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Abstract

Given a piece of text, a video clip, and a reference audio,
the movie dubbing task aims to generate speech that aligns
with the video while cloning the desired voice. The existing
methods have two primary deficiencies: (1) They struggle
to simultaneously hold audio-visual sync and achieve clear
pronunciation; (2) They lack the capacity to express user-
defined emotions. To address these problems, we propose
EmoDubber, an emotion-controllable dubbing architecture
that allows users to specify emotion type and emotional in-
tensity while satisfying high-quality lip sync and pronun-
ciation. Specifically, we first design Lip-related Prosody
Aligning (LPA), which focuses on learning the inherent con-
sistency between lip motion and prosody variation by du-
ration level contrastive learning to incorporate reasonable
alignment. Then, we design Pronunciation Enhancing (PE)
strategy to fuse the video-level phoneme sequences by effi-
cient conformer to improve speech intelligibility. Next, the
speaker identity adapting module aims to decode acous-
tics prior and inject the speaker style embedding. After
that, the proposed Flow-based User Emotion Controlling
(FUEC) is used to synthesize waveform by flow matching
prediction network conditioned on acoustics prior. In this
process, the FUEC determines the gradient direction and
guidance scale based on the user’s emotion instructions by
the positive and negative guidance mechanism, which fo-
cuses on amplifying the desired emotion while suppressing
others. Extensive experimental results on three benchmark
datasets demonstrate favorable performance compared to
several state-of-the-art methods.

1. Introduction

Movie Dubbing, also known as Visual Voice Cloning
(V2C), aims to convert a script into speech with the voice

*Equal contribution.
†Corresponding author.

(a) Visual Voice Cloning (V2C) Task

(b) Illustration of our proposed method (EmoDubber)
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Figure 1. (a) Illustration of the V2C tasks. (b) EmoDubber can
help users achieve audio-visual sync and maintain clear pronunci-
ation (left), while controlling the intensity of emotions according
to the user’s intentions (right).

characteristics specified by the reference audio, while align-
ing lip-sync with the silent video (see Figure 1 (a)). V2C
is far more challenging than conventional text-to-speech
(TTS), but has a host of applications, not least in repurpos-
ing the vast volumes of existing video to be reproduced by
movie creators or enthusiasts.

Existing dubbing methods broadly fall into two groups.
The first focuses primarily on learning and applying ef-
fective speaker style representations. For example, V2C-
Net [3] and VDTTS [15] utilize a pre-trained GE2E [47]
to obtain unique and normalized utterance embedding.
StyleDubber [6] applies multi-scale learning to apply
style cues to the embeddings extracted by GE2E, while
Speak2Dub [50] adopts pre-training strategy on TTS cor-
pus to improve expressiveness. Because these methods rely
on simple MSE-based loss [3, 50] and overall scaling [6],
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their capacity to establish accurate correspondence between
lip motion and speech is limited. The second group of meth-
ods aim to generate proper prosody by incorporating visual
information from the provided video [6, 16, 24, 51]. For
example, HPMDubbing [6] applies visual information to
speech prosody through hierarchical modeling of lips, face,
and scene. Recently, MCDubber [51] operates at the level of
context sequence with previous and following facial infor-
mation to enhance generated speech prosody. These meth-
ods work at the video-frame and mel-spectrogram levels,
however, which means they ignore the role of phoneme-
level pronunciations, and thus often generate seemingly
mumbled articulation.

Except for the above shorts, most current dubbing mod-
els suffer from rigid emotional expression due to lacking
controllability. Some studies [18] suggest that the emo-
tional intensity in dubbing can affect the listener’s emotions
and psychological perception of the film. Since the film’s
post-production can make up for the deficiencies of previ-
ous recordings, especially in emotional expression, the ac-
tors need to re-record in studio according to the director’s
instructions until they meet the requirements. Unlike previ-
ous methods, our model not only satisfies the basic function
(lip-sync and clear pronunciation), but also learns to control
the attribute and intensity of emotions to meet customized
needs, as shown in Figure 1 (b).

In this paper, we propose a novel movie dubbing archi-
tecture named EmoDubber, which achieves emotion syn-
thesis with controllable intensity while maintaining audio-
visual alignment and clear pronunciation. Specifically, we
first design a Lip-related Prosody Aligning (LPA) mod-
ule that controls speech speed by duration level contrastive
learning between lip motion and phoneme prosody se-
quence, which helps the model to reason the correct audio-
visual aligning. Second, we propose the Pronunciation En-
hancing (PE) strategy, which focuses on expanding video-
level phoneme sequences by monotonic alignment search
and fusing it with the output of LPA by an efficient con-
former to improve pronunciation. Next, the speaker iden-
tity adapting module is used to absorbs the fused sequence
from PE and injects style embedding from the reference
speaker to target acoustics prior information. Finally, the
proposed Flow-based User Emotion Controlling (FUEC)
aims to generate waveform by optimal-transport conditional
flow matching based on acoustic priors while rendering the
user-specified emotion. It is worth noting that we pro-
pose positive and negative guidance mechanisms (PNGM)
in FUEC to allow user control emotional intensity flexibly,
which determines the gradient direction of emotion gen-
eration and adjusts the dual guidance scale based on the
user’s emotion prompt, amplifying the target emotion and
suppressing others.

The contributions of this paper are summarized below:

• We propose EmoDubber, a controllable emotion dubbing
architecture to help users specify the emotion they need
while satisfying high-quality lip sync and pronunciation.

• We design a FUEC with positive and negative guidance
to dynamically adjust the flow-matching vector field pre-
diction process to achieve intensity control flexibly.

• We simultaneously achieve high-quality lip sync and
clear pronunciation by aligning duration-level contrastive
learning and phoneme-enhancing strategy.

• Extensive experimental results demonstrate the proposed
Emodubber performs favourablly against state-of-the-art
models on three benchmark datasets.

2. Related Work
2.1. Visual Voice Cloning
The V2C requires generating a waveform representing how
a text might be said, but in step with the lip movements
portrayed by a character, and in vocal style exemplified by
reference audio. Some works focus on improving speaker
identity to handle multi-speaker scenes [3, 7, 15, 28, 50].
For example, Speak2Dub [50] introduces speaker embed-
ding extracted by pre-trained GE2E to phoneme encoder
and mel-spectrogram decoder by learnable style affine
transform, while StyleDubber [7] propose multi-scale style
adaptor with phoneme and utterance level to strengthen
speaker’s characteristics. Besides, some works attempt to
combine visual representation to enhance prosody expres-
siver [6, 16, 24, 51]. For example, HPMDubbing [6] is a hi-
erarchical dubbing method by bridging acoustic details with
visual information: lip motion, face region, and scene. To
improve the contextual prosody, MCDubber [51] enlarges
the modeling object from single sentence to previous and
following sentences, which incorporates more contextual
video scenes. Although the speaker identity and prosody
modeling have received attention, existing works still suf-
fer from poor lip-sync and lifeless emotional expression,
which is unacceptable in dubbing. In this work, we pro-
pose EmoDubber, a controllable emotional dubbing archi-
tecture to help users specify emotion they need in video,
while bringing high quality lip-sync and pronunciation.

2.2. Flow Matching and Classifier Guidance
Flow Matching [27] is a simulation-free method to train
Continuous Normalizing Flows (CNFs) [4] models, which
model arbitrary probability path and capture the probabil-
ity trajectories represented by diffusion processes [43]. It
has demonstrated exceptional performance in image gen-
eration and geometric domains, such as Stable Diffusion
3 [10], Lumina-T2X [11], and EQUIFM [44]. Due to its
advantages of high sampling speed and generation quality,
flow matching has attracted significant attention in audio
generation [14, 23, 34]. Recently, Matcha-TTS [34] in-
troduces optimal-transport conditional flow matching (OT-
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Figure 2. Architecture of the proposed EmoDubber, which consists of four main components: Lip-related Prosody Aligning (LPA) focuses
on learning inherent consistency between lip motion and phoneme prosody by duration level contrastive learning; Pronunciation Enhancing
(PE) fuses the output of LPA with expanding phoneme sequence by efficient conformer; Speaker Identity Adapting (SIA) aims to generate
acoustics prior information µ while injecting speaker style; and Flow-based User Emotion Controlling (FUEC) renders user-specified
emotion and intensity E in the flow-matching prediction process using positive and negative guidance.

CFM) for training, which yields an ODE-based decoder
to improve the mel-spectrograms fidelity. However, these
works are limited in the field of TTS and cannot be applied
to V2C task. The Classifier Guidance [9] (CG) has been
widely adopted for controlling specific attributes, e.g., text-
to-image and emotional TTS [13, 26, 45]. However, the ex-
isting emotional TTS using CG only enhances the needed
emotion, which struggles to control complex speech con-
taining mixed emotions. In this work, we introduce a flow-
based user emotion controlling with positive and negative
guidance mechanisms, which allows users to manipulate
desired emotions and intensity more freely and promotes
the development of artificial intelligence in movie dubbing.

3. Proposed Method
3.1. Overview
Given a silent video clip Vl, a reference audioRa, a piece of
text Tp, and user emotion guidance E, the goal of EmoD-
ubber is to generate an audio clip Ŷ that ensures precise
lip-sync and clear pronunciation, while allowing users to
control the intensity of emotion by adjusting E:

Ŷ = EmoDubber(Ra, Tp, Vl, E), (1)

specifically, E = {c, α, β}, where c, α, and β are emotion
label, positive weight, and negative weight, respectively.
The main architecture of the proposed model is shown in
Figure 2. First, the Lip-related Prosody Aligning (LPA)

module absorbs the input information (i.e., Tp, Ra, and Vl)
to generate the lip-prosody context sequences with consis-
tent duration cues, like basic pause and speech rate, which
are guided by the proposed duration level contrastive learn-
ing. Next, the Pronunciation Enhancing (PE) strategy fo-
cuses on expanding phoneme sequences to video level by
monotonic alignment search (MAS) and fusing it with the
output of LPA by efficient conformer. Then, the Speaker
Identity Adapting (SIA) module further decodes the output
of the PE to acoustics prior information while introducing
style from speaker identity. Finally, the Flow-based User
Emotion Controlling (FUEC) renders emotions in the flow-
matching vector field prediction process using Positive and
Negative Guidance Mechanisms (PNGM) according to the
user’s instructions E to generate desired emotional speech.
We detail each module below.

3.2. Lip-related Prosody Aligning
The proposed Lip-related Prosody Aligner (LPA) takes the
script, silent video clips, and reference audio as input, and
outputs the lip-prosody context sequences, which learn the
pause and speed to align video by duration-level contrastive
learning.

Extracting Phoneme-level Prosody and Lip-motion Em-
bedding. Firstly, the open-source grapheme-to-phoneme
(G2P) is used to obtain the textual phoneme sequence from
raw scripts. Then, the phoneme encoder with affine trans-
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form [7] is used to extract style phoneme embeddings Os:

Os = PhoEncoder(Tr∈ RP , Sid), (2)

where Os ∈ RP×dm , and the dm and P represent the hid-
den dimension and length of the phoneme sequence, respec-
tively. Sid is speaker style embedding, which is extracted
by pre-trained speaker encoder from reference audio Ra,
following [7, 50]. Next, we adopt prosody adaptor [6, 50]
to generate phoneme-level prosody variations: pitch em-
bedding Ppho and energy embedding Epho. Thus, the
phoneme-level prosody sequences Op = Os⊕Ppho⊕Epho
is calculated by combining style phoneme embedding and
prosody variations. To obtain the lip-motion embedding
from the input silent video clip Vl, we adopt the same ex-
tracting pipeline as [6]:

E = LipEncoder(Mroi ∈ RF×Dw×Dh×Dc), (3)

where Mroi indicates the mouth Region of Interest (ROI)
frame sequence cropped by face landmarks from Vl, fol-
lowing [6]. Dw, Dh, and Dc indicate the number of width,
height, and channels of images in the mouth ROI frame. F
denotes the total length of mouth ROI frame. E ∈ RF×dm

denotes the output lip motion embedding.

Duration level Contrastive Learning. Inspired by [6, 7],
we use multi-head attention to capture lip-prosody context
sequences by serving lip motion embedding E as Query and
prosody phonemes embedding Op as Key and Value:

Cpho = softmax(
E⊤Op√
dm

)Op
⊤, (4)

where Cpho ∈ RF×dm denotes the lip-prosody context se-
quences with the same length with video clips. Instead of
non-constraint [6, 22] or simple diagonal-constraint [7, 16],
our LPA module focuses on duration-level contrastive learn-
ing (DLCL) to achieve corrected alignment to guarantee
monotonicity and subjectivity of weight matrix between
prosody and lip-motion sequences:

Lcl = − log

∑
exp

(
(sim+(E ,Op))/τ

)∑
exp((sim(E ,Op)))

, (5)

where sim(E ,Op) indicates the attention weight matrix be-
tween Op and E . The positive pair sim+(E ,Op) is calcu-
lated by multiplying sim(E ,Op) with correct duration-level
correspondence Mgt

lip,pho:

sim+(E ,Op) = sim(E ,Op)×Mgt
lip,pho, (6)

where Mgt
lip,pho is a “0-1” matrix with P -th row and F -

th column and satisfies the monotonicity and surjectivity.
The value “1” represents correct correspondence between

textual phoneme and lip motion through Montreal Forced
Aligner (MFA) [33] model and coefficient between Frames
per Second of the video (FPS) and sampling rate (SR). In
this case, the DLCL encourages the positive pair to have
a higher similarity to ensure the phoneme prosody unit fo-
cuses on the strongly related part in lip motion sequence.

3.3. Pronunciation Enhancing
The proposed Pronunciation Enhancing (PE) strategy aims
to generate video-level phoneme enhancement sequences
and fuse it with lip-prosody context sequences.
Explicit duration based Expanding. To obtain the dura-
tion of each phoneme unit directly from the learnable at-
tention weight matrix sim(E ,Op), we use monotonic align-
ment search (MAS) [20] for explicit alignment. Specifi-
cally, MAS implements dynamic programming algorithms
to find the optimal alignment path on matrix sim(E ,Op):

Ov
s = LR(Dp,Os), (7)

specifically, Dp = MAS(E ,Op) ∈ RP×1 denotes the ex-
plicit duration for each phoneme unit, which records the
integer multiple alignment between phonemes and video
frames. The LR(·) is a length regulator, which aims to ex-
pand style phoneme sequences Os ∈ RP×dm to video-level
phoneme enhancement sequences Ov

s ∈ RF×dm .
Efficient Conformer based Fusing. Inspired by [2], we
use audio-visual efficient conformer (AVEC) to model both
local and global dependencies using convolution and atten-
tion to reach better fusing performance on two kinds of fea-
ture: lip-prosody context sequences Cpho (from Eq. 4) and
phoneme enhancement sequences Ov

s (from Eq. 7):

Vf = Conformer(Cpho,Ov
s ), (8)

where Vf ∈ RF×dm indicates the fused intermediate fea-
ture. The Conformer(·) represents AVEC, which consists
of an early fusion (EF) strategy [30] to reduce model com-
plexity, 5 Conformer blocks (CB) without downsampling,
and connectionist temporal classification (CTC) [12, 21]
layer to maximize the sum of probabilities of correct target
phoneme to ensure pronunciation.

3.4. Speaker Identity Adapting
The Speaker Identity Adapting (SIA) aims to generate
acoustics prior information µ in mel-spectrogram level from
Vf (Eq. 8) and speaker style embedding Sid:

µ = Proj(USL(Up(Vf ), Sid)), (9)

where µ ∈ RMl×da , and the Ml and da represent the length
and hidden dimension of desired mel-spectrogram se-
quence. The SIA consists of up-sampling layer, utterance-
level style learning (USL) module [7], and projection
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layer [7]. Firstly, we upsample the time axis of Vf to mel-
spectrogram level by applying two layers of 2D convolu-
tions [49]. Then, we use USL to inject the style information
from style embedding Sid. Finally, the projection layer is
used to project the output feature to target dimension.

3.5. Flow-based User Emotion Controlling
For given user’s emotion instructions E = {c, α, β}, the
proposed Flow-based User Emotion Controlling (FUEC)
focuses on determining the gradient direction and guidance
scale based on E while iteratively converting noise into the
mel-spectrogram to inject emotion expressiveness. It con-
sists of Flow Matching Prediction Network (FMPN) and
Positive and Negative Guidance Mechanisms (PNGM).
Flow Matching Prediction Network. Given the mel-
spectrograms data space with data point M , where M ∼
q(M) and q(M) is an unknown data distribution of mel-
spectrograms, a possible approach to sampleM from q(M)
is to give a probability density path defined as pt(x) where
t ∈ [0, 1], p0(x) = N (x;0, I) and p1(x) ≈ q(x). Flow
matching model can estimate the probability density path,
gradually transforming noise x0 ∼ p0(x) into mel spectro-
gramM ∼ q(M). Here, we train Flow Matching Prediction
Network (FMPN) based on optimal-transport conditional
flow matching (OT-CFM) with a linear interpolation flow
ϕt(x) = (1 − (1 − σmin)t)x0 + tM , gradually transform
noise x0 to mel-spectrogram M from t = 0 to t = 1. Its gra-
dient vector field is ut(ϕt(x)|M) =M − (1−σmin)x0, fa-
cilitating fast training and inference from noise to mel spec-
trogram due to its linear and time-invariant properties. The
training objective is to train FMPN donated by θ to predict
the gradient vector field of ϕt(x):

Lθ = Et,q(M),pt(x|µ,M)||vt(ϕt(x)|µ, θ)− ut(ϕt(x)|M)||2,
(10)

where vt(ϕt(x)|µ, θ) is the predicted gradient vector field of
ϕt(x) according to the acoustics prior information µ. Then,
we can solve the ODE dϕt(x) = vt(ϕt(x)|µ, θ)dt from t =
0 to t = 1 to generate the target mel-spectrogram M̂ from
noise x0. Instead of Matcha-TTS [34], we carefully design
two kinds of style affine learning in FMPN (intra-blocks and
inter-blocks) to adapt multi-speaker scenarios effectively.
Positive and Negative Guidance Mechanisms. Inspired
by the emotions in human speech that are often blended
rather than single [52], where multiple emotions can nat-
urally overlap or co-exist, we propose Positive and Neg-
ative Guidance Mechanisms (PNGM) based on Classifier
Guidance [9] to guide vt(ϕt(x)|µ, θ) with specific emotion
c. Unlike previous emotion synthesis methods [13, 52],
PNGM allows users to perform more flexible manipulations
in flow-matching prediction process by introducing positive
and negative guidance to enhance the desired emotion and
suppress others.

Suppose we have a well-trained FMPN θ predicting

vt(ϕt(x)|µ, θ) and an emotional expert classifier ψ which
can predict the probability pψ(c|ϕt(x)) that ϕt(x) belongs
to emotion c. Note that our emotional expert classi-
fier is pre-trained on multiple large-scale emotion datasets
recorded in Emobox [31], enabling a better determination
of real human emotions and improving the performance
of FMPN-guided emotion. We can set emotion classes
as {c0, · · · , cN−1} one-hot vector with N kinds of emo-
tions on mel-spectrogram data M . The emotional softmax
logit of ϕt(x) predicted by the emotional classifier ψ is
lψ(ϕt(x)) = [l0, · · · , lN−1], which can be seen as the emo-
tional mix ratio of ϕt(x), and the mix emotion is cM =∑N−1
i=0 lici. To enhance emotion ci, i ∈ {0, · · · , N − 1},

we can use positive guidance to guide M toward the di-
rection of ci and use negative guidance to suppress others,
which can be formulated as:

ṽt,i = vt(ϕt(x)|µ, θ)

+ γ
(
α∇ log pψ(ci|ϕt(x))− β∇ log pψ(

j=N−1∑
j=0,j ̸=i

ljcj |ϕt(x))
)
,

(11)
where γ controls the total degree of PNGM, α is the posi-
tive guidance scale controlling the emotion of ci and β is the
negative guidance scale controlling the degree weakening
other emotions. This way, users can change α and β to con-
trol the emotion expressiveness of synthesized M̂ . Finally,
the generated emotional mel-spectrograms M̂ are converted
to time-domain wave Ŷ via the powerful vocoder.

4. Experimental Results

4.1. Implementation Details
Video frames are sampled at 25 FPS and all audios are re-
sampled to 16kHz. The lip region is resized to 96 × 96
and pre-trained on ResNet-18, following [29, 32]. The
window length, frame size, and hop length in STFT are
640, 1,024, and 160, respectively. The flow-prediction net-
work is pre-trained on LibriSpeech [38] using 2 downsam-
pling blocks, 2 midblocks, and 2 upsampling blocks. Each
block had one Transformer layer with hidden dimension-
ality 256 and style affine layers [7], 2 heads, attention di-
mensionality 64, and snakebeta [25] activations. We use
8 heads for multi-head attention in LPA with 256 hidden
sizes. The temperature coefficient τ of Lcl as 0.1. There
are 5 conformer blocks in AVEC. We trained V2C, Chem,
and GRID with batch sizes 64, 32, and 64, respectively.
The Emotion Expert Classifier ψ is trained on 13 emotional
datasets with more than 50,000 emotional audio recordings
in Emobox [31], which collects large-scale Speech Emotion
Recognition (SER) benchmarks. During the inference pro-
cess, γ is set to 15, while α ∈ [0, 5] and β ∈ [0, 2]. Both
training and inference are implemented with PyTorch on a
GeForce RTX 4090 GPU. More details about the model and
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Setting Dubbing Setting 1.0 Dubbing Setting 2.0

Methods LSE-C ↑ LSE-D ↓ WER ↓ SECS ↑ MCD ↓ MCD-SL ↓ LSE-C ↑ LSE-D ↓ WER ↓ SECS ↑ MCD ↓ MCD-SL ↓
GT 8.12 6.59 03.85 100.00 0.0 0.0 8.12 6.59 03.85 100.00 0.0 0.0

Fastspeech2* [42] 3.34 11.60 15.33 79.26 5.88 6.73 3.34 11.60 15.33 79.26 5.88 6.73
StyleSpeech* [35] 2.06 12.27 79.14 63.00 7.64 9.87 2.12 12.14 80.01 60.06 8.31 10.28

Face-TTS [24] 1.98 12.50 62.24 59.56 7.51 12.59 1.96 12.53 68.13 53.44 7.64 12.79
V2C-Net [3] 1.97 12.17 90.47 51.52 6.25 8.31 1.82 12.09 94.59 44.19 6.74 9.04

HPMDubbing [6] 7.85 7.19 16.05 85.09 6.12 7.25 3.98 9.50 29.82 73.55 6.91 8.56
Speaker2Dub [50] 3.76 10.56 16.98 74.73 7.67 7.89 3.45 11.17 18.10 69.28 8.06 8.21
StyleDubber [7] 3.87 10.92 13.14 87.72 5.41 5.73 3.74 11.00 14.18 82.07 6.01 6.36

Ours 8.11 6.92 11.72 90.62 5.87 5.87 8.09 6.96 12.81 85.06 6.51 6.51

Table 1. Results on Chem benchmark. The method with “*” refers to a variant taking video embedding as an additional input following.

Methods LSE-C ↑ LSE-D ↓ WER ↓ MOS-S ↑ MOS-N ↑
StyleDubber [6] 6.17 9.11 15.10 4.03±0.10 3.85±0.15
Speaker2Dub [6] 4.83 10.39 15.91 3.98±0.09 4.01±0.13

Ours 7.40 6.65 14.03 4.07±0.09 4.05±0.06

Table 2. The zero shot results under Dub 3.0 setting, which use
unseen speaker as refernce audio.

training are given in the supplementary material.

4.2. Datasets

Chem is a popular dubbing dataset recording a chem-
istry teacher speaking in the class [39]. It is collected
from YouTube, with a total video length of approximately
nine hours. For complete dubbing, each video has clip to
sentence-level [16]. The number of train, validation, and
test data are 6,082, 50, and 196, respectively.
GRID is a dubbing benchmark for multi-speaker dub-
bing [8]. The whole dataset has 33 speakers, each with
1,000 short English samples. All participants are recorded
in studio with unified background. The number of train and
test data are 32,670 and 3,280, respectively.

V2C-Animation is a multi-speaker dataset for animation
movie dubbing with identity and emotion annotations [3].
It is collected from 26 Disney cartoon movies and cov-
ers 153 diverse characters. The whole dataset has 10,217
video clips with paired audio and subtitles. The train-
ing/validation/test size are 60%, 10%, 30%.

4.3. Evaluation Metrics

Audio-visual Sync Evaluation. To evaluate the synchro-
nization between the generated speech and the video quan-
titatively, we adopt Lip Sync Error Distance (LSE-D) and
Lip Sync Error Confidence (LSE-C) as our metrics, which
are widely used to lip reading [49], talking face [19, 48],
and video dubbing task [16, 28]. These metrics are based on
the pre-trained SyncNet [5], which can explicitly test for lip
synchronization in unconstrained videos in the wild [5, 40].
Compared to the length metric MCD-SL [3], we believe that
LSE-C and LSE-D can more accurately measure the syn-
chronization of vision and audio. The discussion of the two
kinds of metrics is in Appendix E.

# Methods LSE-C ↑ LSE-D ↓ WER ↓ SECS ↑ MCD ↓
1 w/o PE 8.10 6.81 53.36 84.92 7.19
2 w/o SIA 8.05 6.99 13.07 82.04 6.72
3 w/o LPA 4.47 10.45 36.31 85.03 7.41

4 Full model 8.09 6.96 12.81 85.06 6.51

Table 3. Ablation study of the proposed EmoDubber on the Chem
benchmark dataset with 2.0 setting.

Speech Quality Evaluation. The Word Error Rate
(WER) [36] is used to measure pronunciation accuracy by
using Whisper-V3 [41] as the ASR model. To evaluate the
timbre consistency between the generated dubbing and the
reference audio, we employ the speaker encoder cosine sim-
ilarity (SECS) following [7, 50] to compute the similarity of
speaker identity. Besides, we adopt the Mel Cepstral Dis-
tortion Dynamic Time Warping (MCD) and speech length
variant (MCD-SL) [1, 3, 37] to measure the difference be-
tween generated speech and real speech.
Emotional Evaluation. We use the Intensity Score, the
average softmax logit of the target emotion, which ranges
from 0 to 1, to measure the emotional intensity of generated
audio. While previous works [13, 52] use average classifi-
cation probability, they fail to distinguish varying intensities
within the same emotion class. The average softmax logit
provides a finer-grained measure, allowing for a more ef-
fective evaluation of emotion intensity differences in audio.
Subjective Evaluation. To further evaluate the quality
of generated speech, we conduct a human study using a
subjective evaluation metric, following the settings in [3].
Specifically, we adopt the MOS-naturalness (MOS-N) and
MOS-similarity (MOS-S) to assess the naturalness of the
generated speech and the recognization of the desired voice.

4.4. Comparison with SOTA Dubbing Methods

To compare with SOTA dubbing model without the function
of emotion control, we remove the PNGM, i.e., maintaining
Figure 2 (a)-(c) and flow matching prediction network to
generate waveform. We compare with the recent dubbing
baselines to comprehensively analyze. More details about
baselines and V2C results are in Appendix.
Results on the Chem Dataset. As shown in Table 1,
our method achieves the best performance on almost all
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Setting Dubbing Setting 1.0 Dubbing Setting 2.0

Methods LSE-C ↑ LSE-D ↓ WER ↓ SECS ↑ MCD ↓ MCD-SL ↓ LSE-C ↑ LSE-D ↓ WER ↓ SECS ↑ MCD ↓ MCD-SL ↓
GT 7.134 6.786 22.41 100.00 0.00 0.00 7.134 6.786 22.41 100.00 0.00 0.00

Fastspeech2* [42] 5.01 9.79 19.61 11.35 7.24 7.95 5.01 9.79 19.61 11.35 7.24 7.95
StyleSpeech* [35] 5.90 9.24 22.62 90.04 5.74 5.88 4.79 10.28 19.82 59.58 7.01 7.82

Zero-shot TTS* [53] 5.03 10.02 20.05 85.93 5.75 6.40 4.48 10.54 21.05 81.34 6.27 7.29
Face-TTS [24] 4.69 10.14 44.37 82.97 7.44 8.16 4.55 10.27 39.05 34.14 7.77 8.59
V2C-Net [3] 5.59 9.52 47.82 80.98 6.79 7.23 5.34 9.76 49.09 71.51 7.29 7.86

HPMDubbing [6] 5.76 9.13 45.51 85.11 6.49 6.78 5.82 9.10 44.15 71.99 6.79 7.09
StyleDubber [7] 6.12 9.03 18.88 93.79 5.61 5.69 6.09 9.08 19.58 86.67 6.33 6.42
Speak2Dub [50] 5.27 9.84 17.07 94.50 5.34 5.45 5.19 9.93 17.42 85.76 6.17 6.43

Ours 7.12 6.82 18.53 92.22 3.13 3.13 7.10 6.89 19.75 86.02 3.92 3.92

Table 4. Results on GRID benchmark. The method with “*” refers to a variant taking video embedding as an additional input following.
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Figure 3. Intensity performance of EmoDubber on Chem. The horizontal axis shows the positive guidance α, and vertical axis displays the
Intensity Score (IS), with different curves for various negative guidance β. Higher IS indicate stronger emotional intensity in audio.

metrics on Chem benchmark. Although StyleDubber can
achieve good MCD and MCD-SL, they performed poorly
on LSE-D and LSE-C, which reflects that they did not
achieve true lip-sync. In contrast, our method achieves
the best LSE-C and LSE-D, with absolute improvements of
4.24% and 4.0%, as well as the best WER with an improve-
ment of 10.80%, demonstrating the effectiveness of pro-
posed method to maintain high-quality audio-visual align-
ment and clear pronunciation simultaneously. Regarding
speaker similarity (see SECS), the proposed method outper-
forms SOTA baseline StyleDubber with an absolute margin
of 2.9%. Please note that setting 2 is more challenging than
setting 1, which requires the model to have strong robust-
ness. Despite challenging, EmoDubber still has a lead in
lip-sync, pronunciation, and speaker identity.

Results on the GRID Dataset. We report the GRID re-
sult in Table 4. Our method is currently the only one that
achieves the best performance in terms of both lip-sync (see
LSE-C and LSE-D) and pronunciation clarity (see WER),
whether in setting or setting 2. Specifically, our method sig-
nificantly improves 19.46% LSE-C and 24.12% LSE-D on
challenging setting 2, which indicates the effectiveness of
the proposed approach in achieving accurate lip sync even
in multi-speaker dubbing scenes. In addition, our method
also achieves competitive results in WER, only slightly
lower than the best pre-trained model Speak2Dub. But it
turns out that our WER result (18.53%) exceeds the ground
truth WER result (22.41%), which means that the intelligi-
bility has reached the acceptable range for humans. Finally,
our method achieves lowest MCD and MCD-SL compared

to all baselines, which indicates our method achieves mini-
mal acoustic difference in challenging setting 2.0.

Results on the Speaker Zero-shot test. This setting uses
the audio of unseen characters (from another dataset) as
reference audio to measure the generalizability of the dub-
bing model. Here, we use the audio from the Chem dataset
as reference audio to measure the GRID dataset. Since
there is no target audio at this setting, we only compare
LSE-C/D and WER, and make subjective evaluations. As
shown in Table 2, We were surprised to find that our method
outperforms the SOTA dubbing methods (StyleDubber and
Spk2Dub) on all metrics. In particular, our method sur-
passes the current best dubbing method Spk2Dub in WER,
which reflects that our model is more robust in maintain-
ing clear pronunciation in unseen speaker scenes. Further-
more, the proposed method still maintains the leading posi-
tion in audio-visual synchronization (see LSE-C and LSE-
D), which other SOTA dubbing methods cannot achieve.

Ablation Studies. The ablation results are presented in Ta-
ble 3. It shows that all three modules contribute signifi-
cantly to the overall performance, and each module has a
different focus. After removing the PE, the WER severely
drop. This reflects that the PE achieves better pronuncia-
tion by fusing video-level phoneme enhancement sequences
with explicit duration. In contrast, the SECS is most af-
fected by SIA, which indicates decoding mel-spectrograms
by introducing global style is beneficial to identity recogni-
tion. Finally, the performance of LSE-C and LSE-D drops
the most when removing LPA. It proves the effectiveness of
modeling the relevance between lip motion and phoneme
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Figure 4. Visualization of audio samples generated by EmoDubber: one uses the proposed FUEC to guide emotions by users, and the other
does not (Neutral). The green rectangles highlight key regions that have significant differences in emotional expressiveness.
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Figure 5. Visual results of emotional audio features by t-SNE, the
TTS baseline is shown on the left and EmoDubber on the right.

prosody by duration-level contrastive learning, which is
beneficial to reason correct audio-video aligning.

4.5. Emotional Controlling Evaluation
Intensity Controlling Results. Figure 3 shows the
intensity-controlling results of EmoDubber on the Chem
benchmark. The higher Intensity Score means a stronger
emotional intensity of speech. We vary α from 0.0 to 5.0
and β from 0.0 to 2.0 and present results for two cases:
one with a fixed β value and another where β varies with α
to compare with the traditional baseline with no dual-scale
guidance. Compared to the baseline, EmoDubber offers a
wider range of intensity control, evident from our broader
Intensity Score range from α = 0.0 to α = 5.0. Addi-
tionally, our method enables stronger emotional modula-
tion, significantly achieving a higher Intensity Score than
the baseline when α = 5.0. This demonstrates that our
EmoDubber supports a broader range of emotional control
and enables the generation of audio with stronger emotional
intensity by FUEC. We also note that the combination val-
ues of α and β can be more diverse, supporting a wider
range of emotional intensity controls. More results about
GRID and V2C are in Appendix B.
Emotion Zero-shot Conversion. To verify the emotion
generalization on the emotionless dubbing dataset, we re-
synthesis speech with five kinds of emotion on the Chem
dataset (no emotion label). We use the publicly avail-
able GenerSpeech [17] as our baseline, which is a SOTA
TTS model for emotional transfer in out-of-domain. As
shown in Figure 5, we visualize the audio features using
t-SNE [46]. Compared to the TTS baseline, EmoDubber

# Emotion LSE-C ↑ LSE-D ↓ WER ↓ SECS ↑
0 Neutral 8.11 6.92 11.32 89.05
1 Happy 8.10 6.93 11.83 89.19
2 Sad 8.06 6.92 12.12 89.48
3 Fearful 8.09 6.90 11.91 89.00
4 Surprise 8.09 6.89 11.96 87.91
5 Disgusted 8.11 6.90 11.98 88.28
6 Angry 8.10 6.94 11.76 88.63

7 Original (w/o FUEC) 8.11 6.92 11.72 90.62

Table 5. Emotional speech quality study of EmoDubber.

demonstrates better emotion differentiation, highlighting its
ability to generate audio with distinct emotions and general-
ize to other emotionless videos. Besides, it is worth noting
that our model can free to adjust emotion intensity control
in lip-sync dubbing, which is not possible with current emo-
tional TTS baselines.
Emotion Speech Quality Results. To verify speech quality
after emotion control, we test 7 kinds of emotional speech
with each of 196 samples (i.e., whole test set) by user turn-
ing on Chem dataset. Note that we set α = 3.5 because
this is sufficient to achieve strong emotion conversions, as
shown in Figure 3. The results are shown in Table 5. We
find that the emotional controlling did not have much effect
on the audio-visual alignment, and the lip sync of the seven
emotions was still well expressed (see LSE-D and LSE-C).
In addition, the WER of the six emotions (except “sad”) is
lower than 12.0%, indicating the pronunciation clarity was
not affected. As for “sad”, it may be because the model
does blur the pronunciation when imitating strong sadness.
Finally, in terms of speaker similarity, the seven emotions
are still very close to the original speech, which shows that
emotion control does not affect the timbre of information.
Qualitative Results. To demonstrate the effect of EmoD-
ubber’s emotion synthesis, we invite three volunteers to
express their expected emotions and intensities on three
videos from dubbing datasets, respectively. We visualize
the mel-spectrograms and provide comparison using FUEC
or not. For instance, in (a), the user selects “surprise” (c=4)
with an intensity of α = 3.1, β = 0.3, which results in a no-
ticeable rise trend at the end of the spectrograms (see blue
box). In (b), the user selects “angry” (c=6) with an intensity
of α = 4.5, β = 0.9, which brings a remarkable increase in
energy. It indicates that a strong tone is being expressed to
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render angry. Finally, in (c), the user selects “sad” (c=2)
with an intensity of α = 5.0, β = 1.7. This relatively
high-intensity setting produces a spectrum with diminished
high-frequency energy and softened transitions, typical of
frustrated expressions associated with sadness. Appendix
A and D provide more visualization results.

5. Conclusion
In this work, we propose EmoDubber, a controllable emo-
tion dubbing architecture to help users specify the emotion
they need while satisfying high-quality lip sync and clear
pronunciation. The lip-related prosody aligning learns the
inherent consistency by duration-level contrastive learning
to reason the correct audio-visual alignment. Building on
contextual lip motion and prosody information, the pro-
posed pronunciation enhancing strategy fuses the video-
level phoneme sequence to improve intelligibility. Be-
sides, the Flow-based User Emotion Controlling (FUEC)
with positive and negative guidance dynamically adjusts
the flow-matching prediction process to control emotion
intensity flexibly. Extensive experiments on three widely
adopted benchmarks show favorable performance.
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