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Abstract— This paper introduces a novel formulation aimed
at determining the optimal schedule for recharging a fleet of n
heterogeneous robots, with the primary objective of minimizing
resource utilization. This study provides a foundational frame-
work applicable to Multi-Robot Mission Planning, particularly
in scenarios demanding Long-Duration Autonomy (LDA) or
other contexts that necessitate periodic recharging of multiple
robots. A novel Integer Linear Programming (ILP) model is
proposed to calculate the optimal initial conditions (partial
charge) for individual robots, leading to the minimal utilization
of charging stations. This formulation was further generalized
to maximize the servicing time for robots given adequate
charging stations. The efficacy of the proposed formulation
is evaluated through a comparative analysis, measuring its
performance against the thrift price scheduling algorithm
documented in the existing literature. The findings not only
validate the effectiveness of the proposed approach but also
underscore its potential as a valuable tool in optimizing resource
allocation for a range of robotic and engineering applications.

I. INTRODUCTION

The UAV industry is experiencing rapid expansion, and
this technological advancement is immediately felt in ev-
eryday life. An increasing number of companies, such as
Amazon, Google, UPS, FedEx, and DHL, are actively inte-
grating UAVs into their operations for last-mile delivery [1],
[2]. Despite their wide usage, UAVs face limitations in flight
time due to their limited battery capacity. For example, a
heavy-duty drone like the Prism Lite, which uses 16,000mAh
batteries, can achieve only 40 minutes of flight time without
any external payload [3]. In Long Duration Autonomy (LDA)
and persistent monitoring applications, UAVs are expected to
operate over long durations (typically, a few days) without
human intervention and hence, this necessitates UAVs to
frequently recharge their batteries at a charging station while
carrying out their tasks.

We assume, without any loss of generality, that no more
than one UAV may be recharged at a charging station
at any time. Hence, scheduling UAVs for recharging at
the charging station becomes pivotal from an operational
efficiency viewpoint. Improper scheduling could lead to
multiple UAVs running out of charge at the same time. This
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can happen if any two UAVs have identical charging and
flying times and start with the same charge; clearly, the
determination of the initial battery charge becomes crucial
for staggering/scheduling their deployment, especially in
LDA applications requiring persistent monitoring and data
collection. Since charging stations are valuable resources
that come with significant costs, reducing their number can
lead to substantial savings in setup expenses. Therefore,
scheduling the charging and departures of UAVs at the
charging stations will aid in efficiently utilizing the charging
stations and reducing the overall cost.

In this paper, we divide time into uniform time slots (or
simply slots) at the charging station; scheduling the charging
station implies (a) assigning each time slot to at most one
UAV while allowing a UAV to charge fully and (b) making
the charging station available for recharging before it runs
out of battery charge. We also specify the charging time (time
to fully charge starting from no charge state) and the flying
time as integer multiples of the time slots; moreover, we call
the cycle time for a UAV to be the sum of its charging and
flying times.

In this paper, we explore two problem variants: (a)
scheduling the UAVs to minimize the number, mmin of
charging stations, and (b) selecting and scheduling a subset
of UAVs to maximize the total flying time of UAVs with
given m≤ mmin charging stations.

The first variant can be formulated as a generalized non-
preemptive windows scheduling problem as discussed by [4],
where the objective is to non-preemptively schedule all jobs
(or charging UAVs fully before flying and arriving at the
charging station before running out of charge) on the fewest
possible number of parallel machines (charging stations).
This problem has been proven to be NP-hard [4].

One can relax the generalized non-preemptive scheduling
problem by requiring the UAV to arrive at the charging
station only when it has completely run out of charge upon
reaching the station. This is similar to the thrift price non-
preemptive scheduling problem described by [4]. Notably,
the algorithm proposed by [4] offers an 8-approximation
solution to the problem. In this paper, we relax the first
variant analogous to the thrift price scheduling problem and
compare the results with the the 8-approximation approach.
Then, we utilize the structure of the solution approach from
the first variant to solve the second variant.

Some other existing work in literature such as [5], [6], [7]
uses a game-theoretic approach to model the energy trad-
ing between UAVs and charging stations in a cost-optimal
manner. Their proposed model allocates a time slot to the
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UAVs using an auctioning process. The above algorithms
are designed to work in open groups where there can be
any number of participants without any prior knowledge of
UAV’s parameters such as its charging time and flying time.
These methods do not guarantee that each UAV that needs
a charging station will have a readily available charging
station.

Other recent work on UAVs for LDA applications focuses
on optimizing routes while taking into account the energy
limitations of UAVs, assuming a sufficient number of avail-
able stationary or mobile charging stations. Reference [8],
[9], [10] presents an algorithm to determine the sequence in
which different sites and charging stations can be visited.
Their algorithm plans tours for unmanned ground vehicles
(UGVs) acting as mobile charging stations as well as de-
termining the optimal locations to place stationary charging
stations. References [11], [12] also discuss planning the paths
for UAVs using multiple stationary recharging stations. Ref-
erence [13] developed an agent-based modeling framework
for the multi-UAV rendezvous recharging problem, which
consists of energy-limited aerial vehicles that rendezvous
with a mobile or fixed charging station. Another recent
work, outlined in [14], addresses a multi-robot persistent
monitoring problem involving battery-limited robots. The
goal is to determine the minimum number of robots needed
to meet latency constraints while also ensuring that the robots
periodically recharge at a designated depot. Developing an
optimal charging schedule that minimizes the required charg-
ing stations can be regarded as a natural follow-on problem
of the aforementioned studies.

The primary novelty and contribution of this paper lies in
the development of scheduling strategies for the UAVs at the
charging depot. Our first contribution is the introduction of
a novel Integer Linear Programming (ILP)-based scheduling
algorithm that leverages the cyclic charging and discharging
behavior of UAVs and determines their optimal initial charge
levels and time slots for charging. These levels are then
used to establish a charging schedule, which minimizes the
required charging resources at the depot. Second, in scenarios
with limited charging stations, we propose a method for
selecting and scheduling UAVs to maximize overall oper-
ational efficiency, specifically focusing on maximizing their
total total flying time.

Since the application of our proposed method is not limited
to UAVs alone, we will use the more general term “robots”
for the remainder of the discussion.

II. PROBLEM STATEMENT

We address the challenge of scheduling charging slots
for a fleet of n heterogeneous robots at a charging depot
equipped with m number of distinct charging stations. The
primary constraint is to ensure that each robot requiring
charge obtains a charging station while avoiding running
out of battery charge. Specifically, a robot must have an
empty charging station ready after completing its mission;
otherwise, it is not deployed. The operational parameters for
each robot include the charging time and the operational

time. It is assumed that the specifications for each robot
i.e., the operational time and the necessary charging time
to recharge from empty to full are known beforehand.

One of the main requirements for efficient scheduling is to
guarantee the availability of a charging station for each robot
in need over an infinite time horizon. However, if we can
pose our problem as a periodic problem then the scheduling
problem is periodic with a cycle time, say T , then we need
to satisfy the aforementioned constraint only until time T .
Each robot is allocated consecutive charging slots equivalent
in duration to its specified charging time. After charging
fully, we assume the robot will require the charging station
again exactly after its total operational time, establishing a
periodic problem framework. Notably, partial charging and
partial operation are not permissible, except during the initial
deployment.

A feasible solution involves using at least as many charg-
ing stations as the number of robots, i.e. m ≥ n; then, it
guarantees the availability of a charging station for each
robot when needed. However, that might not be an efficient
usage of the charging stations because the corresponding
charging station will be left unutilized whenever a robot is
in operation. This setup raises two critical questions:

1) Does there exist a charging schedule that maximizes
the resource utilization by minimizing the required
resources m for a given set of n heterogeneous robots?

2) How can we construct an optimal schedule that maxi-
mizes the total flight time of the chosen set of robots
from a fleet of n when limited by m resources?

In the next section, we will address the two questions
raised above using this non-preemptive approach.

III. SCHEDULING FRAMEWORK

In subsection III-A, we discuss the periodic nature of
scheduling and the associated scheduling horizon (period);
we also propose a method to determine the cycle time
that can serve as the scheduling horizon for optimizing the
charging schedule. In subsection III-B, we delve into the
methodology for determining the optimal charging schedule
for each robot that minimizes the required charging stations.
In subsection III-C, we outline a strategy for selecting robots
from a given set and scheduling them optimally on limited
charging stations to maximize their cumulative operational
time across the scheduling horizon.

A. Finding a Scheduling Horizon

Let C and D respectively denote the sets of charging and
flying times for the robots, i.e.,

C = {c1,c2, . . . ,cn}, ci ∈ Z+, i = 1,2, . . . ,n, (1)

D = { f1, f2, . . . , fn}, fi ∈ Z+, i = 1,2, . . . ,n. (2)

The charging time ci, and operational time fi are assumed
to be integers and are known a priori.

For each robot i, we consider a sequence of actions
consisting of charging for ci slots followed by discharging
for fi slots resulting in a cycle time Ti = ci + fi slots. This



cycle time Ti represents the interval after which the robot
returns to its initial state. Therefore, the process of charging
and discharging is periodic for each robot with a cycle time
Ti.

If each robot begins with an initial charge and operates on
an individual cycle time Ti, and assuming there are enough
charging stations available, all robots will return to their
initial conditions simultaneously after T slots, where T rep-
resents the least common multiple (LCM) of the individual
cycle times of the robots,

T = LCM(T1,T2, . . . ,Tn). (3)

The non-preemptive approach simplifies the problem to
a periodic problem, whose cycle time is given by Eq. (3),
irrespective of the initial conditions of the robots. This in-
formation can be utilized to reduce the optimization problem
from an infinite time horizon problem to the time with
scheduling horizon T .

B. Minimizing resources

In this subsection, we present a novel formulation that
will aid the determination of the initial conditions (charge)
of the robots and find the corresponding minimum number
of charging stations required over the scheduling horizon T .
Here, the initial condition represents the amount of charge
available with the robot and whether it is charging or in
operation at the moment.

One can associate a time wheel as shown in Fig.1 that
helps visualize the periodic evolution of charging and dis-
charging of the robot’s battery. Fig.1 depicts four charging
slots and six operational slots with a cycle time of ten slots
for a robot. The state evolves in a clockwise direction along
the time wheel as time increases. For example, from Fig.1(a),
we know that the robot has just begun charging at time
t, and from Fig.1(b), it is in the second slot of charging
at time t + 1. The depiction of the number 1 in the time
wheel indicates the state of the robot’s battery and its status
(charging/discharging).

(a) State at time t, illustrating
the initiation of charging for
this specific example.

(b) State at time t + 1, show-
casing the robot’s completion
of 1 slot of charging.

Fig. 1: Evolution of robot’s states: Illustration of the charging
(green) and discharging (red) phases as the robot transitions
from one state to the next.

Fig. 2: State Transition Schematic: Depiction of the cyclic
evolution of robot’s states throughout the charging cycle.
The transition initiates with charging, indicated by the green
segment, progressing clockwise. Upon reaching full charge,
the state transitions clockwise into the red segment.

Reflecting the state of the battery charge as depicted in
the time wheel depicted above Fig.1, we associate a binary
cyclic state vector ri(t) of size Ti which contains exactly
one component that is a “1”. This constraint can be captured
through the equation:

1Tiri(t) = 1, t ≥ 0, (4)

where 1 is a row vector of the size Ti with all its components
being 1. The periodic state transition of ri(t) can be described
by:

ri(t) = Airi(t−1), t ≥ 1 (5)

where

Ai =


0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

 . (6)

The state transition matrix Ai is a permutation matrix and
is also circulant. The state vector ri(t) at time t can be used
to determine whether the robot is recharging (and if so, it
will a charging station is required for this purpose); this is
done through a charging indicator vector p⊺

i . The first ci
elements of the vector pi are 1 and remaining fi elements
are 0; this vector captures the charging and discharging
characteristics of the ith robot’s battery. A binary decision
variable zi(t) indicates whether the robot i is utilizing the
resource (charging station) or not at time t through:

zi(t) = p⊺
i ri(t). (7)

From this discussion, we can now formulate an Integer
Linear Program (ILP) to find the initial condition ri(0) to
determine the minimum number, mmin, of charging stations
for scheduling over scheduling horizon T . Mathematically,

mmin = min m, (8)



subject to the following constraints (4), (5) and
∑

n
i=1 zi(1)

∑
n
i=1 zi(2)

...
∑

n
i=1 zi(T )

=


p⊺

1 . . . p⊺
n

p⊺
1A1 . . . p⊺

nAn
... . . .

...
p⊺

1A1
T−1 . . . p⊺

nAn
T−1




r1(0)
r2(0)

...
rn(0)

≤


m
m
...
m

 .

(9)
The last set of constraints indicates that no more than m
resources (charging stations) be utilized at any time.

The above-formulated problem ILP can be solved for the
initial conditions ri(0), and the minimum required resources
mmin. Leveraging the obtained initial conditions ri(0) and the
relationship expressed in

zi(t) = p⊺
i Ai

tri(0). (10)

one can determine the charging schedule for each robot.

C. Maximizing flying time

In this section, we establish an optimal schedule for
deploying robots by selecting which robots to operate and
initializing their battery states. Unlike in the previous section,
we assume specific knowledge of the number of available re-
sources, denoted as m≤mmin. The objective of this problem
is to maximize the total operational time of all robots within
the final schedule, given a finite number of resources m.

A robot, once chosen, is utilized throughout the entire
mission; if not selected, it is not deployed. This decision
is represented by a binary variable ui, where ui = 1 if the ith

robot is deployed, and ui = 0 otherwise.
Let us define a vector qi = [0ci 1 fi ]T that can be used to

determine if the ith robot is in operation or charging. The
vector qi is specific to the ith robot as ci, fi represent its
charging and operation times respectively. For instance, if the
ith robot has a charging time ci = 3 and a operation time fi =
5, the corresponding vector is qT

i = [03 15] = [0 0 0 1 1 1 1 1].
Define a binary variable yi(t) that indicates whether the robot
is in operation or not, depending on whether it is 1 or 0:

yi(t) = qT
i ri(t) = qT

i At
iri(0). (11)

In this scenario, our objective is to maximize the total
operation time of all robots and across the time horizon:

max
T−1

∑
i=0

n

∑
i=1

yi(t), (12)

subject to the following constraints:


p⊺

1 . . . p⊺
n

p⊺
1A1 . . . p⊺

nAn
... . . .

...
p⊺

1A1
T−1 . . . p⊺

nAn
T−1




r1(0)
r2(0)

...
rn(0)

≤


m
m
...
m

 , (13)


1T1 0T2 · · · 0Tn

0T1 1T2 · · · 0Tn

...
...

. . .
...

0T1 0T2 · · · 1Tn




r1(0)
r2(0)

...
rn(0)

= W =


u1
u2
...

un

 . (14)

The vectors ri(0) and W are to be determined for each
robot to optimize the desired operational outcome, which in
this case, is the maximization of the operational time for the
entire fleet.

Fig. 3: Graph representing the candidate cycle times

IV. ROBUST SCHEDULING

From a practical perspective, maintaining a reserve of fuel
is essential for robots to account for unforeseen delays. This
reserve ensures that, even if a robot is delayed, it can still
reach the charging station. In Subsection IV-A, we explore
the concept of safety margins, which function not only as
a fuel reserve but also have the potential to reduce the
scheduling horizon. This reduction in the scheduling horizon
can, in turn, decrease computational complexity and simplify
the overall scheduling process. Subsequently, in Subsection
IV-B, we discuss a strategy for managing delayed robots
without disrupting the schedules of other robots.

A. Safety margins

The cycle time Ti of the ith robot is defined as Ti =
fi + ci and, as discussed in Section III-A, the overall
cycle time (scheduling horizon) T is calculated as T =
LCM(T1,T2, . . . ,Tn). However, T can potentially be large
if Ti’s are co-prime. Having a large T implies a longer
scheduling horizon, leading to increased computational com-
plexity of determining the charging schedule; this may not
be desirable in certain applications. A shorter scheduling
horizon allows for tactical flexibility.

To reduce T and achieve a lower scheduling horizon,
we propose a method inspired by Dijsktra’s shortest path
algorithm. This approach involves leveraging the fact that
T is the LCM of the individual robots’s cycle times. By
modifying the cycle time Ti of individual robots, T can be
controlled. This modification can be achieved in two ways:
a) by allowing the robot to wait at the charging station,
which increases its cycle time, or b) by limiting the robot’s
operational time, which decreases its cycle time and provides
a safety margin for the robot.

Increasing the cycle time through waiting can help re-
duce the scheduling horizon but also increases the number
of variables, potentially increasing the computational time



for finding an optimal schedule. Conversely, reducing the
operational time decreases the cycle time, the number of
variables and the scheduling horizon; ultimately, it results
in a lower computation time. We adopt the latter approach
here.

We relax the operational time for the ith robot to belong to
a set, with each candidate operational time in the set bounded
by fi. The problem thereafter reduces to finding an element
in each set so that the LCM of their corresponding cycle
times is the smallest.

We refer to each robot as a node and the candidate cycle
times for that robot as vertices of that node. Using these
candidate cycle times as vertices, we create a weighted
graph, as illustrated in Fig.3 where each vertex of ith node is
connected to each vertex of (i+1)th node. We then apply the
idea of Dijkstra’s shortest path to find the path that minimizes
the LCM of the chosen vertices from each node.

The candidate cycle time, T c
i , for the ith robot is:

T c
i = f new

i + ci , f new
i ≤ fi, f new

i ∈ Z+, for i = 1,2, . . . ,n.
(15)

Here, ci (charging time) is fixed and known in advance, while
f new
i (operational time) is a variable that can be adjusted.

A control parameter, ε , further restricts the set, T set
i , to

which T c
i can belong:

T set
i = {V : (1−εi)Ti≤V ≤Ti and V ∈Z+}, ∀ i= 1,2, . . . ,n.

(16)
The parameter ε represents the maximum fraction of residual
battery charge when the robot arrives at the charging station
for recharging.

We then construct a graph (shown in Fig.3) using these
candidate cycle times V i

j , where each vertex V i
k1

is connected
to V i+1

k2
where V i

k1
∈ T set

i and V i+1
k2
∈ T set

i+1. Additionally, we
introduce two pseudo vertices at the start and end of the
graph with a value of 1.

The cost associated with choosing a path through vertices
V 1

k1
,V 2

k2
, . . . ,V n

kn
is defined as LCM(V 1

k1
,V 2

k2
, . . . ,V n

kn
) instead

of the conventional sum of edge lengths. This approach
allows us to reduce the scheduling horizon T by adjusting
the operational times f new

i for each robot while controlling
the maximum safety margin using εi.

B. Managing Delay

This section addresses scenarios where a robot does not
arrive at the charging station at its scheduled time slot.
There are two possible situations: a) The robot arrives at
the depot before its scheduled slot. In this case, the robot
can wait in the waiting area until its turn comes, or b) the
robot arrives later than its scheduled slot. In the second case,
accommodating the tardy robot can disrupt the schedule of
other robots. Since it arrived late, the tardy robot will release
the resource (depart from the charging station) at a later time,
causing the next robot in line to wait. This can result in a
cascading effect of delays, where each subsequent robot must
wait at the charging station for its turn, leading to changes
in the schedule of every robot.

From Eq.(10), we can conclude that the charging schedule
of a robot is solely a function of its initial conditions and
physical parameters. Since this robot has missed its deadline
to avail the charging station, we need to find an alternative
charging schedule or initial condition that guarantees the ear-
liest possible charging slot without disrupting the schedules
of other robots.

Let us assume that the kth robot misses the deadline. From
our earlier discussion from section III we can safely assume
that the required charging stations m and the corresponding
initial condition ri(0) ∀ i ∈ {1,2, . . . ,n} \{k} (and corre-
spondingly, their schedules) have already been computed.
Using this information, we want to find the new initial
condition r∗k(0) for the kth robot.

Eq.(9) can be re-written as follows:


pk

⊺

pkAk
⊺

...
pk

⊺Ak
T−1

r∗k(0)≤


m
m
...
m

− n

∑
i=1
i ̸=k


pi

⊺

piAi
⊺

...
pi

⊺Ai
T−1

ri(0), (17)

1Tk r∗k(0) = 1. (18)

Algorithm 1 Algorithm to reduce the scheduling horizon

1: function DIJKSTRA LCM(graph, src, target)
2: cost ← array of size n+2 filled with ∞

3: cost[src] ← 1
4: pq ← priority queue initialized with (1,src)
5: visited ← array of size n+2 filled with false
6: predecessors ← array of size n+2 filled with −1
7: while pq is not empty do
8: Sort pq in descending order
9: (min cost,u)← pop last element from pq

10: if visited[u] then
11: continue
12: end if
13: if u = target then
14: path ← [u]
15: while predecessors[u] ̸=−1 do
16: Append predecessors[u] to path
17: u← predecessors[u]
18: end while
19: return min cost, reverse(path)
20: end if
21: visited[u] ← true
22: for each (v,weight) in graph[u] do
23: new cost ← lcm(min cost, weight)
24: if new cost < cost[v] then
25: cost[v] ← new cost
26: Push (new cost,v) to pq
27: predecessors[v] ← u
28: end if
29: end for
30: end while
31: end function



The above set of inequalities is always feasible, as the
original schedule is feasible; in this case, the tardy robot
will have to wait until its turn for recharging comes again
in the original schedule. In order to minimize the wait time,
one can find the set of all feasible r∗k(0) that satisfy the above
inequalities, and pick the one with the smallest wait time.

V. COMPUTATIONAL RESULTS

This section is divided into two parts: In subsection V-A,
we compare our proposed resource minimization methodol-
ogy with existing approaches. In subsection V-B, we present
the results of reduced scheduling horizon. The simulations
were executed on a computational platform comprising an
Ubuntu 20.04 NUC computer, equipped with an Intel i7-
6770HQ processor and 32GB of RAM. All simulation data
is available at the following GitHub Repository.

A. Minimizing resources

We conducted a comparative analysis between our pro-
posed Integer Linear Programming-based Scheduling (ILPS)
method and the Thrift Price Window Scheduling (TPWS)
method, as described in [4]. The TPWS algorithm is consid-
ered optimal when the charging time ci (job processing time)
and cycle time Ti (window) are powers of 2. For more general
cases, TPWS creates a schedule by rounding the charging
time Ci up to the nearest power of 2 and the cycle time Ti
down to the nearest power of 2. In such scenarios, TPWS is
proven to be an 8-approximation algorithm [4].

To evaluate the effectiveness of our proposed ILPS algo-
rithm, we conducted simulations under two scenarios: (a)
when all ci and Ti are powers of 2, and (b) where ci and Ti
deviate from powers of 2. In Case (a), both TPWS and ILPS
provide exactly same optimal solution, highlighting ILPS’s
ability to achieve optimal solutions. Case (b) is created
by adding slight perturbations to Case (a) and ideally the
results should not deviate drastically between the 2 scenarios.
ILPS demonstrates effective results similar to case (a), unlike
TPWS which fails to deliver optimal results where ci and Ti
are not powers of 2.

For both cases, we analyze how the number of charging
stations required to schedule is affected by the number of
robots available for deployment and the scheduling horizon
T = LCM(T1,T2, . . . ,Tn).

The simulation employs a set of 10 heterogeneous robots.
Fig.4a presents the results of the two algorithms as the
scheduling horizon increases. Notably, TPWS and ILPS
yield optimal results for instances where the scheduling
horizon and charging time are powers of 2. However, as
we slightly perturb the parameters from these power-of-2
instances, TPWS deviates from the optimal solution, while
ILPS consistently identifies the optimal solution. Fig 4b
further demonstrates this comparison as the number of robots
increases. For power-of-2 instances, ILPS aligns with TPWS,
while the deviation grows in TPWS as the number of
robots increases. These findings underscore the robustness of
the ILPS algorithm, particularly in scenarios where TPWS
encounters challenges in maintaining optimality.

(a) Optimal # of Charging Sta-
tions vs Scheduling Horizon

(b) Optimal # of Charging Sta-
tions vs # robots

Fig. 4: Performance of the Integer Linear Programming-
based Scheduling (ILPS) algorithm and Thrift Price Window
Scheduling (TPWS) algorithm.

(a) Computation Time (b) Charging Stations

Fig. 5: Comparison between Original Operational Time and
Reduced Operational Time.

B. Finding a new scheduling horizon with safety margins

In this section, we demonstrate the effectiveness of our
proposed method for to reduce the overall scheduling horizon
as a function of the safety margin parameter ε . We conducted
experiments using a sample of 10 robots with random cycle
times. The parameter ε is set at 10% for each robot. The
table below presents the results of 15 such instances.

TABLE I: Scheduling Horizon with 10% ε value

Instance Scheduling Horizon Modified Scheduling Horizon

1 11592 504
2 4620 504
3 1287 540
4 5148 1287
5 9900 900
6 11310 504
7 5544 504
8 5400 540
9 7920 792
10 2700 540
11 5544 3360
12 3192 2128
13 4200 2970
14 1440 1296
15 2160 1188

As evidenced by the numbers above, scheduling robots
with their maximum operational time can lead to a long
scheduling horizon, and present computational challenges.
However, incorporating a safety margin of up to 10% in
the flying time can notably decrease the overall scheduling

https://github.com/Nitesh-mk/Persistent-Scheduling-Problem-Data-Set.git


Fig. 6: Schedule of the robots for the two cases: (a) when all robots are on time, and (b) when UAV2 is delayed. In both
schedules, green represents the charging time and red represents the flying time.

(a) Snapshot at 4 minutes: Robots 1 and 7 continue their missions,
while 2 recharging

(b) Snapshot at 11 minutes: Robots 1 and 2 continue their missions,
while 7 recharging

(c) Snapshot at 17 minutes: All robots are airborne, maximizing
operational efficiency

(d) Snapshot at 30 minutes: Robots 1 continue their missions, while
2 and 7 recharging

Fig. 7: Sequential snapshots from the simulation demonstrate the effectiveness of the scheduling algorithm at different stages
of the robot operation cycle. The algorithm optimally selected and scheduled 3 out of 7 available robots (UAV1, UAV2,
and UAV7), maximizing total flying time during the scheduling horizon with only 2 charging stations available. The figure
on the left shows the simulation based on the original schedule, while the figure on the right corresponds to the simulation
with the new schedule, adjusted for a 2-minute delay of UAV2.

horizon and computational time for finding a schedule. Fig.5a
illustrates the effectiveness of reducing computation time.

VI. SIMULATION RESULTS

We now present the results of simulations conducted to
validate the effectiveness of a) selecting and scheduling
robots when charging resources are limited, b) reducing
the scheduling horizon along with incorporating a safety
margin in flight time, and c) demonstrating robustness when
a robot misses its scheduled charging time. These simulations
involve selecting among 7 robots with 2 charging stations.
Detailed parameters regarding simulations can be found in
the GitHub Repository.

The simulations were executed on a computational plat-
form comprising an Ubuntu 22.04 NUC computer, equipped
with an Intel i7-6770HQ processor and 32GB of RAM.
The simulation environment replicated a realistic operational
scenario where multiple robots were required to complete
a series of tasks while managing their energy consumption
effectively.
• All robots depart from a designated charging spot at

coordinates (50,100).
• The total number of available robots is 7, parameters

details can be found from the given link: GitHub
Repository.

• Robots were tasked with visiting predetermined loca-
tions, represented by random 30 vertices, to simulate a

https://github.com/Nitesh-mk/Persistent-Scheduling-Problem-Data-Set.git
https://github.com/Nitesh-mk/Persistent-Scheduling-Problem-Data-Set.git
https://github.com/Nitesh-mk/Persistent-Scheduling-Problem-Data-Set.git


typical surveillance or delivery mission.
• The robots operate at an average speed of 16 m/s,

powered by 4000mAh 22.2V Li-po batteries.
• The duration of time slot chosen for scheduling is 1

minute.
• The path planning relied on the meta-heuristic team

orienteering problem, which was implemented to de-
termine the feasible sequence of visits. [15]

The algorithm selected 3 robots (UAV1, UAV2, UAV7)
from the 7 available robots, with safety margins of 1, 2, and
4 minutes respectively. This selection provided a total flying
time of 58 minutes within a cycle time of 36 minutes and
effectively scheduled the robots on 2 charging stations. The
schedule of the robots is shown in Fig.6. The green shaded
region represents the time when the robot needs to secure
the charging station, and the red region is the time when
the robot is available for the mission. This schedule repeats
every 36 minutes.

We also considered the case when a robot misses its
deadline to secure the charging station. As seen in Fig.6,
the robot (UAV2) needs to secure the charging station at
1 minute. However, if, due to unforeseen circumstances,
the robot reaches the charging station at 3 minutes, the
situation changes. UAV2 has a safety margin of 2 minutes, so
reaching late is not immediately critical. However, providing
a charging station at that time might disrupt the schedule of
other robots. Using the discussion from Section IV, we found
that the earliest available charging station at 3 minutes can
be given according to the new schedule in Fig.6, compared
to 10 minutes as per the original schedule without disrupting
the cycle of other robots.

To visualize the newly computed schedule, Fig.7 displays
snapshots from the simulation at key moments: the 4th, 11th,
17th, and 30th slots. The circular icons at the top of each
image indicate the status of the charging stations. Initially, at
the 4-minute time slot, robot 2 is shown on the charging pads,
strategically synchronized with robots 1 and 7, who are in
the middle of their missions. As the simulation progresses, it
is evident that no more than 2 charging stations are required
at any given time to continue the mission. The feasible
sequence of visits by the robots is determined using the
meta-heuristic team orienteering problem discussed in [15],
showcasing the algorithm’s adaptability to existing literature.

VII. CONCLUSIONS

This paper presents a framework for efficiently utilizing
charging stations by staggering the robots for recharging
to achieve long-term autonomy. It discusses the practical
implementation of the algorithm by introducing the concept
of a reduced scheduling horizon, which also provides a safety
margin for the robots. The paper includes simulation results
for a persistent surveillance problem to demonstrate the ease
of extending this algorithm to different existing works in
the literature. Additionally, the paper addresses robustness
analysis, highlighting how the system adapts when a robot
fails to secure a charging station on time. Overall, this
paper covers the entire framework from scheduling to safety

margins to robustness analysis, showing its adaptability and
potential for integration into existing literature.

Currently, this method primarily focuses on cases where
robots are fully charged and discharged. A natural extension
of this work would be minimizing the resources required
when partial charging and discharging is allowed.

The general problem involves combining routing of
battery-limited robots with scheduling their recharging at the
charging stations. The adopted approach decouples the rout-
ing problem from the scheduling problem in the following
way: the operational time becomes a constraint for routing
a robot so that all points of interest are covered within the
smallest number of cycles.
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