
Tracking Software Security Topics

Phong Minh Vu1 and Tung Thanh Nguyen2

1 Auburn University lenniel@auburn.edu
2 Fulbright University Vietnam thanhtung.nguyen@fulbright.edu.vn

Abstract. Software security incidents occur everyday and thousands of
software security reports are announced each month. Thus, it is difficult
for software security researchers, engineers, and other stakeholders to
follow software security topics of their interests in real-time. In this paper,
we propose, SOSK, a novel tool for this problem. SOSK allows a user
to import a collection of software security reports. It pre-processes and
extracts the most important keywords from the textual description of the
reports. Based on the similarity of embedding vectors of keywords, SOSK
can expand and/or refine a keyword set from a much smaller set of user-
provided keywords. Thus, SOSK allows users to define any topic of their
interests and retrieve security reports relevant to that topic effectively.
Our preliminary evaluation shows that SOSK can expand keywords and
retrieve reports relevant to user requests.

1 Introduction

Software security incidents occur everyday. While most are trivial, some high
profile incidents could lead to big financial losses or even human lives. To dis-
cover new software security vulnerabilities or enhance their software systems
with latest security updates, software security researchers, engineers, and other
stakeholders have to closely monitor software security topics of their interests.
However, this is a difficult task because thousands of software security reports
are announced each month. For example, in 2023, there are in total nearly 30,000
records newly added to CVE (Common Vulnerability and Exposures) - the most
popular database of software security vulnerabilities3. The CVE website has a
simple function for searching CVE reports. A user can provide one or several
keywords to search for records containing those keywords in their textual de-
scription4. However, it is still difficult for users, because they need to provide all
relevant keywords to a specific topic of their interests.

To address this problem, in this paper, we propose SOSK, a novel approach
for extracting keywords and tracking security reports. SOSK allows a user to
download a database of software security reports. It then pre-processes and ex-
tracts the most important keywords from the textual description of the reports.
Based on the similarity of embedding vectors of keywords, SOSK can expand
and/or refine a keyword set from a much smaller set of user-provided keywords.

3 https://www.cvedetails.com/browse-by-date.php
4 https://cve.mitre.org/cve/search cve list.html

ar
X

iv
:2

40
9.

18
35

1v
1

 [
cs

.S
E

]
 2

7
Se

p
20

24

Thus, SOSK allows users to define any topic of their interests and retrieve secu-
rity reports relevant to that topic effectively.

We conducted a preliminary evaluation on a dataset of 112,197 reports from
the CVE database. After indexing, we used SOSK to define and expand keywords
for three topics of common software vulnerabilities: SQL Injection, Cross-site
Scripting, and Buffer Overflow. We compared the trends of these three topics
found by SOSK with a published report and found SOSK discovered the same
trends. Then, we used SOSK to refine a topic of Mobile Devices and retrieved
the related CVE reports. The result shows that SOSK can expand keywords
and retrieve reports relevant to our requests. We will perform more extensive
evaluation on the performance and usefulness of our approach in the future.

In Section 2, we introduce our approach in detail, including techniques for
indexing security reports and and tracking user-defined topics. Section 3 de-
scribes our evaluation settings and results. Section 4 presents related work and
conclusions appear last.

2 Approach

In this section, we will discuss our approach in detail. SOSK is designed as a
document management system with three main components: 1) a document store
(DS); 2) a dictionary of keywords (KD); and 3) an index mapping keywords to
documents (IX).

The document store DS is a locally stored database containing the secu-
rity reports that SOSK has imported and indexed. Each report has two main
attributes: its created date and its textual content. Keywords are stored in a dic-
tionary KD. Each keyword has a textual value (like sql or overflow), a weighting
score (like 0.95 or 0.73), and an embedding vector of 768 real values. To simplify
the indexing and tracking steps, the textual values of keywords are converted
to low-case. The index IX stores for each keyword a hash map containing the
ids of documents (security reports) containing that keyword and its positions in
each document. Keywords and such positions are extracted from the documents’
content while indexing.

Because SOSK is designed for software security domain, in addition to com-
mon English words (nouns, verbs, adjectives), the keyword dictionary KD also
contains domain-specific names and identifiers such as windows, win32, sql, linux,
ls (a command in Linux), http (a network protocol), or svchost (a process in
Windows OS). We pre-populated this keyword dictionary with a dictionary of
English words extracted from WordNet [3] and a domain specific vocabulary for
software documents collected from previous studies [6,1,2]. Users can also import
user predefined dictionaries to add more domain-specific vocabulary.

SOSK has two main functions: indexing and tracking. When a user imports
one or (typically) a collection of security reports into SOSK, it will perform
indexing on imported documents to update its document store, keyword dictio-
nary, and index. In tracking, SOSK allows a user to define a topic as a list of
keywords, expand this list with more related keywords recommended by SOSK,

and retrieve all documents relevant to such keywords. Let us discuss each func-
tion below.

2.1 Indexing

SOSK performs indexing each document (security reports) by low-casing and
tokenizing its textual content first. SOSK tries to correct each token using a
common for mapperly misspelled words and names provided by MARK [6]. For
example, watsapp is corrected as whatsapp (the name of a popular mobile app for
texting). Then, for each string token, if it exists in the keyword dictionary KD as
a domain specific term (e.g., windows or sql), no stemming is applied. Otherwise,
if it is a common English word, Snowball Stemmer is used for stemming. If the
token does not exist in the dictionary, it is added as a new keyword.

During this process, SOSK will update the index IX and the keyword dic-
tionary KD for each keyword. The index IX will be updated to keep track the
original positions of each keyword in the document under indexing. This is nec-
essary in case users want to identify or highlight the analyzed text on the actual
document later. The occurrence count of each keyword and co-occurrence count
of each pair of keywords are also updated for calculating the keywords’ scores
and embedding vectors later.

Embedding vectors According to recent advances in natural language process-
ing and language modeling, the semantic similarity of words can be measured by
the distance of their embedding vectors. Thus, SOSK calculates for each keyword
an embedding vector of 768 real numbers using Glove [5]. Then, for two keyword
a, b with corresponding embedding vectors va, vb, their similarity is define as

ρ(a, b) =
|va.vb|

||va||.||vb||

Keyword scores SOSK calculates for each keyword a score for later ranking.
Currently, this score is its inverse document frequency (idf). If the document
store DS has in total N documents and a keyword a appears in Na documents,
then its idf score is

d(a) = log(N/Na)

2.2 Tracking

In SOSK, a topic is a set of keywords. A document contains one of some of those
keywords will be considered to be relevant to that topic. For example, the set
{buffer, memory, overflow} could be used to define the topic buffer overflow. A
security report contains such words will likely be written about vulnerabilities
from buffer overflow.

SOSK calculates the relevance of a document to a topic based on the Vector
Space Model. Assume a keyword a occurs na,S times in a document S and S has

in total nS word occurrences. The term frequency (tf) of keyword a in document
S is defined as

t(a, S) = na,S/nS

The relevance of keyword a to document S is t(a, S).d(a). Then, the relevance
of a topic Q to a document S is the total relevance from all its keywords

Γ (Q,S) =
∑
a∈Q

t(a, S).d(a)

That means, the more keywords are used to define a topic, the higher rele-
vance is calculated for documents containing keywords of that topic. However, a
user might not know all the keywords to define a topic of his interest. Therefore,
a key function in SOSK is to recommend more keywords to expand a user-defined
topic. For a topic Q, SOSK will calculate the list of recommended keywords:

χ(Q) = {b | ∃a ∈ Q : ρ(a, b) > θ}

This list contains every keyword b that is sufficiently similar (e.g. higher than
a threshold θ) to at least a keyword a in Q. This list will be ranked descending
by the keyword scores d(b) and presented to the user. He can add some of those
keywords into Q and repeat the recommending step until satisfied.

After the user defines a topic Q, SOSK uses the index IX to find every
document S containing at least a keyword in Q. Then, it calculates the relevance
score Γ (Q,S). The user can rank those documents by their relevance scores or
by their created dates (e.g., to focus on more recent security reports first).

3 Evaluation

In this section, we report a preliminary evaluation on a dataset of 112,197 se-
curity reports from the Common Vulnerability and Exposures (CVE) database,
dated from 1999 to 2016.

We first downloaded this dataset and imported it into SOSK for indexing.
Then, we pre-loaded the embedding vectors for all applicable keywords (common
English words and technical names) in SOSK with the pre-trained embedding
vectors from the English Wikipedia dump. After that, the co-occurrence counts
from SOSK indexing step were used to fine-tuning those embedding vectors.

That task was needed to produce high quality embedding vectors for SOSK.
Because the CVE dataset contains only very short and descriptive documents,
it is not sufficient to learn high quality embedding vectors. Using pre-trained
vectors and fine-tuned them using a domain-specific dataset reinforces the em-
bedding vectors of common words that appear in both corpora (Wikipedia and
CVE), while the technical or domain-specific keywords in the CVE dataset would
have more significant embedding vectors.

Table 1. Examples of Keywords Expansion

Topic Seeded Keywords Expanded Keywords
SQL Injection sql, inject, vulnerability, php sql, inject, vulnerability, php, vulnera-

ble, code, arbitrary, command, injec-
tion, attacker, attack, remote

Cross-site Scripting vulnerability, script, cross,
site, xss

vulnerability, script, cross, site, xss,
website, server, remote, attacker, web,
attack, directory, credential

Buffer Overflow overflow, buffer, stack, func-
tion

overflow, buffer, stack, function, com-
ponent, method, memory, implement,
implementation, heap, base

3.1 Studying previously reported security topics

Neuhaus and Zimmermann published a study of trend analysis for security prob-
lems in the CVE dataset in 2009 [4]. However, as per technological advance, the
security topics may have changed after that. Therefore we picked three major
topics SQL Injection, Cross-site Scripting and Buffer Overflow from their study
and used our tool on more recent CVE reports to answer two questions: 1) How
did their trends changed after 2009; and 2) What are the actual descriptions of
the security problems for those topics?

The results are shown in Table 1, Table 2, and Figure 1. In Table 1, the
column Seeded Keywords lists the keywords used by Neuhaus and Zimmermann
in their study. We fed them into SOSK and SOSK recommended new keywords
in the right column (with a similarity threshold of 0.9).

How did security trends changed after 2009? As shown in Figure 1, even
though we used a different approach, the shape of the trends from 2000 to 2009
reported by SOSK is similar to the findings reported in [4]. Then, after 2009
topic SQL Injection had a sharp decline in the total number of reports, while
the reports for Cross-site Scripting fluctuated for the next few years. While the
percentage of this type of attack was reduced dramatically during the those years,
its actual number remained steady. Finally, after the gradual drop observed by
Neuhaus and Zimmermann, Buffer Overflow attacks kept declining slowly only
to increased again during 2015 and 2016. These numbers could indicate that SQL
Injection is not a popular breach around 2009 - 2016, but Cross-site Scripting
and Buffer Overflow are still prevalent.

What are the actual descriptions of the security reports? To answer
the second research question, we printed out the descriptions matched keywords
of the studying topics. Table 2 shows some examples. More can be viewed com-
pletely along with the artifacts of this paper5. For SQL Injection, we can see

5 https://goo.gl/gNnk5i

5000

10000

15000

2000 2005 2010 2015

R
ep

o
rt
s

0

250

500

750

1000

2000 2005 2010 2015

R
ep

o
rt
s

(a) Total reports in CVE (b) Buffer Overflow

0

500

1000

1500

2000

2000 2005 2010 2015

R
ep

o
rt
s

0

500

1000

1500

2000

2000 2005 2010 2015
R
ep

o
rt
s

(c) SQL Injection (d) Cross-site Scripting

Fig. 1. Trends analysis of three topics in CVE Dataset

0

500

1000

1500

2000

2000 2005 2010 2015

R
ep

o
rt
s

Fig. 2. Trends analysis of topic Mobile Devices in CVE

the the results listed the platforms or method used by attackers to inject arbi-
trary SQL code. For Cross-site Scripting and Buffer Overflow, we can see the
vulnerabilities in different modules, software products, and components.

These results are informative enough to give users a general idea of what to
be expected from each particular security problem, while saving the time needed
to investigate directly in the CVE website.

3.2 Exploring new topic

One topic not reported in the original study of Neuhaus and Zimmermann was
security risk in mobile devices. With CVE data at the time (from 1999 to 2009),
the LDA method could not identify the rising of security reports related to
mobile devices despite of a booming first year of iPhone being introduced to the
world in 2017-2018. It is also not a pre-defined security topic at cvedetails.com.

Table 2. Examples of Descriptions Extracted from Retrieved Reports

Topic Examples of Topic Description
SQL Injection timecard cms allow remote attacker to execute arbitrary sql command

execute arbitrary sql command via the execute query array
myphpnuke allow remote attacker to execute arbitrary php code
php in mybulletinboard allow remote attacker to execute arbitrary sql
statement via the fidme
sql injection vulnerability in aspwebalbum allow remote attacker to
execute arbitrary sql statement via the username field

Cross-site Scripting site script vulnerability in the search function in the web management
interface
buymyscript lyric script allow remote attacker to inject arbitrary web
script
site script vulnerability in the calendar application
yahoo answer clone allow remote attacker to inject arbitrary web script
site script attack by upload

Buffer Overflow buffer overflow in the urarlib get function
multiple buffer overflow in the rtconfigload function
heap buffer overflow in function pnmtoimage
base buffer overflow in the imap server component
stack buffer overflow in vshttpd

However, in our keyword dictionary, the keyword mobile is among the highest
ranked. To verify if this missing topic was truly important, we have applied our
tool and the trend analysis method of MARK [6] (detecting abnormal spikes of
Moving Average and Ratio of Difference to Standard Deviation) to see if it had
a noticeable peak at some point in time, or somehow relevant at all. The results
(Figure 2) suggest that reports containing mobile and related keywords (android,
ios, iphone, samsung) had a peak in 2005 and 2007, with 1965 and 1942 reports,
respectively. After that, the yearly number of reports still remained high. This
result has proven that this topic was overlooked by the LDA method and should
have been a new important topic since 2005.

Further investigating reports returned by SOSK, we found that some of the
most common vulnerabilities of mobile devices were ”commonly available simple
gps location”, or ”wi-fi spot configuration software”, or ”bypass intended permis-
sion restriction”. More specific reports to the devices included: ”samsung galaxy
s4 through s7 device”, ”softback panasonic 3g handset”, or ”ip phone 1140e”.
Such information provides a coherent picture of which devices are vulnerable to
which attacks, something specific to mobile devices for having various platforms.

4 Related work

Neuhaus and Zimmermann analyzed 39,393 vulnerability reports in the Common
Vulnerability and Exposures (CVE) database from 1999 to 2009 [4]. They applied
topic modeling (LDA) on descriptions of those CVE reports to find prevalent

vulnerability types and new trends. In this work, we demonstrated that using a
keyword-based approach can also find the same topics and trends.

MARK [6] is a keyword-based approach to discovering topics and trends on
user reviews of mobile apps. In this paper, we reused its spell checker and domain-
specific dictionary. However, due to domain differences (reviews of mobile apps
written by end-users vs security reports written by professionals), we had to
enrich our keyword dictionary with more security-related terms and names. In
addition, we also fine-tuned the pre-trained embedding vectors with textual con-
tents of CVE reports to make it more relevant to the domain of software security.

Yitagesu et al [7] developed unsupervised methods to label and extract im-
portant vulnerability concepts from the textual descriptions of software vulner-
ability reports. Their approach uses deep learning models (neural architecture
that learns the Part-of-Speech (POS) of words and phrases and auto-encoder to
encode syntactic similarities of paths in parse trees). The results are six fixed
types of vulnerability concepts. In contrast, our tool focuses on user-defined
topics which could be more flexible and suitable to users’ interests. In addition,
SOSK uses Glove [5], a lightweight approach for learning embedding vectors and
thus, can index a large collection of data and run locally.

5 Conclusions

In this paper, we introduce SOSK, a tool for tracking software security reports by
keywords. A user can collect a database of software security reports (typically
text-based) and import it into SOSK. While importing, SOSK pre-processes
and extracts the most important keywords from the textual description of the
reports. Using pre-trained and fine-tuned embedding vectors of keywords, SOSK
can compute their similarity and is able to expand and/or refine a keyword set
from a much smaller set of user-provided keywords. Our preliminary evaluation
shows that SOSK can enable users to define several topics of their interests and
retrieve security reports relevant to that topic effectively.

References

1. Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: Ar-miner: mining informative
reviews for developers from mobile app marketplace. In: ICSE (2014)

2. Di Sorbo, A., Panichella, S., Visaggio, C.A., Di Penta, M., Canfora, G., Gall, H.:
Deca: development emails content analyzer. In: ICSE (2016)

3. Miller, G.: WordNet: An electronic lexical database. MIT press (1998)
4. Neuhaus, S., Zimmermann, T.: Security trend analysis with cve topic models. In:

ISSRE (2010)
5. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-

sentation. In: EMNLP (2014)
6. Vu, P.M., Nguyen, T.T., Pham, H.V., Nguyen, T.T.: Mining user opinions in mobile

app reviews: A keyword-based approach (t). In: ASE (2015)
7. Yitagesu, S., Xing, Z., Zhang, X., Feng, Z., Li, X., Han, L.: Extraction of phrase-

based concepts in vulnerability descriptions through unsupervised labeling. ACM
TOSEM 32(5) (2023)

	Tracking Software Security Topics

