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Abstract
We present ZeroBAS, a neural method to synthesize binaural
speech from monaural speech recordings and positional infor-
mation without training on any binaural data. To our knowl-
edge, this is the first published zero-shot neural approach to
mono-to-binaural speech synthesis. Specifically, we show that
a parameter-free geometric time warping and amplitude scal-
ing based on source location suffices to get an initial binau-
ral synthesis that can be refined by iteratively applying a pre-
trained denoising vocoder. Furthermore, we find this leads to
generalization across room conditions, which we measure by
introducing a new dataset, TUT Mono-to-Binaural, to evaluate
state-of-the-art monaural-to-binaural synthesis methods on un-
seen conditions. Our zero-shot method is perceptually on-par
with the performance of supervised methods on previous stan-
dard mono-to-binaural dataset, and even surpasses them on our
out-of-distribution TUT Mono-to-Binaural dataset.
Index Terms: mono-to-binaural, speech synthesis, zero-shot,
diffusion

1. Introduction
Humans possess a remarkable ability to localize sound sources
and perceive the surrounding environment through auditory
cues alone. This sensory ability, known as spatial hearing,
plays a critical role in numerous everyday tasks, including iden-
tifying speakers in crowded conversations and navigating com-
plex environments. Hence, emulating a coherent sense of space
via listening devices like headphones becomes paramount to
creating truly immersive artificial experiences. Due to the lack
of multi-channel and positional data for most acoustic and room
conditions, the robust and low/zero-resource synthesis of binau-
ral audio from single-source, single-channel (mono) recordings
is a crucial step towards advancing augmented reality (AR) and
virtual reality (VR) technologies.

Conventional mono-to-binaural synthesis techniques lever-
age a digital signal processing (DSP) framework. Within this
framework, the head-related transfer function (HRTF), the room
impulse response (RIR), and ambient noise are modeled as
linear time-invariant (LTI) systems [1, 2, 3, 4]. These DSP-
based approaches are prevalent in commercial applications due
to their established theoretical foundation and their ability to
generate perceptually realistic audio experiences. However,
real acoustic propagation, unlike the one modeled by LTI sys-
tems, has nonlinear wave effects. Recent advancements in the
field have witnessed a paradigm shift towards employing ma-
chine learning methods via the paradigm of supervised learning
[5, 6, 7, 8, 9, 10]. The task of synthesizing binaural audio from
monophonic sources presents a significant challenge for super-
vised learning models. This difficulty stems from two primary
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Figure 1: Our proposed ZeroBAS method. Mono waveform
is binauralized with geometric time warping conditional on
the speaker’s position, then the two channels’ amplitudes are
scaled. Each channel is then denoised 3 times a monaural de-
noising vocoder.

limitations: (1) the scarcity of position-annotated binaural audio
datasets, and (2) the inherent variability of real-world environ-
ments, characterized by diverse room acoustics and background
noise conditions. Data collection for supervised learning neces-
sitates specialized equipment, including tracking systems and
binaural recording devices, which are both cost-prohibitive and
often unavailable. Moreover, supervised models are suscepti-
ble to overfitting on the specific rooms, speaker characteris-
tics, and languages in the training data, especially when the
data is small (the standard dataset of [5] is only two hours).
To address these limitations, we propose a novel zero-shot
approach for monaural-to-binaural synthesis that is effective
across a broader spectrum of recording scenarios by leverag-
ing a monaural vocoder trained on tens of thousands of hours
(Figure 1). Our contributions are:

• The first zero-shot method for neural mono-to-binaural
speech synthesis, leveraging geometric time warping, ampli-
tude scaling, and a (monaural) denoising vocoder [WaveFit;
[11]]. Notably, we achieve natural binaural speech generation
that is perceptually on par (MOS, MUSHRA) with existing
supervised methods despite never seeing binaural data.

• A novel dataset-building approach and dataset, TUT Mono-
to-Binaural, derived from the location-annotated ambisonic
recordings of speech events in the TUT Sound Events 2018
dataset [12]. When evaluated on this out-of-distribution data,
past supervised methods degrade significantly while Zer-
oBAS continues performing well.

2. Related Work
DSP techniques approach the mono-to-binaural problem as a
stack of acoustic components, each of which is an LTI system.
Accurate wave-based simulation of RIRs is computationally ex-
pensive, and thus most real-time systems rely on simplified ge-
ometrical models [13, 1]. HRTFs need to be recorded inside an
anechoic chamber in about 10k locations for good results [14].
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DSP approaches treat these functions as a series of convolutions
that are applied to the input signal. [5] proposed one of first uses
of neural networks for mono-to-binaural synthesis, composing a
neural time-warping module (WarpNet) and a temporal (hyper-
)convolutional neural network (CNN) to learn a direct map be-
tween mono and binaural waveforms. BinauralGrad [7] was the
first to use a denoising diffusion probabilistic model (DDPM).
Since then, better incorporation of the inductive biases from
DSP have led to more efficient neural systems. Neural Fourier
Shift [NFS; [8]] predicts delays and scaling from speaker loca-
tions and achieve close to state-of-the-art performance with a
significantly smaller model. DopplerBAS [9] found that incor-
porating the Doppler effect into the conditioning features im-
proved the phase loss of both the WarpNet and BinauralGrad
systems. [15] used a structured state space sequence (S4) model
for the mono-to-binaural task. [6] show that mono-to-binaural
audio synthesis can be performed end to end with the use of au-
dio codes. Motivated by the difficulty of collecting HRTF and
RIR data, [16] showed that an implicit HRTF can be learned by
a temporal CNN. [17] and [18] showed that DNNs can be used
to estimate RIR filters. [19] created a model for learning an
implicit representation of an acoustic field. Furthermore, a dif-
ferent line of work uses visual conditioning for the generation
of binaural audio [20, 21, 22, 23, 24].

3. Approach
Our proposed zero-shot mono-to-binaural synthesis method uti-
lizes a three-stage architecture. The first stage follows previous
work and performs geometric time warping (GTW) to manipu-
late the input mono waveform into two channels based on the
provided position information. Subsequently, our proposed am-
plitude scaling (AS) module adjusts the amplitude of the warped
signal. Finally, an existing denoising vocoder iteratively refines
the processed signal to generate the binaural output composed
of two channels. Figure 1 provides a visual representation of
this pipeline. Let x denote the mono source signal. Its position
at time t is given by the 3D vector psrc

t . Let ℓ and r corre-
spond to the listener’s left and right ear. Their positions at t are
given by 3D vectors pℓ

t,p
r
t . The system first applies GTW to

x conditioned on psrc
t ,pℓ

t and pr
t . This warping gives left and

right preprocessed channels, denoted by xℓ and xr . Then, AS is
employed jointly on xℓ and xr , conditioning on the same data.
This step aims to further enhance the spatial perception of the
signal. The resulting intermediate left and right channels are
denoted by x̂ℓ and x̂r , respectively. Finally, the denoising step
sets its noisy inputs ŷℓ

N , ŷr
N to be the outputs of the previous

stage, x̂ℓ, x̂r . This replaces the typical Gaussian noise initial-
ization used when training or sampling from denoising models.
ŷℓ
N , ŷr

N are fed separately into the same pretrained denoising
vocoder, which treats each waveform as mono audio. The tem-
poral sequences of conditioning vectors cl, cr are obtained by
extracting the log-mel features of x̂ℓ, x̂r . A low noise level k
is also conditioned on, to reflect that we are emulating an in-
put that is “close” to a true binaural sample. In the case of our
denoising vocoder, WaveFit [11], this noise level is given by a
choice of conditioning timestep; specifically, the last timestep
of the WaveFit training’s denoising process. This sampling is
repeated for N iterations. In the Experiments section, we show
that our approach produces a binaural speech rendering whose
quality approximates the ground truth binaural audio. Note that
our method does not take into account room effects nor the lis-
tener’s head shape. Thus, we produce spatial audio which im-
putes both a generalized low RIR room (regularized by all the

Algorithm 1 ZeroBAS algorithm:

Require: Denoising vocoder Vθ , iteration count N , low noise
level k, mono waveform x, speaker position psrc, listener’s
ear locations pℓ,pr .
xℓ, xr = GeometricTimeWarping(x,psrc,pℓ,pr)
x̂ℓ, x̂r = AmplitudeScaling(xℓ, xr,psrc,pℓ,pr)
cℓ, cr = LogMel(x̂ℓ),LogMel(x̂r)
ŷℓ
N , ŷr

N := x̂ℓ, x̂r

for i← N to 1 do
ŷℓ
i−1, ŷ

r
i−1 = Vθ(ŷr

i , c
r, k),Vθ(ŷr

i , c
r, k)

end for
return ŷℓ, ŷr := ŷℓ

0, ŷ
r
0 .

data the vocoder was trained on), and an implicit HRTF.

3.1. Geometric Time Warping (GTW)

GTW aims to estimate a warpfield that separates the left and
right binaural signals by applying the interaural time delay
(ITD) based on the relative positions of the sound source and
the listener’s ears. [5] proposed GTW as a method to gener-
ate an initial estimate of the perceived signals. Let S denote
the signal’s sample rate and νsound represent the speed of sound.
The system employs basic GTW on the monaural signal x. This
warping is achieved by computing a warpfield for both the left
and right listening channels, denoted by ρℓ(t), ρr(t). The val-
ues of this warpfield are computed using on the source and lis-
tener ear positions psrc

t ,pℓ
t,p

r
t :

ρℓ/r(t) := t− S

νsound
||psrc

t − p
ℓ/r
t ||2 (1)

As this function takes non-integer values, the warped left and
right signals x̂ℓ, x̂r can be defined with respect to the original
indexing t via linear interpolation.

3.2. Amplitude Scaling (AS)

Human spatial perception of sound relies on various factors, in-
cluding the ITD, the interaural level difference (ILD), and spec-
tral cues due to HRTFs. While prior works [25, 26] suggest that
the ILD is mostly caused by scattering off of the head and is
dominant in human spatial perception for sounds with high fre-
quencies, we find that amplitude scaling based on the inverse
square law has a positive effect on the perceived spatial accu-
racy of the processed signal. Our approach aims to leverage this
amplitude manipulation to enhance the spatial realism of the
generated binaural audio. Let D be the Euclidean distance from
the origin of the sound waves. Then by the inverse-square law,
pressure drops at a 1/D2 ratio [27]. In the case of microphones,
pressure manifests as amplitude. Acknowledging that the left-
right microphone distance of the KEMAR mannequin used in
datasets like [5] is only an approximation of human heads, we
define:

Dℓ
t = ∥psrc − pℓ

t∥2, Dr
t = ∥psrc − pr

t∥2. (2)

Then, at each time step we scale down the magnitude of the
side furthest from the source, using the ratio of the closer side’s
distance versus the further side’s distance:

x̂ℓ
t := min(1, (Dr

t /D
ℓ
t)

2) · xℓ
t, (3)

x̂r
t := min(1, (Dℓ

t/D
r
t )

2) · xr
t . (4)



3.3. Denoising Vocoder

GTW and AS are simple, parameter-free operations that only
roughly approximate binaural audio; using the warped and
scaled speech signals x̂ℓ, x̂r as-is results in acoustic artifacts
and inconsistencies. Hence, there is a need for further refine-
ment to generate natural-sounding binaural audio. To this end,
we propose that a sufficiently well-trained denoising vocoder
could be used on each signal independently. We use a Wave-
Fit neural vocoder [11] as our denoising vocoder model. It is
a fixed-point iteration vocoder combined with the discrimina-
tor of generative adversarial networks, specifically MelGAN’s
[28], to learn a sampling-free iterable map that can generate nat-
ural speech from a degraded input speech signal. As a vocoder,
it takes log-mel spectrogram features and noise as input and
produces clean waveform output. In WaveFit’s notation, we
perform the iterated application of

ŷi−1 := Vθ(ŷi, c, k) := G(ŷi −Fθ(ŷi, c, k), c), (5)

where c is the spectrogram to convert and ŷi−1 is a candidate
waveform refined from ŷi. G is a parameter-free gain adjust-
ment operator and Fθ is the WaveGrad architecture [29] trained
for reconstruction under a discriminator. At training time, the
starting noise is given by ŷK ∼ N (0,Σc) where Σc is a co-
variance matrix initialized as in SpecGrad [30] to capture the
spectral envelope of c; both k, i iterate over K, . . . , 1. Then,
at inference time, we express our “approximation” hypothesis
by iterating at the noise level of WaveFit’s final denoising step
(k = 1). We then iteratively denoise ŷℓ

N , ŷr
N := x̂ℓ, x̂r , condi-

tioning on their initial log-mel spectrograms and the fixed low
noise level for steps i = N, . . . , 1.

4. Experiments
4.1. Data and Models

For our experiments we use two datasets. The first is the Bin-
aural Speech dataset (BSD) released by [5]. The dataset con-
tains paired mono and binaural audio with tracking information,
jointly collected in a non-anechoic room; see [5] for more de-
tails. The second dataset is an adapted version of TUT Sound
Events 2018 [12] which we name "TUT Mono-to-Binaural"
(TMB). It contains 1,174 recordings, each about 2 seconds long.
Overall, there are 2.15 hours of recordings in the dataset. The
spoken language is French, speakers are recorded in a studio,
and each recording is played in a single location. Using this
dataset ensures a zero-shot evaluation for all of the methods
tested in this paper, as none were trained on this data. For our
DSP baseline, we use the open-source Resonance Audio pack-
age. The WaveFit vocoder is described in [11]. The pretrained
weights we use were trained on the 60k-hour LibriLight audio-
book dataset [31] as described in [11].

4.2. TUT Mono-to-Binaural: Dataset Construction

Our purpose in creating and using the TMB dataset is threefold:
(a) demonstrate a new approach for creating mono-to-binaural
synthesis datasets due to their scarcity, (b) evaluate the abil-
ity of different methods to generalize to different rooms and
acoustic environments, and (c) evaluate the ability of different
methods to generalize to different speakers. The TUT Sound
Events 2018 is build for sound event localization and is com-
posed of ambisonic recordings from the DCASE 2016, Task 2
dataset. In TUT Sound Events 2018, mono recordings were
played back using a loudspeaker at distances ranging from 1-10

Table 1: Objective and subjective evaluations on BSD

Model W ℓ2 ↓ A ℓ2 ↓ P ℓ2 ↓ LS ↓ MOS ↑

Zero- DSP 0.812 0.052 1.572 1.91 3.84±0.19
Shot ZeroBAS 0.440 0.053 1.508 1.91 4.07±0.17

Sup- WarpNet 0.179 0.037 0.968 1.52 3.86±0.16
ervi- BGrad 0.128 0.030 0.837 1.25 4.01±0.14
sed NFS 0.172 0.035 0.999 1.29 3.99±0.15

GT - - - - 4.30±0.12

(a) (b)

Figure 2: MUSHRA results for (a) the BSD and (b) the TMB.

meters and captured by an ambisonic microphone. Sound event
locations are given using azimuth, elevation and distance, with
each sound event having a single location. Starting from this
data, we apply several processing steps: Frist, speaker location
information provided in azimuth, elevation, and distance were
converted into a Cartesian coordinate system (x, y, z). Next,
ground-truth metadata was leveraged to cut out speech segments
from the recordings using their provided timestamps. To gen-
erate the binaural ground truth for our evaluation, ambisonic
recordings are converted to binaural audio using OmniTone, a
well-established DSP ambisonic decoder with a binaural ren-
derer. Finally, the corresponding original monaural recordings
are obtained from the DCASE 2016, Task 2 dataset. Note that
unlike the BSD, these mono recordings are recorded separately
from their ambisonic re-recordings and binaural renderings.

4.3. Evaluations

For objective evaluations, we use metrics found in prior work.
Wave (W) ℓ2ℓ2ℓ2: mean squared error (MSE) between the ground
truth and synthesized per-channel waveforms multiplied by 103.
Amplitude (A) ℓ2ℓ2ℓ2: MSE between the amplitude STFTs of the
ground truth and synthesized audio. Phase (P) ℓ2ℓ2ℓ2: MSE be-
tween the left - right phase angle of the ground truth and syn-
thesized audio. Phase is computed from the STFT. MRSTFT
LS is the multi-resolution spectral loss. For subjective evalua-
tions, we perform MOS and MUSHRA evaluations. For MOS,
we collect mean opinion scores towards axes of naturalness.

For every experiment, we use 50 random samples from each
method. Every example is rated 5 times by different raters,
with each experiment participated in by at least 30 raters. In
the MUSHRA evaluation,

we used 50 random samples from each method. Following
the MUSHRA protocol, we discard raters who gave >15% of
hidden references a score below 90. We used the model and
code releases of WarpNet, BinauralGrad, and NFS to synthesize
audio for subjective evaluations of these systems.

4.4. Binaural Speech Dataset Results

In Table 1, we observe that ZeroBAS achieves significant ob-
jective improvements over the DSP baseline, despite not mod-



Table 2: Objective and subjective evaluations on TMB.

Model W ℓ2 ↓ A ℓ2 ↓ P ℓ2 ↓ LS ↓ MOS ↑

Zero- DSP 1.134 0.075 1.572 2.93 3.09±0.28
Shot ZeroBAS 0.293 0.045 1.572 2.93 3.98±0.15

Sup- WarpNet 2.909 0.099 1.571 6.66 3.60±0.26
ervi- BGrad 3.228 0.218 1.571 5.40 3.27±0.32
sed NFS 1.574 0.085 1.571 3.06 3.79±0.23

GT - - - - 4.08±0.11

eling additional interactions between the two generated channel
streams or the RIR and HRTF. Furthermore, the performance of
the ZeroBAS method approaches that of the supervised meth-
ods, even though ZeroBAS has not been trained on the BSD.
Note that ZeroBAS inherently cannot model certain impercep-
tible environment-specific artifacts, like high-frequency record-
ing equipment noise. Supervised methods may capture these
and get superficial improvements on objectives like phase error,
whereas vocoders may explicitly ignore them.

In fact, subjective evaluation results in Table 1 show that
ZeroBAS sounds slightly more natural to human raters than the
supervised methods while being on par in comparative eval-
uations. MUSHRA results (Figure 2) no statistically signif-
icant preference for any of the methods WarpNet, Binaural-
Grad, NFS or ZeroBAS. The ZeroBAS system leverages a Wav-
eFit model which ensures the generated audio exhibits mini-
mal artifacts and noise compared to binaural recordings, lead-
ing to improved perceptual quality for human listeners. Despite
worse objective metrics, our human evaluations suggest Zer-
oBAS achieves spatial fidelity and quality on par, if not better
than supervised methods. Samples can be heard in our demo
page: https://alonlevko.github.io/zero-bas/.

4.5. TUT Mono-to-Binaural Results

Although the zero-shot method underperforms supervised
methods in the subjective evaluation on BSD, we argue that
the supervised methods are sensitive to the room and record-
ing conditions of BSD. To demonstrate this, we evaluated all
methods on our newly constructed TMB. Table 2 demonstrates
that our zero-shot method, ZeroBAS, significantly outperforms
all supervised methods on TMB. Both ZeroBAS and the super-
vised methods struggle to capture accurate phase information,
as evidenced by P ℓ2.

The subjective evaluation results presented in Table 2 fur-
ther demonstrate that ZeroBAS exhibits superior performance
in terms of perceived naturalness compared to the supervised
methods WarpNet, BinauralGrad, and NFS. As evidenced by
the MOS, ZeroBAS surpasses these methods by notable mar-
gins. Considering the confidence intervals, these results indi-
cate that human listeners on TMB perceive ZeroBAS as more
natural-sounding than the supervised methods, with its score
approaching that of the ground truth recordings. Furthermore,
MUSHRA evaluations reveal a statistically significant prefer-
ence for the proposed ZeroBAS method compared to super-
vised approaches. This suggests that human listeners perceive
the spatial quality of binaural signals generated by ZeroBAS to
best align with the reference. Evaluation of existing supervised
learning methods on TMB revealed several limitations. Binau-
ralGrad produced outputs with substantial Gaussian noise, hin-
dering the diffusion process’s convergence to clean signals for
out-of-distribution samples. WarpNet and NFS exhibited two

Table 3: Ablation of our ZeroBAS method on BSD

Model W ℓ2 ↓ A ℓ2 ↓ P ℓ2 ↓ MOS ↑

ZeroBAS 0.440 0.053 1.508 4.07±0.17

w/o AS 0.802 0.059 1.539 2.93±0.16
w/o GTW 0.627 0.053 1.569 3.64±0.15
w/o AS, GTW 0.816 0.051 1.567 4.13±0.18
w/o WaveFit 0.539 0.044 1.572 3.52±0.16

Original Decode 0.495 0.065 1.534 2.50±0.16
Swap Order 0.474 0.072 1.277 3.85±0.19

1 iteration 0.459 0.069 1.393 3.62±0.20
2 iterations 0.450 0.061 1.492 3.83±0.24
4 iterations 0.445 0.053 1.502 3.94±0.18
5 iterations 0.449 0.053 1.494 4.05±0.15

key failure modes: (a) Inability to retain speaker voice char-
acteristics in the binaural output, leading to fidelity degrada-
tion, and (b) incorrect spatialization, manifesting as generated
binaural speech with unrealistic distance cues or spatial arti-
facts when beyond the training range. These failures are fur-
ther illustrated here: https://alonlevko.github.io/
zero-bas/.

5. Ablation Analysis
The significance of each core component is evaluated through
ablation studies (Table 3). First, AS is critical for ZeroBAS per-
formance. Its absence leads to substantial degradation in both
MOS and W ℓ2. AS creates a crucial perceptual difference.
GTW is the second most important component. Without GTW,
left-right channel time differences become misaligned, result-
ing in increased W ℓ2 error and decreased MOS. The Wave-
Fit model, when removed in isolation, has a minimal impact
on objective metrics but a significant negative impact on MOS
which highlights it’s importance. Removing both AS and GTW
leads to improved MOS, albeit resulting in a monaural wave-
form played identically in both channels. In addition we tested
the effects of modifications within WaveFit. Decoding for five
iterations and initializing with Gaussian noise (Original De-
code), as in the original WaveFit implementation, resulted in
poor audio quality. This is because the two channels remain in-
dependent, and playing them as a binaural recording produces
an unaligned and noisy output. Furthermore, applying Wave-
Fit to the monaural input first (Swap Order), followed by AS
and GTW, yielded improved performance in terms of P ℓ2 but
compromised MOS and A ℓ2. Finally, increasing the number of
WaveFit iterations until 3 improves the objective metrics W ℓ2,
A ℓ2 and P ℓ2 and improves MOS. After 3 iterations, quality is
constant.

6. Conclusion
In this work, we presented a room-agnostic zero-shot method
for binaural speech synthesis from monaural audio. Our results
demonstrate that the method achieves perceptual performance
comparable to supervised approaches on their in-distribution
datasets. Furthermore, we introduce a novel dataset designed to
evaluate the generalization capabilities of monaural-to-binaural
synthesis methods for out-of-distribution scenarios. On this
dataset, ZeroBAS exhibits superior performance compared to
supervised methods, highlighting its potential for real-world ap-
plications with diverse acoustic environments.
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