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Abstract—Object detection in remote sensing imagery plays a
vital role in various Earth observation applications. However,
unlike object detection in natural scene images, this task is
particularly challenging due to the abundance of small, often
barely visible objects across diverse terrains. To address these
challenges, multimodal learning can be used to integrate features
from different data modalities, thereby improving detection
accuracy. Nonetheless, the performance of multimodal learning
is often constrained by the limited size of labeled datasets. In
this paper, we propose to use Masked Image Modeling (MIM)
as a pre-training technique, leveraging self-supervised learning
on unlabeled data to enhance detection performance. However,
conventional MIM such as MAE which uses masked tokens
without any contextual information, struggles to capture the fine-
grained details due to a lack of interactions with other parts
of image. To address this, we propose a new interactive MIM
method that can establish interactions between different tokens,
which is particularly beneficial for object detection in remote
sensing. The extensive ablation studies and evluation demonstrate
the effectiveness of our approach.

Index Terms—Self-supervised learning, multimodal learning,
object detection, remote sensing image.

I. INTRODUCTION

Object detection in Remote Sensing Images (RSI) including
aerial images is a critical task enabling the identification and
localization of objects within satellite or aerial imagery. It has
numerous applications for Earth Observation (EO) such as en-
vironmental monitoring, climate change, urban planning, and
military surveillance [1]. Object detection in aerial imagery is
a complex task, made even more challenging by several critical
factors. These include the limited availability of annotated
data compared to standard imagery [2], the smaller size of
objects in aerial environments [3], and the distinct top-down
perspective inherent to aerial observations.

To overcome these challenges, complementary information
from alternative modalities, such as infrared (IR) which allows
us to see through certain obstructions like smoke or fog,
can be leveraged [4]. Both IR and RGB sensors are widely
used in aerial vehicles and Earth observation satellites. By
combining these spectral channels, multispectral images are
generated, providing far richer information than RGB images
alone [5]. This enhanced data stream has the potential to
significantly improve the precision and accuracy of object
detection in aerial imagery. However, detection performance
in multimodal scenarios is often limited by the small size of
available datasets, as collecting multimodal data is inherently
challenging. Additionally, multimodal architectures are gener-
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Fig. 1. Interactive masked image modeling for self-supervised pre-training.
The top is the conventional masked image modeling such as MAE [6]. The
bottom is the interactive masked image modeling, in which a cross-attention
is introduced to create the interaction between unmasked tokens and masked
tokens. The features of unmasked token from encoder (green squares) are
merged with the features of masked token from the cross-attention module
(orange squares) to reconstruct the masked images.

ally more complex than single-modal ones and require larger
datasets for effective training.

To mitigate this issue, self-supervised learning (SSL) has
gained prominence as a powerful deep learning approach, par-
ticularly for tasks where labeled data is scarce or expensive to
obtain. SSL leverages unlabeled data by creating pretext tasks
that enables the model to learn generic and comprehensive
features of the images [7]. A model pretrained on a pretext task
can be more efficiently adapted to downstream tasks through
fine-tuning with limited domain-specific labeled data. As one
of the most widely used SSL method, Masked Image Model-
ing [8] (MIM) allows the model to understand the underlying
concepts of an image by predicting the masked portions of
an input image (see Figure 1), thereby forcing the model to
develop a deeper understanding of the image structure. This
approach is particularly effective in scenarios where images
contain significant amounts of contextual information, such as
aerial imagery or remote sensing [9].

Nevertheless, conventional MIM methods such as MAE
[6] reconstruct masked images using the features of both
unmasked and masked tokens. The masked tokens are typ-
ically set to null, containing no information. Consequently,
the interaction between different parts of the image, such as
between unmasked and masked tokens, is often interrupted
during reconstruction. While this approach can help the model
learn the global context, it may not always capture fine-
grained details that are crucial for detecting small or densely
packed objects in remote sensing images, as the surround-

ar
X

iv
:2

40
9.

08
88

5v
1 

 [
cs

.C
V

] 
 1

3 
Se

p 
20

24



ing contextual information of an unmasked token cannot be
provided by neighboring masked tokens. Due to the lack of
interaction between unmasked and masked tokens, standard
MIM methods may also struggle with variations in object size
and contextual complexity, such as diverse terrains in remote
sensing images, as they may not fully capture these variations
in their representations. In this work, we propose an interactive
MIM, in which a cross-attention module is introduced to
the standard MIM to create dependencies between unmasked
and masked tokens. The generated features derived from the
masked tokens via the cross-attention module are then merged
with the features of the unmasked tokens to reconstruct the
masked images. This approach encourages the encoder to learn
a more holistic understanding of the image content, which
benefits downstream object detection tasks in remote sensing
images.

To summarize, the main contributions of this work are:
1) We propose using multimodal SSL for object detection

in remote sensing images to address data scarcity by
leveraging the rich unlabeled data from different sources.

2) To address the limitations of traditional MIM, we pro-
pose a new interactive masked image modeling method
that better supports downstream object detection tasks
in remote sensing images.

3) The extensive experiments including ablation studies
and overall evaluations demonstrate the effectiveness
of the proposed approach in both single-modality and
multimodal settings.

II. RELATED WORKS

Since its introduction, Masked Image Modeling (MIM) has
gained significant popularity as a pre-training strategy, leading
to extensive research aimed at improving its effectiveness. Sev-
eral studies have focused on enhancing the masking process.
In distillation-based MIM, for example, the authors of [10]
introduced a teacher transformer encoder that generates an
attention map, guiding the masking process for the student
model. Similarly, the authors of [11] used a self-attention
mechanism to extract semantic information during training,
which informs the masking strategy. A comparable approach
is found in [12], specifically for remote sensing images, where
the authors developed an object-centric data generator to auto-
matically configure pre-training data based on objects within
the imagery. By masking regions centered around objects,
this method encourages models to learn richer, object-specific
features, outperforming traditional MIM techniques.

In addition to masking strategies, some works focus on
the relationship between masked and unmasked tokens. The
authors of [13] argue that it is beneficial to constrain predicted
representations to the encoded representation space. Mean-
while, the authors of [14] proposed a cross-attention decoder
to combine masked and unmasked tokens—this work serves
as the inspiration for our paper. Building on this approach, we
extend its application to the more complex multimodal setting.
One key improvement we introduce, as demonstrated through
experiments, is that the query in the cross-attention decoder

can be either masked or unmasked tokens, adding flexibility
to the model. Further details are provided in the next section.
Other relevant research includes foundation models for remote
sensing images, also based on MIM [9].

III. METHODS

A. Overall architecture
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Fig. 2. Overview of our framework. Our proposed framework consists of two
stages: pre-training (top) on the AVIID or DIOR datasets, and fine-tuning
(bottom) on VEDAI. During pre-training, the output features of unmasked
tokens from the encoder, merged with the output features of masked tokens
from the cross-attention module, are used to reconstruct the multimodal
images. After pre-training, the decoder is discarded, and the pre-trained
encoder serves as the image encoder for fine-tuning on VEDAI.

Figure 2 shows the overall architecture of our proposed
multimodal cross-attention Masked Image Modeling (MIM)
for object detection in remote sensing images. Similar to con-
ventional SSL-based modeling [15], our framework consists of
two stages: pre-training and downstream task fine-tuning. The
pretrained encoder in the first stage is adapted to downstream
tasks, such as object detection, through fine-tuning. In the
pre-training stage, the images of different modalities are first
concatenated and masked. The unmasked tokens are fed to
the encoder to obtain their features. Unlike the MAE [6],
one of the most widely used MIM methods for pre-training,
we introduce a cross-attention module that uses the features
of unmasked tokens as anchors to infer meaningful features
of masked tokens that contains contextual information. The
features of unmasked tokens and those derived from masked
tokens are then input to the decoder to reconstruct the masked
multimodal images, such as RGB-IR images. The details of
the proposed cross-attention MIM will be elaborated in the
following section. Here, we use the Swin Transformer [16] as
the encoder, and YOLOv5 [17] as the detection neck/head in
the downstream object detection task.

B. Cross Attention MIM

As shown in Figure 1, we designed a cross-attention module
to generate features from the masked tokens by creating
dependencies between the masked and unmasked areas. Unlike
conventional MIM using masked tokens (represented by the
gray squares in Figure 1), the proposed cross-attention MIM
merges the output features of unmasked tokens (the green



squares in Figure 1) from the encoder with the features of
masked tokens from the cross-attention module (the orange
squares in Figure 1) to reconstruct the image. The features
from the masked tokens can capture the surrounding context of
the unmasked tokens, which is lost in the original masked to-
kens set as null. This approach allows the encoder to be trained
more effectively, capturing more generic and comprehensive
features of the image, which benefits downstream tasks.

The cross-attention mechanism can be formulated as fol-
lows:

Attention(Qm,Ku, Vu) = softmax
(
QmKT

u√
dk

)
Vu (1)

Where:
• Qm: Query matrix for masked tokens
• Ku: Key matrix for unmasked tokens
• Vu: Value matrix for unmasked tokens
• dk: Dimension of the key vectors

The obtained attention scores are used as the features of
masked tokens to reconstruct the masked images.

C. Reconstruction loss

We employ the l2-norm distance between the pixels of
the original image and the reconstructed image to as the
reconstruction loss, as described by the following equation:

LWe,Wd
=

1

N
·

N∑
j=1

||x− f c(x)||2, (2)

where We and Wd represent the weights of the encoder
and decoder respectively. Here, N denotes the total number
of samples, x is the original image, and f c(x) is the recon-
structed image generated by the model f c(·). When inputting
multimodal images such as RGB-IR image pairs, the IR image
is concatenated with RGB image in a channel-wise manner to
form the new input for the model, which can be given by:

x = xrgb ⊕ xir, (3)

where xrgb is RGB image, xir is IR image and x is the
multimodal input for the model, ⊕ denotes the concatenation
of images in a channel-wise manner.

IV. EXPERIMENTS

A. Experiments settings

We apply our proposed self-supervised methods to three
remote sensing image datasets for pre-training: VEDAI [18],
DIOR [19], and AVIID [20]. VEDAI consists of 1,246 images
in both 1024×1024 and 512×512 resolutions. Each image has 4
channels: RGB and IR. DIOR is a large-scale remote sensing
dataset containing over 23,000 high-resolution RGB images
with approximately 200,000 annotated object instances across
20 different classes. AVIID is composed of 3 parts, but only
part 3 consists of aerial images.AVIID-3 contains 1,280 pairs
of RGB-IR images at a 512 × 512 resolution and has been used
in this work for pre-training. For the downstream task, we only

use the VEDAI dataset for training and validation.The dataset
is divided into 10 folds and we use the first folder for the
ablation studies, and all 10 folders for the overall evaluation.
The mAP (mean Average Precision) at 0.5 IoU, i.e. MAP@.5,
is used as accuracy metrics to evaluate the object detection
performance. We have used an AdamW optimizer with a base
learning rate of 1e-5 and 0.005 weight decay. 8 Nvidia Tesla
V100 GPUs were used for the training.

B. Experiment results

1) Ablation study: We verify the effectiveness of our pro-
posed method by designing a series of ablation experiments
conducted on the first fold of the validation set of VEDAI.
a) Effectiveness of cross-attention MIM Table II shows
the effectiveness of the proposed interactive MIM using
cross-attention for pre-training on RGB images. To provide
a baseline for comparison, we first trained a model from
scratch on VEDAI for object detection without any pre-
training, achieving a score of 0.50 for mAP@.5. Next, we
applied conventional MIM such as MAE, to pre-train the
encoder on VEDAI and fine-tune the pre-trained encoder for
the downstream task. This resulted in a subpar score of 0.42,
confirming that SSL requires a large dataset to be effective
[15]. The score improved to 0.52 when pre-training the en-
coder on the larger DIOR dataset (20x larger than VEDAI).
The performance improves from 0.52 to 0.62, when we use
the proposed interactive MIM introducing a cross-attention
module into the standard MIM framework. This improvement
demonstrates that the interaction between unmasked tokens
and masked tokens enables the encoder to learn fine-grained
details in the surrounding context that are crucial for detecting
small or densely packed objects in remote sensing images.
Additionally, we also use unmasked tokens as the query matrix
Q to generate its features through the cross-attention module.
As expected, the performance was lower than the previous
approach since partial information is missing when using the
theirs features instead of original unmasked tokens.
b) Effectiveness of multimodal interactive MIM Table III
also shows the effectiveness of the proposed interactive MIM
when using multimodal images. Compared to the baseline only
uses RGB images, the new baseline using multiple modal-
ities significantly improves from 0.50 to 0.63 in mAP@.5,
demonstrating the effectiveness of multimodal learning for the
object detection in remote sensing. Moreover, the performance
further improves to 0.64 when using proposed interactive
MIM. However, the AVIID dataset contains only 1246 images,
which limits the power of the proposed method. We augmented
the data by resizing the images from 480x480 pixels to
512x512 pixels and then splitting them into 4256 images.
Then the performance improves to 0.68, demonstrating that
our proposed method is also effective on multimodal images.
c) Impact of mask size The varying size of objects, especially
small objects, is a major challenge in object detection within
remote sensing images. The impact of applying different
mask sizes in pre-training, based on our proposed method,
on the downstream object detection task is shown in Table



TABLE I
CLASS-WISE OVERALL EVALUATION OF THE PROPOSED METHODS FOR OBJECT DETECTION IN REMOTE SENSING IMAGES.

Model Modality Car Pickup Camping Truck Other Tractor Boat Van mAP.5

YOLOv3 [21] RGB 0.83 0.71 0.69 0.59 0.48 0.67 0.33 0.55 0.61
RGB + IR 0.84 0.72 0.67 0.62 0.43 0.65 0.37 0.58 0.61

YOLOv4 [22] RGB 0.84 0.73 0.71 0.59 0.52 0.66 0.34 0.60 0.62
RGB + IR 0.85 0.73 0.72 0.63 0.49 0.69 0.34 0.55 0.62

YOLOv5s [23] RGB 0.80 0.68 0.66 0.51 0.46 0.64 0.22 0.41 0.55
RGB + IR 0.81 0.68 0.69 0.55 0.47 0.64 0.24 0.46 0.57

YOLOv5m [23] RGB 0.81 0.70 0.66 0.54 0.47 0.67 0.36 0.50 0.59
RGB + IR 0.83 0.72 0.68 0.59 0.46 0.66 0.33 0.57 0.61

YOLOv5l [23] RGB 0.81 0.72 0.68 0.57 0.46 0.71 0.36 0.55 0.61
RGB + IR 0.83 0.72 0.70 0.64 0.48 0.63 0.40 0.56 0.62

YOLOv5x [23] RGB 0.82 0.72 0.68 0.59 0.48 0.66 0.39 0.62 0.62
RGB + IR 0.84 0.73 0.70 0.61 0.50 0.67 0.39 0.57 0.62

YOLOrs [4] RGB 0.85 0.73 0.70 0.51 0.43 0.77 0.19 0.39 0.57
RGB +IR 0.84 0.78 0.69 0.53 0.47 0.68 0.21 0.58 0.60

Ours RGB 0.81 0.74 0.64 0.63 0.53 0.63 0.53 0.61 0.64
RGB + IR 0.80 0.79 0.70 0.73 0.45 0.72 0.53 0.68 0.68

TABLE II
ABLATION STUDY ON THE EFFECTIVENESS OF INTERACTIVE MIM USING
CROSS-ATTENTION AS PRE-TRAINING FOR THE OBJECT DETECTION TASK.

Modality mAP@.5 pre-training datasets Cross Attention

VEDAI DIOR Q masked Q unmasked

RGB

0.50 (Training from scratch, w/o pre-training)
0.42 ✓
0.52 ✓
0.62 ✓ ✓
0.60 ✓ ✓

TABLE III
ABLATION STUDY OF USING INTERACTIVE MIM AS PRE-TRAINING FOR

THE MULTIMODAL OBJECT DETECTION TASK.

Modality mAP@.5 AVIID Cross Attention

original data expansion Q masked

RGB + IR
0.63 (Training from scratch, w/o pre-training)
0.64 ✓ ✓
0.68 ✓ ✓

IV. The results indicate that the optimal performance was
achieved with medium-sized masks of 32x32 pixels, offering a
balance between capturing global context with large masks and
localized fine-grained feature learning with small masks. The
32x32 pixel is the default mask size used in our experiments.

TABLE IV
IMPACT OF APPLYING MASKS WITH DIFFERENT SIZES IN PRE-TRAINING

ON DOWNSTREAM OBJECT DETECTION TASK.

Mask size 16 32 64

mAP@.5 0.63 0.68 0.61

2) Overall evaluation: Table I compares our proposed
method with other methods on the object detection task
on the benchmark VEDAI dataset. Our model demonstrates
superiority in both single modality using RGB images and
multimodality using RGB+IR images. Notably, our model also
proves effective in detecting pickups both in single moality,
which are easily confused with trucks, and in detecting rela-

(a) Ground truth (b) RGB w/o MIM (c) RGB with MIM (d) RGB+IR with MIM (e) RGB+IR with MIM+CA

Fig. 3. Visual illustration of the effectiveness of the proposed interactive MIM
for multimodal object detection in remote sensing images.

tively small objects, such as boats.
3) Visualization: Figure 3 visually demonstrates the effec-

tiveness of the multimodal cross-attention MIM for the object
detection task. In (b), compared to the ground truth shown in
(a), several objects, such as the pickup and cars, are missing
when using only RGB images without pre-training. With pre-
training based on MIM, the pickup and more cars are detected,
as shown in (c). When using multimodal images (RGB+IR)
with conventional MIM, all the cars are detected, but the car
and pickup are still confused. Finally, when using multimodal
RGB+IR images with cross-attention MIM, all objects are
successfully detected with high accuracy.

V. CONCLUSION

The results demonstrate that integrating self-supervised
learning via MIM and multimodal data fusion significantly
improves the performance of object detection in remote sens-
ing images. Our experiments show that incorporating IR data
alongside RGB enhances the model’s capability, especially for
small and occluded objects. The proposed interactive MIM,
which introduces a cross-attention module to establishe the
interaction between unmasked and masked tokens, overcomes
the shortcomings of conventional MIM. This approach en-
courages the encoder to learn a more holistic understanding
of the image content, benefiting downstream object detection
tasks in remote sensing images. Although our work is initially
proposed for remote sensing, it can also be extended to other
domains, applying to more scenarios with limited resources.
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