshold Mahalanobis-based weighting function: As an example of a detect-and-
reject method, we consider

W (yt, ŷt) =

1 if ∥R−1/2
t (yt − ŷt)∥2

2 ≤ c,

0 otherwise.
(4.7)

with c > 0 the fixed threshold. The weighting function (4.7) corresponds to ignoring
information from estimated measurements whose Mahalanobis distance to the true mea-
surement is larger than some predefined threshold c. In the linear setting, this weighting
function is related to the benchmark method employed in Ting et al. (2007). We refer to
WoLF with this weighting function as “WoLF-TMD”.

The proposed weighting functions — the IMQ, the MD, and the TMD — are defined
such that W : Ro × Ro → [0, 1] and therefore can only down-weight observations. This
means that our updates are always conservative, i.e., our posteriors will be wider in the
presence of outliers (see Figure 4.2 for an example).

4.5 Robustness properties

In this section, we prove the outlier-robustness for WoLF-type methods. We use the
classical framework of Huber (1981). Consider measurements y1:t. We measure the
influence of a contamination yct by examining the divergence between the posterior with
the original observation yt and the posterior with the contamination yct , which is allowed
to be arbitrarily large. As a function of yct , this divergence is called the posterior influence
function (PIF) and was studied in Matsubara et al. (2022); Altamirano et al. (2023a,b).
Following Altamirano et al. (2023b), we consider the Kullback-Leibler (KL) divergence.

Definition 4.2 (posterior influence function). Let D1:t = {(x1,y1), . . . , (xt,yt)} and
Dc1:t = {(x1,y1), . . . , (xt,yct )} be two datasets. Consider the choice of (A.1: posterior)
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q. The posterior influence function (PIF) of the measurement yct under q, given the
dataset D1:t, is defined by

PIFq(yct ,D1:t) = DKL (q(θt | Dc1:t) || q(θt | D1:t)) . (4.8)

Definition 4.3 (outlier robust posterior). We denote the choice of (A.1: posterior) q to
be outlier robust to measurements (or simply outlier robust) if, for any given xt ∈ RM ,
the effect of the contamination yct is bounded, i.e.,

sup
yc

t ∈Ro

PIFq(yct ,D1:t) <∞. (4.9)

Theorem 4.4. Let qLG be the linear Gaussian update function shown in Section 2.6.1,
then, qLG has an unbounded PIF and is not outlier robust.

Theorem 4.5. Let qW−LG be the generalised posterior (4.1) with loss function (4.3) and
weight W such that supyt∈Rd W (yt, ŷt) < ∞ and supyt∈Rd W (yt, ŷt)k ∥yt∥2 < ∞ for
k ≥ 2. Then, qW−LG has a bounded PIF and is, therefore, outlier robust.

In particular, the conditions are satisfied when W is (4.5), (4.6), or (4.7), which are
the focus of this work.

4.6 Proof of robustness

In this section, we prove Theorems 4.4 and 4.5 stated above. We begin by stating some
remarks that we use to prove the theorems.

Remark 4.6. Let A be aD×D Hermitian matrix. By the spectral theorem, the eigenvalues
of A are real (Tao, 2010). We denote these eigenvalues as σmax(A) = σ1(A) ≥ . . . ≥
σD(A) = σmin(A), where σmax(A) and σmin(A) represent the largest and smallest
eigenvalues, respectively.

Remark 4.7. Let A be a D ×D positive semidefinite matrix. Then, for every x ∈ RD,

√
x⊺ Ax = ∥A1/2 x∥2 ≤ ∥A1/2∥2 ∥x∥2 =

√
σmax(A) ∥x∥2. (4.10)

Here, ∥A∥2 =
√
σmax(A A) is the spectral norm. See Coppersmith et al. (1997) for

details.

Remark 4.8. Let A be a D ×D positive semidefinite matrix. Then,

∥A∥2
F = Tr(A A) ≤ Tr(A)2. (4.11)

See Lemma 2.3 in Yang and Feng (2002) for details.

Remark 4.9. The Frobenius norm is a submutiplicative matrix norm and compatible with
the L2 vector norm, i.e., for any two D ×D Hermitian matrices A and B, and a vector
z ∈ RD, ∥A B∥F ≤ ∥A∥F ∥B∥F and ∥Ax∥2 ≤ ∥A∥F ∥x∥2.
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See Section 5.6 in Horn and Johnson (2012) for a proof on submultiplicativity. Next,
compatibility follows from Remark 4.7 and properties of the trace. In particular: ∥Ax∥2 ≤
∥A∥2 ∥x∥2 =

√
σmax(A A) ∥x∥2 ≤

√∑D
d=1 σd(AA) = ∥A∥F ∥x∥2.

Remark 4.10. Let A and B be D × D Hermitian matrices. From Weyl’s inequality, it
follows that

σmin(A + B)−1 ≤ (σmin(A) + σmin(B))−1
. (4.12)

See Tao (2010) for details.

Remark 4.11. For any two positive semi-definite matrices A and B,

|A|+ |B| ≤ |A + B|. (4.13)

The result follows from |A + B| = |A| |ID + A−1B| ≥ |A| (1 + |A−1B|) = |A| + |B|,
where we used the fact that, for a matrix C, σd(C + c) = c+ σd(C) for d ∈ {1, . . . , D}.
So that |A−1 B + 1| =

∏D
d=1(1 + σd(A−1 B)) ≥ 1 +

∏D
d=1 σd(A−1 B) = 1 + |A−1 B|.

4.6.1 Proof of Theorem 4.4 — KF is not outlier-robust

Let qLG(θt | D1:t) = N (θt |µt,Σt) and qLG(θt | Dc1:t) = N (θt | µ̄t, Σ̄t) be the posterior
densities under qLG, conditioned on the uncorrupted dataset D1:t and the corrupted
dataset Dc1:t, respectively. Furthermore, to avoid cases where the PIF is bounded through
the choice of Ht, suppose that ∥K∥F ̸= 0 ⇐⇒ Ht ̸= 0.

We show that qLG is not outlier robust, i.e.,

sup
yc

t

PIFqLG(yct ,D1:t) =∞. (4.14)

To establish this, we first derive the explicit form of the PIF under the choice of qLG. The
result is presented in the lemma below.

Lemma 4.12. The PIF between the posterior density qLG under the corrupted and un-
corrupted dataset takes the form

PIFqLG(yct ,D1:t) = 1
2 [Kt (yt − yct )]

⊺ Σ−1
t [Kt (yt − yct )] . (4.15)

where Kt = Σt H⊺
t R−1

t

Proof. Following proposition 2.15, the update equations for the contaminated and un-
contaminated densities take the form

µt = µt|t−1 + Kt (yt − ŷt) , µ̄t = µt|t−1 + Kt (yct − ŷt) ,

Σ−1
t = Σ−1

t|t−1 + H⊺
tR−1

t Ht, Σ̄t
−1 = Σ−1

t|t−1 + H⊺
t R−1

t Ht,
(4.16)

where we observe that Σt = Σ̄t.
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Next, following Proposition 2.8, we write the PIF as

PIFqLG(yct ,y1:t) = 1
2

(
Tr
(
Σ−1
t Σt

)
−D + (µt − µct)

⊺ Σ−1
t (µt − µct) + ln

(
det Σt

det Σt

))
= Tr (ID)−D + 1

2 (µt − µct)
⊺ Σ−1

t (µt − µct)

= 1
2 (yt − yct )

⊺ K⊺
tΣ−1

t Kt (yt − yct )

= 1
2 [Kt (yt − yct )]

⊺ Σ−1
t [Kt (yt − yct )] .

(4.17)

Proof of Theorem 4.4

Proof. First write an upper bound for the PIF following Lemma 4.12, Remark 4.9, and
Remark 4.9:

PIFqLG(yct ,D1:t) = 1
2 [Kt (yt − yct )]

⊺ Σ−1
t [Kt (yt − yct )]

≤ 1
2 σmax(Σ−1

t )∥Kt (yt − yct )∥2
2

≤ 1
2 σmax(Σ−1

t )∥Kt∥2
F ∥yt − yct∥2

2

= C1 ∥yt − yct∥2
2.

(4.18)

Then, since ∥Kt∥2
F ̸= 0 by assumption,

sup
yc

t

PIFqLG(yct ,D1:t) ≤ sup
yc

t

C1 ∥yt − yct∥2
2 =∞. (4.19)

4.6.2 Proof of Theorem 4.5 — WoLF is outlier-robust

LetW be a weighting function such that supyt∈Ro W (yt, ŷt) <∞ and supyt∈Ro W (yt, ŷt)k ∥yt−
ŷt∥2 < ∞ for k ≥ 2. For simplicity, denote wt := W (yt, ŷt) and w̄t := W (yct , ŷt). Let
qW−LG(θt | D1:t) = N (θt |µt,Σt) and qW−LG(θt | Dc1:t) = N (θt | µ̄t, Σ̄t) be the poste-
rior densities under qW−LG, conditioned on the uncorrupted datasetD1:t and the corrupted
dataset Dc1:t, respectively, using the weighting function W .

Our goal is to show that qLG is outlier robust, i.e.,

sup
yc

t

PIFqW−LG(yct ,D1:t) <∞. (4.20)

To establish this, we first derive the explicit form of the PIF under the choice of qW−LG.
The result is presented in the lemma below.

Lemma 4.13. The PIF between the posterior density qW−LG under the corrupted and

83



uncorrupted dataset takes the form

PIFqW−LG(yct ,D1:t) = 1
2

(
Tr
(

Σ̄t
−1Σt

)
︸ ︷︷ ︸

(T.1)

−D+(µt − µ̄t)
⊺ Σ̄−1

t (µt − µ̄t)︸ ︷︷ ︸
(T.2)

+ log
(

det Σ̄t

det Σt

)
︸ ︷︷ ︸

(T.3)

)
,

(4.21)
where

µt = µt|t−1 + w2
t Kt (yt − ŷt) , µ̄t = µt|t−1 + w̄t

2 K̄t (yct − ŷt) ,

Σ−1
t = Σ−1

t|t−1 + w2
tH

⊺
tR−1

t Ht, Σ̄t
−1 = Σ−1

t|t−1 + w̄t
2 H⊺

t R−1
t Ht,

(4.22)

Proof. The proof follows directly from Algorithm 11 and Proposition 2.8 on the KL di-
vergence between two multivariate Gaussian densities.

Lemma 4.13 establishes that if the PIF under qW−LG is outlier-robust, then each of
the terms (T.1), (T.2), and (T.3) must remain finite (bounded) under the supremum
over all possible values of yct . Before demonstrating that this is indeed the case, we first
present two auxiliary lemmas that will assist in proving the boundedness of these terms.

Lemma 4.14. The Frobenius norm of the corrupted posterior covariance Σ̄t shown in
(4.22) is bounded above by

∥Σ̄t∥F ≤
D

σmin(Σ−1
t|t−1) + w2

t σmin(H⊺
t R−1

t Ht))
. (4.23)

Proof. Let Σ̄t be the posterior covariance under the corrupted dataset Dc1:t. Following
Remark 4.6, Remark 4.8, and the properties of the trace, we obtain

∥Σ̄t∥F ≤ Tr
(
Σ̄t

)
=

D∑
d=1

σd(Σ̄t) ≤ Dσmax(Σ̄t). (4.24)

Next, an upper bound for σmax(Σ̄t) is given by

σmax(Σ̄t) = σmax

((
Σ−1
t|t−1 + w̄2

t H⊺
t R−1

t Ht

)−1
)

=
(
σmin

(
Σ−1
t|t−1 + w̄2

t H⊺
t R−1

t Ht

))−1

≤
(
σmin(Σ−1

t|t−1) + σmin
(
w̄2
t H⊺

t R−1
t Ht

))−1

=
(
σmin(Σ−1

t|t−1) + w̄2
t σmin

(
H⊺
t R−1

t Ht

))−1
.

(4.25)

In (4.25), the second equality is a consequence of the positive definiteness (symmetry) of
Σ̄t, and the upper bound follows from Remark 4.10.

The desired result follows as a consequence of (4.24) and (4.25).
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Lemma 4.15. The L2 norm of the difference between the corrupted and uncorrupted
posterior mean is bounded above by

∥µt − µ̄t∥2
2 ≤ C3

(
w2
t ∥yct − ŷt∥

)2 + C1, (4.26)

where C1 and C3 are real-valued elements that do not depend on yct .

Proof. We begin by expanding (4.26):

∥µt − µ̄t∥2
2 = ∥Kt (yt − ŷt)− K̄t (yct − ŷt)∥2

2

≤ ∥Kt (yt − ŷt)∥2
2 + ∥K̄t (yct − ŷt)∥2

2

= ∥w̄2
t Σ̄t|t−1 Ht R−1

t (yct − ŷt)∥2
2 + C1

= w̄4
t ∥Σ̄t|t−1 Ht R−1

t (yct − ŷt)∥2
2 + C1,

(4.27)

where C1 = ∥Kt (yt − ŷt)∥2
2 does not depend on yct .

Next, following Remark 4.9, we bound w̄4
t ∥Σ̄t|t−1 Ht R−1

t (yct − ŷt)∥2
2 as follows

w̄4
t ∥Σ̄t|t−1 Ht R−1

t (yct − ŷt)∥2
2

≤ w̄4
t ∥Σ̄t|t−1∥2

F ∥Ht R−1
t ∥2

2 ∥yct − ŷt
2∥2

2

= C2 w̄
4
t ∥Σ̄t|t−1∥2

F ∥yct − ŷt
2∥2

2,

(4.28)

where C2 = ∥Ht R−1
t ∥2

2.
Finally, using Lemma 4.14, an upper bound for (4.28) is given by

C2 w̄
4
t ∥Σ̄t|t−1∥2

F ∥yct − ŷt
2∥2

2

≤ C2 w̄
4
t

(
D

σmin(Σ−1
t|t−1) + w2

t σmin(H⊺
t R−1

t Ht))

)2

∥yct − ŷt∥2
2

= C2 D
2 w̄4

t(
σmin(Σ−1

t|t−1) + w2
t σmin(H⊺

t R−1
t Ht))

)2 ∥y
c
t − ŷt∥2

2

= C2 D
2 1(
w−2
t σmin(Σ−1

t|t−1) + σmin(H⊺
t R−1

t Ht))
)2 ∥y

c
t − ŷt∥2

2

≤ C2 D
2

σmin(Σ−1
t|t−1)

w̄4
t ∥yct − ŷt∥2

2 + C1

= C3
(
w̄2
t ∥yct − ŷt∥2

)2
,

(4.29)

where C3 = C2 D
2

σmin(Σ−1
t|t−1) .

With the auxiliary lemmas established and following the remarks above, we now pro-
ceed to demonstrate that each of the terms (T.1), (T.2), and (T.3) are indeed bounded,
as required for outlier robustness. Since the key components of the following propositions
were already defined in Proposition 4.13, we proceed directly by stating each term and
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showing that it is bounded over all possible values of yct .

Proposition 4.16 (Bound for T.1).

sup
yc

t

Tr
(

Σ̄t
−1Σt

)
<∞. (4.30)

Proof. Using (4.22), (T.1) in (4.21) can be written as

Tr
(

Σ̄t
−1Σt

)
= Tr

([
Σ−1
t|t−1 + w̄2

t H⊺
t R−1

t Ht

]
Σt

)
= Tr

(
Σ−1
t|t−1 Σt

)
+ w̄2

t Tr
(
H⊺
t R−1

t Ht Σt

) (4.31)

Since supyc
t
w̄t is bounded, it follows that

sup
yc

t

Tr
(

Σ̄t
−1Σt

)
<∞. (4.32)

Proposition 4.17 (Bound for T.2).

sup
yc

t

(µt − µ̄t)
⊺ Σ̄−1

t (µt − µ̄t) <∞ (4.33)

Proof. Begin by expanding the left hand side of (4.33):

(µt − µ̄t)
⊺ Σ̄−1

t (µt − µ̄t)

= (µt − µ̄t)
⊺ (Σt|t−1 + w̄2

t H⊺
t R−1

t Ht

)
(µt − µ̄t)

= (µt − µ̄t)
⊺ Σ−1

t|t−1 (µt − µ̄t) + (µt − µ̄t)
⊺ (
w̄2
t H⊺

t R−1
t Ht

)
(µt − µ̄t) .

(4.34)

Next, we bound each of the terms in (4.34).

For the first term, we obtain

(µt − µ̄t)
⊺ Σ−1

t|t−1 (µt − µ̄t)

≤ σmax(Σ−1
t|t−1)∥µt − µ̄t∥

≤ σmax(Σ−1
t|t−1)

(
C3
(
w̄2
t ∥yct − ŷt∥2

)2 + C1

)
= C5

(
w̄2
t ∥yct − ŷt∥2

)2 + C6,

(4.35)

where we make use of Remark 4.7 and Lemma 4.15.

By assumption, supyc
t
w̄2
t ∥yct − yt∥ < ∞, which ensures that the supremum over yct

for (4.35) is bounded.
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Similarly, for the second term, suppose σmax(H⊺
t R−1

t Ht) > 0, then

(µt − µ̄t)
⊺ (
w̄2
t H⊺

t R−1
t Ht

)
(µt − µ̄t)

≤ w̄2
t σmax(H⊺

t R−1
t Ht)

(
C3
(
w̄2
t ∥yct − ŷt∥2

)2 + C1

)
≤ C7

(
w̄3
t ∥yct − ŷt∥2

)2 + C8.

(4.36)

Again, by assumption, supyc
t
w̄3
t ∥yct − yt∥ < ∞, which ensures that the supremum over

yct for (4.36) is bounded.

Proposition 4.18 (Bound for T.3).

sup
yc

t

log
(
|Σ̄t|
|Σt|

)
<∞ (4.37)

Proof. We first expand (T.3) to obtain

log
(
|Σ̄t|
|Σt|

)
= log |Σ̄t| − log |Σt|, (4.38)

which shows that we only to bound log |Σ̄t|. For this, consider

log |Σ̄t| = log |(Σt|t−1 + w̄2
t H⊺

t R−1
t Ht)−1|

= − log |Σ−1
t|t−1 + w̄2

t H⊺
t R−1

t Ht|

≤ − log
(
|Σ−1

t|t−1|+ |w̄
2
t H⊺

t R−1
t Ht|

)
= − log

(
|Σ−1

t|t−1|+ w̄2D
t |H

⊺
t R−1

t Ht|
)

(4.39)

Since Σ−1
t|t−1 is positive definite and H⊺

t R−1
t Ht is positive semidefinite, we upper bound

(4.39) further by taking the minimum of the two terms, i.e.,

log |Σ̄t| ≤ − log
(

min{|Σ−1
t|t−1|, w̄

2D
t |H

⊺
t R−1

t Ht|}
)
. (4.40)

If the smallest determinant is given by the posterior predictive covariance Σt|t−1, then
(4.39) is bounded. Conversely, if the smallest determinant is w̄2D

t |H
⊺
t R−1

t Ht|, we obtain

log |Σ̄t| ≤ − log
(
w̄2D
t |H

⊺
t R−1

t Ht|
)

= −2D log(w̄t)− log |H⊺
t R−1

t Ht|.
(4.41)

Finally, note that supyc
t
w̄t < ∞ implies supyc

t
log w̄t < ∞. So that (4.41) is bounded.

Proof of Theorem 4.5

Proof. The proof follows from Propositions 4.16, 4.17, and 4.18.
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4.7 Experiments

In this section, we study the performance of the WoLF algorithm in multiple experiments.
For our robust baselines, we make use of three methods that are representative of re-

cent state-of-the-art approaches to robust filtering: the Bernoulli KF of Wang et al. (2018)
(KF-B), which is an example of a detect-and-reject strategy; and the inverse-Wishart filter
of Agamennoni et al. (2012) (KF-IW), which is an example of a compensation-based strat-
egy. The KF-B and KF-IW are deterministic and optimise a VB objective to compute a
Gaussian approximation to the state posterior. For the neural network fitting problem, we
also consider a variant of online gradient descent (OGD) based on Adam (Kingma and Ba,
2015), which uses multiple inner iterations per step (measurement). This method does
scale to high-dimensional state spaces, but only gives a maximum a posteriori (MAP)
estimate and is not as sample efficient as a robust Bayesian filter.

For experiments where KF or EKF is used as the baseline, we consider the follow-
ing WoLF variants: (i) the WoLF version with inverse multi-quadratic weighting func-
tion (WoLF-IMQ), (ii) the thresholded WoLF with Mahalanobis-based weighting function
(WoLF-TMD).

Method Cost #HP Ref

KF O(D3) 0 Kalman (1960)
KF-B O(I D3) 3 Wang et al. (2018)
KF-IW O(I D3) 2 Agamennoni et al. (2012)
OGD O(I D2) 2 Bencomo et al. (2023)
WoLF-IMQ O(D3) 1 (Ours)
WoLF-TMD O(D3) 1 (Ours)

Table 4.1: Computational complexity of the update step, assuming d ≤ D and assuming linear dynamics.
Here, I is the number of inner iterations, #HP refers to the number of hyperparameters we tune, and
“Cost” refers to the computational complexity.

4.7.1 Robust KF for tracking a 2D object

We consider the classical problem of estimating the position of an object moving in 2D
with constant velocity, which is commonly used to benchmark tracking problems (see e.g.,
Example 8.2.1.1 in Murphy (2023) or Example 4.5 in Särkkä and Svensson (2023)). The
SSM takes the form

p(θt|θt−1) = N (θt |Ftθt−1, Qt) ,

p(yt|θt) = N (yt |Htθt, Rt) ,
(4.42)

where Qt = q I4, Rt = r I2, (θ0,t,θ1,t) is the position, (θ2,t,θ3,t) is the velocity,

Ft =


1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 , Ht =

(
1 0 0 0
0 1 0 0

)
,
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∆ = 0.1 is the sampling rate, q = 0.10 is the system noise, r = 10 is the measurement
noise, and IK is a K ×K identity matrix. We simulate 500 trials, each with 1,000 steps.
For each method, we compute the scaled RMSE metric JT,i =

√∑T
t=1(θt,i − µt,i)2 for

i ∈ {0, 1, 2, 3} as well as the total running time (relative to the KF).
In our experiments, the true data generating process is one of two variants of (4.42).

The first variant (which we call Student observations) corresponds to a system whose
measurement process comes from the Student-t likelihood:

p(yt|θt) = St(yt |Htθt, Rt, νt)

=
∫ ∞

0
N
(
yt |Htθt,

Rt

τ

)
Gam

(
τ |νt2 ,

νt
2

)
dτ,

(4.43)

with Gam(·|a, b) the Gamma density function with shape a and rate b, and νt = 2.01.
The second variant (which we call mixture observations) corresponds to a system where
the mean of the observations changes sporadically. Instances of this variant can occur as a
form of human error or a software bug in a data-entry program. To emulate this scenario,
we modify (4.42) by using the following mixture model for the observation process:

p(yt|θt) = N (yt |mt, Rt) ,

mt =

Ht θt w.p. 1− pϵ,

2 Ht θt w.p. pϵ,

(4.44)

where pϵ = 0.05.

Figure 4.3: The left panel shows a sample path using the Student variant and the right panel shows a
sample path using the mixture variant. The top left figure on each panel shows the true underlying state
in black, and the measurements as grey dots.

89



Results Figure 4.3 shows a sample of each variant along with the filtered state for each
method. For the Student variant (left panel), the WoLF-IMQ and the WoLF-TMD estimate
the true state more closely than the competing methods. Both the KF-IW and the KF-B
look comparable to the KF, which are not robust to outliers. For the mixture variant
(right panel). the WoLF-IMQ, the WoLF-TMD, and the KF-B filter the true state correctly.
In contrast, the KF-IW and the KF are not robust to outliers.

Figure 4.4: Distribution (across 500 2d tracking trials) of RMSE for first component of the state vector,
JT,0. Left panel: Student observation model. Right panel: Mixture observation model.

The results in Figure 4.3 hold for multiple trials as shown in Figure 4.4, which plots
the distribution of the errors in the first component of the state vector. As a benchmark,
we include the particle-filter-based method of Boustati et al. (2020), which we denote
RBPF. The RBPF performs comparably to our proposed method; however, it has much
higher computational cost and does not have a closed-form solution.

Method Student Mixture
KF-B 2.0x 3.7x
KF-IW 1.2x 5.3x

WoLF-IMQ (ours) 1.0x 1.0x
WoLF-TMD (ours) 1.0x 1.0x

Table 4.2: Mean slowdown rate over KF.

Table 4.2 shows the median slowdown (in running time) to process the measurements
relative to the KF. The slowdown for method X is obtained dividing the running time of
method X over the running time of the KF. Under the Student variant, the WoLF-IMQ, the
WoLF-TMD, and the KF-IW have similar running time to the KF. In contrast, the KF-B takes
twice the amount of time. Under the mixture variant, the KF-B and the KF-IW are almost
four times and five times slower than the KF respectively. The changes in slowdown rate
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are due the number of inner iterations that were chosen during the first trial.

4.7.2 Online learning of a neural network in the presence of outliers

In this section, we benchmark the methods using a corrupted version of the tabular UCI
regression datasets.1 Here, we consider a single-hidden-layer multi-layered perceptron
(MLP) with twenty hidden units and a real-valued output unit. In this experiment, the
state dimension (number of parameters in the MLP) is D = (nin×20+20)+(20×1+1),
where nin is the dimension of the feature xt. In Table 4.3, we show the the values that
nin takes for each dataset.

#Examples T #Features o #Parameters D
Dataset

Boston 506 14 321
Concrete 1, 030 9 221
Energy 768 9 221
Kin8nm 8, 192 9 221
Naval 11, 934 18 401
Power 9, 568 5 141
Protein 45, 730 10 241
Wine 1, 599 12 281
Yacht 308 7 181

Table 4.3: Description of UCI datasets. Number of parameters refers to the size of the one-layer MLP.

Below, we take the static case Qt = 0 ID, so that the prior predictive mean is µt|t−1 =
µt−1.

Each trial is carried out as follows: first, we randomly shuffle the rows in the dataset;
second, we divide the dataset into a warmup dataset (10% of rows) and a corrupted
dataset (remaining 90% of rows); third, we normalise the corrupted dataset using min-
max normalisation from the warmup dataset; fourth, with probability pϵ = 0.1, we replace
a measurement yt ∈ R with a corrupted data point ut ∼ U [−50, 50]; and fifth, we run
each method on the corrupted dataset.

For each dataset and for each method, we evaluate the prior predictive RMedSE

RMedSE =
√

median{(yt − ht(µt|t−1))2}Tt=1 (4.45)

which is the squared root of the median squared error between the measurement yt and
the prior predictive ht(µt|t−1) = h(µt|t−1,xt).2 Here, h is the MLP. We also evaluate
the average time step of each method, i.e., we run each method and divide the total
running time by the number of samples in the corrupted dataset.

Figure 4.5 shows the percentage change of the RMedSE and the percentage change
of running time with respect to those of the OGD for all corrupted UCI datsets. Given the
computational complexity of the remaining methods, ideally, a robust Bayesian alternative
to the OGD should be as much to the left as possible on the x-axis (rel. time step) and
as low as possible on the y-axis (rel. RMedSE). We observe that the WoLF-IMQ and the

1The dataset is available at https://github.com/yaringal/DropoutUncertaintyExps.
2We use median instead of mean because we have outliers in measurement space.
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Figure 4.5: RMedSE versus time per step (relative to the OGD minus 1) across the corrupted UCI datasets.

WoLF-TMD have both of these traits. In particular, we observe that the only two points in
the third quadrant are those of the WoLF-IMQ and the WoLF-TMD. Note that the EKF-IW
and the EKF-B have much higher relative running time and the EKF has much higher
relative RMedSE.

4.7.3 Robust EKF for online MLP regression (1d)

In this section, we consider an online nonlinear 1d regression, with the training data
coming either from an i.i.d. source, or a correlated source. The latter corresponds to a
non-stationary problem.

We present a stream of observations Dfilter = (y1, x1), . . . (yT , xT ) with yt ∈ R the
measurements, xt ∈ R the exogenous variables, and T = 1500. The measurements and
exogenous variables are sequentially sampled from the processes

yt =

θ∗
1xt − θ∗

2 cos(θ∗
3xt π) + θ∗

4x
3
t + Vt w.p. 1− pϵ,

Ut w.p. pϵ,
(4.46)

where the parameters of the observation model are θ∗ = (0.2,−10, 1.0, 1.0), the inputs
are xt ∼ U [−3, 3], and the noise is Vt ∼ N (0, 3), Ut ∼ U [−40, 40], and pϵ = 0.05.

We consider four configurations of this experiment. In each experiment the data is
either sorted by xt value (i.e, the exogenous variable satisfies xi < xj for all i < j,
representing a correlated source) or is unsorted (representing an i.i.d. source), and the
measurement function is either a clean version of the true data generating process (i.e.,
(4.46) with pϵ = 0 and unknown coefficients θ), or a neural network with unknown
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parameters θ. Specifically, we use a multi-layered perceptron (MLP) with two hidden
layers and 10 units per layer:

h(θt, xt) = w
(3)
t ϕ

(
w

(2)
t ϕ

(
w

(1)
t xt + b(1)

t

)
+ b(2)

t

)
+ b(3)

t , (4.47)

with activation function ϕ(u) = max{0, u} applied elementwise. Thus the state vector
encodes the parameters:

θt = (w(1)
t ∈ R10×1,w

(2)
t ∈ R10×10,w

(3)
t ∈ R1×10, b

(1)
t ∈ R10, b

(2)
t ∈ R10, b

(3)
t ∈ R)

and has size so that θ ∈ R141. Note that in this experiment ht(θ) = h(θ, xt). We set
Qt = 10−4I, which allows the parameters to slowly drift over time and provides some
regularisation.

For each method, we evaluate the RMedSE. The EKF-IW and the EKF-B methods are
taken with two inner iterations, which implies that their computational complexity is twice
that of the WoLF methods.

MLP measurement model Figure 4.6 shows results when the data are presented in
sorted order of xt. We show the performance on 100 trials. The left panel shows the
mean prior-predictive h(µt|t−1, xt) of each method, and the underlying true state process,
for a single trial. The right panel shows the RMedSE after multiple trials. We observe on

Figure 4.6: Results with sorted data. Left panel shows a run of each filter on the 1d regression, with
the true underlying data-generating function in solid black line and the next-step predicted observation
as dots. Right panel shows the RMedSE distribution over multiple trials.

the right panel that the WoLF-IMQ and the EKF-IW have the lowest mean error and lowest
standard deviation among the competing methods. However, the EKF-IW takes twice as
long to run the experiment. For all methods, the performance worse on the left-most side
of the plot on the left panel, which is a region with not enough data to determine whether
a measurement is an inlier or an outlier.

Figure 4.7 shows the results when data are presented in random order of xt. We show
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Figure 4.7: Results with unsorted inputs. The left panel shows a run of each filter with the underlying
data-generating function in solid black line and the next-step predicted observation as dots. The right
panel shows the distribution of GT for multiple runs. We remove all values of GT that have a value
larger than 800.

results for a single run on the left panel and the the RMedSE after multiple trials on
the right panel. Similar to the sorted configuration, we observe that the EKF-IW and the
WoLF-IMQ are the methods with lowest RMedSE. However, the EKF-IW has longer tails
than the WoLF-IMQ.

True measurement model We modify the experiment above by taking the measure-
ment function to be ht(θt) = h(θt, xt) = θt,1xt − θt,2 cos(θt,3xt π) + θt,4x3

t , with state
θt ∈ R4 and θt,i the i-th entry of the state vector θt. Figure 4.8 shows a single run of
the filtering process when the data is presented unsorted (left panel) and sorted (right
panel). We observe that the behaviour of the WoLF-IMQ, the WoLF-TMD, and the EKF-IW

Figure 4.8: The figure shows a run of each filter with the underlying data-generating function in solid
black line and the evaluation of h(µt|t−1, xt) in points. The left panel shows the configuration with
unsorted xt values and the right panel shows the configuration with sorted xt values.

have similar performance. However, the EKF-IW takes twice the amount of time to run.
The OGD and the EKF are not able to correctly filter out outlier measurement at the
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tails. Finally, the EKF-B over-penalises inliers and does not capture the curvature of the
measurement process.

4.7.4 Non-stationary heavy-tailed regression

In this experiment, we make use of the BONE framework developed in Chapter 3 and
the WoLF filter discussed in this chapter to develop an outlier-robust method for linear
regression with heavy-tailed noise and changing model parameters.

It is well-known that the combination RL-PR is sensitive to outliers if the choice of
(M.1: likelihood) is misspecified, since an observation that is “unusual” may trigger a
changepoint unnecessarily. As a consequence, various works have proposed outlier-robust
variants to the RL[inf]-PR for segmentation (Knoblauch et al., 2018; Fearnhead and
Rigaill, 2019; Altamirano et al., 2023c; Sellier and Dellaportas, 2023) and for filtering
(Reimann, 2024). In what follows, we show how we can easily accommodate robust
methods into the BONE framework by changing the way we compute the likelihood
and/or posterior. In particular, we consider the WoLF-IMQ method of Duran-Martin
et al. (2024).3 We use WoLF-IMQ because it is a provably robust algorithm and it is a
straightforward modification of the linear Gaussian posterior update equations. We denote
RL[inf]-PR with (A.1: posterior) taken to be LG as LG+RL[inf]-PR and RL[inf]-PR

with (A.1: posterior) taken to be WoLF-IMQ as WoLF+RL[inf]-PR*.
To demonstrate the utility of a robust method, we consider a piecewise linear re-

gression model with Student-t errors, where the measurement are sampled according
to xt ∼ U [−2, 2], yt ∼ St

(
ϕ(xt)⊺θt, 1, 2.01

)
a Student-t distribution with location

ϕ(xt)⊺θt, scale 1, degrees of freedom 2.01, and ϕ(xt) = (1, x, x2). At every timestep,
the parameters take the value

θt =

θt−1 w.p. 1− pϵ,

U [−3, 3]3 w.p. pϵ,
(4.48)

with pϵ = 0.01, and θ0 ∼ U [−3, 3]3. Intuitively, at each timestep, there is probability pϵ
of a changepoint, and conditional on a changepoint occurring, the each of the entries of
the new parameters θt are sampled from a uniform in [−3, 3]. Figure 4.9 shows a sample
data generated by this process.

To process this data, our choice of (M.1: likelihood) is h(θt,xt) = θ⊺t ϕ(xt) with

ℓ(yt;θt,xt) = −W 2(yt, h(θt,xt)
)

logN (yt |h(θt,xt), 1.0), (4.49)

a weighted Gaussian log-likelihood and W (u, z) = (1 + (u−z)2

c2 )−1/2 the inverse multi-
quadratic (IMQ) function with soft threshold value c = 4, representing four standard
deviations of tolerance to outliers. Here u, z ∈ R.

3We set the soft threshold value to 4, representing four standard deviations of tolerance before declaring
an outlier.
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Figure 4.9: Sample run of the heavy-tailed-regression process. Each box corresponds to the samples
within a segment.

The left panel in Figure 4.10 shows the rolling mean (with a window of size 10) of the
RMSE for LG+RL[inf]-PR, WoLF+RL[inf]-PR*, and LG+C-Static. The right panel in
Figure 4.10 shows the distribution of the RMSE for all methods after 30 trials.

Figure 4.10: The left panel shows the rolling RMSE using a window of the 10 previous observations. The
right panel shows the distribution of final RMSE over 30 runs. The vertical dotted line denotes a change
in the true model parameters.

The left panel of Figure 4.10 shows that LG+C-Static has a lower rolling RMSE
error than LG+RL[inf]-PR up to first changepoint (around 100 steps). The performance
of LG+C-Static significantly deteriorates afterwards. Next, LG+RL[inf]-PR wrongly
detects changepoints and resets its parameters frequently. This results in periods of
increased rolling RMSE. Finally, WoLF+RL[inf]-PR* has the lowest error among the
methods. After the regime change, its error increases at a similar rate to the other
methods, however, it correctly adapts to the regime and its error decreases soon after the
changepoint.

Figure 4.11: Segmentation of the non-stationary linear regression problem. The left panel shows the seg-
mentation done by LG+RL[inf]-PR. The right panel shows the segmentation done by WoLF+RL[inf]-PR*.
The x-axis is the timestep t, the y-axis is the runlength rt (note that it is always the case that rt ≤ t),
and the color bar shows the value log p(rt | y1:t). The red line in either plot is the trajectory of the mode,
i.e., the set r∗

1:t = {arg maxr1 p(r1 | D1), . . . , arg maxrt
p(rt | D1:t)}. Note that the non-robust method

(left) oversegments the signal.

96



Figure 4.11 shows the posterior belief of the value of the runlength using LG+RL[inf]-PR

and WoLF+RL[inf]-PR*. The constant reaction to outliers in the case of LG+RL[inf]-PR

means that the parameters keep reseting back to the initial prior belief. As a consequence,
the RMSE of LG+RL[inf]-PR deteriorates. On the other hand, WoLF+RL[inf]-PR* re-
sets less often, and accurately adjusts to the regime changes when they do happen. This
results in the lowest RMSE among the three methods.

4.7.5 Outlier-robust exponentially-weighted moving average

In this experiment, we present an outlier-robust exponentially weighted moving average
(EWMA) as an instance of our WoLF method.4

This experiment is organised as follows: first, we recap the EWMA. Then, we introduce
the unidimensional SSM with unit (unobserved) signal and observation coefficients and
show that the EWMA is a special case of the KF in this setting. Next, we derive the
WoLF method for an EWMA. Finally, we show a numerical experiment that illustrates
the robustness of the WoLF method in corrupted one-dimensional financial data.

The exponentially weighted moving average (EWMA) Given a sequence of obser-
vations (or measurements) y1:t = (y1, . . . , yt), the EWMA of the observations at time t
is given by

mt = β yt + (1− β)mt−1, (4.50)

where β ∈ (0, 1] is the smoothing factor (or learning rate). Higher levels of β give more
weight to recent observations.

The Kalman filter in one dimension Consider the following one-dimensional SSM:

zt = zt−1 + wt,

yt = zt + et,
(4.51)

where zt is the (unobserved) signal, wt is the process noise, and et is the observation
noise. We assume that var(wt) = qt and var(et) = rt. Put simply, the SSM model (2)
assumes that the observations yt are generated by a (unobserved) signal zt plus noise et.
The (unobserved) signal zt evolves over time according to a random walk with noise wt
and the observations yt are generated by the (unobserved) signal zt plus noise et.

Proposition 4.19. Under the initial density p(z0) = N (z0 |m0, s0) and measurement
model p(yt | zt) = N (yt | zt, r2

t ). The posterior density p(zt | y1:t) is given by

p(zt | y1:t) ∝ p(yt | zt) p(zt | y1:t−1)

= N (zt |mt, s
2
t ),

(4.52)

4This experiment is based on the notes https://gerdm.github.io/posts/wolf-ewma/.
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with
kt =

s2
t−1 + q2

t

s2
t−1 + q2

t + r2
t

,

s2
t = kt r

2
t ,

mt = kt yt + (1− kt)mt−1.

(4.53)

Proof. Suppose p(z0) = N (z0 |m0, s0). Let p(zt−1 | y1:t−1) = N (zt−1 |mt−1, st−1) and
p(yt | zt) = N (yt | zt, rt). Then, the prediction step is given by

p(zt | y1:t−1) =
∫
p(zt | zt−1) p(zt−1 | y1:t−1) dzt−1

=
∫
N (zt | zt−1, qt)N (zt−1 |mt−1, st−1) dzt−1

= N (zt |mt−1, st−1 + qt)

= N (zt |mt−1, st|t−1),

with st|t−1 = st−1 + qt. Next, the update step is given by

p(zt | y1:t) ∝ p(yt | zt) p(zt | y1:t−1)

= N (yt | zt, r2
t )N (zt |mt−1, st−1 + q2

t ).

To compute the posterior, consider the log-posterior density

log p(zt | y1:t) = − 1
s2
t|t−1

(zt −mt−1)2 − 1
r2
t

(yt − zt)2 + const.

= − 1
st|t−1

(z2
t − 2ztmt−1 +m2

t−1)− 1
r2
t

(y2
t − 2ytzt + z2

t ) + const.

= − 1
st|t−1

(z2
t − 2ztmt−1)− 1

r2
t

(z2
t − 2ztyt) + const.

= −
(

(s−2
t|t−1 + r−2

t )z2
t − 2zt

(
mt−1

s2
t|t−1

+ yt
r2
t

))
+ const.

= −
(
s−2
t|t−1 + r−2

t

)[
z2
t − 2zt

(
st|t−1 + r−2

t

)−1
(
mt−1

s2
t|t−1

+ yt
r2
t

)]
+ const

= −
(
s−2
t|t−1 + r−2

t

)[
zt −

(
st|t−1 + r−2

t

)−1
(
mt−1

s2
t|t−1

+ yt
r2
t

)]2

+ const

where const denotes a constant that does not depend on zt. From the above, we see that
the posterior p(zt | y1:t) is a Gaussian density with mean mt and variance s2

t , where

mt =
(
st|t−1 + r−2

t

)−1
(
mt−1

s2
t|t−1

+ yt
r2
t

)
,

s2
t =

(
s−2
t|t−1 + r−2

t

)−1
.

Next, we simplify the above expressions to obtain the Kalman filter equations (4.53). For
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the posterior mean mt, we have

mt =
(
s2
t|t−1 + r−2

t

)−1
(
mt−1

s2
t|t−1

+ yt
r2
t

)
,

=
s2
t|t−1r

2
t

st|t−1 + r2
t

(
r2
tmt−1 + s2

t|t−1yt

s2
t|t−1r

2
t

)
,

= r2
t

s2
t|t−1 + r2

t

mt−1 +
s2
t|t−1

s2
t|t−1 + r2

t

yt,

=
(

1−
s2
t|t−1

s2
t|t−1 + r2

t

)
mt−1 +

s2
t|t−1

s2
t|t−1 + r2

t

yt,

= (1− kt)mt−1 + ktyt.

with kt = s2
t|t−1/(s2

t|t−1 + r2
t ). Finally, compute the posterior variance s2

t :

s2
t = 1

s−2
t|t−1 + r−2

t

=
s2
t|t−1r

2
t

s2
t|t−1 + r2

t

=
(

s2
t|t−1

s2
t|t−1 + r2

t

)
r2
t = ktr

2
t .

Proposition 4.19 shows that the Kalman filter applied to the SSM (4.51) is equivalent
to the EWMA with β replaced by kt, i.e., the KF is an EWMA with a time-varying
smoothing factor.

The WoLF method for the EWMA To create a 1D version of WoLF, recall that
WoLF replaces the rt in the KF equations (4.53) for r2

t = r2/w2
t with wt : R → R a

weight function. Intuitively, the weight function wt determines degree of certainty that
yt is an outlier. Here, we consider the IMQ weight function

wt =
(

1 + (yt −mt−1)2

c2

)−1/2

, (4.54)

where c > 0 is the soft threshold.
Next, consider the SSM (4.51) with q2

t = q2 and r2
t = r2/w2

t . Here q ≥ 0 and
r > 0 are fixed hyperparameters. With these assumptions, the rate kt in (4.53) for WoLF
becomes

kt =
s2
t−1 + q2

s2
t−1 + q2 + r2/w2

t

. (4.55)

As a consequence, we obtain that, as yt →∞, the rate kt converges to 0 faster than yt
tends to ∞. We obtain

(mt → mt−1 and s2
t → s2

t−1) as yt →∞. (4.56)

In other words, with 1D Wolf, large and unexpected errors get discarded. The larger the
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error, the less information it provides to the estimate mt.

The WoLF EWMA is computed using

kt =
s2
t−1 + q2

s2
t−1 + q2 + r2/w2

t

,

s2
t = kt r

2
t ,

mt = kt yt + (1− kt)mt−1.

(4.57)

A robust EWMA for log-returns To test the 1d-WoLF, consider data from the Dow
Jones Industrial Average (DJI) from 2019 to the end of 2024. We want to estimate the
EWMA of log-returns for DJI. Suppose that the data is corrupted with outliers and we
do know in advance the level of corruption or their occurrence. Figure 4.12 shows the
log-returns DJI from 2020 to 2024.

Figure 4.12: Log-returns of DJI from 2019 to 2024. The outliers at the beginning of 2021 and at the
beginning of 2023 correspond to erroneous datapoints.

Next, Figure 4.13 shows the EWMA estimate and the WoLF-EWMA estimate with
hyperparameters β = 0.095 for the EWMA and m0 = 0, s0 = 1, q = 0.01, r = 1.0, and
c = 0.05 for WoLF-EWMA. We observe that under the standard EWMA, an outlier event
significantly biases the posterior estimate of the signal zt. However, WoLF-EWMA ignores
the outliers and provides a more robust estimate of the DJI signal. Furthermore, the
WoLF-EWMA estimate closely resembles that of EWMA outside outlier events. Finally,
Figure 4.14 shows the smoothing factors βt for the EWMA and the kt. We observe that
the smoothing factor for WolF-EWMA kt is fairly stable and closely follows the fixed value
β for EWMA. However, it decreases when the observation yt is is unusually large. This
occurs at the outlier events.
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Figure 4.13: EWMA and WolF-EWMA estimates over DJI log-returns from 2019 to 2024.

Figure 4.14: Smoothing factors for EWMA and WolF-EWMA for the DJI log-returns from 2019 to 2024.

4.8 Conclusion

We introduced a provably robust filtering algorithm based on generalised Bayes which we
call the weighted observation likelihood filter or WoLF. Our algorithm is as fast as the
KF, has closed-form update equations, and is straightforward to apply to various filtering
methods. The superior performance of the WoLF is shown on a wide range of filtering
problems. In contrast, alternative robust methods either have higher computational com-
plexity than the WoLF, or similar computational complexity but not higher performance.
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Chapter 5

Scalability

Throughout this thesis, we have assumed that the posterior density over model parameters
is Gaussian with a full-rank covariance matrix. This assumption, while simple and power-
ful, results in significant computational and memory demands. Specifically, most of the
methods introduced in Chapter 2 scale at rates of at least O(D2) in memory and O(D3)
in computation time. This limitation makes such methods impractical for online learning
in high-dimensional parameter spaces, as is common with deep neural networks — the
O(D2) memory requirement alone makes them infeasible for training even moderately
sized neural networks.

For example, consider a multi-layer perceptron (MLP) with 282 input units, three
hidden layers, and 100 units in each hidden layer. Such a network contains approximately
99,000 parameters. Representing these parameters as 32-bit floats would require around
40GB of memory for a single step of the Extended Kalman Filter (EKF) algorithm (see
Section 2.6.1). This makes it infeasible to run on standard GPU devices and impractical
for real-time applications.

To address these limitations, this chapter focuses on the challenge of recursively train-
ing deep neural networks using filtering techniques. We propose three scalable algorithms
that build on the methods introduced in Chapter 2. Each algorithm leverages different
structural assumptions about the state space and applies approximations to reduce both
the computational and memory requirements.

First, in Section 5.1, we present the method introduced in Duran-Martin et al. (2022),
which projects the weights of the neural network onto a lower-dimensional affine subspace
and performs EKF-like updates on the reduced space. Next, Section 5.2 introduces the
method proposed in Cartea et al. (2023b), which builds upon the subspace approach and
leverages ideas from the “last-layer” literature in Bayesian neural networks. Specifically,
this method projects the hidden layers of a neural network onto a lower-dimensional
affine space and works with a full-covariance matrix for the last layer. Then, Section 5.3
describes the low-rank Kalman filter (LoFi) method introduced in Chang et al. (2023).
This method imposes a diagonal-plus-low-rank structure on the posterior precision matrix.
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This results in EKF-like updates. In contrast to the previous two methods, LoFi updates all
the parameters of the neural network but reduces the computational cost by maintaining
a diagonal plus low-rank posterior precision matrix.

Finally, Section 5.4 provides an overview of the methods presented in this chapter and
Section 5.5 presents an empirical study of the performance of the proposed algorithms on
an online classification task using the Fashion MNIST dataset (Xiao et al., 2017).

5.1 Subspace parameters

There is a growing literature showing that the number of parameters (or degrees of
freedom) required to fit a neural network is much smaller than the total number of
parameters contained in the neural network architecture. These active parameters of a
neural network can either be found as a subset of nodes (Frankle, 2023), or contained
within a lower-dimensional linear subspace (Li et al., 2018; Larsen et al., 2022). This
observation is called the lottery-ticket hypothesis.

Research on the lottery-ticket hypothesis exploits the over-parametrisation of neural
networks in the sense that “a randomly-initialised dense neural network contains subnet-
works (or linear subspaces) that, when trained in isolation, reach test accuracy comparable
to that of the original network” (Frankle, 2023). The subnetworks or linear subspaces that
satisfy the lottery ticket hypothesis are called winning tickets.

The work in Duran-Martin et al. (2022) exploits the lottery-ticket hypothesis by pro-
jecting the weights of the neural network to a lower-dimensional affine subspace. Then,
they make use of the EKF to perform sequential updates over the lower-dimensional space.
We provide details below.

5.1.1 The SSM for the subspace EKF and update step

Consider a projection matrix A ∈ RD×d, with d≪ D. Write the parameters of the neural
network as a linear mapping between the projection matrix A and a lower-dimensional
vector z ∈ Rd, plus an offset vector θ∗ ∈ RD:

θ(z) = A z + θ∗. (5.1)

The lower-dimensional vector z is assumed to be time-dependent and evolving according
to the equation zt = f(zt−1) + ut, with ut a zero-mean random variable with known
covariance matrix.1 Under assumption (5.1), the SSM over model parameters and obser-

1The term (5.1) is different from techniques such as LoRA (Hu et al., 2021) that reduce the parameters
in each layer using a linear projection. Here, we project all of the parameters of the network onto a single
lower-dimensional space.
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vations becomes
zt = f(zt−1) + ut,

θt := θ(zt) = A zt + θ∗,

yt = h(θt,xt) + et.

(5.2)

The SSM (5.2) corresponds to that presented in Section 2.6.1 with measurement
function h(A zt + θ∗,xt). Assuming Gaussian prior for the subspace N (z0 |µ0,Σ0),
application of the EKF is straightforward. Algorithm 12 shows a step of the EKF under
the subspace assumption. For simplicity, we assume that f(z) = z.

Algorithm 12 predict and update steps for the subspace extended Kalman filter with
subspace for t ≥ 1.
Require: Dt = (xt,yt) // datapoint
Require: (µt−1,Σt−1) // previous d-dimensional mean and covariance
Require: A ∈ RD×d // projection matrix
Require: θ∗ ∈ RD // offset vector

1: // predict step
2: Ft ← ∇θf(µt−1)
3: µt|t−1 ← Ftµt−1
4: Σt|t−1 ← FtΣt|t−1F⊺

t + Qt

5: //update step
6: Ht ← ∇θh(Aµt|t−1 + θ∗,xt)
7: St = Ht A Σt−1 A⊺ H⊺

t + Rt

8: Kt = Σt|t−1 A⊺ H⊺
t S−1

t

9: µt ← µt−1 + Kt(yt −Ht Aµt|t−1)
10: Σt ← Σt|t−1 −Kt A⊺ H⊺

tΣt|t−1
11: return (µt,Σt)

5.1.2 Warmup phase: estimating the projection matrix and the
offset term

Two important components of the method are the projection matrix A and the offset
vector θ∗. The offset can either be initialised from a random process, as in Li et al.
(2018), or determined during a warmup period, as described in Larsen et al. (2022).
In this section, we focus on the approach proposed in Larsen et al. (2022), where the
projection matrix A is constructed by performing a singular value decomposition (SVD)
on iterates of batch stochastic gradient descent (SGD), and the offset θ∗ is taken as the
final step of the warmup procedure.

Suppose we are given a warm-up dataset Dwarmup with Nwarmup ≥ 1 datapoints, which
we divide into into B non-intersecting random batches D(1), . . . ,D(B) such that

B⋃
b=1
D(b) = Dwarmup.
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Consider the negative log-likelihood

− log p(Dwarmup |θ) = −
Nwarmup∑
n=1

log p(yn |θ,xn). (5.3)

And train for E epochs using randomised batch SGD. At the end of the E epochs, we
obtain θ(E). Then, the offset vector θ∗ is given by

θ∗ = θ(E).

Next, to estimate the projection matrix A, we take the iterates found during the SGD
optimisation procedure. To avoid redundancy, we skip the first n iterations and store the
iterates every k steps. Let

E =



θ(n)

θ(n+k)

θ(n+2k)

...
θ(E)


∈ RÊ×D ,

where Ê = ⌊(E − n)/k⌋ + 1. With the SVD decomposition E = U Σ V and the first d
columns of the matrix V, the projection matrix is

A =

V:,1 V:,d . . . V:,d

 ,
where V:, k denotes the k-th column of V. Algorithm 13 shows the warmup procedure
to find A and θ∗ using a warmup dataset Dwarmup. In Algorithm 13, the function
κ : RM → RM is the per-step transformation of the Adam algorithm; see Kingma and
Ba (2015).
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Algorithm 13 Initialisation of the offset vector and projection matrix via batch SGD.
Require: θ(0) // initial set of parameters
Require: E ≥ 1 // number of epochs
Require: Dwarmup // warmup dataset
Require: E = [] // empty matrix
Require: n ≥ 0, k ≥ 1 // skip and stride numbers

1: for epoch e = 1, . . . , E do
2: for batch m = 1, . . . ,M do
3: Ge ← −∇θ log p(D(m) |θ)
4: θ(e) ← θ(e−1) − κ(GT )
5: end for
6: if (e ≥ n) and (e mod k = 0) then
7: E ←

[
E⊺,
(
θ(e))⊺]⊺ // stack vertically

8: end if
9: end for

10: U Σ V← SVD(E) // SVD decomposition of stacked SGD iterates
11: A←

[
V:, 1 . . . V:, d

]
// define projection matrix

12: θ∗ ← θ(E) // define offset parameters

5.2 Subspace and last-layer parameters

In the previous section, we leveraged the lottery ticket hypothesis to make online esti-
mation of the posterior density of high-dimensional model parameters computationally
tractable. However, the performance of this method heavily depends on the choice of
the projection matrix A, which projects the parameters of the hidden and output layers
onto a single linear subspace. This reliance on A can limit the method’s flexibility and
effectiveness in practice.

An alternative approach involves treating the last layer and the hidden layers of a neural
network as separate components. Commonly referred to as Bayesian last-layer methods
(Harrison et al., 2024) or neural-linear methods, these approaches improve the predictive
power of neural networks by optimising the weights of the hidden layers using standard
techniques, such as Adam, and then placing a posterior density over the parameters of
the last layer (Murphy, 2023, Section 17.3.5). This separation is particularly useful in
applications such as Bayesian neural contextual bandit problems (Riquelme et al., 2018).

Because the hidden layers are typically much more computationally expensive to train
than the output layers, these methods often update the hidden layers intermittently,
while the output layer is updated more frequently. This division helps to reduce the
computational cost of training while maintaining predictive accuracy.

Building on these ideas, the work in Cartea et al. (2023b) proposes a fully online
Bayesian version of last-layer methods, called PULSE (projection-based unification of
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last-layer and subspace estimation). PULSE combines the strengths of the lottery ticket
hypothesis with the power of neural-linear approaches by applying subspace projections
only to the hidden layers, while maintaining a full-covariance Gaussian posterior over the
parameters of the last layer.2 This approach allows for a fully-online treatment of online
learning of high-dimensional neural networks, while maintaining a reduced computational
cost.

Specifically, PULSE provides a Bayesian framework for sequentially updating the pa-
rameters of a neural network. It uses subspace projections to represent the hidden-layer
parameters compactly while maintaining a detailed posterior density for the last layer.
Unlike previous approaches, which either update all parameters or focus solely on the last
layer during online learning, PULSE strikes a balance by combining both strategies: pro-
jecting the hidden-layer parameters and fully updating the last-layer parameters. Whereas
the original PULSE method decouples the update for the hidden layer and the subspace
entirely, here, we introduce a modification that solves a coupled system of equations.

5.2.1 The SSM for PULSE

We decompose the model parameters for a neural network θ ∈ RD between the hidden-
layer parameters ψ ∈ RDhidden and the last-layer parameters w ∈ Rdlast . That is, θ =
(ψ,w). Here, D = Dhidden + dlast. Next, write the hidden layer parameters ψ as an
affine projection of the form

ψ = A z +ψ∗. (5.4)

Similar to (5.1), A is a (Dhidden × dhidden) fixed projection matrix and zt ∈ Rdhidden are
the projected (subspace) parameters such that dhidden ≪ Dhidden, and ψ∗ ∈ RDhidden is
the offset term. The term ψ∗ is initialised as in Section 5.1.2 but considering only the
last layer parameters.

Similar to Section 5.1, the lower-dimensional vector z is assumed to be time-dependent
and evolving according to the equation zt = zt−1 + uhidden

t , with uhidden
t a zero-

mean random vector with known covariance matrix. Next, the parameters of the last
layer are assumed to be time-dependent and evolve according to wt = wt−1 + ulast

t

with ulast
t a zero-mean random vector with known covariance matrix. Here, we take

Cov(uhidden
s ,urlast

t ) = 0 for all s, t. Under these assumptions, the SSM over model

2In Cartea et al. (2023b), PULSE is employed to detect the so-called toxicity of trades being sent
to a broker. This is different from other models (Cartea and Sánchez-Betancourt, 2025; Bergault and
Sánchez-Betancourt, 2025; Cartea et al., 2024b; Aqsha et al., 2024) because we do not assume that
traders are informed or uninformed, instead, we think of each trade separately and we predict whether
the trade is informed or uninformed.
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parameters and observations take the form

zt = zt−1 + uhidden
t ,

wt = wt−1 + ulast
t ,

θt = (A zt +ψ∗,wt),

yt = h(θt,xt) + et,

(5.5)

where, as before, et is a zero mean random vector with known covariance matrix Rt,
yt ∈ Ro are the measurements and h : RD ×RM → Ro is a differentiable function w.r.t.
the first entry, e.g., a neural network.

5.2.2 Objective

We introduce Gaussian priors for both w and z at the beginning of the deploy stage. Let
t = 1 be the first timestamp of the deploy dataset. Denote the prior densities for w and
z by

N
(

w |w(E), σ2
w Idlast

)
,

N
(
z |0, σ2

z Idhidden

)
,

where w(E) is the last iterates from the warmup stage, and σ2
w, σ

2
z are the coefficients

of the prior covariance matrix.
At each timestep during the deploy stage, we approximate the posterior densities

of the last-layer parameters w, and the subspace hidden-layer parameters z, as disjoint
multivariate Gaussians.

To compute the posterior mean and covariance of the subspace hidden-layer param-
eters (µt,Σt), as well as the posterior mean and covariance of the last-layer parameters
(νt,Γt), we solve a recursive variational inference (VI) optimisation problem. This ap-
proach resembles the R-VGA method introduced in Section 2.4.2, so that Cov(uhidden

t ) =
0 and Cov(ulast

t ) = 0. Specifically, at each timestep, we optimise the block mean-field
objective

Θt = arg min
µ,ν,Σ,Γ

DKL (N (w |ν, Γ)N (z |µ, Σ) || p(w, z | D1:T )) , (5.6)

where Θt = (µt,νt,Σt,Γt) represents the set of optimised posterior parameters, and
p(w, z | D1:t) denotes the reference posterior density at time t, given by

p(w, z | D1:t) ∝ qt−1(w, z | D1:t−1) p(yt |θ,xt)

= N (w |νt−1, Γt−1) N
(
z |µt−1, Σt−1

)
p(yt |θ,xt).

(5.7)

Here, θ = (A z+ψ∗,w) and qt−1(w, z | D1:t−1) is the posterior density from the previous
timestep, which we take to be the prior when computing the posterior at time t. In
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general, the density p(yt | (z,w),xt) might not be linear-Gaussian (h not linear in θ). In
such cases, we employ a linearised moment-matched Gaussian likelihood p̂(yt |θ,xt)—we
return to this point in the next subsection.

Then, the approximated posterior at time t is

qt(z,w) = N (z |µt, Σt) N (w |νt, Γt). (5.8)

5.2.3 Update step

To obtain closed-form updates, we consider a modified likelihood for the measurement yt,
which we take as the one introduced in the exponential-family EKF of Section 2.6.3. Let
h(θ,x) be the mean of the measurement model p(y |θ,x). A first-order approximation
of h(θ,xt) around (µt−1,νt−1) yields

h̄t(z,w) = κt + Z̄t (z − µt−1) + W̄t (w− νt−1) (5.9)

with
κt = h

(
(µt−1,νt−1),xt

)
,

Z̄t = ∇zh
(
(z,νt−1),xt

)
|z=µt−1 ,

W̄t = ∇wh
(
(µt−1,w),xt

)
|w=νt−1 .

(5.10)

The density for the measurements is taken to be

p̂(yt | (z,w),xt) = N (yt | h̄t(z,w), R̄t) ∝ exp
(
− 1

2∥R̄
−1/2
t

(
yt − h̄t(z,w)

)
∥2

2

)
,

(5.11)
where R̄t is the moment-matched observation variance. Next, our reference posterior is
modified as

p(z,w | D1:t) ∝ qt−1(z,w | D1:t−1) p̂(yt | (z,w),xt)

= N
(
z |µt−1, Σt−1

)
N (w |νt−1, Γt−1) p̂(yt | (z,w),xt).

(5.12)

Proposition 5.1. Optimising the objective (5.6) under the linearised measurement model
(5.11) yields the fixed-point equations

νt = νt−1 − Γt−1∇νt
Et,

Γ−1
t = Γ−1

t−1 + 2∇Γt
Et,

µt = µt−1 −Σt−1∇µt
Et,

Σ−1
t = Σ−1

t−1 + 2∇Σt
Et,

(5.13)

where Et := EN (z | µt,Σt)N (w | νt,Γt)[log p̂(yt | z,w,xt)].

Proof. We begin by rewriting the objective function (5.6) using the linearised mea-
surement model (5.11). To simplify notation, let p̂(yt) := p(yt | z,w;xt), φt (z) :=
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N (z |µt, Σt), and ϕt (w) := N (w |νt, Γt).

Kt = DKL (N (w |νt, Γt)N (z |µt, Σt) ||ϕt−1 (w)φt−1 (z) p̂(yt))

=
∫∫
N (z |µt, Σt)N (w |νt, Γt) log

(
N (z |µt, Σt)N (w |νt, Γt)
φt−1 (z)ϕt−1 (w) p(yt)

)
dz dw

=
∫∫
N (z |µt, Σt)N (w |νt, Γt)

[
log
(
N (z |µt, Σt)
φt−1 (z)

)
+ log

(
N (z |µt, Σt)
ϕt−1 (w)

)
− log p̂(yt)

]
dz dw

=
∫
N (z |µt, Σt) log

(
N (z |µt, Σt)
φt−1 (z)

)
dz +

∫
N (w |νt, Γt) log

(
N (w |νt, Γt)
ϕt−1 (w)

)
dw

+
∫∫
N (z |µt, Σt)N (w |νt, Γt) log p̂(yt) dw dz

= EN (z | µt,Σt)

[
log
(
N (z |µt, Σt)
φt−1 (z)

)]
+ EN (w | νt,Γt)

[
log
(
N (w |νt, Γt)
ϕt−1 (w)

)]
+ EN (z | µt,Σt) N (w | νt,Γt)[log p̂(yt)] .

(5.14)

Finally, we obtain

Kt = DKL (N (w |νt, Γt) ||ϕt−1 (w)) + DKL (N (z |µt, Σt) ||φt−1 (z)) + Et (5.15)

where Et := EN (z | µt,Σt)N (w | νt,Γt)[log p̂(yt)].

The first and second terms in (5.15) correspond to a Kullback–Leibler divergence
between two multivariate Gaussians. The last term corresponds to the posterior-predictive
marginal log-likelihood for the t-th observation. To minimise (5.15) with respect to Θt,
we use the Kullback-Leibler divergence between two multivariate Gaussian derived in
Proposition 2.8.

The derivative of Kt with respect to νt is

∇νtKt = ∇νt (DKL (N (w |νt, Γt) ||ϕt−1 (w)) + Et)

= ∇νt

(
1
2ν

⊺
tΓ−1

t−1νt − ν
⊺
tΓt−1νt−1 +∇νt

Et
)

= Γ−1
t−1νt − Γ−1

t−1νt−1 +∇νt
Et

= Γ−1
t−1 (νt − νt−1 − Γt−1∇νt

Et) . (5.16)

Set (5.16) to zero and solve for

νt = νt−1 − Γt−1∇νtEt.

Next, we estimate the condition for Γt. Use (5.15) to obtain

∇Γt
Kt = ∇Γt

(
−1

2 log |Γt|+
1
2 Tr

(
Γt Γ−1

t−1
)

+ Et
)

= −1
2 Γt−1 + 1

2 Γ−1
t−1 +∇ΓEt. (5.17)
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The fixed-point solution for (5.17) satisfies

Γt−1 = Γ−1
t−1 + 2∇Γt

Et.

The fixed-point conditions for µt and Σt are derived similarly.

Proposition 5.1 yields the fixed-point equations that the terms in Θt must satisfy.
Furthermore, these equations are expressed in terms of the gradients of the expected
linearised likelihood model (5.11). In the following proposition, we provide explicit ex-
pressions for the gradients of the linearised likelihood model with respect to each term in
Θ.

Proposition 5.2. Let Et := EN (z | µt,Σt)N (w | νt,Γt)[log p̂(yt | (z,w),xt)] be the ex-
pected linearised log-likelihood. The derivative of Et w.r.t. νt and Γt take the form

∇νt Et = −W̄t
⊺ R̄−1

t

(
yt − h̄t(µt,νt)

)
, (5.18)

∇Γt
Et = 1

2 W̄t
⊺ R̄−1

t W̄t. (5.19)

Similarly, the derivative of Et w.r.t. µt and Σt take the form

∇µt
Et = −Z̄t

⊺ R̄−1
t

(
yt − h̄t(µt,νt)

)
, (5.20)

∇Σt Et = 1
2 Z̄t

⊺ R̄−1
t Z̄t. (5.21)

Proof. From Bonnet’s Theorem and Price’s Theorem (See Theorem 3 and Theorem 4 in
Lin et al. (2019)), we obtain

∇νEN (z | µt,Σt)N (w | νt,Γt)[log p̂(yt | (z,w),xt)] = EN (z | µt,Σt)N (w | νt,Γt)[∇w log p̂(yt)],

∇ΓEN (z | µt,Σt)N (w | νt,Γt)[log p̂(yt | (z,w),xt)] = 1
2EN (z | µt,Σt)N (w | νt,Γt)[∇2

w log p̂(yt)].
(5.22)

The Jacobian and the Hessian and the log-likelihood w.r.t. w are

∇w log p̂(yt | (z,w),xt) = −W̄t
⊺ R̄−1

t

(
yt − h̄t(z,w)

)
,

∇2
w log p̂(yt | (z,w),xt) = W̄t

⊺ R̄−1
t W̄t.

(5.23)

Hence,

EN (z | µt,Σt)N (w | νt,Γt)[∇w log p̂(yt | (z,w),xt)] = −W̄t
⊺ R̄−1

t

(
yt − h̄t

)
,

EN (z | µt,Σt)N (w | νt,Γt)[∇2
w log p̂(yt | (z,w),xt)] = W̄t

⊺ R̄−1
t W̄t.

(5.24)

The result is derived similarly for the parameters of hidden subspace.

Plugging the result of Proposition 5.2 into the fixed-point equations given in Propo-
sition 5.1 yields a pair of linear equations whose only unknowns are the terms in Θ. The
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next theorem derives the update equations for PULSE, which explicitly solve for each term
in Θ, yielding Θt.

Theorem 5.3 (PULSE). The approximated posterior that solves objective (5.6) under
the linearised measurement model (5.11) at time t is

qt(z,w) = N (z |µt, Σt) N (w |νt, Γt), (5.25)

where
νt = νt−1 + K̂w,t (yt − h

(
(µt−1,νt−1),xt

)
,

µt = µt−1 + K̂z,t (yt − h
(
(µt−1,νt−1),xt

)
,

Γ−1
t = Γ−1

t−1 + W̄t
⊺ R̄−1

t W̄t,

Σ−1
t = Σ−1

t−1 + Z̄t
⊺ R̄−1

t Z̄t,

(5.26)

and
Kz,t = Σt Z̄t

⊺ R̄−1
t ,

Kw,t = Γt W̄t
⊺ R̄−1

t ,

K̂z,t =
(
Idhidden −Kz,t W̄t Kw,t Z̄t

)−1 Kz (Io − W̄t Kw,t),

K̂w,t =
(
Idlast −Kw,t Z̄t Kz,t W̄t

)−1 Kw (Io − Z̄t Kz,t),

(5.27)

where Im is an m×m identity matrix.

Proof. For the precision matrix of the last-layer parameters, we obtain

Γ−1
t = Γ−1

t−1 + 2∇ΓtEt
= Γ−1

t−1 + W̄t
⊺ R̄−1

t W̄t.
(5.28)

Next, the precision matrix for the subspace hidden layer parameters take the form

Σt
−1 = Σ−1

t−1 + 2∇Σt
Et

= Σ−1
t−1 + Z̄t

⊺ R̄−1
t Z̄t.

(5.29)

The posterior mean of the last layer of model parameters take the form

µt = µt−1 −Σt−1∇µt
Et

= µt−1 + Σt−1Z̄t
⊺ R̄−1

t

(
yt − h̄t(µt,νt)

)
.

(5.30)

Similarly, the posterior mean of the subspace model parameters take the form

νt = νt−1 − Γt−1∇νtEt
= νt−1 + Γt−1W̄t

⊺ R̄−1
t

(
yt − h̄t(µt,νt)

)
.

(5.31)
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Hence, we need to solve the system of equations

νt = νt−1 + Γt−1W̄t
⊺ R̄−1

t

(
yt − h̄t(µt,νt)

)
, (5.32)

µt = µt−1 + Σt−1Z̄t
⊺ R̄−1

t

(
yt − h̄t(µt,νt)

)
. (5.33)

In the rest of the proof, we show the solution for νt. Similar steps yield the solution
for µt. We begin by expanding the right hand side of (5.32). We obtain

νt = νt−1 + Γt−1W̄t
⊺ R̄−1

t

(
yt − h̄t(µt,νt)

)
= νt−1 + Γt−1W̄t

⊺ R̄−1
t

(
yt − [κt + Z̄t (z − µt−1) + W̄t (wt − νt−1)])

)
.

(5.34)

Expanding terms and grouping for νt and νt−1, we obtain

νt = νt−1 +
[
Γ−1
t−1 + W̄⊺

t R̄−1
t W̄t

]−1 W̄⊺
t R̄−1

t

(
yt − κt − Z̄t (µt − µt−1)

)
= νt−1 + ΓtW̄⊺

t R̄−1
t

(
yt − κt − Z̄t (µt − µt−1)

)
= νt−1 + Kwt,t

(
yt − κt − Z̄t (µt − µt−1)

)
,

(5.35)

where we defined Kwt,t = ΓtW̄⊺
t R̄−1

t .
Similarly, for the subspace hidden-layer parameters, we obtain

µt = µt−1 + Kz,t

(
yt − κt − W̄ (νt − νt−1)

)
(5.36)

with Kz,t = Σt Z̄⊺
t R̄−1

t .
The terms in (5.35) and (5.36) resemble a Kalman filter update, as described in

Proposition 2.15. However, these terms are interdependent, as each relies on the unknown
variables µt and νt. In what follows, we derive a solution to this system of equations.

From (5.36), note that

µt − µt−1 = Kz,t

(
yt − κt − W̄ (νt − νt−1)

)
. (5.37)

Then, (5.35) takes the form

νt = νt−1 + Kwt,t

(
yt − κt − Z̄t

(
Kz,t

(
yt − κt − W̄ (νt − νt−1)

)))
. (5.38)

Expanding and grouping the terms νt and νt−1, we obtain

νt = νt−1 +
(
Idlast −Kwt,t Z̄t Kz W̄t

)−1 Kwt,t (Io − W̄t Kz,t) (yt − κt) . (5.39)

A similar derivation yields µt.

Theorem 5.3 demonstrates that the update equations for PULSE share a structural re-
semblance with those of the extended Kalman filter (EKF) and the exponential family EKF
(expfamEKF), as introduced in Sections 2.6.1 and 2.6.3. However, a key distinction lies
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in the modification of the gain matrix, which is adjusted to account for the dependencies
between the last-layer parameters and the subspace hidden-layer parameters.

Algorithm 14 provides pseudocode for the update step for PULSE.

Algorithm 14 Update step for PULSE
Require: yt // measurement at time t
Require: Rt // observation variance at time t
Require: (µt−1,Σt−1) // previous posterior mean and covariance for subspace parame-

ters
Require: (νt−1,Γt−1) // previous posterior mean and covariance for the last-layer pa-

rameters
1: ŷt ← h

(
(µt−1,νt−1),xt

)
2: Z̄t ← ∇zh

(
(z,νt−1),xt

)
|z=µt−1

3: W̄t ← ∇wh
(
(µt−1,w),xt

)
|w=νt−1

4: Σ−1
t = Σ−1

t−1 + Z̄t
⊺ R−1

t Z̄t
5: Γ−1

t = Γ−1
t−1 + W̄t

⊺ R−1
t W̄t

6: // posterior mean updates
7: Kz,t = Σt Z̄t

⊺ R−1
t

8: Kw,t = Γt W̄t
⊺ R−1

t

9: K̂z,t =
(
Idhidden −Kz,t W̄t Kw,t Z̄t

)−1 Kz (Io − W̄t Kw,t)
10: K̂w,t =

(
Idlast −Kw,t Z̄t Kz,t W̄t

)−1 Kw (Io − Z̄t Kz,t)
11: νt ← νt−1 + K̂w,t (yt − ŷt)
12: µt ← µt−1 + K̂z,t (yt − ŷt)

5.3 The low-rank extended Kalman filter

The low-rank Kalman filter (LoFi) introduced in Chang et al. (2023) approximates the
the distribution over model parameters as Gaussian, q(θt | D1:t) = N (θt |µt, Σt). Here,
the posterior precision is diagonal plus low rank (DLR), i.e., it has the form Σ−1

t =
Υt + WtW⊺

t , where Υt is diagonal and Wt is a D × d matrix. Here, we seek to work
with Υt and Wt. In this sense, we seek “predict and update equations” that depend on
these terms, rather than the covariance matrix itself.

Below, we show an efficient recursive form to estimate the terms that comprise the
DLR posterior precision matrix, as well as the posterior mean. This has two main steps—
a predict step and an update step. The predict step takes O(Dd2 + d3) time, And the
update step takes O(D(d+ o)2) time. We define these steps below:

p(θt |θt−1) = N (θt |θt−1, q̂ I),

p(yt |θt−1) = N (yt |Htθt,Rt),
(5.40)

with q̂ ≥ 0.
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5.3.1 Predict step

Here, we derive a predict step that makes use of the DLR structure of the covariance
matrix.

Proposition 5.4 (Posterior predictive covariance matrix). Suppose Σ−1
t−1 = Υt−1 +

Wt−1 W⊺
t−1. Then, under (5.40), the predict step p(θt | D1:t−1) is of Gaussian form

with mean µt−1 and covariance

Σt|t−1 = Υ−1
t|t−1 −Υ−1

t−1 Wt−1Bt|t−1 W⊺
t−1 Υ−1

t−1, (5.41)

where

Υ−1
t|t−1 = Υ−1

t−1 + q̂ ID, (5.42)

Bt|t−1 =
(
Id + W⊺

t−1 Υ−1
t−1 Wt−1

)−1
. (5.43)

Proof. Following Proposition (2.13), we obtain µt|t−1 = µt−1. Next,

Σt|t−1 = Σt−1 + q̂ ID

=
(
Υt−1 + Wt−1 W⊺

t−1
)−1 + q̂ ID

= (Υ−1
t−1 + q̂ ID)−Υ−1

t−1Wt−1
(
W⊺

t−1 Υ−1
t−1 Wt−1 + Id

)−1 Wt−1 Υ−1
t−1

= Υ−1
t|t−1 −Υ−1

t−1 Wt−1Bt|t−1 W⊺
t−1 Υ−1

t−1,

(5.44)
where Υt|t−1 and Bt|t−1 are defined in (5.42) and (5.43) respectively.

Next, we provide predict-step equations that depend on Υt−1 and Wt−1 only. To do
this, we work with the precision matrix.

Lemma 5.5. For Bt|t−1 defined in (5.43), Υt−1 and Υt|t−1 D-dimensional diagonal
covariance matrices, and Wt−1 a D × d matrix. The following identity holds

C−1
t := B−1

t|t−1 −W⊺
t−1 Υ−1

t−1 Υt|t−1 Υ−1
t−1 Wt−1

= Id + W⊺
t−1

(
Υ−1
t−1 −Υ−1

t−1 Υt|t−1 Υ−1
t−1
)

Wt−1.
(5.45)

Proof. The proof follows through algebraic manipulation:

C−1
t = B−1

t|t−1 −W⊺
t−1 Υ−1

t−1 Υt|t−1 Υ−1
t−1 Wt−1

=
(
Id + W⊺

t−1 Υ−1
t−1 Wt−1

)
−W⊺

t−1 Υ−1
t−1 Υt|t−1 Υ−1

t−1 Wt−1

= Id + W⊺
t−1

(
Υ−1
t−1 −Υ−1

t−1 Υt|t−1 Υ−1
t−1
)

Wt−1.

(5.46)
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Proposition 5.6 (Posterior predictive precision matrix). The predicted precision matrix
derived from Proposition 5.4 takes the form

Σ−1
t|t−1 = Υt|t−1 + Wt|t−1 W⊺

t|t−1, (5.47)

where

Υt|t−1 =
(
Υ−1
t−1 + q̂ ID

)−1
, (5.48)

Wt|t−1 = Υt|t−1 Υ−1
t−1 Wt−1 C1/2

t . (5.49)

Here A1/2 refers to the Cholesky decomposition of a positive definite matrix A.

Proof. Consider the posterior predictive covariance matrix derived in Proposition 5.4.
Then, the posterior predictive precision matrix takes the form

Σ−1
t|t−1

=
(

Υ−1
t|t−1 −Υ−1

t−1 Wt−1Bt|t−1 W⊺
t−1 Υ−1

t−1

)−1

= Υt|t−1 + Υt|t−1 Υ−1
t−1 Wt−1

(
B−1
t|t−1 −W⊺

t−1 Υ−1
t−1 Υt|t−1 Υ−1

t−1 Wt−1

)−1
Wt−1 Υ−1

t−1Υt|t−1

= Υt|t−1 + Υt|t−1 Υ−1
t−1 Wt−1 C−1

t Wt−1 Υ−1
t−1Υt|t−1

= Υt|t−1 + Wt|t−1 W⊺
t|t−1.

(5.50)
Here, Ct is derived in Lemma 5.5 and Wt|t−1 is defined in (5.49).

Proposition 5.6 derives predict steps in terms of Υt−1 and Wt−1, so that dependence
in Σt|t−1 is implicit. The computational cost of the predict step is O(Dd+d3). Algorithm
15 provides pseudocode for the predict step.

Algorithm 15 Predict step for LoFi
Require: µt−1 // previous mean
Require: (Υt−1,Wt−1) // previous diagonal and low-rank parts
Require: qt // scalar dynamics covariance

1: µt|t−1 ← µt−1

2: Υt|t−1 ←
(
Υ−1
t−1 + qt ID

)−1

3: C−1
t ← Id + W⊺

t−1
(
Υ−1
t−1 −Υ−1

t−1 Υt|t−1 Υ−1
t−1
)

Wt−1

4: Wt|t−1 ← Υt|t−1 Υ−1
t−1 Wt−1 C1/2

t

5: ŷt ← h(µt|t−1,xt) // one-step-ahead forecast

5.3.2 Update step

The LoFi update step makes use of the DLR form of the precision matrix.
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Proposition 5.7. The form of the posterior mean and posterior covariance after an update
step takes the form

et = yt − ŷt ,

µt = µt|t−1 +
[
Υ−1
t|t−1 −Υ−1

t|t−1 W̃t

(
Id+o + W̃⊺

t Υ−1
t|t−1 W̃t

)−1
W̃⊺

t Υ−1
t|t−1

]
H⊺
t R−1

t et,

Σ−1
t = Υt|t−1 + W̃t W̃⊺

t ,

(5.51)
where

W̃t|t−1 =
[
Wt|t−1 Ht R1/2

t

]
, (5.52)

Wt|t−1 is given by (5.49) and Υt|t−1 is given by (5.48).

Proof. Following the Kalman filter update for the precision matrix shown in Proposition
2.15, we obtain

Σ−1
t = Σ−1

t|t−1 + Ht R−1
t Ht

= Υt|t−1 + Wt|t−1 W⊺
t|t−1 + H⊺

t R−⊺/2
t R−1/2

t Ht

= Υt|t−1 +
[
Wt|t−1 Ht R⊺

t−1

] W⊺
t|t−1

R−1/2
t Ht


= Υt|t−1 + W̃t W̃⊺

t ,

(5.53)

where W̃t is given by (5.52).

Next, using the Woodbury identity matrix, Σt takes the form

Σt =
(
Υt|t−1 + W̃t W̃⊺

t

)−1

= Υ−1
t|t−1 −Υ−1

t|t−1 W̃t

(
Id+o + W̃⊺

t Υ−1
t|t−1W̃t

)−1
W̃t

⊺ Υ−1
t|t−1.

(5.54)

The proof concludes from the update step of the Kalman filter shown in Proposition 2.15
with covariance given by (5.54).

After the update step of Proposition (5.7), the low-rank component W̃ is a D×(d+o)
matrix. To maintain aD×d low-rank matrix, LoFi performs a singular value decomposition
(SVD) over the D × (d + o) low rank matrix W̃t and maintains the top d singular
components.

Algorithm 16 provides pseudocode for the update step and subsequent low-rank pro-
jection of the matrix W̃t.
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Algorithm 16 Update step for LoFi
Require: yt // measurement at time t
Require: µt|t−1 // predicted mean
Require: (Υt|t−1,Wt|t−1) // predicted diagonal and low-rank components

1: W̃t|t−1 ←
[
Wt|t−1 Ht R1/2

t

]
2: P̃t ← Υ−1

t|t−1 −Υ−1
t|t−1 W̃t

(
Id+o + W̃⊺

t Υ−1
t|t−1 W̃t

)−1
W̃⊺

t Υ−1
t|t−1

3: K̃t ← P̃t H⊺
t R−1

4: µt ← µt|t−1 + K̃t (yt − ŷt)
5: // build low-rank component (using reduced-rank SVD)
6: W̃⊺

t W̃t ← Ṽt S̃2
t Ṽ⊺

t // right-singular vectors
7: Ũt ← W̃ Ṽ S̃−1

t // left singular vectors
8: Wt ← Ũ:,:d (S̃t):d,: // low-rank construction
9: (Dt)i ←

∑d+o
j=d(Ũ)i,j (S̃t)j (Ũ)i,j (S̃t)j // dropped variance

10: Υt ← Υt|t−1 + Dt

In Algorithm 16, Line 7 is computed for all i = 1, . . . , D and j = 1, . . . , d; and Line
8 is computed for all i = 1, . . . , D. Finally A:,d: =

[
A:,1 . . . A:,d

]
and similarly for

Ad:,:.

5.4 Summary of methods

In this section, we summarise the methods introduced in this chapter, namely, the subspace
method, the PULSE method, and the LoFi method.

Method Assumption Time complexity Memory complexity

subspace θt = A zt + ψ∗ O(dD + d3) O(dD + d2)
LoFi Σ−1

t = Wt W⊺
t + Υt O(D (d+ o)2 + (d+ o)3) O(d+ dD)

PULSE θt = (A zt + ψ∗,wt) O(d3
hidden + d3

last) O(Ddhidden + d2
hidden + d2

last)

Table 5.1: Time and memory complexity of the update step for various methods. The row Assumption
denotes the change from the assumptions in used in the EKF algorithm.

5.5 Experiments

In this section, we present empirical results in which we evaluate the performance and
speed (time to run) of the methods presented in this chapter. We also study the effects
of various hyper-parameters of our algorithm, such as how we choose the subspace.

5.5.1 Online classification with a convolutional neural network

In this experiment, we consider consider the problem of one-step-ahead classification of a
stream of images coming from the FashionMNIST dataset (Xiao et al., 2017). We test the
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Subspace method, the PULSE method, and the LoFi method to train a modified LeNet5
architecture with ReLU activation; we add an additional 20-unit dense layer (LeCun et al.,
1998).

For each of the methods presented in this chapter, we consider dimensions of sizes d ∈
{1, 5, 10, 25, 50, 70, 100}, which corresponds to the subspace parameters for the Subspace
method (Section 5.1), the hidden-layer subspace for PULSE (Section 5.2), and the low-
rank component for LoFi (Section 5.3).

For the subspace and PULSE methods, we estimate the projection matrix A using
the procedure outlined in Section 5.1.2 using a warmup dataset of 2000 samples separate
from the training data.

In the following figures we show the one-step-ahead classification accuracy for each of
the methods as a function of d, using an exponentially-weighted moving average (EWMA)
with a span value of 100 observations.

Subspace: Figure 5.1 shows the result of the Fashion MNIST task for the subspace
method. We consider the additional dimensions {150, 200, 250} to compare to the total
number of parameters in PULSE (see below). We observe that for d ≤ 10, the method

Figure 5.1: Comparison of the prequential accuracy on the Fashion MNIST dataset for the subspace
method. The y-axis shows the EWMA accuracy using a span of 100 observations.

performs no better than a random classifier, which corresponds to a misclassification rate
of 0.9. Then, for d > 10, the method improves its performance as d increases. This is
because we allow the algorithm to consider higher degrees of freedom.

PULSE: Next, Figure 5.2 shows the results for the PULSE method. Here d is the
dimension of the subspace of the parameters in the hidden-layers. Because the output is
10-dimensional and the second-to-last layer has 20 units, the total number of parameters
that get updated is 200 + d. As a consequence, the performance of the model places
strong emphasis on the last layer parameters. We observe that d = 1 provides a much
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Figure 5.2: Comparison of the prequential accuracy on the Fashion MNIST dataset for the PULSE
method. The y-axis shows the EWMA accuracy using a span of 100 observations.

better result than the subspace counterpart. However, the performance of the method as
we increase d is not as stark as in the subspace case shown in Figure 5.1.

LoFi: Finally, Figure 5.3 the results for the LoFi method. Here d is the rank of the DLR
matrix that characterises the posterior precision matrix. For LoFi, all D model parameters
get updated, however, the total number of meta-parameters required to perform the
update step is (D + Dd): D diagonal terms and Dd low-rank terms. We observe that

Figure 5.3: Comparison of the prequential accuracy on the Fashion MNIST dataset. The y-axis shows
the EWMA accuracy using a span of 100 observations.

for this dataset, the total rank does not have a strong influence on the performance of
the method as the rank increases, relative to the Subspace and the PULSE method.
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Showdown: Figure 5.4 compares the subspace, PULSE, and LoFi method on the Fash-
ion MNIST task. The x-axis shows the running time in seconds and the y-axis shows
the final one-step-ahead misclassification rate. Each marker corresponds to the final mis-
classification rate. The lines correspond to the median performance across choices of d.
We observe that LoFi is the method that maintains a consistent misclassification rate

Figure 5.4: Comparison of the prequential misclassification rate on the Fashion MNIST dataset on the
last 8000 observations. The dashed lines denote the best-performing configuration for each method.

as a function of d. However, the running time increases significantly as we increase d.
Next, PULSE starts a higher misclassification rate than LoFi. However, at d = 70 PULSE
matches the performance of LoFi at around half the running time of Lofi. Finally, the
subspace method has the highest variability among the competing methods. However,
its performance significantly improves for d ≥ 100 and matches the performance of LoFi
with less running time.

5.6 Conclusion

In this chapter, we presented three methods for scalable filtering in high-dimensional
parametric models, such as those found in neural networks. Specifically, we introduced:
(i) the subspace method, which projects the weights of a neural network into a lower-
dimensional subspace and performs filtering within this reduced space; (ii) the PULSE
method, which extends the subspace method by defining a density function over the
subspace and the last-layer parameters found using variational optimisation; and (iii) the
LoFi method, which tracks model parameters using a low-rank plus diagonal representation
of the posterior precision matrix.

To evaluate these methods, we conducted experiments on an online classification
problem using the Fashion MNIST dataset. The results demonstrate the applicability of
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these approaches to neural networks, highlighting their potential for scalable and efficient
Bayesian filtering in high-dimensional settings.
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Chapter 6

Final remarks

This thesis has proposed Bayesian filtering as a principled framework for adaptive, robust,
and scalable online learning in the presence of non-stationary environments, misspecified
models, and high-dimensional parameters.

The primary contribution of this thesis has been the development of novel filtering
methods, demonstrating their effectiveness in addressing sequential problems in machine
learning. Specifically, we have introduced: (i) a unified framework for adapting to non-
stationary environments, (ii) a novel, lightweight filtering method that is provably robust
and a straightforward extension of the Kalman filter, and (iii) a suite of methods designed
to reduce the time and memory complexity of classical filters when applied to high-
dimensional parametric models.

Despite these contributions, several limitations remain. In particular, in future work,
we would like to evaluate the proposed methods on novel architectures such as the Trans-
former architecture (Vaswani et al., 2017; Moreno-Pino et al., 2024) or Graph Neural
Networks (Scarselli et al., 2008; Arroyo et al., 2025) in temporal settings. Furthermore,
future work will address (i) reinforcement learning problems, where agents can experience
non-stationarity even in static environments (Zhang et al., 2022; Waldon et al., 2024)
and (ii) sequential decision making problems in finance (Scalzo et al., 2021; Cartea and
Sánchez-Betancourt, 2023; Cartea et al., 2024a; Drissi, 2022; Arroyo et al., 2024).

These limitations present avenues for future research, including fully-online reinforce-
ment learning and temporal problems involving non-stationarity on graph-structured data.

In conclusion, this thesis demonstrates the versatility and potential of Bayesian fil-
tering as a framework for parametric online learning and lays the foundation for further
advancements in adaptive, robust, and scalable algorithms. By bridging the gap between
traditional Bayesian approaches and the demands of modern machine learning, this work
contributes to the development of tools that will become increasingly essential in real-world
applications characterised by uncertainty, non-stationarity, and high-dimensionality.
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