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Abstract
Multimodal large language models (MLLMs)
have demonstrated great performance on visual
question answering (VQA). When it comes to
knowledge-based Visual Question Answering
(KB-VQA), MLLMs may lack the specialized do-
main knowledge needed to answer questions, ne-
cessitating the retrieval of necessary information
from external knowledge sources. Previous works
like Retrival-Augmented VQA-v2 (RAVQA-v2)
focus on utilizing as much input information,
such as image-based textual descriptions and re-
trieved knowledge, as possible to improve perfor-
mance, but they all overlook the issue that with
the number of input tokens increasing, inference
efficiency significantly decreases, which contra-
dicts the demands of practical applications. To ad-
dress this issue, we propose Retrieval-Augmented
MLLMs with Compressed Contexts (RACC).
RACC learns to compress and aggregate retrieved
knowledge for a given image-question pair, gen-
erating a compact modulation in the form of
Key-Value (KV) cache to adapt the downstream
frozen MLLM, thereby achieving effective and
efficient inference. RACC achieves a state-of-the-
art (SOTA) performance of 63.92% on OK-VQA.
Moreover, it significantly reduces inference la-
tency by 22.0%-59.7% compared to the promi-
nent RAVQA-v2. Abundant experiments show
RACC’s broad applicability. It is compatible with
various off-the-shelf MLLMs and can also handle
different knowledge sources including textual and
multimodal documents.

1. Introduction
Multimodal large language models (MLLMs) have attracted
wide research attention, demonstrating great zero-shot per-
formances among various visual question answering (VQA)
datasets. However, in practical applications, generating ac-
curate answers to specific questions necessitates not just a
precise grasp of image content, but also human common-
sense or domain-specific knowledge. This category of VQA

tasks is known as knowledge-based VQA (KB-VQA). Given
that knowledge parameterized within MLLMs is static and
limited, utilizing an external knowledge source to furnish
necessary information to MLLMs emerges as a dependable
strategy for addressing KB-VQA challenges.

In previous studies of KB-VQA, a line of works (Hu et al.,
2023a; Khademi et al., 2023; An et al., 2024) utilize knowl-
edge from very large MLLMs (GPT-4) or LLMs (ChatGPT,
GPT-3) to aid in answering question. However, the static
knowledge in such models may become out-of-date, and
the models may generate incorrect content due to halluci-
nations, particularly in specific domains. What’s more, the
high cost associated with using these models is also a no-
table downside. Another line of research which retrieves
knowledge from updateable external knowledge sources,
such as knowledge graphs (Speer et al., 2017), documents
(Luo et al., 2021), etc., is more reliable and better aligns
with the needs of real-world applications.

Retrieval Augmented VQA-v2 (RAVQA-v2) tackles the
problem of KB-VQA by performing straightforward
retrieval-augmented generation (RAG) on MLLMs. How-
ever, it has a notable shortcoming, i.e. low efficiency during
inference. In the inference process of RAVQA-v2, the K
retrieved documents are first concatenated with the image-
question pair and inputted into the MLLM to obtain K
candidate answers, then the final answer is selected from
the K candidates by their joint probabilities. The process is
undoubtedly very time-consuming and resource-intensive.
Moreover, the retrieved documents can be quite long and
often contain a lot of redundant information, which can
further exacerbate the problem of low inference efficiency.

Inference efficiency is a key concern in practical appli-
cations of MLLMs. However, previous work, including
RAVQA-v2, has focused on how to use as much knowl-
edge as possible to improve the accuracy of answers while
neglecting the fact that inference efficiency significantly
declines as the number of input tokens increases.

Therefore, we aim to design an innovative RAG framework
based on MLLMs, which can utilize the information of
retrieved knowledge in an effective and efficient manner to
improve MLLMs’ inference efficiency for KB-VQA.
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Furthermore, RAVQA-v2 and many previous works (Luo
et al., 2021; Lin & Byrne, 2022; Lin et al., 2022) on KB-
VQA primarily focus on using textual documents as ex-
ternal knowledge sources, and there has been relatively
less research on using multimodal documents as knowledge
sources. However, multimodal documents are an impor-
tant knowledge resource in real-world applications, which
can provide knowledge in handling KB-VQA (Raffel et al.,
2020; Hu et al., 2023b). What’s more, MLLMs inherently
have the ability to directly comprehend multimodal knowl-
edge. Therefore, we aim to explore the effects of multimodal
documents in RAG applications based on MLLMs.

In this paper, we propose RACC, i.e. Retrieval-Augmented
MLLMs with Compressed Contexts, an effective and ef-
ficient RAG framework for KB-VQA based on MLLMs.
RACC consists of three phases, namely compression learn-
ing, information aggregation, and modulation generation.
Our contributions can be summarized as follows:

• RACC is the first work to integrate prompt compres-
sion technology with KB-VQA, proposing an inno-
vative framework for efficient RAG on MLLMs. We
identify four key issues in training RACC and propose
four corresponding methods to address them.

• RACC achieves excellent performance comparable to
many competitive baselines on two KB-VQA datasets
at a very low cost, reaching a state-of-the-art (SOTA)
performance of 63.92% on the OK-VQA dataset.

• RACC achieves outstanding enhancements in terms of
time and space efficiency. For time efficiency, RACC
can save 22.0-59.7% of inference latency compared to
RAVQA-v2. For space efficiency, RACC supports pre-
saving documents that occupy a large storage footprint
in the form of compressed prompts to save disk space.

• RACC can be applied to various off-the-shelf MLLMs,
but also can handle different knowledge sources such
as textual documents and multimodal documents.

2. Related Work
2.1. Multimodal Large Language Models

Multimodal large language models (MLLMs) bridge the gap
between text and other modalities and unify understanding
of different modalities. Although recent MLLMs (Alayrac
et al., 2022; Li et al., 2023; Dai et al., 2023; Bai et al.,
2023; Liu et al., 2023; Hu et al., 2024) have demonstrated
excellent zero-shot performance in VQA tasks, they require
the assistance of external knowledge sources for questions
that require specialized domain knowledge.

In this work, we investigate two main architectures of
MLLMs: encoder-decoder MLLMs including BLIP2-
FlanT5XL (Li et al., 2023) and InstructBLIP-FlanT5XL
(Dai et al., 2023), and the decoder-only MLLMs including
InstructBLIP-Vicuna7B and miniCPM-v2 (Hu et al., 2024).

2.2. Knowledge-based Visual Question Answering

Knowledge-based Visual Question Answering (KB-VQA),
anchored by the given images, works to answer questions
that require external knowledge. KB-VQA is an important
multimodal task and has garnered widespread attention.

Early KB-VQA works (Luo et al., 2021; Marino et al., 2021)
train specialized VQA models with designated knowledge
sources such as ConceptNet KnowledgeGraph (Speer et al.,
2017), textual document sources like Google Search (Luo
et al., 2021) or WikiData (Vrandečić & Krötzsch, 2014),
and image sources like Google Image Search etc.. However,
these methods often demonstrate limited performance.

With the emergence of pretrained large language models
(LLMs), they have become a focus of research in this
field. A series of works utilize very large LLMs like GPT-3
(Brown et al., 2020), chatGPT to generate auxiliary knowl-
edge or directly answer the questions (Gui et al., 2021; Lin
et al., 2022; Yang et al., 2022; Shao et al., 2023; Hu et al.,
2023a), achieving performance breakthroughs. Due to the
high costs associated with using very large LLMs like GPT-
3, and the fact that the knowledge within them can be out-
dated and incorrect, another line of work focuses on how to
conduct retrieval-augmented generation (RAG) on smaller
LLMs with various external knowledge bases for KB-VQA
(Gui et al., 2021; Gao et al., 2022; Lin & Byrne, 2022; Lin
et al., 2024a; Hu et al., 2023b). However, the above methods
all face the same problem: they require converting images
into textual descriptions such as captions, object tags, etc.,
so that LLMs can understand (Gui et al., 2021; Gao et al.,
2022; Shao et al., 2023; Lin et al., 2024a), which may result
in loss of critical visual information, but also significantly
increases the number of input tokens, leading to a notable
increase in inference latency.

With the advent of multimodal large language models
(MLLMs), the aforementioned problems have been perfectly
solved. Recent works have made great progress by utilizing
MLLMs. A line of works proposes to combine MLLMs and
LLMs together (Khademi et al., 2023; Xenos et al., 2023;
An et al., 2024; Liang et al., 2024; 2025). MM-Reasoner
(Khademi et al., 2023) leverages vision APIs and rationales
generated by GPT-4 to fine-tune MLLMs such as Flamingo.
RAVQA-v2 (Lin et al., 2024a) is the first work to build a
simple RAG framework on top of MLLMs. However, it
suffers from low efficiency during the inference stage and
doesn’t study the impact of multimodal documents on RAG
applications of MLLMs.
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Figure 1. The structural framework of RACC. An image and a question are first input into the multimodal retriever to retrieve K relevant
documents. During the compression learning phase, the K documents, image, and question are input into HyperMLLM to obtain their
corresponding compressed prompts. In the information aggregation phase, the obtained compressed prompts are aggregated to form the
document-based compressed prompts of vision and question. In the modulation generation phase, the output of the aggregation network is
processed by a set of MLPs to obtain the KV cache for each layer of the downstream BaseMLLM. At the same time, the BaseMLLM
receives the image and question as input and generates the final answer.

2.3. Prompt Compression

Given the inherent redundancy in natural language, prompt
compression methods have been extensively studied to im-
prove the efficiency of LLM inference. Prompt compres-
sion can be categorized into task-aware and task-agnostic
methods. Since the generation of compressed prompts that
perform well across diverse tasks is particularly challenging,
we focus on the task-aware prompt compression paradigm.

An important line of work Jiang et al. (2023a); Pan et al.
(2024); Jiang et al. (2023b) estimates the importance of the
tokens within the original prompts by the information-based
metrics and removes redundant tokens. Xu et al. (2024)
trains a compressor model, which cuts redundant tokens in
the passage based on the question.

In addition to the above methods, which detect and remove
inherent redundant tokens in long contexts at the natural
language level, a series of works aims at compressing long
contexts into parameters, leveraging the capability of LLMs
to implicitly eliminate redundant information within long
contexts. Mu et al. (2024) supposes that each prompt is

composed of a task instruction part and a content part, and
finetunes LLMs to compress the task instruction part into
several gist tokens. Chevalier et al. (2023); Wang et al.
(2024); Tack et al. (2024) proposed to compress long con-
texts into compact summary vectors, parameters of a Lora-
module and KV Cache, respectively. Such kind of methods
have already demonstrated significant research value and
strong research potential. In this paper, we extend these
methods to the KB-VQA task.

3. Methods
In this section, we introduce our proposed RACC, i.e.
Retrieval-Augmented MLLM with Compress Contexts.
RACC can be divided into three phases: compression learn-
ing, information aggregation, and modulation generation,
which will be detailed in the corresponding subsections.
Based on a profound understanding of the task and an anal-
ysis of the shortcomings in RAVQA-v2, we identify four
key issues that need to be addressed in training RACC and
further propose four methods to address them, which is
elaborated in Subsection 3.2 and 3.3.
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Model Image-base Textual Description Base Model knowledge source VQA Accuracy
Specialized baselines

KRISP C 38.35
VRR Caption GS 45.08
MALI miniGPT4 + C 56.69

REVIVE Caption + Object Tags WD + GPT-3 58.00
REVEAL T5-Large WIT + CC + WD + V2 59.10

Baselines on LLMs
KAT Caption + Object Tags T5-large W 44.25

KGenVQA Caption UnifiedQA PNP 45.40
PICa Caption + Object Tags GPT-3 48.00

RA-VQA OCR + Caption + Object Tags T5-large GS 51.22
KAT-Ensemble Caption + Object Tags T5-large W + GPT-3 54.41

RA-VQAv2 OCR + Caption + Object Tags T5-large GS 54.85
Prophet Caption GPT-3 MCAN 58.27

PromptCap Caption GPT-3 ICE (16) 60.40
Baselines based on MLLMs

PaLI PaLI-15B 56.50
Flamingo Flamingo 57.80

BLIP2 BLIP2-FlanT5XL 31.76
RA-VQAv2 BLIP2-FlanT5XL GS 60.40
RA-VQAv2 InstructBLIP-FlanT5XL GS 62.90

Baselines based on both LLMs and MLLMs
MM-Reasoner OCR + Caption + Object Tags... Flamingo GPT-4 59.20

ASB Caption LLAMA-2 PNP + ICE (14) 59.07
DKA Caption LLAMA-2 PNP + ChatGPT + ICE (14) 62.10

Our proposed framework based on MLLMs
RACC-homo BLIP2-FlanT5XL WIT 55.07
RACC-homo InstructBLIP-FlanT5XL WIT 59.17
RACC-homo BLIP2-FlanT5XL GS 55.26
RACC-homo InstructBLIP-FlanT5XL GS 59.49

RACC-hetero BLIP2-Vicuna7B GS 61.65
RACC-hetero InstructBLIP-Vicuna7B GS 63.92

Table 1. Model Performance on the OK-VQA dataset. Knowledge source abbreviations: C: ConceptNet; CC: CC12M; V2: VQA-2;
W: Wikipedia; WD: WikiData; WIT: Wikipedia Image-Text; GS: Google Search; GI: Google Images; ICE: In-context Examples; PNP:
Plug-and-Play VQA captioner (Tiong et al., 2022). Please refer to Section 3.4 for the implications for RACC-homo and RACC-hetero.
In the last two rows of results of the RACC-hetero, the hyperMLLM used is InstructBLIP-FlanT5XL.

3.1. Problem Setup

A typical VQA dataset can be divided into three components:
images, questions, and answers, which can be represented
using the notation {v, q, a}n. Following Lin et al. (2024a),
we consider a realistic scenario of KB-VQA: an MLLM that
takes an image vi and its related question qi as input, where
the knowledge required to answer the question is supplied
by external knowledge sources. In this paper, we study two
important knowledge sources in real-world applications:
multimodal documents and textual documents.

We utilize an off-the-shelf frozen multimodal retriever to re-
trieve K documents from the given knowledge source condi-
tioned on the provided image and question. The K retrieved
documents is denoted as {di}K = {d1i , d2i , . . . , dKi }.

The confidence scores that the multimodal retriever outputs
for each of the K documents, i.e. the document retrieval
scores, are denoted as {pi}K = {p1i , p2i , . . . , pKi }. The
MLLM needs to leverage these retrieved documents to pro-
vide the correct answer to the question qi based on vi.

3.2. Phase 1: Compression Learning

The first phase of RACC is to compress the retrieved doc-
ument into soft prompts of a specified length. Phang
et al. (2023) and Tack et al. (2024) introduce the idea of
amortized-based meta-learning into the online learning task,
which brings us inspiration. We utilize MLLMs of encoder-
decoder architecture (such as BLIP2-FlanT5XL (Li et al.,
2023), InstructBLIP-FlanT5XL (Dai et al., 2023), etc.) with
a set of learnable prompts to compress the input information.

We denote the hyperMLLM by Mhyper and represent the
encoder and decoder within the hyperMLLM by ENChyper

and DEChyper, respectively. Each retrieved document is
first fed into ENChyper. Subsequently, DEChyper takes the
output from the encoder and the learnable prompts θd as
inputs, and the resulting output is the compressed prompts
corresponding to that document. After such a compression
process, the contextual information of each document is
preserved in its compressed prompts. Consequently, in sub-
sequent processing steps, the number of tokens that need to
be processed for each document is reduced from the original
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token count of the document to the predefined length of θd.
The compressing process can be denoted as follows:

θki = Mhyper(d
k
i , θd) = DEChyper(ENChyper(d

k
i ), θd)

(1)
θki denotes the compressed prompts of the document dki .

We also compress the given image-question pair in a similar
manner. Note that the predefined learnable prompts for
compressing the image-question pairs are different from θd,
which we denote as θvq, the compression process of the
given image-question pair is denoted as follows:

θvqi = Mhyper(CONCAT(vi, qi), θvq) (2)

We name this phase the compression learning phase, as the
learnable prompts need to be trained to acquire the ability to
compress document context information. We then identify
two key issues in this phase and propose corresponding
solutions, as described below:

Issue 1: How to initialize the learnable prompts?

Analysis: First, the lengths of the two sets of learnable
prompts, i.e. θd and θvq, are critical in the compression
learning process. If the prompts are too short, the amount of
compressed semantic information that they can retain will
be insufficient. In contrast, if the prompts are too long, the
difficulty of training increases significantly.

We suggest determining the lengths of two sets of learnable
prompts by experiments. To determine the optimal lengths
of these prompts, we conducted a series of comparative
experiments. We treat the lengths of θd and θvq as hyper-
parameters and systematically explore their impact on the
compression learning process.

Additionally, the initialization weights of the learnable
prompts also play a crucial role in the hyperMLLM’s ability
to compress inputs, especially in the early training stage.

Solution: Therefore, we propose a method to initialize learn-
able prompts called Prompt Initialization with hard Prompt
Embeddings (PIPE). We begin by manually designing two
sets of hard prompts. For example, the hard prompt corre-
sponding to θd is “Summarize the key information of the
given passage in a concise manner.” The hard prompts are
then processed by the tokenizer and the embedding layer of
hyperMLLM to generate their embeddings. Subsequently,
these embeddings are used to initialize the weights of the
learnable prompts θd and θvq .

Issue 2: How to deal with the irrelevant documents?

Analysis: The documents retrieved by the multimodal re-
triever may sometimes be completely irrelevant to the given
image and question. Even if they are relevant, they may
not provide the model with useful information to give the
correct answer.

However, RAVQA-v2 (Lin et al., 2024a) does not consider
the impact of irrelevant documents and treats both irrel-
evant documents and useful documents in the same way,
i.e. concatenating retrieved documents with corresponding
image-question pairs and inputting them into MLLMs to
calculate the loss based on the correct answer. In clearer
terms, RAVQA-v2 forces MLLMs to generate correct an-
swers even based on irrelevant documents, which imposes
incorrect supervised signals on the MLLM and can signifi-
cantly harm the training process.

Solution: Therefore, to avoid the negative impact on the
compression learning process caused by the involvement
of irrelevant documents in training, we propose a method
called Pseudo-Relevance-based Backpropagation Dropout
(PRDB), which is introduced as follows:

Following Luo et al. (2021); Lin et al. (2024a), we con-
sider a document to be pseudo-relevant if it contains any of
the human-annotated answers. After all K retrieved doc-
uments are converted into compressed prompts, we apply
a stop gradient operation, i.e. STOPGRAD(Mhyper(d

k
i , θd))

to the compressed prompts of those documents which are
considered pseudo-irrelevant. Only the gradients of the
compressed prompts of the pseudo-relevant documents will
be backpropagated to the learnable prompts. In this way,
after loss calculation and gradient backpropagation, PRDB
prevents the gradients of the compressed prompts corre-
sponding to irrelevant documents from leading the learnable
prompts’ weights to update in the wrong direction, ensuring
the stability of the compression learning phase.

3.3. Phase 2: Information Aggregation

After the compression learning phase, we now have a set
of compressed prompts of the retrieved documents {θi}K ,
θvi , θqi and θvqi . In this section, we detail the process of
using θvqi to aggregate useful semantic information from
{θi}K . We further identify two key issues in designing
the information aggregation process and propose two corre-
sponding methods to address them. We name this phase as
the information aggregation phase.

Issue 3: How to enhance the semantic information in the
compressed prompts of documents associated with the
given image and question?

Analysis: The retrieved documents often contain a large
number of redundant tokens, with only a small portion of
tokens being relevant to the question and the image, which
can be useful for answering the question and should be paid
more attention to. Even after compression, the compressed
prompts can still contain redundant semantic information.
We think that leveraging the information from the image
and the question to enhance the semantic information in the
compressed prompts of documents is essential.

5
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Solution: Based on the above, we propose a method
called DCSE, i.e. Decoupled Compression for Semantics
Enhancement. Our method begins by decoupling the given
image-question pair (vi, qi) and input them separately into
the hyperMLLM with θvq, generating θvi and θqi , which
can be denoted as follows:

θvi = Mhyper(vi, θvq)

θqi = Mhyper(qi, θvq)
(3)

Compared with θvqi obtained by jointly compressing the
image-question pair, θvi and θqi derived from decoupled
compression can better preserve the semantic information
contained in both the image and the question. In the re-
trieved documents, the semantic information related to either
the image or the question is of significance for answering
the question. Therefore, we employ the concatenated θvi
and θqi to enhance the semantic information of {θi}K via
cross-attention. Here, we adopt a original cross-attention
block, where {θi}K serves as the query, and the concate-
nated θvi and θqi act as both the key and the value. Denoting
a original cross-attention block (Vaswani et al., 2017) as CA,
the computational process of DCSE is denoted as follows:

{θ∗i }K = CA({θi}K , CONCAT(θvi , θqi)) (4)

{θ∗i }K represents the query-enhanced compressed prompts
of documents.

Issue 4: How to utilize the document retrieval scores to
guide the aggregation process?

Analysis: In the retrieval process, most retrievers assign
a confidence score to each retrieved document based on
metrics such as embedding similarity. In the following text,
we use ”document retrieval score” to represent this score.

While judging whether a document can truly answer a ques-
tion based on an image is difficult, the retrieval score offers
a reliable metric for this purpose. Based on the principles
of retrieval mechanisms, documents with higher retrieval
scores are generally considered to provide more relevant
and useful information for the given image and question.
Lin et al. (2024a) utilizes the retrieval scores as a reference
metric for selecting the final answer in the inference process,
but it does not use this crucial metric in the training process.

Solution: Based on the above, we propose a method called
Retrieval-Guided Cross-Attention (RGCA). RGCA is an
improvement of the original cross-attention mechanism, de-
signed to gather the semantic information from {θ∗i }K that
can assist in answering questions into θvqi , guided by {pi}K .
RGCA not only considers the embedding similarity between
compressed prompts but also assigns more attention to the
compressed prompts of documents with higher retrieval
scores. Refer to the appendix for the pseudo code of RGCA.

We denote a retrieval-guided cross-attention block as CAr,
whose forward pass is denoted as:

θ∗vqi = CAr(θvqi , {θ∗i }K , {pi}K) (5)

The number of retrieval-guided cross-attention blocks con-
tained in our framework is set to nr = 3.

3.4. Phase 3: Modulation Generation

After the information aggregation phase, we have the
documents-based compressed prompts of vision and ques-
tion, which is denoted as θ∗vqi . Then we convert θ∗vqi into a
P-Tuning v2 modulation for the downstream baseMLLM,
which involves adding a small amount of KV cache at
each layer of the baseMLLM. Given that different layers
of MLLM process information at varying levels of abstrac-
tion and complexity, we employ a set of m Multi-Layer
Perceptrons (MLPs) for projecting θ∗vqi into the additional
KV cache of each layer in the baseMLLM, where m is the
number of layers within the baseMLLM. Here, we denote
the generated P-Tuning v2 modulation as Θi and the frozen
baseMLLM as Mbase.

Our framework can be optimized in an end-to-end manner
using the loss function L, namely the language modeling
loss based on the ground truth answer:

min
θd,θvq,h

1

N

N∑
i=1

L(Mbase(vi, qi; Θi), ai) (6)

h includes a single CA block, nr CAr blocks and a
set of MLPs. N is the training batch size. RACC of-
ferss two variants: RACC-homogeneous and RACC-
heterogeneous, abbreviated as RACC-homo and
RACC-hetero, respectively. In the setup of RACC-homo,
the hyperMLLM and the baseMLLM are identical, which
means that the MLLM learns to compress contexts for itself.
For RACC-hetero, the hyperMLLM and the baseMLLM
differ in either structure or weight.

4. Experiments
4.1. Datasets and Knowledge Sources

We evaluate our framework on OK-VQA (Marino et al.,
2019), which is the most widely studied KB-VQA dataset.
We also conduct experiments on AOK-VQA (Schwenk et al.,
2022), which is the successor of OK-VQA.

In terms of the knowledge source, following Lin et al.
(2024a), we adopt Google Search (Luo et al., 2021) for
OK-VQA and AOK-VQA, which is a textual document
base comprised of nearly 200 thousand documents. We also
carefully curated a multimodal document source from the
Wikipedia Image-Text dataset (Srinivasan et al., 2021) for
OK-VQA to show that our framework also works well with
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Method Base Model Direct Answer
Val Test

ClipCap 30.9 25.9
LXMERT 30.7 25.9

KRISP 33.7 27.1
KGenVQA UnifiedQA 39.1 -

GPV-2 T5-Large 48.6 40.7
REVEAL T5-Large 52.2 -

PromptCap GPT-3 56.3 59.6
MM-Reasoner Flamingo + i-Code - 60.2

ASB LLAMA-2 58.6 57.5
RACC-homo InstructBLIP-FlanT5XL 62.1 58.1

Table 2. The results on the AOK-VQA dataset. We use the GS
knowledge for AOK-VQA here.

multimodal knowledge sources. We use GS and WIT to
refer to these two knowledge sources.

We use FLMR (Lin et al., 2024a) and PREFLMR (Lin et al.,
2024b) as retrievers for document retrieval. The FLMR re-
triever was used to retrieve information from the GS knowl-
edge source, while the PREFLMR retriever was used to
retrieve information from the WIT knowledge source.

4.2. Training Setup

Most of the experiments are conducted on a 32G V100 GPU.
The chosen optimizer is AdamW. During the first 1000 steps
of training, the learning rate linearly increases from 10−5 to
10−4. Subsequently, a cosine-decaying scheduler is applied
to the learning rate to reduce it from 10−4 to 0. The batch
size is set to 2. The hyperparameter K, i.e. the number
of retrieved documents for each image-question pair, is
always set to 5. Note that during the training process of
RACC, all parameters of the hyperMLLM, baseMLLM, and
multimodal retrievers are kept frozen.

4.3. Evaluation

We evaluate the performance of our framework using the
official VQA Accuracy (Marino et al., 2019). Let ai be
the list of human-annotated answers of the given image-
question pair (vi, qi), and yi be the model’s outputs. The
VQA accuracy for (vi, qi) is calculated as follows:

VQAACCURACY(ai, yi) = min(
#S(yi)

3
, 1) (7)

where #S(yi) is the occurrence of yi in ai. The VQA
accuracy on the entire dataset is obtained by averaging the
accuracy of all image-question pairs.

4.4. Comparative Study

In this section, we will elaborate on the advantages of RACC
compared to previous works from the following three as-

pects: performance, cost, and inference efficiency.

First of all, RACC outperforms many competitive base-
lines. The performance comparison of RACC with other
competitive baselines on the OK-VQA dataset is presented
in Table 1. Based on InstructBLIP-FlanT5XL, RACC-
homo with GS as the knowledge source reaches an ac-
curacy of 59.65%. With WIT as the knowledge source,
our framework achieves 59.17%. When adopting RACC-
hetero, with InstructBLIP-FlanT5XL as the hyperMLLM
and InstructBLIP-Vicuna7B as the baseMLLM, we achieve
a state-of-the-art (SOTA) accuracy of 63.92%.

The results of AOK-VQA are shown in Table 2. Since
the GS knowledge source we use for AOK-VQA is not de-
signed for it, the documents in GS may not provide the
required knowledge for all questions in AOK-VQA. How-
ever, RACC-homo based on InstructBLIP-FlanT5XL still
achieves a state-of-the-art (SOTA) accuracy of 62.1% on the
validation set. The performance on the test set is 58.1%.

In terms of cost, our work has notable advantages. First, we
do not utilize any image-based textual descriptions provided
by external APIs or models (Gui et al., 2021; Lin & Byrne,
2022; An et al., 2024), such as captions, object tags, OCR
etc. Second, RACC does not use any very large LLMs
(ChatGPT, GPT-3) or MLLMs (GPT-4) but still achieves
excellent performance even with small-scale MLLMs.

The inference efficiency is the main concern of this paper.
RACC demonstrates significant advantages in inference ef-
ficiency compared to RAVQA-v2, which is shown in Table
3. In Table 3, the inference efficiency and disk usage of
RACC are demonstrated under two scenarios: ”w/o pre”
and ”w pre”. Here, ”w pre” refers to the scenario where
the compressed encodings of retrieved documents are pre-
saved before the inference process, which is shown in Figure
1. We also present the inference efficiency and disk usage
of RAVQA-v2. When pre-saving compressed prompts, we
achieve a substantial reduction of 59.7% in inference latency
and 91.0% in disk space usage compared to RAVQA-v2.
Even without pre-saved compressed prompts, the inference
latency can still be reduced by 22.0%.

RAVQA-v2 RACC-homo
w/o pre w pre

Eval Time (s) 1.1242 0.8768 0.4576
Disk Usage (M) 6.9680 6.9680 0.6280

Table 3. Comparison of inference efficiency between RAVQA-v2
and RACC when adopting the WIT knowledge source. “Eval time”
and “Disk Usage” are measured for a single image-question pair
input. “w pre” indicates pre-saving the compressed prompts of
retrieved documents before inference. The MLLM used in both
two frameworks is InstructBLIP-FlanT5XL.
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No. PIPE DCSE RGCA PRDB VQA Accuracy (%)
1 57.60
2 ✓ 58.18 (+0.58)
3 ✓ ✓ 58.49 (+0.89)
4 ✓ ✓ ✓ 59.26 (+1.66)
5 ✓ ✓ ✓ 58.86 (+1.26)
6 ✓ ✓ ✓ 58.95 (+1.35)
7 ✓ ✓ ✓ 59.07 (+1.47)
8 ✓ ✓ ✓ ✓ 59.49 (+1.89)

Table 4. The results of ablation studies of RACC. The GS knowl-
edge source is adopted here. The ablation experiments are con-
ducted based on RACC-homo with InstructBLIP-FlanT5XL.

L(θvq) L(θd) VQA Accuracy
8 12 58.77
8 16 58.83

12 12 58.96
12 16 59.07
12 20 58.56

Table 5. RACC-homo’s results of the comparative experiments on
the length of the predefined learnable prompts θvq and θd. The
two sets of learnable prompts are randomly initialized here.

4.5. Ablation Studies

We propose four methods to improve the aggregation pro-
cess of compressed contexts and conduct ablation studies to
verify their effectiveness. The settings and results of abla-
tion studies are depicted in Table 8 and Table 5. Note that
we adopt RACC-homowith the GS knowledge source in the
ablation studies, where the hyperMLLM and baseMLLM
are both initialized from InstructBLIP-FlanT5XL. Refer to
the appendix for more details of the ablation studies.

Firstly, comparing lines 2 and 3, as well as lines 7 and 8,
we can observe that the PIPE method brings improvements
of 0.31% and 0.42% under different settings. From the
difference between lines 3 and 4 in Table 8, we observe that
the DCSE method brings an improvement of 0.77%. On the
other hand, the RGCA method results in a performance gain
of 0.37%, as shown in lines 3 and 5. Last but not least, the
performance difference between lines 6 and 8 shows that
the PRDB method leads to a performance gain of 0.54%.

We also investigate into the settings of some important hy-
perparameters. We first explore how to set the length of
learnable prompts (i.e. L(θvq) and L(θd)), and the results
are shown in Table 5. We select the best configuration, set-
ting L(θvq) and L(θd) to 12 and 16, respectively. All other
experiments in this paper are conducted using this configura-
tion. In the appendix, we provide comparative experiments
on the hyperparameter K.

4.6. Broad Applicability of RACC

RACC shows broad applicability from multiple aspects.

1. RACC can utilize different types of knowledge sources
to aid its efficient RAG process. We evaluate RACC with
two knowledge sources, i.e. WIT and GS, which represent
multimodal documents and textual documents.

2. RACC can leverage any off-the-shelf multimodal re-
triever for retrieval, and our proposed RGCA method en-
ables RACC to benefit from advancements in multimodal
retrieval technology.

3. RACC can be applied to any off-the-shelf MLLMs.
We further conduct experiments under the setup of RACC-
hetero and present the results in Table 6. Experiments
show that RACC-hetero performs well across different
baseMLLMs. The setup of RACC-hetero is also of practi-
cal significance: When it is not feasible to directly fine-tune
the baseMLLM due to resource constraints, our framework
can still work by adopting a much smaller hyperMLLM to
adapt the larger frozen baseMLLM.

baseMLLM VQA Accuracy
miniCPM-v2 48.21

BLIP2-FlanT5XL 54.91
InstructBLIP-FlanT5XL 59.49

BLIP2-Vicuna7B 61.65
InstructBLIP-Vicuna7B 63.92

Table 6. RACC-hetero’s experimental results on OK-VQA us-
ing different MLLMs as the baseMLLM. The hyperMLLM is fixed
as InstructBLIP-FlanT5XL here.

5. Conclusion
In this paper, we propose Retrieval-Augmented MLLMs
with Compressed Contexts (RACC). RACC has achieved
the following accomplishments in the area of KB-VQA:

1. RACC achieves competitive performance at a very low
cost on challenging KB-VQA datasets.

2. As the first work to explore how to conduct efficient
RAG on MLLMs for KB-VQA tasks, RACC provides a
reliable way that not only reduces inference latency but also
significantly saves disk space.

3. RACC is applicable to different MLLMs and various
kinds of external knowledge sources.

With the rapid development of RAG technology and
MLLMs, we believe that inference latency is a key concern
in practical applications, which has often been overlooked
in previous KB-VQA works. We hope our research will
provide some inspiration for future work in this field.
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A. RAVQA-v2 reproduction
Since RAVQA-v2 does not investigate the effects of multimodal documents in its retrieval-agumented generation process,
we replicate RAVQA-v2 using our crafted WIT knowledge source based on two types of MLLMs.

The experimental results are shown in Table 7. Specifically, we follow all the experiment setup mentioned by Lin et al.
(2024a), such as the prompt template ”Question: {} Knowledge: {} Answer:”, where the Knowledge section includes both
text tokens and image tokens transformed by Qformer. It is evident that the WIT knowledge source can, to some extent,
provide the necessary knowledge for the OK-VQA dataset.

Additionally, we can observe that when using WIT as the knowledge source, the replication results of RAVQA-v2 across
different MLLMs indicate that omitting the image information leads to better fine-tuning performance.

We believe this may be due to the following two reasons: (1) The inclusion of images directly increases the number of
tokens in the knowledge section, making it more challenging for the MLLM to identify key information from the provided
knowledge. (2) The use of images likely introduces redundant information that is unrelated to the document content, as
images themselves contain a wealth of information. Furthermore, incorporating images also increases the time required for
both training and inference based on RAVQA-v2.

Overall, although RAVQA-v2 theoretically supports multimodal document-based knowledge sources, experiments show
that its performance with multimodal documents is not satisfactory.

MLLM Knowledge Source VQA Accuracy (%)

BLIP2
No Knowledge 54.10

WIT 56.26
WIT (Text Only) 56.44

InstructBLIP
No Knowledge 57.32

WIT 58.77
WIT (w/o Image) 59.12

Table 7. The performance of two types of MLLMs after finetuned on OK-VQA with the WIT knowledge source, based on the RAVQA-v2
framework.

B. Complete Ablation Studies
We identify four key issues in training RACC and further propose four methods to solve the issues. Extensive ablation
studies are conducted to verify the effectiveness the proposed four methods.

We conduct experiments on two types of MLLMs, i.e. BLIP2-FlanT5XL and InstructBLIP-FlanT5XL. Due to page
constraints of the paper content, we only present the ablation results for InstructBLIP-FlanT5XL in Table 8. We adopt
RACC-homo in the experiments of ablation studies, where the hyperMLLM and baseMLLM are both initialized from the
models listed in the ”MLLM” column of Table 8.

For RACC-homo based on BLIP2-FlanT5XL, comparing lines 2 and 3, as well as lines 7 and 8, we can observe that the
PIPE method brings improvements of 0.28% and 0.44% under different settings. The PIPE method is also effective for the
InstructBLIP-based RACC-homo, leading to performance gains of 0.31% and 0.42% as shown by lines 10 and 11, as well
as lines 15 and 16.

From the differences between lines 3 and 4, as well as lines 11 and 12 in Table 5, we can observe the effectiveness of the
DCSE method, bringing improvements of 0.55% and 0.77% respectively. The RGCA method, on the other hand, results in
improvements of 0.28% and 0.37%, as shown in lines 3 and 5, as well as lines 11 and 13 in Table 5.

Last but not least, the performance differences between lines 6 and 8 and lines 14 and 16 in Table 5 show that the PRDB
method leads to performance gains of 0.39% and 0.54% based on the two types of MLLMs.

We also plot the VQA accuracy on the validation set during the training process of the framework using different methods,
as shown in Figure 2.
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Figure 2. The VQA accuracy on the validation set during the training process of the framework using different methods.

C. Details of Different Knowledge Sources
In this section, we further introduce more details of the two knowledge sources, i.e. GS and WIT.

First of all, the word count in knowledge source documents directly affects the efficiency during training and inference in
RAG applications. Therefore, we first present some statistics of the document word counts for these two knowledge sources
in Table 9.

We employ FLMR and PREFLMR to retrieve documents from these knowledge sources. FLMR has been trained on
OK-VQA and GS, thus it has a strong capability to retrieve relevant documents from the GS knowledge source. PREFLMR
is an upgraded version of FLMR, equipped with powerful capabilities for retrieving multimodal documents that FLMR
lacks. The detailed retrieval results for OK-VQA with different knowledge sources are shown in Table 10.

Firstly, from Table 10, we can tell that there is obviously a number of irrelevant documents among the retrieved documents
in different knowledge sources.

Second, Table 11 shows that the quality of the GS knowledge base is superior to that of the WIT knowledge base. The
PPRecall@1 metric for the GS knowledge base reaches 63.59%, indicating that the document with the highest confidence
retrieved has a high probability of containing the answer to the question. The PRRecall@5 metric even reaches 88.32%.
These data highlight the advantages of GS as a knowledge source specifically designed for OK-VQA.

D. Investigation of hyperparameter K

The hyperparameter K represents the number of retrieved documents used for each image-question pair. The value of K is
typically set to 5 in this paper, consistent with RAVQA-v2. We also investigated the impact of different values of K across
various knowledge sources and the results are shown in Table 11.

On the GS knowledge base, when K = 1, RACC-homo achieved a performance of 59.65%, surpassing the 59.49%
performance when K = 5. This may be due to the high quality of the GS knowledge base, where the first retrieved document
is often likely to contain the information needed to answer the question. In such cases, setting K to a larger value might
directly introduce documents with weaker relevance, thereby affecting the performance of the whole framework.

On the WIT knowledge source, we conduct experiments with and without images. In both settings, a larger value of K
results in better performance. This may be because there are fewer documents related to the question in the WIT knowledge
source, so a larger K allows RACC to extract useful information from more documents. Furthermore, for the same value of
K, using images results in better performance in both settings, indicating that RACC can obtain valuable information from
images. Compared to the results in Table 7, we can conclude that RACC has an advantage over RAVQA2 when utilizing
multimodal document knowledge sources.

12



Title Suppressed Due to Excessive Size

MLLM No. PIPE DCSE RGCA PRDB VQA Accuracy (%)

BLIP2-FlanT5XL

1 53.77
2 ✓ 54.20(+0.43)
3 ✓ ✓ 54.48 (+0.71)
4 ✓ ✓ ✓ 55.03 (+1.26)
5 ✓ ✓ ✓ 54.76 (+0.99)
6 ✓ ✓ ✓ 54.81 (+1.04)
7 ✓ ✓ ✓ 54.76 (+0.99)
8 ✓ ✓ ✓ ✓ 55.20 (+1.43)

InstructBLIP-FlanT5XL

9 57.60
10 ✓ 58.18 (+0.58)
11 ✓ ✓ 58.49 (+0.89)
12 ✓ ✓ ✓ 59.26 (+1.66)
13 ✓ ✓ ✓ 58.86 (+1.26)
14 ✓ ✓ ✓ 58.95 (+1.35)
15 ✓ ✓ ✓ 59.07 (+1.47)
16 ✓ ✓ ✓ ✓ 59.49 (+1.89)

Table 8. The results of ablation studies on the design of our proposed framework. The GS knowledge source is adopted here. The ablation
experiments are conducted based on RACC-homo with the above two types of MLLMs.

Finally, we can conclude from Table 11 that the RACC framework achieves excellent performance across various knowledge
sources and different settings of K.

E. Pseudo Code of RGCA method
Our proposed RGCA method is applied during the forward computation process of the cross-attention mechanism, aiming
to ensure that compressed prompts corresponding to documents with higher retrieval scores receive more attention in the
retrieval-guided cross-attention blocks. The pseudo code for the forward function of the retrieval-guided cross-attention
block is as follows:

Listing 1 Pseudo code of RGCA
1 def forward(self, x, context, r_scores):
2 # projecting inputs into q, k, v
3 # transform q, k, v into multi-head forms
4 # expanding the retrieval scores to a certain shape
5 r_scores = repeat(r_scores, ’b x y -> (b h) (x m) (y n)’, h=self.heads, m=x.shape

[1], n=context.shape[1])
6
7 # calculating the similarities between queries and keys
8 sim = einsum(’b i d, b j d -> b i j’, q, k) * self.scale
9 sim = sim * r_scores

10 attn = sim.softmax(dim=-1)
11
12 # calculating the outputs
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Knowledge Source Metric Statistic

GS

Mean 59.76
Std 46.05
Min 10
25% 29.0
50% 45.0
75% 75.0
Max 521

WIT

Mean 155.71
Std 78.86
Min 24
25% 89
50% 149
75% 214
Max 1122

Table 9. The statistical data on document word counts of different knowledge sources. The ”25%” column indicates that 25% of the
documents have a word count below this value, and similarly for other percentiles.

Knowledge Source Retriever K PRRecall@K (%)
Train Val

GS FLMR

1 71.56 63.59
2 83.77 77.07
3 88.63 82.85
4 91.03 86.41
5 92.82 88.32

10 95.99 93.63

WIT PREFLER

1 37.09 35.85
2 48.26 46.76
3 54.89 53.27
4 59.37 57.67
5 62.89 60.93

10 72.16 70.41

Table 10. The detailed retrieval results of different knowledge sources. PRRecall@K measures whether the retrieved K documents contain
at least one pseudo-relevant document..

knowledge source K PRRecall@K (%) VQA Accuracy (%)

WIT
1 35.85 59.11
3 53.27 59.16
5 60.93 59.17

WIT (Text Only)
1 35.85 58.97
3 53.27 59.01
5 60.93 59.04

GS
1 63.59 59.65
3 82.85 59.35
5 88.32 59.49

Table 11. RACC-homo’s experimental results with varying hyperparameter K across different knowledge sources. The MLLM used here
is InstructBLIP-FlanT5XL.

14


