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Robust medical Machine Learning (ML) models have the potential to revolutionize healthcare by acceler-
ating clinical research, improving workflows and outcomes, and producing novel insights or capabilities.
Developing such ML models from scratch is cost prohibitive and requires substantial compute, data, and
time (e.g., expert labeling). To address these challenges, we introduce Health AI Developer Foundations
(HAI-DEF), a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate
building ML for health applications. The models cover various modalities and domains, including radi-
ology (X-rays and computed tomography), histopathology, dermatological imaging, and audio. These
models provide domain specific embeddings that facilitate AI development with less labeled data, shorter
training times, and reduced computational costs compared to traditional approaches. In addition, we
utilize a common interface and style across these models, and prioritize usability to enable developers
to integrate HAI-DEF efficiently. We present model evaluations across various tasks and conclude with a
discussion of their application and evaluation, covering the importance of ensuring efficacy, fairness,
and equity. Finally, while HAI-DEF and specifically the foundation models lower the barrier to entry for
ML in healthcare, we emphasize the importance of validation with problem- and population-specific
data for each desired usage setting. This technical report will be updated over time as more modalities
and features are added.

1. Introduction

Machine learning (ML) models, trained on diverse data ranging from genomic sequences to clinical
images, have the potential to transform healthcare in applications ranging from accelerating drug
discovery to enabling personalized diagnoses. In day-to-day clinical workflows, ML models have also
been developed to help automate manual processes, assist with triage, diagnosis, or prognosis, and
more, with the goal of helping improve quality of care or efficiency.

However, building robust ML models for these domains entails challenges. Development often
requires large, labeled datasets, which are expensive and time-consuming to create and curate.
Beyond cost, sharing these datasets across institutions is often restricted due to privacy and other
considerations. Data scarcity, especially for rare conditions and underrepresented populations, further
hinders dataset curation and limits generalizability. Finally, significant compute resources are often
necessary to train large models or when utilizing large datasets, and clinical and technical modality-
specific expertise, especially in the use of DICOMs for pathology and radiology, is often needed to
correctly prepare data for ML. models.

To help address these challenges, we present Health Al Developer Foundations (HAI-DEF), with
the goal of catalyzing the development and adoption of Al in healthcare. HAI-DEF includes foundation
models, tooling, recipes, and ready-to-use research endpoints. These resources were created to
enable researchers and developers to both iterate on research ideas quickly and have a lower-friction
path to incorporating Al in real-world use settings. In the initial phase, we offer research endpoints
and open-weight models, enabling generation of high-quality embeddings from medical images
(chest X-rays (CXR), histopathology patches, skin images, computed tomography (CT) images) and
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audio recordings (health acoustics like coughs and breaths). These embeddings offer a compact
yet information rich representation of the given data. By leveraging these embeddings and tooling,
researchers and developers can build robust models that perform well across diverse clinical settings
with significantly less labeled data, shorten model training times, and reduce computational costs.

Table 1 provides an overview of the modalities and features offered per modality. Documentation
and additional information is available at the HAI-DEF developer site.

Table 1 | HAI-DEF: A Multimodal Platform for accelerating health AI. HAI-DEF supports research across audio signals,
radiology, histopathology, and dermatology, with more modalities planned. Foundation models for each modality can be
accessed via research endpoints or deployed using open weight models in open-source containers. Per-modality tools,
including a custom histopathology library and a code-free X-ray embedding interface, simplify integration and accelerate
research.

Research Open Model Open Source

Modality Endpoint Weights Container
Audio v
Computed Tomography v
Histopathology v v v
Dermatology v v v
X-ray (CXR) v v V4

2. Models

HAI-DEF encompasses multiple distinct models, each tailored to a specific use case and trained using
advanced techniques on large, diverse datasets. The following list is a snapshot of our current progress,
and our goal is to expand this model set in the near future.

HAI-DEF encompasses multiple distinct models, each tailored to a specific data modality and
trained using various techniques on large, diverse datasets. The following list snapshots our current
available models, which we expect to expand in the near future. More information about how to
access these models can be found at the HAI-DEF developer site (for CXR, Path and Derm Foundation)
and respective GitHub repositories for the research endpoints (HeAR and CT Foundation).

2.1. CXR Foundation

CXR Foundation (Sellergren et al., 2022) is a set of 3 models, all using an EfficientNet-L2 (Xie et al.
(2020)) image encoder backbone. The three models learned representations of CXRs by leveraging
both the image data and the clinically relevant information available in corresponding radiology
reports.

1. The original CXR Foundation is trained using supervised contrastive learning (SupCon, Khosla
et al. (2020)). This model is used for legacy support and comparison purposes.

2. ELIXR-C (Xu et al., 2023) is an image/text encoder trained with the CLIP method (Radford
et al., 2021). This model tends to perform better at zero-shot tasks, i.e. those that do not require
further data for training.

3. ELIXR-B (Xu et al., 2023) is trained with the BLIP-2 method (Li et al., 2022) on a dataset of
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over 1,000,000 chest radiographs from 5 hospitals in India, and 4 hospitals in the USA. This
model tends to perform better on downstream classification tasks.

2.2. Path Foundation

Path Foundation (Lai et al., 2023) is a Vision Transformer (ViT) (Dosovitskiy et al., 2020) encoder for
histopathology image patches trained with self-supervised learning (Masked Siamese Networks, Assran
et al. (2022)). It incorporates pathology-specific optimizations, including approaches to help learn
stain-agnostic features and to generalize across patch magnifications. Training for this model utilized
hematoxylin and eosin (H&FE) stained whole slide images (WSIs) from The Cancer Genome Atlas
(TCGA) (National Cancer Institute (NCI), 2024).

2.3. Derm Foundation

Derm Foundation (Rikhye et al., 2024) is a BiT ResNet-101x3 (Kolesnikov et al., 2019) image encoder
trained using a two-stage approach on over 16K natural and dermatology images (Liu et al., 2020).
First, contrastive learning (ConVIRT, Zhang et al. (2020)) was applied on a large number of image-text
pairs from the internet (Sun et al. (2017)). Second, the model was fine-tuned to identify dermatology
conditions on a mix of datasets, including tele-dermatology and skin cancer datasets.

2.4. HeAR

HeAR (Baur et al., 2024) is a ViT audio encoder trained using a Masked Autoencoder (MAE) ap-
proach (He et al., 2021) on a large dataset of 313 million unlabelled, non-medical audio clips. The
model learns to reconstruct masked spectrogram patches, capturing rich acoustic representations of
health-related sounds like coughs and breathing patterns.

2.5. CT Foundation

CT Foundation provides embeddings suitable for downstream classification tasks. The underlying
model is VideoCoCa (Yan et al., 2023), a video-text model designed for efficient transfer learning
from 2D Contrastive Captioners (CoCa) (Yu et al., 2022). CT Foundation was trained on CT volumes
and radiology reports from over 500,000 cases across different anatomic regions, using a similar
approach to Yang et al. (2024).

3. Evaluations

We evaluated the efficacy of our domain-specific foundation models on a suite of data-efficient
classification tasks, benchmarking their performance against generic models when possible. Across
various levels of training data subsampling, classifiers leveraging foundation model embeddings
consistently outperformed those using generic embeddings, demonstrating superior data efficiency
(Figure 1).

Beyond data efficiency, our foundation models demonstrate strong generalization capabilities
across diverse tasks within their respective domains. The CXR foundation model (ELIXR-B) achieved
strong performance on tasks spanning classification, semantic search, visual question answering,
and report quality assurance (Xu et al., 2023). The Derm foundation model effectively handles data
covering 419 skin conditions, with subgroup analysis revealing no statistically significant performance
difference across Fitzpatrick skin types (Rikhye et al., 2024). HeAR, our health acoustics model,
generalizes better when tested on audio recordings from unseen devices, compared to other strong
audio encoders (CLAP (Elizalde et al., 2023), TRILL (Shor et al., 2020), FRILL (Peplinski et al., 2020),




Health Al Developer Foundations

Figure 1 | Data efficiency comparison of four of our foundation models against established approaches. CXR (upper left)
shows the average performance across six binary classification tasks with the original CXR Foundation model and the new
ELIXR-B model; for Pathology (upper right), it focuses on a 4-class prostate cancer Gleason grading task for needle core
biopsies and the detection of metastatic breast cancer in lymph nodes. For Derm (lower left), the evaluation centered
on skin condition category (28-way) identification, while for HeAR (lower right), it involved identifying COVID-19 from
cough sounds. Notably, the foundation models achieve comparable results while using substantially less training data and
compute. CT Foundation is covered below; additional methods not available for equivalent comparisons.
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BigSSL-12 (Zhang et al., 2022)), signifying its robust generalization capabilities (Baur et al., 2024).
Finally, the Path foundation model exhibits strong performance on a wide range of tasks encompassing
17 unique tissue types and 12 cancer types, including tumor detection, grading, subtyping, and tissue
type classification (Lai et al., 2023).

These results highlight the potential of our domain-specific foundation models to substantially
reduce the data, compute, and technical expertise required for developing task-specific deep learning
models in their respective domains, while achieving comparable or superior performance to existing
approaches. Further details on each foundational model are presented below.

3.1. CXR Foundation

Area under the curve (ROC AUC) metrics with both linear and non-linear models applied to CXR
embeddings were evaluated. On public datasets, such as ChestX-ray14 and CheXpert, results improved
the data-accuracy trade-off for models developed across a range of training dataset sizes and several
findings. Figure 2 shows the comparison for all three models using a linear probe. When evaluating
the original CXR Foundation’s ability to develop tuberculosis models, data efficiency gains were more
striking: models trained on the embeddings of just 45 images achieved non-inferiority to radiologists in
detecting tuberculosis on an external validation dataset (Sellergren et al., 2022). For both tuberculosis
and severe COVID-19 outcomes, we have shown that non-linear classifiers trained on CXR Foundation
embeddings outperformed a model that was fine-tuned on the entire dataset (Sellergren et al., 2022).

Figure 2 | Performance of ELIXR-C, ELIXR-B, and the original CXR Foundation embeddings for data-efficient classification.
The ROC AUC results of a linear probe are shown averaged across 2 datasets (CheXpert and Chest X-ray14) for seven findings:
atelectasis, cardiomegaly, airspace opacity, fracture, pneumothorax, consolidation, pleural effusion, and pulmonary edema.
Both ELIXR-C and ELIXR-B demonstrate superior performance compared to the original CXR Foundation at matching
dataset sizes.
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We have also developed a no-code interface to demonstrate the feasibility and performance of
binary classification tasks based on CXR Foundation. This demo builds a classifier model using the
embeddings from the DICOM images and labels from the ChestX-ray14 dataset, and uses the CXR
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Foundation to generate image embeddings and train a simple perform binary classification. The demo
can also accept DICOMs directly from the browser as input and can be found on GitHub.

3.2. Path Foundation

We have evaluated Path Foundation for 11 histopathology tasks via linear probing, shown in Figure 3.
ROC AUC scores are above 0.8 in all but one task.

Figure 3 | Performance, measured in ROC AUC, of the Path Foundation on 11 histopathology classification tasks via linear
probing. The Path Foundation embeddings demonstrate superior performance compared to ImageNet features across all
tasks.
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Besides performance, efficiency is also an important evaluation factor as whole slide digital
pathology images are some of the largest medical images (by size in bytes). Recognizing that the
efficiency, time and total cost, of embedding generation is a barrier to the development and deployment
of pathology ML, we developed a Vertex Al endpoint that generates embeddings for pathology imaging
stored both in the Cloud and externally.

All performance measures reported here were performed in triplicate and the mean time required
to complete the task is reported. Measurements were done using a Vertex Al endpoint running on
nl-highmem-4 virtual machines with an attached NVIDIA Tesla V100 16GB . The endpoint was run
as a single node with horizontal scaling disabled.

Embedding generation from the DICOM store and external data were very similar and faster than
embedding generation from Google Cloud Storage. The cost per embedding was estimated via Vertex
Al pricing at $3.12/hour. Table 2 illustrates estimates for the cost of embedding with the endpoint
operated at near capacity. See Section A.1 for additional details.

3.3. Derm Foundation

To evaluate Derm Foundation, we trained and evaluated classifiers for ten tasks. We used the SCIN
(Skin Condition Image Network) Ward et al. (2024) dataset to train and test these classifiers. SCIN is
an open access dataset created by generating representative images from internet users with the goal
of providing an accessible diverse dermatology dataset. The results are presented in Figure 4.
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Table 2 | Estimated cost per embedding for the Path Foundation model if Vertex Al embedding endpoint is executed at
capacity. Endpoint estimated to cost $3.12 per hour.

External Google Cloud Google Cloud

Data Source Storage DICOM Store
Embeddings / Hour 960,869 243,779 988,217
~Price ($) / Embedding $0.000003 $0.00001 $0.000003
~Embedding / $ 307,970 78,134 316,736

Figure 4 | ROC AUC curves of data efficient classifiers using SCIN dataset for a representative sample of dermatology tasks.
(top) shows results of a logistic regression classifier and (bottom) shows results using a simple (two-layer) neural network.
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3.4. HeAR

HeAR has been trained on a large collection of short (2 seconds, sampled at 16kHz, mono-audio) clips
of sounds made by humans, such as coughing, breathing, or speaking. No segmentation or padding
was used. The audio typically contains background noise, which helps make the encoder robust to
such noise.

By reconstructing masked sounds, it learns meaningful representations that capture underlying
patterns useful for downstream tasks. This embedding model can be used to explore the possibility
of developing classifiers for health-related non-semantic acoustics. Examples of such tasks include
detecting tuberculosis using cough sounds, detecting dementia using non-semantic voice patterns,
and detecting air exhalation volume from exhalation sounds.

We observed in Baur et al. (2024) that HeAR tends to perform better than available competing
audio encoders for such tasks, while typically needing less data, as shown in Figure 5. Deployment
and test-time scenarios are typically very different from lab tests. For health acoustics, it typically
means that the recording devices and data collection protocols can be different. Deep learning models
can be brittle to such distribution shifts, and yet we observed that HeAR is more robust to such
changes.

Figure 5 | Comparison of the performance of HeAR to other audio encoders on four cough tasks, based on a single random
distribution of train data. The y-axis shows the ROC AUC performance while the x-axis shows the percentage of training
data used. HeAR performs favorably across different data regimes and tasks, demonstrating its data efficiency.
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3.5. CT Foundation

CT Foundation was trained using three-dimensional computed tomography (CT) scans and corre-
sponding radiology reports across different study types, including Head/Neck, Neck, Spine, Heart,
Angiography, Chest, Abdomen and Pelvis, and Extremities. To test CT Foundation’s utility and gener-
alizability, we evaluated the embeddings across seven classification tasks using multilayer perceptron
models with increasing amounts of training data. Tasks were diverse, spanning head, chest, and
abdominopelvic regions, each involving the detection of abnormalities. These tasks were related
to classifying intracranial hemorrhage, calcifications in the chest and heart, lung cancer prediction
in the chest, suspicious abdominal lesions, nephrolithiasis, and abdominal aortic aneurysm in ab-
dominopelvic CTs. All binary labels with the exception of the lung cancer and hemorrhage tasks were
automatically extracted from the clinical radiology reports, which were written by board certified
radiologists. The lung cancer prediction task was drawn from NLST (National Lung Screening Trial
Research Team, 2011) and used pathology-confirmed cancer outcomes within 2 years of the lung
screening task for cancer positive labels. The hemorrhage task was further verified and labeled
by board certified radiologists. The evaluation set to measure the performance was held constant.
Figure 6 shows the results in ROC AUC and accuracy for these tasks. All but one of the ROC AUC
measured tasks achieved a score of 0.8 or greater.

Figure 6 | CT Foundation embeddings performance (ROC-AUC and accuracy) across each task. Each model was trained
only using CPUs with different sizes of training data, and the evaluation subset was held constant. N refers to the total size
of the evaluation set used to measure performance. Throughout each training run the positive ratio in the training set
approximately matches the evaluation set. The lung cancer training and evaluation splits match those of the training and
tune sets used in Ardila et al. (2019).
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4. Discussion

The ML models within HAI-DEF have been made available for research use over the last 3 years as
research endpoints where users can upload images and receive embeddings. HAI-DEF now expands this
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collection of research endpoints with open-weight models and containerized per-modality solutions
that can be deployed as endpoints in user-managed environments for CXR, Path and Derm Foundation.
This unlocks use cases beyond research, and enables use on datasets that cannot be processed by a
Cloud system due to privacy, institutional policies, or other considerations.

These foundation model research endpoints have been adopted by many researchers, with millions
of API calls as of this writing. Users, including both machine learning researchers and clinicians, have
utilized these research endpoints to explore a diverse range of applications and have found them
valuable for improving performance and building models quickly for research purposes. Use cases
advanced by researchers include: using Path Foundation to help distinguish different types of sarcoma
at University College London; and using CXR Foundation for identifying necrotizing enterocolitis on
neonatal radiology images at Guys St. Thomas Trust.

As we expand the routes by which foundation models can be consumed, it is important to consider
various trade-offs. Using model weights directly is the most flexible way to consume the models; for
example, the models can be leveraged as part of existing ML software infrastructure or as a constituent
model in an ensemble for real time use. However, this requires developers to process the data into
a format that models expect (which might differ between different models and modalities). In this
regard, consuming the models via endpoints that provide additional preprocessing logic may make
it easier to fetch and process data for inference. Deploying endpoints on cloud infrastructure (for
instance as a Google Cloud Vertex Al endpoint) also offers scalability without needing researchers or
infrastructure staff to manage the complexity of ensuring robustness to fluctuating usage volumes.

Data use restrictions are another factor that drives differences between the open-weights versus
research endpoint approaches. Google-maintained research endpoints can only be used for research
scenarios and with de-identified data. This may render it unsuitable for use cases with strict data
locality requirements. On the other hand, certain datasets have usage terms that prohibit direct
availability of the downstream trained models, or are associated with other sensitivities that might
make releasing model weights infeasible. The endpoint approach can respect these restrictions while
providing an alternative route to enabling downstream use by other researchers. Finally, another route
combines some elements of both open-weights and endpoint approaches: user-deployed endpoints
(using the ready-to-deploy containers on Google Cloud’s Model Garden) have the scalability and
preprocessing benefits of research endpoints, in addition to meeting the data locality and sensitivity
requirements for some users.

With regards to downstream use cases, even though embedding models have been trained on
a large diverse datasets (a compute- and data-intensive process), making them useful for specific
tasks should always be done via validation and/or tuning on data specific to the problem and patient
population of interest. This fine-tuning can be especially important for rarer examples that the
embedding models may not have ‘seen’ many of during development. For many applications, we and
other researchers observe that using a foundation model can reduce the amount of data needed (i.e.,
in the low-data regime). In some instances, we additionally find benefits (such as generalization) in a
higher data regime. For example, we have found HeAR to display more robust performance when
testing on a new audio collection smartphone.

Reducing bias and promoting fairness and equity are important when using ML in healthcare
applications. Fine-tuning with local data specific to the use case, patient population, data acquisition
protocol or devices is likely essential to achieving higher performance. Embedding models, by
reducing barriers to entry can democratize use of Al in low resource settings. Crucially, Weng et al.
(2024) emphasizes that regardless of the model’s origin (a foundation model or otherwise), rigorous
evaluation of the final downstream model is necessary to guarantee fairness and mitigate potential
biases. We are also looking forward to community feedback and lessons learnt applying these models
in a diverse range of tasks. One interesting but challenging goal is to incorporate feedback or
additional datasets into the foundation models for improvements and further use by the community.
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By establishing a positive feedback loop, these models could improve over time and become even
more useful for all users.

Like all ML models, models provided in HAI-DEF have limitations to consider. Though individual
details differ, each model in HAI-DEF has been trained on varying amounts of data based on availability;
please refer to each associated manuscript for more details. As discussed above, we emphasize the
importance of rigorous evaluation per use case and population, to improve overall performance and
address issues of bias, fairness, and equity. Finally, while we strove to make the models useful for
a variety of use cases, some applications may need further development. For example, the models
were developed with a focus on classification tasks, and prognosis tasks will need to be further
evaluated. Image segmentation and generation tasks are also currently not supported. Further,
specific requirements such as smaller models (e.g. for on-device applications on a mobile device) or
lower latency will need other techniques such as distillation to the target model size of interest.

5. Future Work

We hope to expand and improve the HAI-DEF program to make it useful for an even wider range of
applications and to accelerate the adoption of Al in healthcare. One such example is the adoption
of open language models in applications working with health guidelines. We plan to release a
health guidelines toolkit containing code recipes to help developers evaluate model performance and
incorporate them into applications such as training and education.

We look forward to receiving feedback and success stories from the community, both in terms of
how existing models can be improved but also whether they can be expanded to support use cases
we may not have considered yet.
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A. Appendix

A.1. Background and Methodology For Path Foundation Evaluations

At its highest magnification, digital pathology images are gigapixel-sized, measuring in the tens to
hundreds of thousands of pixels per slide. The Path embeddings model has been trained to produce
high quality machine learning embeddings for image patches of size 224 x 224 pixels cropped
from pathology images. At high magnification, these image patches represent a relatively small
portion of the slide, and enable the representation of intra-slide heterogeneity in different parts of the
tissue specimen. However, computing patch embeddings across such high magnification pathology
images can require the generation of tens of thousands of embeddings for a single whole slide image
(Figure 7).

Figure 7 | Illustration of patch embeddings computed across a histopathology image. Areas of the image with same
coloring exhibited similar k-means clustering from patch level embeddings.

The endpoint that was used for evaluations runs as a deployable online prediction REST service
within Vertex Al and can generate embeddings for data stored both within Cloud (Cloud DICOM store
or Google Cloud Storage) and from external data sources (i.e., sending the data as part of the request).
The REST service supports requests that may contain multiple patch embeddings per-data-source
and/or multiple data sources. As with all Vertex Al prediction services the service can be configured
to horizontally scale to meet demand. To generate embeddings, the endpoint will: 1) retrieve the
imaging necessary to complete the embedding generation, 2) generate the embedding, and 3) return
the embeddings to the caller. For Cloud data sources, it is optimal to co-locate the Vertex Al endpoint
hosting embedding generation in the same data center that hosts the images in order to improve data
transport efficiency.

When embeddings are generated from data not stored in Cloud, data are sent directly within the
request as a base64 encoded compressed image. This increases the amount of imaging data that can
fit within the request. The endpoint supports decoding commonly used compression methods (e.g.,
lossy JPEG, PNG for lossless data transmission, etc.). Regardless of exactly how imaging is encoded,
on receipt, the endpoint extracts the pixel data directly from the request and then generates and
returns the embedding result. Multiple factors affect the time required to generate embeddings and
the associated cost, including: the compute (CPU and GPU) that backs the Vertex Al embedding
generation service, the data source (e.g., DICOM store, Google Cloud Storage, or external data), the
image compression format, and the total size of the embedding request.

DICOM embeddings were generated from non-overlapping regions of a DICOM VL Whole Slide
Microscopy Image. The DICOM instance was encoded using: 256 x 256 pixel frames that were
encoded using JPEG baseline transfer syntax and TILED_FULL organization. Google Cloud Storage
embeddings were generated from JPEG images saved to Google Cloud Storage. Image dimensions
matched the embedding model patch dimensions (224 x 224 pixels) to enable stored images to be
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Table 3 | Vertex Al endpoint performance metrics subjected to 10 concurrent requests for 5,000 image embeddings.

External Google Cloud Google Cloud

Data Source Storage DICOM Store
CPU Utilization (%) 123 122 93
GPU Duty Factory (%) 27 7 25

used directly as input to the embedding model. For the external data, the images stored in Google
Cloud Storage were read in their entirety and used as the source images for the tests. Differences in
utilization stemmed mainly from data retrieval optimizations implemented for Google Cloud DICOM
stores using EZ-WSI DICOMWeb Google Health Al and Google Cloud Healthcare (2023).

To estimate the total maximum capacity of an embedding endpoint for the various imaging data
sources it was empirically determined that performance metrics, CPU utilization, and GPU duty factor
plateaued when the embedding endpoint was subjected to 10 parallel requests for 5,000 embeddings;
metrics shown in Table 3. The total time required to generate 50,000 embeddings by 10 parallel
processes was quantified. Total time was defined as the time between sending the first request from
the client to reception of embeddings.
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