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Abstract
Large language models (LLMs) have emerged as a cutting-edge
approach in sequential recommendation, leveraging historical in-
teractions to model dynamic user preferences. Current methods
mainly focus on learning processed recommendation data in the
form of sequence-to-sequence text. While effective, they exhibit
three key limitations: 1) failing to decouple intra-user explicit fea-
tures (e.g., product titles) from implicit behavioral patterns (e.g.,
brand loyalty) within interaction histories; 2) underutilizing cross-
user collaborative filtering (CF) signals; and 3) relying on ineffi-
cient reflection update strategies. To address this, We propose MoRE
(Mixture of REflectors), which introduces three perspective-aware
offline reflection processes to address these gaps. This decompo-
sition directly resolves Challenges 1 (explicit/implicit ambiguity)
and 2 (CF underutilization). Furthermore, MoRE’s meta-reflector em-
ploys a self-improving strategy and a dynamic selection mechanism
(Challenge 3) to adapt to evolving user preferences. First, two intra-
user reflectors decouple explicit and implicit patterns from a user’s
interaction sequence, mimicking traditional recommender systems’
ability to distinguish surface-level and latent preferences. A third
cross-user reflector captures CF signals by analyzing user similarity
patterns from multiple users’ interactions. To optimize reflection
quality, MoRE’s meta-reflector employs a offline self-improving strat-
egy that evaluates reflection impacts through comparisons of pres-
ence/absence and iterative refinement of old/new versions, with
a online contextual bandit mechanism dynamically selecting the
∗The first two authors contributed equally to this research.
†The corresponding author is Weijie Yu.
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optimal perspective for recommendation for each user. Experiments
on three benchmarks show MoRE outperforms both traditional rec-
ommenders and LLM-based methods with minimal computational
overhead, validating its effectiveness in bridging LLMs’ semantic
understanding with multidimensional recommendation principles.
Code: https://github.com/E-qin/MoRE-Rec.
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1 Introduction
Sequential recommendation (SeqRec), which predicts the next item
of interest based on a user’s historical interaction sequence, is
crucial for recommender systems. The key to this task is to cap-
ture users’ dynamic preferences accurately. Large language models
(LLMs) are emerging as promising recommenders (LLMREC) due to
their vast world knowledge and excellent reasoning abilities. Two
typical approaches in this context are prompt-based methods and
fine-tuning methods. Prompt-based methods [4, 11] pre-construct
fixed prompts and exploit in-context learning [5] to guide the LLM
in reasoning the desired item. Fine-tuning methods [19, 41, 44]
inject domain knowledge by fine-tuning an LLM on substantial
annotated recommendation data. Although these methods achieve
encouraging performance, the former suffers from an inability to op-
timize the prompts based on user feedback, while the latter requires
substantial computational resources.
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Figure 1: Workflow of reflection-based methods for SeqRec.
LLM reflections are generated offline based on interaction
and recommendation history. These reflections are then col-
lected as hints to improve online recommendations.

Recently, [31, 33] propose reflection-based methods where LLMs
refine recommendations by analyzing prediction against user inter-
action (Fig. 1). While effective, they face three key challenges:

(1) Ambiguous separation of explicit features and implicit
patterns within one single user’s interaction history. Effec-
tively modeling user preferences in SeqRec requires distinguishing
between explicit and implicit signals within user interaction histo-
ries. Explicit features are reflected in directly observable item fea-
tures, such as titles, while implicit patterns are inferred from latent
factors in user behavior, such as brand loyalty. Current reflection-
based recommendation methods [31, 33] predominantly rely on
explicit item features to model user interests, assuming that LLMs
can effectively capture preference patterns from surface-level se-
mantics alone. However, this reliance lacks analysis or reflection
on the deeper, implicit connections that often drive user behavior.
As illustrated in Fig. 2, consider a user who has interacted with
several electronic products and later purchases a T-shirt. If the
recommender focuses solely on explicit item titles, it struggles to
analyze the subtle connection between these interactions and fails
to adapt to evolving user interests. In this case, the underlying
implicit preference is the brand “Apple”, reflecting a deeper pattern
that explicit features alone cannot reveal.

(2) Underutilized collaborative filtering (CF) signals across
multiple user interaction histories. CF leverages behavioral sim-
ilarities across users to detect shared interests (e.g., Apple product
fans). Current approaches [31, 33] neglect such signals, limiting
their ability to exploit collective behavioral patterns for improved
recommendations.

(3) Suboptimal reflectionupdate strategies. Existing reflection-
based methods [31, 33] mainly maintain a fixed reflection pool, lack-
ing personalized dynamic maintenance based on user interactions.
This inflexibility prevents them from adapting to users’ dynamic
preferences.

Facing these challenges, we propose MoRE (Mixture of REflectors)
to address the limitations through three coordinated innovations.
First, on the offline side, we design specialized reflectors to model
both intra-user patterns and cross-user patterns: 1) Two intra-user
perspectives disentangle explicit features (e.g., product titles) and
implicit behavioral patterns (e.g., brand loyalty) from a single user’s

Reflection from implicit preferences (item brand):
The user may likes Apple brand.

Reflection from explicit preferences (item title):
The user may likes electronic devices.

Other
user

Target
user

Reflection from collaborative filteringsignals:
These two users may have similar preferences.

LLM’s reflections from three perspectives

Figure 2: Examples of LLM reflections from explicit, implicit,
and CF perspectives based on user interactions.

interaction history; 2) A cross-user perspective captures collabo-
rative filtering (CF) signals through item-centric analysis of user-
item-user similarity relationships. This decomposition directly re-
solves Challenges 1 (explicit/implicit ambiguity) and 2 (CF under-
utilization). Second, also on the offline side, our self-improving
meta-reflector implements a lightweight two-phase update strat-
egy: evaluating reflection quality via LLMREC performance gains
(both presence/absence and old/new reflections), then iteratively
generating improved reflections using top-performing candidates
in an offline loop. This approach overcomes Challenge 3 (subopti-
mal updates) while maintaining computational efficiency. Third,
on the online side, the meta-reflector dynamically selects optimal
reflections per user through contextual bandit optimization [16].
Experiments demonstrate MoRE’s superiority over traditional meth-
ods and LLMREC variants (prompt-based, fine-tuning-based, and
reflection-based baselines) while maintaining low GPU memory
and time costs.

In summary, our contributions are as follows:

• Wefirst propose a dynamic LLM reflection framework is proposed
for sequential recommendation to model and learn dynamic user
preferences.

• MoRE incorporates three reflectors, each collecting reflections
from explicit features, implicit patterns, and CF signals. It also
integrates a meta-reflector, which updates the reflections with a
refining-and-iteration strategy and selects the appropriate reflec-
tion for LLMREC using a contextual bandit algorithm.

• Extensive experiments on three real-world datasets demonstrate
that MoRE outperforms state-of-the-art approaches in terms of
recommendation performance with minimal GPU memory usage
and training time overhead.

2 Related Works
2.1 Sequential Recommendation
SeqRec predicts users’ next interests by modeling historical interac-
tions chronologically, with the key challenge in capturing dynamic
preferences [23–25, 29, 35–37, 39]. Recent advances [10, 15, 30]
employ convolutional and recurrent neural networks, while Li
et al. [17, 18], Zhou et al. [45] demonstrate MLP-based approaches
achieve competitive performance. He et al. [8, 9], Kang andMcAuley
[13], Sun et al. [28] utilize transformer-based models for item rele-
vance modeling, achieving SOTA results. Despite progress, existing
methods remain limited in holistic preference modeling due to in-
sufficient world knowledge and reasoning capabilities. This has
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spurred recent exploration of LLM-based approaches for sequential
recommendation.

2.2 LLM-based Recommendation
Current approaches to adapting LLMs for SeqRec predominantly
fall into two categories: prompt-based methods and fine-tuning
methods. Prompt-based methods involve manually constructing
fixed prompts to guide LLMs in reasoning toward the desired items.
For example, LLM4RS [4] enhances LLM’s recommendation capa-
bilities by customizing prompts to align with traditional ranking,

while LLMRank [12] leverages LLMs for zero-shot ranking in rec-
ommendations through specialized prompting strategies. However,
these fixed prompts rely heavily on human expertise and struggle
to adapt to diverse users, often resulting in sub-optimal perfor-
mance [5, 31]. Fine-tuning methods [2, 3, 7, 19, 20, 27, 34, 38], on
the other hand, formulate SeqRec as a question answering task and
fine-tune accordingly. To incorporate recommendation knowledge,
they either add special tokens (e.g., Llara [19], LC-Rec [44]) or insert
embeddings as texts into the prompt (e.g., BinLLM [41]). Despite
these efforts, a significant gap remains between LLM’s pre-training
and recommendation-oriented fine-tuning, which necessitates a
substantial amount of tuning data to achieve proper alignment. Ad-
ditionally, [14, 26, 41, 42, 44, 46] attempt to integrate collaborative
filtering information into LLMs. While effective, these methods
lack an interpretation and analysis of the CF information, which
prevents the integration of CF information with the powerful un-
derstanding and reasoning capabilities of LLMs, leading to potential
suboptimal performance.

Recently, Wang et al. [31] propose Re2LLM, a reflection-based
approach that leverages LLMs to reflect on interaction history to
enhance future recommendations. However, this approach main-
tains a static prompt pool without decoupled modeling of explicit
and implicit preferences and incorporate CF signals.

3 MoRE: The Proposed Framework
3.1 Problem Formulation
In SeqRec, let V = {𝑣1, 𝑣2, ..., 𝑣 |V | } denotes the item set, U =

{𝑢1, 𝑢2, ..., 𝑢 |U | } denotes the user set, and S𝑡
𝑢 = [𝑣1𝑢 , 𝑣2𝑢 , ..., 𝑣𝑡𝑢 ] de-

notes the interaction sequence in chronological order for user
𝑢 ∈ U up to time step 𝑡 , where 𝑣𝑡𝑢 ∈ V is the item that 𝑢 has
interacted with at time step 𝑡 . The goal of this task is to predict the
item that 𝑢 will interact with at 𝑡 + 1 given S𝑡

𝑢 :

𝑣 = argmax
𝑣∈V

Pr(𝑣𝑡+1𝑢 = 𝑣 | S𝑡
𝑢 ) . (1)

In this study, we focus on the LLM-based recommendation. Fol-
lowing [4, 12], we adopt LLM to directly make the prediction in a
ranking fashion as follows:

Ô𝑡+1
𝑢 = LLMREC (𝑃REC (𝑢,S𝑡

𝑢 , C𝑡+1
𝑢 )), Ô𝑡+1

𝑢 ⊆ C𝑡+1
𝑢 , (2)

where C𝑡+1
𝑢 and Ô𝑡+1

𝑢 respectively denote the candidate and pre-
dicted item list for𝑢 at step 𝑡+1; all the parameters are concatenated
in the text form; LLMREC, the LLM for recommendation, is frozen;
and 𝑃REC denotes the manually crafted recommendation prompt.

More specifically, as illustrated in Fig. 1, we focus on the two-
stage reflection-based LLMREC.

In the offline reflection generation stage, given a user 𝑢, the
interaction sequence S𝑡−1

𝑢 up to time step 𝑡 − 1 and the candidate
list C𝑡

𝑢 , we utilize LLM to make ranking prediction Ô𝑡
𝑢 at step 𝑡 :

Ô𝑡
𝑢 = LLMREC (𝑃REC (𝑢,S𝑡−1

𝑢 , C𝑡
𝑢 ), Ô𝑡

𝑢 ⊆ C𝑡
𝑢 . (3)

The LLM then reflects on the predicted list Ô𝑡
𝑢 and the ground-

truth item 𝑣𝑡𝑢 to infer 𝑢’s preferences:

𝑅𝑒 𝑓𝑖,𝑢 = LLMREF (𝑃𝑖 (𝑢,S𝑡−1
𝑢 , C𝑡

𝑢 , Ô𝑡
𝑢 , 𝑣

𝑡
𝑢 )), (4)

where LLMREF denotes a frozen LLM responsible for generating
reflections; the subscript 𝑖 ∈ {𝐸𝑃, 𝐼𝑃,𝐶𝐹 } for prompt 𝑃𝑖 and re-
flection 𝑅𝑒 𝑓𝑖,𝑢 corresponds to the “Explicit Preference”, “Implicit
Preference”, and “Collaborative Filtering”, which will be detailed in
the next section.

In the online recommendation stage, the derived 𝑅𝑒 𝑓𝑖,𝑢 is
incorporated into Eq. 2 to enhance future recommendations:

Ô𝑡+1
𝑢 = LLMREC (𝑃REC (𝑢,S𝑡

𝑢 , C𝑡+1
𝑢 , 𝑅𝑒 𝑓𝑖,𝑢 )), Ô𝑡+1

𝑢 ⊆ C𝑡+1
𝑢 . (5)

The details of recommendation prompt 𝑃𝑅𝐸𝐶 are as follows:

Recommendation prompt 𝑃𝑅𝐸𝐶

You are a recommender to recommend items for a specific user. The user
interacted with items in the following order: ⟨𝑆𝑢 ⟩. Reflections on the
past recommendation attempt for this user (if any): ⟨𝑅𝑒𝑓𝑖,𝑢 ⟩. There are
now |𝐶𝑢 | candidate items: ⟨𝐶𝑢 ⟩. Please consider the user’s historical
interaction sequence (and reflections), select appropriate items from the
candidates, and rank them to recommend to the user. Think step by step.
Your recommendations:

3.2 Overall Framework
We propose MoRE, a novel reflection-based framework, to model
the dynamic preferences in LLM-based SeqRec. As shown in Fig. 3,
MoRE consist of two key modules:

Multi-Perspective Reflectors (offline reflection). Motivated
by the need to decouple explicit/implicit sequential features from
user interaction histories and integrate user-item-user collabora-
tive patterns, MoRE employs three perspective-aware reflection pro-
cesses:

(1) Explicit/Implicit Decoupling: Two distinct reflections analyze
a single user’s history to disentangle explicit preferences (e.g., item
titles and descriptions) and implicit preferences (e.g., attribute-level
sequential patterns).

(2) CF-Aware Integration: A third reflection captures cross-user
collaborative signals (e.g., rating trends and user similarity) through
item-centric analysis.

As discussed in Sec. 1, these derived reflections based on histori-
cal interactions are hints to enhance LLM’s future recommendations.
The details of this module will be introduced in Sec. 3.3.

Meta-Reflector (offline iteration and online selection). This
module has two main objectives. First, it maintains three memory
banks for each user to collect reflections from the corresponding
three reflectors and uses a refining-and-iteration strategy to self-
improve the reflections and update the current reflection memories
for each user. Second, it is responsible for deciding which of the
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Figure 3: The overall architecture of MoRE framework. MoRE incorporates multi-perspective reflectors to generate reflections
offline ① and a meta-reflector to self-improve these reflections ② and learn to select the most appropriate one ③. During online
recommendation ④, the meta-reflector selects suitable reflections for the current user.

three perspectives of reflection should be chosen to enhance the
current recommendation at each step for the user. This decision-
making process is formulated as a contextual bandit problem [16].
These two parts will be elaborated in Sec. 3.4 and Sec. 3.5, respec-
tively.

3.3 Offline: Multi-Perspective Reflections
As illustrated on the left of Fig. 3, MoRE aims at exploiting users’
historical interaction to generate reflections from the perspectives
of explicit preference, implicit preference, and collaborative signals.
We achieve this goal through the following reflectors:

Explicit Preference (EP) Reflector captures user 𝑢’s explicit
preferences by leveraging the LLM to reflect on the user’s inter-
action history S𝑢 , the candidate items C𝑡

𝑢 , and the discrepancy
between the predicted ranking Ô𝑡

𝑢 generated from LLM-based rec-
ommender and the ground-truth 𝑣𝑡𝑢 .

The reflection 𝑅𝑒 𝑓EP,𝑢 from the perspective of explicit preference
can be formulated as follows:

𝑅𝑒 𝑓𝐸𝑃,𝑢 = LLMREF (𝑃𝐸𝑃 (𝑢,S𝑡−1
𝑢 , C𝑡

𝑢 , Ô𝑡
𝑢 , 𝑣

𝑡
𝑢 )), (6)

where 𝑃𝐸𝑃 denotes the prompt specifically designed to guide the
LLM in reflecting explicit user preferences, defined as follows:

EP reflection prompt 𝑃𝐸𝑃

You are a reflector for an LLM-based recommender system, understand-
ing the explicit preferences embodied in the user’s historical sequence
and analyzing the areas for improvement in past recommendation
attempts to provide reflections for the future. Explicit preferences are
derived from an analysis of recent tendencies reflected in the
sequence of item titles and descriptions within the user’s history.
You need to:
1. Analyze the history with associated text to identify explicit preferences.
2. Analyze the logic and rationale behind past recommendation attempts.
3. Examine potential shortcomings in the past and provide suggestions
for improvement.
User’s historical sequence with related description: ⟨𝑅𝐸𝑃𝐸𝑃 (𝑆𝑡−1𝑢 ) ⟩.
Candidates: ⟨𝑅𝐸𝑃𝐸𝑃 (𝐶𝑡

𝑢 ) ⟩. Past recommendation attempts:
⟨𝑅𝐸𝑃𝐸𝑃 (𝑂̂𝑡

𝑢 ) ⟩. User new interaction (if any): ⟨𝑅𝐸𝑃𝐸𝑃 (𝑜𝑡𝑢 ) ⟩. Histori-
cal reflection demonstrations (if any): ⟨𝐷𝐸𝑀𝑂 ⟩. Your reflection:

Please note that in EP reflector, item titles with descriptions are
used to represent S𝑡−1

𝑢 , C𝑡
𝑢 , Ô𝑡

𝑢 , and 𝑣𝑡𝑢 through 𝑅𝐸𝑃𝐸𝑃 ().
Implicit Preference (IP) Reflector is designed to capture the

preference embedded in the other item attributes (e.g., item brands).
Similar to the EP reflector, the IP reflector takes the interaction his-
tory S𝑢 of user 𝑢, the candidate item list C𝑢 , the predicted ranking
list Ô𝑢 , and the ground-truth item 𝑣𝑡𝑢 as input, and produce the
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reflection through a frozen LLM:

𝑅𝑒 𝑓𝐼𝑃,𝑢 = LLMREF (𝑃𝐼𝑃 (𝑢,S𝑡−1
𝑢 , C𝑡

𝑢 , Ô𝑡
𝑢 , 𝑣

𝑡
𝑢 )), (7)

where 𝑃𝐼𝑃 denotes the prompt for guiding the LLM in reflecting
implicit user preferences, defined as follows:

IP reflection prompt 𝑃𝐼𝑃

You are a reflector for an LLM-based recommender system, understand
the implicit preferences embodied in the user’s historical sequence and
analyze the areas for improvement in past recommendation attempts to
provide reflections for future. Implicit preferences are reflected through
the associations shown in subsequences of item attributes within the
user’s history, such as subsequences of brands, styles, functions,
features, etc. Requirements:
1. Analyze the logic and rationale behind past recommendation attempts.
2. Focus on attribute subsequences within history to analyze potential
associations and causality.
3. Examine possible shortcomings in the past and provide suggestions.
Historical attribute seq: ⟨𝑅𝐸𝑃𝐼𝑃 (𝑆𝑡−1𝑢 ) ⟩. Candidates: ⟨𝑅𝐸𝑃𝐼𝑃 (𝐶𝑡

𝑢 ) ⟩.
Past recommendation attempts: ⟨𝑅𝐸𝑃𝐼𝑃 (𝑂̂𝑡

𝑢 ) ⟩. User new interaction
(if any): ⟨𝑅𝐸𝑃𝐼𝑃 (𝑜𝑡𝑢 ) ⟩. Historical reflection demonstrations (if any):
⟨𝐷𝐸𝑀𝑂 ⟩. Your reflections:

In IP reflector, the attributes of items are used to represent
S𝑡−1
𝑢 , C𝑡

𝑢 , Ô𝑡
𝑢 , and 𝑣𝑡𝑢 through 𝑅𝐸𝑃𝐼𝑃 ().

Collaborative Filtering (CF) Reflector aims to integrate pat-
terns and similarities across user interaction sequences into LLM-
based recommender systems. Unlike approaches that introduce new
token embeddings into the vocabulary [19, 44] or insert special se-
quences into prompts [41], we leverage a pre-trained collaborative
filtering modelM𝑢 to incorporate CF ratings into the LLM reflec-
tion process. Specifically, the CF reflector takes as input the target
user 𝑢’s interaction history S𝑡−1

𝑢 , the candidate item set C𝑡
𝑢 , the

predicted ranking Ô𝑡
𝑢 , and the ground-truth item 𝑣𝑡𝑢 , and generates

reflections using a frozen LLM:

𝑅𝑒 𝑓𝐶𝐹,𝑢 = LLMREF (𝑃𝐶𝐹 (𝑢,S𝑡−1
𝑢 , C𝑡

𝑢 , Ô𝑡
𝑢 , 𝑣

𝑡
𝑢 )), (8)

where 𝑃𝐶𝐹 is the prompt designed to guide the LLM in reflecting
CF signals. The prompt structure is detailed as follows:

CF reflection prompt 𝑃𝐶𝐹

You are a reflector for an LLM-based recommender system, utilizing
a Collaborative Filtering (CF) model to obtain items’ CF signals and
analyzing potential improvement in past recommendation attempts for
future suggestions. The sequence of historical items’ CF ratings reflects
patterns and similarities across user sequences. Your step-by-step
task:
1. Analyze historical CF ratings to identify preferences, trends, or interest
shifts.
2. Evaluate past recommendation effectiveness by comparing suggested
items with actual user interactions.
3. Analyze potential shortcomings in past recommendation attempts and
provide suggestions for improvement.
Items presented with CF ratings: ⟨𝑅𝐸𝑃M𝑢

(𝑆𝑡−1𝑢 ,𝐶𝑡
𝑢 , 𝑂̂

𝑡
𝑢 , 𝑜

𝑡
𝑢 ) ⟩ Effective

historical reflection demonstrations (if any): ⟨𝐷𝐸𝑀𝑂 ⟩. Your reflection:

In 𝑃𝐶𝐹 ,S𝑡−1
𝑢 , C𝑡

𝑢 , Ô𝑡
𝑢 , and 𝑣𝑡𝑢 are represented by their correspond-

ing CF ratings generated byM𝑢 which is denoted as <𝑅𝐸𝑃M𝑢
>.

For each user, we maintain three distinct memory banks, each
dedicated to storing the generated reflections from one of the three
perspectives (Explicit Preference, Implicit Preference, and Collabo-
rative Filtering respectively). Each memory bank for a user stores
a collection of past reflections for that user from the specific per-
spective. These memory banks are guided by the meta-reflector
to improve the reflections, as will be elaborated in the following
section.

3.4 Offline: Reflection Memory Maintenance
Considering that LLMs may not always accurately generate reflec-
tion results, we need a mechanism to ensure the validity of reflec-
tions after the meta-reflector obtains them from the three reflectors.
Therefore, we define a measure called the reflection improvement
effect to assess the reflections and devise a refining-and-iteration
strategy to update the reflections generated by the LLM.

Reflection Improvement Effect is defined as the difference in
LLM recommendation performance on the validation set, with or
without the reflections. In other words, if incorporating reflections
improves the LLM’s performance, it indicates that the reflection
is effective for recommendation. The greater the performance im-
provement, the more effective the reflection. If the reflection im-
provement effect of a reflection exceeds a preset threshold ℎ, we
regard it as an effective one.

Formally, we formulate the reflection improvement effect as:

𝐼𝑚𝑝 = Metric(ÔREF
𝑢 ) −Metric(ÔREC

𝑢 ),

ÔREF
𝑢 = LLMREC (𝑃REC (𝑢,S𝑡−1

𝑢 , C𝑡
𝑢 , 𝑅𝑒 𝑓𝑖,𝑢 )),

ÔREC
𝑢 = LLMREC (𝑃REC (𝑢,S𝑡−1

𝑢 , C𝑡
𝑢 )),

(9)

where 𝑅𝑒 𝑓𝑖,𝑢 ∈ {𝑅𝑒 𝑓EP,𝑢 , 𝑅𝑒 𝑓IP,𝑢 , 𝑅𝑒 𝑓CF,𝑢 }, Metric denotes the rec-
ommendation metric, e.g., NDCG@10.

Refining. As we filter out reflections that offer less or negative
SeqRec improvement using the above measure, we further refine
the selected reflections with three strategies:

(1) Global Level: We select the reflections that bring the greatest
average improvement for all users. In this approach, all users share
the same reflections.

(2) Group Level: We use a CF model to construct embeddings for
all users and then cluster them using the K-means++ algorithm [1].
We then choose the reflections that provide the greatest average
improvement for users within the same cluster, ensuring that users
in the same cluster share the same reflections.

(3) Individual Level:We select the reflections that bring the great-
est improvement for each user. This strategy leads to personalized
reflections.

All of the three strategies are greedy, which may lead to local
optima. To mitigate this issue, we propose using the improvement
effect brought about by each reflection as the sampling probabil-
ity. Reflections sampled from the filtered set serve as in-context
learning demonstrations. These demonstrations are then used to
task the three reflectors with generating improved reflections in
subsequent iteration steps, enabling the LLM to self-improve its
reflection quality.
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Table 1: Statistics of the 3 pre-processed datasets.

Dataset #Users #Items Avg. len Sparsity

Arts 55970 22612 8.80 99.96%
Games 55145 17287 9.01 99.95%
Instruments 27404 10450 8.41 99.92%

Iteration. Since both reflection generation and refining are based
on users’ historical interactions, a major advantage of MoRE is that
these two processes can be completed offline. As such, we can
further use the sampled reflections as demonstrations and task
the three reflectors with generating improved reflections in an
in-context learning fashion [5]. In this reflection generation and
iteration loop, we enable the LLM to self-improve the reflections.
We will further validate the impact of reflection iteration on LLM
recommendation performance in the experiments.

3.5 Online: Reflection Perspective Selection
The second objective of the meta-reflector is to model preference
shifts in SeqRec. Given three memory banks for each user to collect
effective reflections from three different perspectives, we require the
meta-reflector to select one of these reflections for recommendation
to achieve this goal. We formulate the decision-making process
as a Multi-Armed Contextual Bandit (MACB) problem [16], and
adopt the Proximal Policy Optimization (PPO) algorithm [22] to
efficiently learn to select the reflections. Formally, we define MACB
as a tuple (Z,A,R), where Z,A,R denote the state space, action
(arm) space, and reward function, respectively.

(1) state 𝒛 ∈ Z represents recommendation context, constructed
by concatenating CF-derived embeddings: 𝒛 = [𝑒𝑚𝑏𝑢 , 𝑒𝑚𝑏𝑣] where
𝑒𝑚𝑏𝑢 is the user embedding and 𝑒𝑚𝑏𝑣 the average interaction em-
bedding from S𝑡−1

𝑢 .
(2) Action 𝒂 ∈ A is defined as the selection of a reflection from

threememory banks.We represent 𝒂 as a 3-dimensional vector, with
each dimension corresponding to an arm, each arm representing a
reflection memory.

(3) Reward is defined to assess the recommendation improve-
ment brought by the reflections. We reuse the measure in Eq.(9)
and represent the reward as 𝑅(𝒛, 𝒂) = 𝐼𝑚𝑝 . Since the reflection
has been assessed in Sec. 3.3 we do not need to call the LLM here.
Additionally, due to the sampling discussed in Sec. 3.4, 𝑅(𝒛, 𝒂) can
be both positive and negative, ensuring training efficiency.

(4) Replay Buffer is designed to facilitate efficiency in policy
optimization. We represent it as 𝐷 = (𝒛, 𝒂, 𝑅(𝒛, 𝒂), 𝒛′) to store the
tuples of observed state, action, reward, and next state. With the
records in the replay buffer, we can refine successful policies and
learn from erroneous trials.

Training. We apply the PPO algorithm [22] with an Actor & Critic
network and a Clip objective function to efficiently learn MACB.

(1) Actor & Critic Definition. To model the selection of reflec-
tions and evaluate the value of the states, we implement a policy
network parameterized by MLPs to define our selector’s Actor 𝜋𝜽
and Critic𝑉𝝍 , which maps the environmental spaceZ to the action

space A and reward function 𝑅 respectively:
Actor 𝜋𝜽 (𝒛) : 𝒂 = softmax(𝜽 · 𝒛),
Critic 𝑉𝝍 (𝒛) : 𝑟 = 𝝍 · 𝒛, (10)

where 𝜽 and 𝝍 are the parameters of Actor and Critic respectively.
(2) Clip Objective. During the training process, the selector’s

Actor uses the 𝜖-greedy (𝜖 = 0.1) strategy to explore the envi-
ronment, with probability 𝜖 to take a random action while with
probability (1 − 𝜖) to exploit the learned policy 𝜋𝜽 . We adopt the
clip objective function for PPO training to maximize the reward
selection as follows:

L = min
(
𝜋𝜽

𝜋old
𝐴(𝒛, 𝒂), 𝑐𝑙𝑖𝑝 ( 𝜋𝜽

𝜋old
, 1 − 𝛿, 1 + 𝛿)𝐴(𝒛, 𝒂)

)
, (11)

where 𝐴(𝒛, 𝒂) = E(𝑅(𝒛, 𝒂)) − 𝑉𝝍 (𝒛) is advantage function used
to evaluate 𝒛’s cumulative rewards E(𝑅(𝒛, 𝒂)) and current value
𝑉𝝍 (𝒛). 𝛿 is clip threshold.

Inference. During inference, we select the reflection memories with
the highest confidence from the Actor, exploit the reflection 𝑅𝑒 𝑓𝑖,𝑢
with the highest 𝐼𝑚𝑝 score in the memory, and make a recommen-
dation according to Eq.(2) using the prompt 𝑃REC.

4 Experiment
In this section, we conduct extensive experiments to answer the
following research questions: RQ1: How does MoRE compare to var-
ious existing baselines in terms of recommendation performance?
RQ2: How effective are the multi-perspective reflections and re-
flection perspective selection in MoRE? RQ3: For reflection memory
maintenance, how effective are the refining and iteration strategies?
RQ4: Does MoRE have an advantage in terms of training cost?

4.1 Experiment Settings
Dataset. Following [44], we conduct our experiments on three sub-
sets of the Amazon dataset [21]: “Arts”, “Video”, and “Instruments”1.
Each item in these subsets contains attributes that capture both
explicit user preferences (e.g., item titles) and implicit preferences
(e.g., attributes like brands and functional traits ). We follow [44] to
preprocess the data to achieve a fair comparison, with the statistical
information shown in Tab. 1.

Baselines. We adopt three types of SeqRec methods as baselines:
(1) Traditional Deep Learning Models: Caser [30] captures local
and global patterns via CNN; GRU4Rec [10] models sequences with
GRUs; SASRec [13] and BERT4Rec [28] employ uni-/bidirectional
Transformers for next-item prediction; FDSA [40] models item-
feature transitions via dual attention. (2) Training-Free LLM Meth-
ods: LLM4RS [4] aligns LLMs with IR ranking strategies; LLM-
Rank [12] achieves zero-shot ranking via specialized prompting. (3)
Training-Required LLM Methods: LC-Rec [44] expands vocabulary
for collaborative filtering; TALLRec [2] uses instruction tuning with
text descriptions; BinLLM [41] encodes user-item interactions as
binary sequences; Re2LLM [31] employs fixed reflection pools for
suggestions; LLaRA [19] combines user knowledge and behavior
patterns via LoRA; A-LLMREC [14] aligns CF embeddings with
LLM vocabulary.
1Note that “Arts”, “Games” and “Instruments” represent the abbreviations of “Arts,
Crafts and Sewing”, “Video Games” and “Musical Instruments” respectively in the
Amazon Review dataset (2018).
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Table 2: Recommendation performance comparison. All LLM-based methods utilize Llama-3 and ensure an identical candidate
set for a fair comparison. The best and the second-best performances are denoted in bold and underlined fonts, respectively.
“N@K” is short for “NDCG@K”. The “Imp.” indicates the percentage improvement of MoRE over the best performances from
baselines. “-” means that the baseline can only output a top-1 prediction and cannot rank or recall multiple items. † denotes
MoRE performs significantly better than baselines based on two-tailed paired t-test with Bonferroni correction (𝑝 < 0.05).

Methods Arts Games Instruments

HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10 HR@1 HR@5 HR@10 N@5 N@10

Caser 0.103 0.2555 0.3603 0.1823 0.2161 0.0899 0.3024 0.4397 0.1997 0.2440 0.1349 0.2931 0.3968 0.2193 0.2527
FDSA 0.1211 0.2536 0.3670 0.1875 0.2241 0.1196 0.3073 0.4466 0.2150 0.2597 0.1403 0.2842 0.3905 0.2157 0.2497
BERT4Rec 0.0896 0.2402 0.3613 0.1680 0.2072 0.0899 0.2796 0.4160 0.1861 0.2299 0.1233 0.2618 0.3789 0.1954 0.2326
GRU4Rec 0.1001 0.2431 0.3708 0.1722 0.2129 0.0929 0.3192 0.4644 0.2083 0.2554 0.1340 0.3021 0.4021 0.2201 0.2520
SASRec 0.1850 0.3570 0.4280 0.2788 0.3016 0.1900 0.2915 0.4348 0.1898 0.2369 0.1832 0.3327 0.3701 0.2594 0.2809

LLM4RS 0.0543 0.1087 0.1277 0.0826 0.0887 0.0662 0.1976 0.2233 0.1338 0.1421 0.0330 0.0900 0.1188 0.0624 0.0717
LLMRank(CoT) 0.1725 0.3337 0.4061 0.2595 0.2828 0.1611 0.3508 0.4496 0.2607 0.2925 0.1457 0.2904 0.3709 0.2202 0.2461
LC-Rec 0.2145 0.3768 0.4309 0.3006 0.3181 0.2599 0.4140 0.4646 0.3426 0.3593 0.1592 0.3296 0.3920 0.2486 0.2691
Re2LLM 0.2736 0.4252 0.4938 0.3535 0.3757 0.2223 0.4180 0.5198 0.3231 0.3559 0.2011 0.3521 0.4424 0.2787 0.3074

MoRE 0.2898 0.4376 0.5043 0.3705 0.3922 0.2569 0.4773 0.5731 0.3647 0.3957 0.2163 0.3824 0.4674 0.2981 0.3251

Imp. 5.92%† 2.92%† 2.13%† 4.81%† 4.39%† -1.15% 14.19%† 10.25%† 6.45%† 10.13%† 7.56%† 8.61%† 5.65%† 6.96%† 5.76%†

Table 3: Comparison of HR@1 Performance with LLM base-
lines that inherently only provide top-1 prediction.

Methods Arts Games Instruments

TALLRec 0.2559 0.1975 0.1588
BinLLM 0.2401 0.2347 0.1875
LLaRA 0.2803 0.2263 0.1763
A-LLMREC 0.2193 0.2342 0.1897
MoRE 0.2898 0.2569 0.2163

Table 4: Ablation studies on Amazon Arts. “Random” indi-
cates a random reflection selection from the three memory
banks, while “Greedy” denotes that reflection selection is
based solely on downstream SeqRec on the validation set.
𝑅𝑒 𝑓all denotes 𝑅𝑒 𝑓EP + 𝑅𝑒 𝑓IP + 𝑅𝑒 𝑓CF. Note: “+” denotes concate-
nation, which may cause conflicting reflections leading to
suboptimal performance. MoRE achieves the best results
through user-personalized RL selection.

Methods HR@1 HR@5 HR@10 N@5 N@10

MoRE 0.2898 0.4376 0.5043 0.3705 0.3922

- Random 0.2736 0.4023 0.4881 0.3421 0.3701
- Greedy 0.2812 0.4156 0.4957 0.3528 0.3786

- 𝑅𝑒𝑓EP only 0.2850 0.4356 0.5033 0.3670 0.3881
- 𝑅𝑒𝑓IP only 0.2850 0.4214 0.4881 0.3571 0.3788
- 𝑅𝑒𝑓CF only 0.2850 0.4290 0.4871 0.3572 0.3788
- 𝑅𝑒𝑓EP + 𝑅𝑒𝑓IP 0.2583 0.4071 0.4700 0.3443 0.3651
- 𝑅𝑒𝑓EP + 𝑅𝑒𝑓CF 0.2707 0.3927 0.4623 0.3311 0.3533
- 𝑅𝑒𝑓IP + 𝑅𝑒𝑓CF 0.2402 0.3584 0.4156 0.3033 0.3217
- 𝑅𝑒𝑓all 0.2393 0.3594 0.4271 0.3051 0.3268

Evaluation Metrics. We adopt two widely used metrics, top-𝑘
Hit Ratio (HR@𝑘) and Normalized Discounted Cumulative Gain

(NDCG@𝑘), with 𝑘 ∈ {5, 10}. We follow [44, 45] to employ the
leave-one-out strategy for the obtaining of training, validation, and
test data. Specifically, for each user behavior sequence, the last item
is used as the test data, the penultimate item is used as the validation
data, and the remaining interaction records are used for training.
Following [12, 14, 19, 31], we randomly sample |C𝑢 | − 1 negative
items to construct |C𝑢 | candidates with 1 target item for each user.
Following [31], |C𝑢 | is set to 50 for all methods. All methods except
those inherently limited to top-1 prediction (without ranking)
must provide top-10 ranked items.

Implementation Details. We use LLaMa-3-8B-Instruct [6] as
the backbone for all LLM-based methods. Following [2, 12, 14, 31],
we respectively perform random sampling from three datasets for
efficiency, and exclude users with overly long interaction sequences
and then randomly we sample 1,000 users, with items remaining
unchanged. For simplicity, we trained DMF2 [32] with an embed-
ding size of 64 to provide CF scores for reflection (Sec. 3.3) and to
assist with user clustering within refining (Sec. 3.4). The number of
clusters is set to 20. Threshold ℎ is set to 0.1. We use RecBole [43]
to implement all traditional SeqRec baselines (e.g. SASRec) with
the Adam optimizer and grid search3. For LLM baselines, we fol-
low the origin settings and make proper adaptions to our scenario.
For constrained generative retrieval baselines, we construct the
constraints following the corresponding setting. For baselines that
only provide top-1 prediction, we provide the same candidate set
as MoRE and, following the original settings, do not require predic-
tions beyond the top-1, thereby obtaining their best top-1 results
under a lower task difficulty. For baselines limited to yes/no outputs,
we adjust them, following LLaRA [19], to predict the next item. All
experiments are run on a 4×A800-PCIE-80GB GPUs server.

2Please note that other CF models can be easily incorporated into MoRE.
3Grid search space was set as: embedding size : {32, 64, 128}, learning rate :
{1𝑒−2, 1𝑒−3, 1𝑒−4} and batch size : {1024, 2048, 4096}.
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Table 5: Training cost comparisons among LLM-based methods on four A800. “Training time” is measured in hours, shown
as the mean and standard deviation (SD). “VRAM” denotes the Peak VRAM Usage, measured in GB. MoRE’s RL framework
minimizes computation cost through compact action space (|A| = 3, 3 perspectives).

Methods Arts Games Instruments

Training time VRAM Training time VRAM Training time VRAM

TALLRec (Fine-Tune) 26.228(±0.818) 46.98 18.018(±0.290) 43.24 18.338(±0.487) 42.95
BinLLM (Fine-Tune) 10.209(±0.540) 124.67 11.468(±0.328) 120.57 10.435(±0.451) 115.48
LLaRA (Fine-Tune) 9.013(±0.161) 77.92 6.405(±0.281) 65.83 6.863(±0.187) 74.36
A-LLMREC (Fine-Tune) 56.975(±1.621) 217.74 55.975(±1.058) 202.09 56.316(±1.992) 231.63
LC-Rec (Fine-Tune) 20.382(±0.670) 206.37 21.361(±0.678) 201.35 13.720(±0.436) 199.93
Re2LLM (RL, |A | = 20) 4.007(±0.007) 2.77 3.894(±0.005) 1.99 4.152(±0.008) 1.13

MoRE (RL, |A | = 3) 3.982(±0.001) 2.77 3.854(±0.002) 1.99 4.093(±0.003) 1.13
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Figure 4: Impact of refining and iteration strategies on recommendation performance. We repeated the experiment 5 times,
with the mean value for each method represented by the line and the shaded area indicating the standard deviation. (a), (b), and
(c) demonstrate the effects of iterations and different levels of refining on three datasets, while (d) shows the effects of the
three perspectives with Games as an example.

4.2 Recommendation Performance Comparison
To answer RQ1, we compare the SeqRec performance of MoRE
against baselines for 10 trials, with the average results presented
in Tab. 2 and Tab. 3. We have the following observations: (1) MoRE
outperforms all baselines across all metrics on all datasets, except
for the suboptimal performance on the HR@1 on “Games”. (2) In
general, LLM-based methods demonstrate performance comparable
to the traditional methods, which validates the potential of LLMs
in SeqRec. (3) Notably, MoRE outperforms LLM-based methods that
specialize in predicting one single item (HR@1 only), even when
those methods sacrifice ranking capabilities4.

In summary, MoRE exhibits superior performance in SeqRec, val-
idating the efficacy of our approach. We attribute this to our pro-
posed LLM-based reflection framework, which leverages LLM’s
analytical and reasoning capabilities to capture users’ explicit pref-
erences and implicit behavioral patterns while seamlessly integrat-
ing CF knowledge in a clear and comprehensible manner, ultimately
enhancing performance in sequence recommendation tasks.

4.3 Ablation Study: Multi-Perspective
Reflection and Selection

To validate the effectiveness of each perspective of reflection and
answer RQ2, we conduct an ablation study on Amazon Arts. The
results are presented in Tab. 4.
4Note that these methods are inherently limited to top-1 predictions. Therefore, for
these methods, we retain only top-1 results for a fair comparison here.

User... interested in fighting games…The attempts … 

lacked focus on gameplay and mechanics... It is 

suggested to prioritize fighting games, especially those 

with a classic or retro feel…

User recently paid more attention to items with high 

CF ratings. Parts of the past attempts … too 

diverse … consider games with high CF ratings from 

past interactions and their sequels, such as …

… consider games with multiplayer online 

functionality, especially those on PlayStation…

Street Fighter 5 -

PlayStation 4 

Standard Edition

Rec hit at 1-th

(CF rating: 0.83)

Rec hit at 8-th

Rec hit at 6-th

CF reflection (selected by MoRE):

EP reflection:

IP reflection:

Target:

Figure 5: Example of how LLM reflections from explicit pref-
erence (EP), implicit preference (IP), and collaborative filter-
ing (CF) perspectives improve recommendation.

We find that MoRE, equipped with the reflection perspective se-
lection, outperforms alternatives, demonstrating the effectiveness
of the multi-perspective reflections and the corresponding perspec-
tive selection. Specifically, MoRE outperforms the variants with not
only the single reflection perspective but also the dual or triple
perspectives simultaneously. The simultaneous use of multiple per-
spectives leads to a decrease in performance. This implies potential
discrepancies among perspectives and no single perspective of re-
flection is universally optimal for all users, thereby confirming the
necessity for selective choice among perspectives.
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Moreover, MoRE’s selection strategy surpasses both the Random
and Greedy selection approaches which respectively denote a ran-
dom reflection selection from the three memory banks and the se-
lection solely based on downstream recommendation performance.
This highlights the effectiveness of our contextual bandit modeling,
enabling MoRE to choose the most suitable reflection for each user.

4.4 Ablation Study: Refining and Iteration
To answer RQ3, we test the impact of three refining strategies
on SeqRec under different iteration rounds, taking reflections on
explicit features as an example. From Fig. 4, we find:

(1) Iteration: Overall, as the number of iterations increases,
the recommendation performance gradually improves. This indi-
cates that iteration can enhance the quality of reflections, thereby
improving the recommendation.

(2) Refining: Refining at group and individual levels shows
a significantly better trend over that at the global level during
iterations, particularly on Arts (Fig. 4(a)). We assume that the global-
level reflections may introduce noise from other users, whereas
group- and individual-level demonstrations more effectively elicit
personalized reflective capabilities from the reflectors.

4.5 Analysis of Computational Cost
To addressRQ4, we compare training costs (time and GPUmemory)
across LLM-based baselines using five repeated experiments, re-
ported as Avg. ± SD5 in Tab. 5. We find: 1) Reflection-based methods
(e.g., MoRE) incur lower costs than fine-tuning approaches by avoid-
ing LLM parameter updates; 2) MoRE outperforms Re2LLM in effi-
ciency due to its smaller action space. MoRE’s Meta-Reflector selects
from 3 reflection perspectives, while Re2LLM trains a PPO-based
retrieval agent over a fixed base6, requiring larger action-space
exploration. In summary, MoRE achieves the lowest training costs
(time and memory) among all baselines, demonstrating superior
training efficiency.

4.6 Case Study
We present a case study demonstrating reflections from EP, IP, and
CF perspectives to enhance LLMREC (Fig. 5). The three perspec-
tives improve performance as follows: EP Reflection focuses on
recent interaction trends (e.g., game genre preferences) to align
with explicit preferences. This results in the target item being rec-
ommended at the 8-th position (e.g., Street Fighter 5), effectively cap-
turing short-term user intentions. IP Reflection identifies patterns
in historical attributes (e.g., multiplayer functionality, "PlayStation"
brand) to adapt to implicit preferences. This moves the target to
the 6-th position by analyzing deeper user behavioral patterns. CF
Reflection leverages collaborative filtering signals and empha-
sizes highly-rated items, reducing diversity while incorporating
historical ratings and relevant sequels. This achieves the top-1 rec-
ommendation position. The Meta-reflector dynamically selects
the optimal reflection (CF in this case), enabling MoRE to deliver
optimal recommendations.

5Average and standard deviation.
6The size is 20.

The reflection mechanism bridges the semantic gap between
LLMs and CF: LLMs utilize simple score comparisons instead of in-
terpreting embeddings. This approach cost-effectively equips LLMs
with domain-specific knowledge (e.g., CF signals) while mitigating
their adaptation challenges in specialized domains.

5 Conclusion
In this paper, we propose a mixture of reflectors framework, namely
MoRE, for modeling and learning the dynamic user preferences in
SeqRec. We first introduce three reflectors for each user to generate
LLMs’ reflections from the perspectives of explicit user preferences,
implicit user preferences, and collaborative signals. Building on
these reflectors, we introduce a meta-reflector that evaluates and
updates the generated reflections using a self-improving strategy.
It selects the most appropriate perspective and corresponding re-
flections for each user’s current recommendation using a contex-
tual bandit algorithm. Furthermore, MORE’s unique self-improving
meta-reflector, through its rigorous refining and iteration strategies,
explicitly addresses the critical challenge of ensuring the validity
and quality of LLM-generated reflections, providing reliable hints
for recommendation. This mechanism effectively bridges the se-
mantic understanding of LLMs with established recommendation
principles, enhancing both performance and interpretability. Ex-
tensive experiments conducted on three benchmarks demonstrate
that MoRE consistently outperforms traditional recommendation
methods and LLM-based recommendation methods with minimal
GPU memory usage and training time overhead.
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